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Abstract— This paper describes a novel method for creating surface models of multi-material components using dual energy com-
puted tomography (DECT). The application scenario is metrology and dimensional measurement in industrial high resolution 3D x-ray
computed tomography (3DCT). Based on the dual source / dual exposure technology this method employs 3DCT scans of a high
precision micro-focus and a high energy macro-focus x-ray source.
The presented work makes use of the advantages of dual x-ray exposure technology in order to facilitate dimensional measurements
of multi-material components with high density material within low density material. We propose a workflow which uses image fusion
and local surface extraction techniques: a prefiltering step reduces noise inherent in the data. For image fusion the datasets have to be
registered. In the fusion step the benefits of both scans are combined. The structure of the specimen is taken from the low precision,
blurry, high energy dataset while the sharp edges are adopted and fused into the resulting image from the high precision, crisp, low
energy dataset. In the final step a reliable surface model is extracted from the fused dataset using a local adaptive technique.
The major contribution of this paper is the development of a specific workflow for dimensional measurements of multi-material indus-
trial components, which takes two x-ray CT datasets with complementary strengths and weaknesses into account. The performance
of the workflow is discussed using a test specimen as well as two real world industrial parts. As result, a significant improvement in
overall measurement precision, surface geometry and mean deviation to reference measurement compared to single exposure scans
was facilitated.

Index Terms—DECT image fusion, local surface extraction, Dual Energy CT, metrology, dimensional measurement, variance com-
parison.

1 INTRODUCTION

In state-of-the-art engineering the demands concerning the functional-
ity of industrial components continuously increases the complexity of
new parts. Furthermore the demands in terms of weight reduction, in-
creased stability and new materials (e.g., carbon-fibre-reinforced plas-
tics) induce manufacturers to design new function-oriented and com-
plex parts. In order to meet the requirements and specifications of
construction drawings, manufacturing quality has to be assured using
top of the line quality assurance techniques. Metrology (the science of
measurement [30]) is used to study the surface geometry of a compo-
nent, e.g., distances, wall-thicknesses or diameters by means of coor-
dinate measurements using tactile or optical sensors. This technology
permits the calculations of surface dimensions at a calibrated precision
over a defined measurement area.

In recent years the methodologies of metrology and dimensional
measurement were expanded by introducing the novel technology of
industrial 3D x-ray computed tomography (3DCT). 3DCT is an estab-
lished method for visualization and for non-destructive-testing (NDT)
of industrial components [5] and has recently gained importance in the
area of dimensional measurement for industrial components. Figure 1
shows an image of the 3DCT at the Upper Austrian University of Ap-
plies Sciences - Wels Campus. The principle of 3DCT is to generate
a series of x-ray attenuation measurements, which is used to produce
a 3D grid of greyvalues corresponding to the spatial density distribu-
tion [9]. 3DCT provides full geometric information of a specimen
including inner or hidden structures. A single scan non-destructively
characterizes a specimen and detects material defects and geometri-
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cal irregularities of the manufacturing process. Furthermore, the typi-
cal limitations of tactile and optical coordinate measurement technol-
ogy can be avoided (e.g., problems with deformable surfaces, reflect-
ing glass probes). Industrial 3DCTs with cone beam geometry and
flat panel detectors are prone to artefacts like noise-induced streaks,
aliasing, beam-hardening, partial volume and scattered radiation ef-
fects [4]. Therefore the quality of the datasets is easily affected by the
environmental conditions of the measurement. Some of the parame-
ters which have a major contribution to the dataset’s quality are: the
specimen’s geometry, the penetration lengths, the positioning of the
specimen in the ray, the measurement parameters and the specimen’s
material combination.

Especially when scanning multi-material specimens with high dif-
ferences in density and therefore in the attenuation coefficients of each

Fig. 1. 3D x-ray computed tomography system at the Upper Austria
University of Applied Sciences - Wels Campus. General design of the
CT: 225 keV and 450 keV x-ray sources are mounted on the left granite
pillar, rotary plate for specimens, amorphous silicon matrix detector on
the right granite pillar. A single 360 degree turn is sufficient to acquire
the full geometry of a specimen.
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material, severe streaking artefacts prevent a reliable dimensional mea-
surement. Usually, technicians in measurement technology disassem-
ble the multi-material components. Each material is measured in a
separate scan using optimal x-ray parameters. This procedure is time
consuming and in several cases the specimen is destroyed. For in-
stance, in the special case of a pressure sensor from the automotive
industry, the sensor is cast integral into the plastic body and can not
be removed without destroying the specimen. The common workflow
for dimensional measuring of single-material industrial components
can be summed up as follows: a prefiltering step reduces the recon-
structed dataset’s inherent noise in order to support surface detection.
For common surface extraction tasks in industrial applications, usu-
ally a single isovalue is specified to distinguish between material and
air [27]. A polygonal mesh is extracted along the selected isovalue
using a surface creation algorithm (e.g., marching cubes [15]). Finally
the extracted surface model is compared to a computer aided design
(CAD) model using variance comparison. The corresponding devia-
tions between the reference and the test model are calculated and visu-
alized by color-coding scalar deviations on the surface of the reference
model.

Multi-material components with high density differences are not
suitable for the common workflow of dimensional measurement us-
ing 3DCT. High density and highly absorbing materials (e.g., steel)
produce scattered radiation which is manifested in the reconstructed
dataset. So the low absorbing material is simply covered by the dif-
ferent characteristics of artefacts from the strong absorbing material.
If a global thresholding method for surface extraction is applied on
an artefact affected dataset, holes and artificial structures will be in-
troduced by different artefact types which modify the surface models.
A reliable dimensional measurement is in most cases impossible. In
Figure 2 and Figure 9 these circumstances are depicted.

To improve measurement results, recent research activities have
tried to exploit Dual Energy Computed Tomography (DECT). By
scanning a specimen using different energies and therefore different
energy spectra of the x-ray source, it is possible to combine informa-
tion of both reconstructions in order to quantify the different materials
of a component.

This paper concentrates on designing a new workflow to facilitate
dimensional measurements of multi-material components. The recon-
structed datasets of both x-ray CT scans are adaptively fused on a
regional basis and a valid surface model for dimensional measure-
ment is locally determined. The major goal of our work is to de-
sign the workflow to follow typical dimensional measurement con-
straints. The method has to be applicable for typical dimensional mea-

Fig. 2. Scattered radiation, beam hardening, and other physical effects
produce severe artefacts, which modify the dataset and prevent a re-
liable global isosurface extraction. Artefacts manifest themselves as
holes and artificial structures. In the rendering even a screw from the in-
side of the specimen becomes visible (high density objects are depicted
in red, 3D view is rendered using raycasting).

surement tasks and practical in terms of quality and data-processing
speed on commodity hardware. The reconstructed datasets of the two
scans are taken as ground truth, assuming no additional information of
CAD models or additional specifications of primitives (e.g., cylinders,
cuboids) in the scanned data. The special setup of the industrial 3DCT
at the Upper Austrian University of Applied Sciences - Wels Campus
is used to facilitate the DECT scans. In this setup a dual x-ray source
design was created using a 450 keV macro focus source for the high
energy scans and a 250 keV micro focus source for the high precision
measurements.

2 RELATED WORK

2.1 Dual energy computed tomography
Concerning data acquisition in DECT there are two different tech-
niques: the dual exposure / dual source and the dual (layer) detector
technique [22].

Using the dual exposure / dual source technique a specimen is mea-
sured twice using different x-ray energies. Usually a high energy mea-
surement and a low energy measurement are carried out successively
without moving the specimen on the rotary plate. In order to combine
both measurements either the position of the specimen is not changed
between the measurements or an accurate registration of the datasets
has to be performed. Major disadvantages of the dual exposure / dual
source technique are the double measurement time and also the double
storage requirement. However, in the area of industrial CT this method
constitutes a novel enhancement for applications, which is usable on a
widespread variety of existing 3DCTs.

Using the dual detector technique only a single measurement of the
specimen is necessary. A modified detector consisting of two separate
layers generates two penetration images: the front layer detects low
energy photons and the back layer detects high energy photons. The
disadvantage of this method is that the energy separation of these de-
tectors is rather poor [22]. Application areas for this technique are the
characterization of organic and inorganic materials in baggage con-
trol systems for airport security and the examination of drilling cores
concerning material properties [7]. A considerable body of work on
dual-energy 2D imaging is out of scope for our work and is therefore
not treated.

Due to specifications of our 3DCT equipment the dual exposure /
dual source technique was used for our DECT measurements.

2.2 Image Fusion
The general aim of image fusion is to combine a set of input images
into a single output image. The output image preserves the salient in-
formation from each input image, suppresses noise and irrelevant parts
of the input images, and should not generate distortions, artefacts, or
inconsistencies [12]. Image fusion techniques are used in a wide range
of applications, e.g., medicine, remote sensing, industry, surveillance
and defense applications which all benefit from the use of multiple im-
ages of a scene. Generally image fusion algorithms can be categorized
into low, mid, and high levels. In some literature the levels are also
referred to as pixel, feature, and symbolic levels.

Feature-based algorithms are usually more robust to signal-level
noise compared to pixel-level algorithms. These algorithms typically
segment the images into regions and fuse the regions using their var-
ious properties [12]. High-level fusion algorithms try to combine im-
age descriptions, e.g., in the form of relational graphs [31]. Feature
and symbolic level fusion are out of scope for this work and are not
considered any further.

In the area of pixel-level image fusion a considerable body of work
has been done. Pixel-level algorithms work either in the spatial do-
main (e.g., [13]) or in the transform domain (e.g., [18]). Spatial-
domain algorithms are able to focus on specific image areas limiting
the influence of fusion in other areas. As transform domain algorithms
create the fused image globally, undesirable artifacts may be created
in several image areas while enhancing properties in others. For this
reason transform domain algorithms are considered as not suitable in
the proposed application area. Multiresolution analysis constitutes an-
other branch of pixel-level fusion. Burt [1] created image pyramids by
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applying filters with increasing spatial extent in order to separate in-
formation at different resolutions. The value with the highest saliency
is taken at each position in the transform image, e.g., using the inten-
sity gradients as saliency measure [21]. Finally the fused image is
created by an inverse transform of the composite image. Furthermore
various wavelet transforms can be used to fuse images. The discrete
wavelet transform [13],[14] and more recently, the dual-tree complex
wavelet transform [18], [12] have been used in many applications to
fuse images.

Multiresolution analysis turned out to produce suboptimal results in
a difficult to tune and timeconsuming process. As we wanted to focus
the fusion of the two datasets on edge regions, an adapted version of
the weighted arithmetic image fusion is used. It employs a region
based encoding of the weights for HE and LE dataset.

2.3 Local surface extraction

There are several methods in the area of industrial 3DCT that try to
improve the surface extraction from industrial 3DCT data. Gener-
ally they can be grouped into two categories. In the first category
the dataset is enhanced by artefact reduction [8] in order to generate a
dataset with homogeneous greyvalues for each material. In this case,
a single threshold is sufficient.

For techniques in the second category the underlying data is con-
sidered as ground truth and used for further processing. Whitaker et
al. [29] introduced an approach that directly operates on voxel data.
Based on the ideas of Sethian [24], this approach considers the zero
level-set of a volume as a deformable surface. The surface is then
deformed in order to minimize the mean curvature on the surface.
Level-set evolution is computational expensive and timeconsuming on
commodity hardware, and therefore undesirable for dimensional mea-
surement tasks. Kindlmann and Durkin [10] take the data value as
well as the gradient magnitude and the second derivative in order to
design and explore a 3D transfer function space. Kniss et al. [11]
have designed transfer function widgets that build on Kindlmann and
Durkin’s method. As Kindlmann and Durkin originally designed their
method for volume visualization, the extraction of surface models is
not included. Methods which extract surface models from binary data
were proposed by Whitaker [28] and Gibson [2]. Whitaker proposed
to change the constrained deformable surface model to a constrained
level-set model, in order to create smooth models while bypassing the
need for a separate surface representation. Gibson generates feature-
preserving surface models by treating the binary input data as a con-
straining element in an energy-minimizing deformable surface system.
In these methods, to a large extent the quality of the output depends on
the prior segmentation, which would introduce another expensive step
to the workflow. Heinzl et al. [3] proposed a pipeline which uses 3D
image processing filters for preprocessing and segmentation of 3DCT
datasets in order to create the surface model. In particular, after an
edge preserving prefiltering step, a watershed filter is applied on the
gradient magnitude image. The resulting binary segmented data is
taken for the construction of a surface model using constrained elastic-
surface nets. Due to segmentation of material regions, fine details
might get lost and therefore measurement errors are introduced.

As the requested output of the workflow is a surface model, we ap-
ply a modified version of Steinbeiss’s method [25] using a modified
noise reduction scheme. This method locally adapts surface vertices
to determine the best local surface position. Using an initial suitable
surface model of the specimen, greyvalue profiles are calculated in the
direction of each point’s surface normal. The vertex location is then
adjusted to correspond to the position with maximal gradient magni-
tude.

In this paper we describe a DECT workflow for surface extraction
from multi-material components. We further discuss the results of ap-
plying the workflow to testparts as well as real world industrial com-
ponents.

Fig. 3. DECT workflow for surface extraction from multi-material com-
ponents; Input 1: Volume dataset from a low energy CT scan, Input 2:
Volume dataset from a high energy CT scan; Output: Improved surface
mesh.

3 DECT WORKFLOW FOR SURFACE EXTRACTION FROM
MULTI-MATERIAL COMPONENTS

The basis of our approach is the dual source / dual exposure technol-
ogy using a micro-focus and a macro-focus x-ray source. The high
energy (HE) macro-focus CT scan generates nearly artefact-free but
blurry, less precise and more noisy data. Usually macro-focus CT is
the method of choice when examining large or high density compo-
nents. Due to the higher energies used in macro-focus x-ray sources,
the x-ray spot size (origin of the x-rays) is larger compared to micro-
focus x-ray sources. It is approximately 2 mm versus 7 μm to 320
μm depending on the selected energy setting. The ideal case of a near
punctiform x-ray source for an optimal projection image on the detec-
tor is abandoned in macro-focus CT in order to achieve higher pene-
tration lengths. In contrast, the low-energy (LE) micro-focus measure-
ment generates high precision but artefact affected data. The smaller
x-ray spot size supports the generation of crisp and precise images, but
the limited energy restricts penetration lengths.

Most of the approaches mentioned in the previous chapter are fo-
cused on a specific problem within the visualization pipeline. Our goal
is to combine and extend existing methods according to the require-
ments of metrology. The workflow shall be applicable in every day
use for dimensional measurements of multi-material components. As
we do not have access to the projection images, the reconstructed vol-
umes of the high energy (HE) and the low energy (LE) measurement
are used as input. In the following subsections all components of the
proposed DECT workflow including DECT fusion and local surface
extraction are discussed in detail (see Figure 3).

3.1 Preprocessing
Due to the different characteristics in each of the two scanned datasets
concerning artefacts and signal to noise ratio, a preprocessing step is
essential. Both high energy (HE) and low energy (LE) datasets are
affected to a certain degree by ambient noise, but especially the HE
dataset has to be preprocessed to reduce noise due to a more intense
noise level of the detector in the higher energy bands. In case of the LE
dataset, the preprocessing step reduces the propagation of artefacts to
subsequent steps of the workflow. The preprocessing is accomplished
by applying anisotropic diffusion which was first proposed by Perona
and Malik [20]. More recently, a comprehensive book on the topic of
geometry-driven diffusion was edited by ter Haar Romeny [26]. Com-
pared to isotropic smoothing, the characteristic of anisotropic diffusion
filters is to smooth the data without blurring or moving edges. So the
dataset’s noise is reduced but specific image features are preserved.
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(a) (b)

Fig. 4. Anisotropic-diffusion filter, axial cross section through a cutout of
a 400V connector, before (a) and after (b) anisotropic diffusion filtering.
Smaller artefacts are removed and the dataset’s noise is decreased.

As these properties are desirable for dimensional measurement, Per-
ona and Malik’s anisotropic diffusion method is used in the DECT
workflow. Initially, multi-scale descriptions of the input images are
calculated. If an image U(x) is embedded in a higher dimensional
function of derived images U(x, t) then this higher dimensional func-
tion represents the solution of the heat diffusion equation,

dU(x, t)
dt

= ∇ ·C∇U(x, t) (1)

which is constrained by a constant conductance coefficient C and the
initial condition U(x,0) = U(x) representing the original image. If C
is extended to a function of x, the solution of the heat equation will
then be

dU(x, t)
dt

= C(x)ΔU(x, t)+∇C(x)∇U(x, t) (2)

A variable conductance term C can now modify the way the diffusion
process takes place. Typically, C is chosen as a function of image
features. This allows selectively preserving or removing features by
anisotropically varying the diffusion strength. Specifying C as a non-
negative monotonically decreasing function as in

C(x) = e
−

(
‖∇U(x)‖

K

)2

, K = const (3)

will force the diffusion to mainly take place in homogeneous interior
regions without affecting boundary regions [6]. When applying an
anisotropic-diffusion filter, the dataset’s inherent noise can be signifi-
cantly reduced without loosing edge information. Scattered radiation
effects are removed without blurring edges. This is essential for sur-
face detection (see Figure 4).

3.2 Registration
When measuring a specimen using different x-ray source setups of the
CT scanner, slight changes in the positioning and the orientation of the
specimen in the dataset may occur. To avoid the propagation of this
error, a registration procedure has to be applied. In the DECT work-
flow the high energy (HE) dataset is considered as the fixed image,
as it is robust to artefacts. The low energy (LE) dataset is considered
as the moving image which is registered to the fixed image. In order
to improve the performance of the registration algorithm with regard
to speed and accuracy a multi-resolution approach is commonly used.
The fixed image and the moving image are decomposed into image
pyramids, which downsample the images level by level. Starting at
the top level of the pyramids the coarsest images of the two pyramids
are registered to each other. The registration is refined with each of
the succeeding image levels. This guarantees a high robustness of the
registration procedure.

In order to ensure the flexibility of using scans from different 3D
imaging modalities, a mutual information approach is used. To com-
pute the mutual information between the fixed (HE) and the moving
image (LE) the method of Mattes et al. [16], [17] is used. This method
evaluates the marginal and joint probability density function (PDF) at
discrete positions (bins) which are uniformly spread within the dy-
namic range of the images. The entropy values are calculated by sum-
ming over the bins. Using this approach the fixed image PDF does not

Fig. 5. Principle of DECT fusion: The fusion of the LE and the HE in-
put is performed at edge regions of the HE dataset which are defined
by the gradient magnitude. The contribution of each dataset is linearly
weighted according to the absolute-value difference between the two
images. To avoid misclassifications of artefacts the absolute value dif-
ference is limited.

need to be smooth, because it does not contribute to the derivatives. A
zero order (box car) B-Spline kernel is used for the fixed image inten-
sity PDF. To ensure smoothness, the moving image intensity PDF is
computed with a third order B-Spline kernel.

3.3 DECT fusion
Due to the higher energies of our high energy (HE) macro-focus x-ray
source, the main object structure of the considered specimens is de-
picted best in the HE dataset. However, the larger x-ray spot size of the
macro-focus x-ray source generates more blurred edges in the datasets.
In contrast, the small x-ray spot size of our micro-focus source sup-
ports to create crisp and precise images. The limited energy restricts
penetration lengths and therefore severe artefacts are induced in the
low energy dataset. The severe artefacts in the LE dataset change their
characteristics and orientation according to the measurement parame-
ters and the positioning of the specimen in the x-ray beam.

In order to combine the advantages of both measurements, the main
object structure from the HE dataset is fused with the crisp edges of the
LE dataset. As common image fusion methods as well as multiresolu-
tion analysis turned out to be inefficient or suboptimal, we developed
a DECT specific approach for image fusion (see Figure 5). To de-
termine the edge regions, a gradient magnitude image is extracted by
applying a Gaussian filter kernel with a user defined sigma followed
by a gradient magnitude filter. The thresholding of the smoothed gra-
dient magnitude image allows the specification of edge regions. Only
the edge regions above a user defined level (GM threshold) are con-
sidered for fusion. To detect artefact affected regions, an absolute-
value difference-image between the HE and the LE measurements is
computed. Especially in artefact affected regions and also in the edge
regions, major deviations are depicted in the difference image.

Subsequently the datasets are combined by local arithmetic image
fusion. In this step the contribution of each dataset is linearly weighted
according to the absolute value difference between the two images. To
avoid misclassifications of artefacts the absolute-value difference is
limited by max deviation. Finally, for trusted regions of low difference
in the greyvalues of the LE and the HE data, a trusted level is defined.
Within the trusted level the LE dataset is weighted with 100%. For the
effect of arithmetic image fusion see Figure 6.

3.4 Local surface extraction
For surface determination we use a local surface extraction ap-
proach [25]. First a reliable global isosurface is extracted from the
fused dataset. It includes the topology of the underlying data but still
contains inhomogeneities and errors due to the local varying charac-
teristics of the greyvalues. To correct these misclassifications, each
surface vertex is moved in the direction of the surface normal. The
vertex location is moved along the normal until the gradient magnitude
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Fig. 6. Axial cross section through a cutout of a 400V connector. LE
image (a), HE image (b) and fused image (c). Using our image fusion
approach the edges are significantly enhanced for surface extraction
without keeping artefacts from the LE dataset.

reaches its maximum. This is accomplished by trilinear interpolation
of the greyvalues along the surface normal and computing the deriva-
tive of the generated greyvalue profile. As a constraint, a user-defined
maximum distance for the repositioning of a vertex is used (Porigin,
Pend). The local modification of vertices with predefined constraints
produces a surface model with improved precision. To reduce reposi-
tioning failures due to noise, not only the density profile along the nor-
mal is taken into account, but also close-by profiles along directions
parallel to the normal. In the tangent plane to the normal direction, a
3*3 neighborhood is used to compute 9 density profiles (see Figure 7).
The directional derivative along each profile is estimated according to
f ′(x) = f (x)− f (x− 1), where x and x− 1 are successive positions
along the profile. For each of the nine profiles the position with the
maximal gradient magnitude is determined. The improved edge loca-
tion is calculated by using either a local weighted mean or the median
position.

4 RESULTS AND DISCUSSION

For all specimens high absorbing material is covered by low absorb-
ing material. All CT scans were performed on a HWM RayScan 250E
system with a 225 keV micro-focus and a 450 keV macro-focus x-ray

Fig. 7. Local surface extraction adapts the surface model by moving
surface vertices in the direction of the corresponding point normal to a
position with maximum gradient magnitude. The dataset’s noise is aco-
modated by considering the neighborhood of a surface point candidate.

(a) (b)

Fig. 8. Specimen one: Polyethylene testpart. An axial cross section
of micro-CT scan (a) shows severe artefacts in the area of the metallic
screws. Artefacts are the dark areas around the screws. Image (b)
shows a cross section of the macro-CT scan. Compared to the LE scan
the HE scan is less artefact affected but less precise and contains more
noise. The detail images show a 6x zoom of the edge region marked in
red).

Table 1. Parameters for specimen one (PE testpart)

Parameter Specimen one HE Specimen one LE
projections 900 900

voltage (kV) 440 200
current (μA) 1300 450

integration time (ms) 2000 1000
prefiltering 1 mm W + 1.5mm Cu 1mm Cu

datasize 508*523*611 508*523*611
voxelsize (μm) 200 200

source. For the micro-focus setup the best achievable resolution is 7
μm/voxel depending on the maximum dimension of the specimen. For
the macro-focus setup the best achievable resolution is 150 μm/voxel.
All datasets are stored in 16 bit unsigned short. Reference measure-
ments were performed on a Zeiss SPECTRUM 700 (ST3/RDS-RST)
Vast XXT coordinate measuring machine with a longitudinal measure-
ment error of 2.2 μm · length

300 . Our demo application was implemented
in Visual C++ using ITK [6] and VTK [23]. For evaluation of devi-
ations the commercial tools Raindrop Geomagic Qualify 7 and Carl
Zeiss Calypso are used.

4.1 Specimens
4.1.1 Polyethylene testpart

Specimen one (Figure 8) is a homogeneous polyethylene (PE) test-
part used for analysis of parameter variations in dimensional measure-
ment. The PE testpart consists of a cone with an attached cylinder. Six
smaller vertical drill holes are place on the bottom and top side, four
in the base of the specimen and two on top. Together with the central
drill these features are serving to determine the exactness of a scan by
evaluating distances and dimensions of the holes. A round steel bar
is positioned in the major central drill and steel screws are placed and
fixed in the drill holes, which makes this part a multi-material object.
The PE testpart was measured twice without moving the specimen but
using different x-ray source setups. The first measurement was a high
energy (HE) macro-focus scan in order to determine the structure of
the specimen. The second measurement was a low energy (LE) high
precision micro-focus scan. For detailed CT measurement parameters
see Table 1.

4.1.2 400 Volt connector

Specimen two (Figure 9) is a 400 Volt power connector according to
the European IEC 60309 system. This component consists of a plas-
tic housing, five power pins, two steel screws to connect the housing
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(a) (b)

Fig. 9. Specimen two: 400 Volt connector. An axial cross section of the
low energy micro-CT scan (a) shows the typical artefacts within multi-
material components due to too low x-ray energies: Starting from the
pins severe streaking artefacts exist. Using the high energy macro-CT
scan, most of the streaking artefacts can be removed (b) but the edges
are more blurry (see detail images).

Table 2. Parameters for specimen two (400 Volt connector)

Parameter Specimen two HE Specimen two LE
projections 1080 1440

voltage (kV) 440 210
current (μA) 1000 680

integration time (ms) 1000 1000
prefiltering 1 mm W + 1.5 mm Cu 2 mm Cu

datasize 391*552*847 391*552*847
voxelsize (μm) 171 171

parts, two steel-screws for the strain relief of the power cable, a spring
and a bearing for the cap mechanism. Figure 2 shows a 3D rendering
of a micro-focus CT scan of specimen two. This specimen shows se-
vere artefacts around the power pins. Greyvalue modifications due to
scattered radiation of the metal components exceed the plastic’s grey-
value. CT measurement parameters are listed in Table 2.

4.1.3 Terminal block

Specimen three (see Figure 10) is a terminal block from home automa-
tion systems. Terminal blocks are widely used, providing a convenient
means of connecting electrical wires. This part is built using a plas-
tic body, which acts as a carrier for the metal clamps, a spring, which
fixes the terminal on the top hat rail, and finally the two metal clamps

(a) (b)

Fig. 10. Specimen three: Terminal block. In the cross section of the
micro-CT scan (a) streaking artefacts around the metallic clamps are
present. Image (b) shows the cross section of the macro-CT scan. In
the area of the screws the disadvantages of the macro-focus CT are
revealed: Fine structures disappear (see detail images).

Table 3. Parameters for specimen three

Parameter Specimen three HE Specimen three LE
projections 1080 1080

voltage (kV) 400 160
current (μA) 2200 660

integration time (ms) 1000 2000
prefiltering 1 mm W + 1.5 mm Cu 2 mm Cu

datasize 88*322*324 88*322*324
voxelsize (μm) 200 200

holding the wires, which are connected by the power rail. This rep-
resentative multi-material component was chosen because of its reg-
ular structure and a convenient geometry for coordinate measurement
machines (CMM). In total, 16 inspection features of the object were
specified to calculate the dimensional deviation to a CMM reference
measurement. The CT measurement parameters for the terminal block
are listed in Table 3.

4.2 Tuning the DECT workflow
To produce reliable surface models for dimensional measurement, the
parameter settings for each step are essential. As prefiltering step an
anisotropic diffusion filter (Figure 3a) is used, which creates a more
homogeneous dataset without modifying edge information. This step
is crucial especially for the LE dataset in order to reduce noise and
smaller artefacts. The aim of prefiltering is to improve the informa-
tion to be fused. The noisier a dataset is, the more iterations of the
diffusion filter have to be applied. The conductance C (equation 3)
controls the local degree of smoothing and the areas to be smoothed.
The higher the conductance, the more the diffusion filter acts like an
isotropic filter, smoothing all regions. The smaller the conductance,
the more features are preserved. As we do not want to preserve arte-
facts a rather high setting of the conductance is used for the LE dataset
and an even higher setting for the HE dataset. For the LE dataset, a
parameter setting of at least 5 iterations and a conductance of 10-50
turned out to produce reliable results. For the HE measurement we
used 10 iterations at a slightly higher conductance of 75 to compute a
smoother dataset.

In the registration step (Figure 3b) the HE dataset is considered
as fixed image and the LE dataset as moving image. For the image
pyramids a fixed setting of five levels is used.

For the DECT image fusion (Figure 3c) the gradient image of the
Gaussian smoothed HE datasets determines the fusion regions. The
wider these edge regions are, the smoother the image fusion will adopt
features of the LE dataset. Using a sigma value of at least 0.2, a blurry
image of the HE dataset is generated. When applying a gradient mag-
nitude filter on this input image, a smooth gradient image is obtained.
Depending on the dataset and the quality of edges, an edge image is
produced with a smooth increase and decrease of the gradient magni-
tudes. The width of a typical edge is supposed to be approximately 5
to 10 voxels wide for a smooth image fusion. The trusted level which
weights the LE dataset with 100% should not exceed the standard de-
viation of the HE dataset. Otherwise artefacts are transferred to the
resulting image.

In the local surface extraction step (Figure 3d) a reliable surface
model is extracted using a global threshold. For the locally improved
surface mesh gradient magnitudes along the surface normal have to
be evaluated. The number of samples and the maximum sample dis-
tance have to be specified. The finer the sampling rate, the finer the
positioning of the surface vertices. Generally settings of up to 50 sam-
ples within voxelsize are a valuable compromise between computation
time and accuracy. A more difficult parameter is the maximum sample
distance, which serves as a constraint for the repositioning of vertices.
Exceeding a maximum sample distance of 5 times the voxelsize may
produce erroneous results due to imprecise oriented surface normals of
the isosurface. Usually settings of 2 to 5 times the voxelsize produce
a reliable improved surface mesh. Finally the normal orientation (pos-
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Fig. 11. Variance comparison of specimen one between CAD model and
extracted surface models. Deviations are colorcoded using the same
scale. (a) shows the variance comparison using a global threshold ap-
plied to the LE dataset and in (b) to the HE dataset. The result when
applying the DECT workflow to specimen one is depicted in (c). Arte-
facts of the LE measurement can be avoided to a high extent. The
smoother characteristic of the DECT surface is indicated by the large
low deviation area (green).

itive, negative or both directions) is also a parameter to be set. Due
to the noise in the surface mesh considering the use of both directions
produces the most reliable results.

4.3 Evaluation of DECT workflow results
To get an overview of deformations throughout the whole specimen
compared to reference geometry data, e.g., a CAD model, variance
comparisons are widely used. A common visualization method for
variance comparison is color coding the reference’s surface corre-
sponding to the local deviation. To show the different results of gener-
ating surface models, variance comparisons between the CAD model
and three surfaces are depicted. The first surface is due to the best
global threshold from the LE data. The second surface is due to the
best global threshold from the HE data. The third surface is the re-
sult of our proposed DECT workflow. Note: the CAD model does
not contain the data of the screws and the round bar. The best global
thresholds are empirically determined. The metal parts are intended to
show the loss in data quality when placing high absorbing components
within low absorbing material and to produce deformations in the iso-
surface due to artefacts. In Figure 11a, high deviations due to streak-
ing artefacts and scattered radiation are depicted in dark red and dark
blue. In less artefact affected areas, a high correspondence between
the CAD model and LE measurement can be seen. Figure 11b shows
a more homogeneous distribution of deviations. For the HE measure-
ment, the mean deviation is much higher but hardly any strong arte-
facts affect the surface. Applying the DECT workflow the advantages
of both measurements can be combined. The variance comparison
shows higher accuracy than the HE dataset while reducing artefacts of
the LE dataset (see Figure 11c). In the DECT result not all artefacts
could be removed because the trusted level was set to the standard
deviation of the HE dataset and therefore these deviations were con-
sidered to be real. Using a lower trusted level would introduce a part
of the HE datasets noise.

Specimen two was chosen to demonstrate the DECT workflow’s
ability to produce reliable surface models without holes. The multi-
material characteristics of this specimen produce streaking artefacts
and scattered radiation in the reconstructed dataset. These circum-
stances are depicted in Figure 2 and 9. When extracting an isosurface
from the LE dataset, common methods like Otsu’s method [19] turned
out to produce unusable results. The best global threshold to create
a surface model was determined again empirically. However, a com-
plete and reliable measurement is impossible due to severe artefacts of
the derived surface model (Figure 12a). Using the HE dataset of spec-

Fig. 12. Surface extraction of specimen two using a global threshold
applied on the LE dataset (a) and on the HE dataset (b). The result
when applying the DECT workflow on specimen two is depicted in (c).
Artefacts of the LE measurement can be avoided. The coarse structure
and the higher mean deviation of the HE measurement was significantly
reduced. DECT fusion even preserves fine details of the LE dataset like
the sticker on the jacket of the 400 V connector or the imprint on the cap
(see red arrows).

imen two, a reliable surface model may be extracted but due to the
larger focal spot of the macro-focus source fine details get lost. Fur-
thermore due to the much higher ambient noise level of the HE dataset,
the generated surface model has a rather coarse surface structure (see
Figure 12b).

When applying the DECT workflow, part of the details are recon-
structed by incorporating details from the LE dataset. In the resulting
surface model holes were removed, surface deformations through scat-
tered radiation were avoided and fine details were fused into the result-
ing dataset (see Figure 12c). For specimen two, slight deformations in
the surface can be seen which is again due to a compromise between
introduction of the HE dataset’s noise and adoption of artefacts from
the LE dataset.

Specimen three was chosen as another representative multi-material
component to demonstrate the performance of the DECT workflow.
Dimensional measurement accuracies are verified by specification and
evaluation of 16 inspection features (3 diameters of cylinders and 13
distances). As reference, specimen three was measured using a high
precision coordinate measuring machine. In order to point out the
differences in dimensional measurement, the same features were eval-
uated in the LE measurement, the HE measurement and the resulting
dataset of the DECT workflow using Calypso. As expected, the LE
measurement produces a result with higher precision than the HE mea-
surement. In comparison to the LE dataset the HE measurement is less
artefact affected. Applying the DECT workflow, artefacts are reduced,
which can be seen in the lower mean deviation per inspection feature.
For specimen three the mean deviation per inspection feature can be
lowered by more than 1/3 taking the DECT workflow compared to us-
ing the LE dataset and nearly 1/2 compared to using the HE dataset
(see Table 4 for details).

5 SUMMARY AND CONCLUSIONS

A novel workflow for dimensional measurement of multi-material in-
dustrial components is presented, allowing reproducible and robust
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Table 4. Mean deviations per inspection feature for specimen three

LE HE DECT
(mm) (%) (mm) (%) (mm) (%)

overall mean 16 0.0251 0.25 0.0299 0.31 0.0158 0.16
diameters mean 3 0.0309 0.52 0.0402 0.75 0.0206 0.37
lengths mean 13 0.0238 0.19 0.0275 0.21 0.0147 0.11

surface extraction. The introduced DECT workflow exploits a dual
source / dual exposure approach of dual energy computed tomog-
raphy. It facilitates dimensional measurement of artefact affected
datasets from multi-material components. The presented DECT work-
flow combines the advantages of dual x-ray exposure technology by
taking two x-ray CT datasets with complementary strengths and weak-
nesses into account. The workflow integrates image fusion and local
surface extraction techniques: After prefiltering both datasets are reg-
istered to each other. In the fusion step, the two scans are combined
by integrating the low energy (LE) dataset’s accuracy with the high
energy (HE) dataset’s robustness. Finally, a reliable surface model is
extracted using a local adaptive technique.

The accuracy and the applicability of the DECT workflow has been
discussed using a testpart as well as two industrial components. Re-
sults are depicted in variance comparisons, reliable surface models,
and quantitative measurement errors. For the terminal block, the mean
deviation per inspection feature could be decreased by a third com-
pared to using the LE dataset and nearly a half compared to using the
HE dataset.

A major aim of our future work is to further improve the quality
of image fusion. The exploitation of different imaging modalities for
metrology will be another topic in the future.
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