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This thesis describes a method for approximative soft shadows and diffuse reflections in
dynamic scenes, based on a method by Ren et al. [32]. An overview of precomputed ra-
diance transfer and spherical harmonics is also presented, as well as a short introduction
to global illumination. The proposed method uses a low-order spherical harmonics basis
to represent incident radiance and visibility on the hemisphere of a receiver point. Dif-
fuse reflecting geometry and shadow casting geometry is represented as sets of spheres.
The spheres of an object approximate its shape and diffuse surface color as seen from any
viewpoint. In a first pass, the direct illumination of an object is projected to its spheres
and stored along with an approximation of the diffuse surface color as SH vectors defined
over the surface of each sphere. In a second pass, the average color and the visibility for
each sphere at a receiver point is found. The product of average color and visibility is
used to approximate the incident radiance from diffuse reflections. Using a sphere set
approximation instead of actual geometry for both soft shadows and diffuse reflections
allows us to compute the visibility and diffuse reflections of an object on the fly at run-
time. This text also describes a GPU implementation of the method and discusses ob-
tained results. Interactive performance with relatively smooth framerates of over 20 fps
is achieved for moderately complex scenes.
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1. Introduction

The visual system is, for most humans, the sense that provides the most information
about the surrounding world. It takes the light at some point in space and deduces from it
a description of the surrounding objects. This transformation is seemingly done without
effort and it is very suggestive, i.e. it is difficult (and usually pointless) to see a scene as
light spectrum intensities instead of objects or to view an image as a collection of pixels
or brush strokes. This ability of the human visual system to intuitively deduce large
amounts of information from a very compact description is the starting point for image
generating techniques, because it enables them to intuitively communicate large amounts
of information to the viewer. This is not a new idea, painters have used the human visual
system as medium of choice to communicate their ideas. Computer graphic techniques
automate part of this process by generating an image out of some description of the
objects that make up the image. Computer graphics are used in medical visualization,
video games, the movie industry, computer aided design, architectural visualization and
other fields.

The field of computer graphics can be split into two main disciplines, each posing dif-
ferent requirements on the algorithms developed. In offline rendering, quality is more
important than the time it takes to generate an image. The main focus is to create images
that are either physically accurate or simply convincing to the viewer. Rendering one im-
age can take anywhere from a second to a few days. Offline renderers usually generate
the images and store them for later displaying. In real-time or interactive rendering, it is
important that the speed of rendering does not drop below a certain threshold. The speed
is measured in fps (frames per second) or Hertz. Often, rendering speed is classified as
real-time, interactive or non-interactive, although the specific frame rates for each cate-
gory depend on the application and are not clearly specified. Usually, interactive frame
rates start at about 5 fps and real-time refers to the monitor frequency (typically 60 Hz).
High rendering speed allows for interactivity in real-time rendering. Frames are created
one at a time and are immediately displayed, possibly as a response to user input.

There are several different approaches to rendering an image. They differ in their com-
putational complexity and in the amount of simplification, i.e. which properties of real-
istic light propagation they ignore or only approximate for the sake of speed.

The simplest method that is widely-used today is scanline rendering. Scanline ren-
dering can be very fast, but it ignores many obvious phenomena of realistic lighting,
like reflections and shadows. These phenomena are usually added as special effects and
handled separately. But since they are not natively included in scanline rendering, a com-
plete and efficient implementation of any of these phenomena remains to be a challenge.
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Introduction

Figure 1.1.: Left: image rendered with direct lighting only, including reflections and refractions.
Right: the same image rendered with global illumination.

Video games use scanline rendering and it is implemented in the fixed-function pipeline
of video cards.

Global Illumination methods more accurately simulate actual light propagation in a
scene. They take into account that the light coming from a surface point could potentially
be influenced by every other surface in the scene. Thus, such methods can usually sim-
ulate phenomena like diffuse and specular reflections, soft shadows, large light sources,
etc., but the computational complexity of these methods is relatively high. Figure 1 shows
a comparision of global and local illumination rendering.

Traditionally, the broad mass of real-time methods was confined to scanline rendering,
as more advanced methods, like the global illumination methods, were too expensive to
be computed in real-time and were almost exclusively used in offline rendering. The in-
troduction of video accelerators with a fixed-function pipeline additionally cemented this
development, since they could only accelerate applications that used scanline rendering.
Other methods would have to rely on the CPU alone and would therefore usually per-
form much worse. Today, with the advent of programmable GPUs, arbitrary methods
can be accelerated by video cards. The massive parallelism found in today’s video cards1

makes the methods run many times faster than on normal CPUs.
In recent years, pushed primarily by the video games industry, the research community

for real-time global illumination has grown considerably. The methods developed still
suffer from at least one of several limitations, like fixed view or lighting, low frequency
lighting, static scenes, approximative geometry, etc., but research is actively working on
solving these problems.

This text presents a method for real-time soft shadows and diffuse reflections in dy-

1As of this writing, the GeForce 8800 with 128 stream processors and the Radeon HD 2900 with 320 stream
processors are the most advanced video cards.
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Introduction

namic scenes with low-frequency lighting environments and approximative geometry. It
is largely based on a method for soft shadows presented by Ren et al. [32].

The document is organized as follows: First, in Chapter 2, we will give a short in-
troduction to Global Illumination. In Chapter 3 we will give an overview over similar
methods to compute real-time global illumination lighting. There is an introduction to
spherical harmonics at the beginning of this chapter since spherical harmonics are the
basis for many of the real-time global illumination methods, as well as for the method
described in this thesis. In Chapter 4 we describe our method for soft shadows and dif-
fuse reflections. In Chapter 6 we present and discuss results achieved with our method.
We conclude in Chapter 7.
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2. Global Illumination
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Figure 2.1.: Example light paths in light transport notation.

In a realistic scene, light (or more exactly, radiance) propagates from light sources through
the scene, bouncing off diffuse and specular surfaces, possibly illuminating regions that
are not directly visible to a light source. Any surface can be a light source and indeed,
any reflecting surface can be treated as a light source. Thus, shading of a surface does not
only depend on local properties, but also on all other surfaces in the scene.

2.1. The Light Transport Notation

Following an imaginary light ray or photon inside a scene, its path can be described by
the endpoints of the straight parts of the path (the light transport notation, after Paul
Heckbert [11]):

L - light source
S - a specular reflection
D - a diffuse reflection
E - the eye

A complete path from light source to eye is described by a concatenation of L,D,S and E
(see Figure 2.1). Regular expressions can be used to describe sets of paths:

7



2.2 The Rendering Equation Global Illumination

S* - zero or more specular reflections
D+ - one or more diffuse reflections
D? - one or zero diffuse reflections

(S|D) - a diffuse or a specular reflection

L(S|D)*E describes the set of all light paths that are relevant for rendering realistic images.
Rendering methods can be characterized by the subset of paths they can handle, e.g.
L(S|D)(S|D)E would describe the paths that a global illumination algorithm with one
light bounce can handle.

2.2. The Rendering Equation

In 1986, Kajiya [14] formulated an equation that completely describes light transport in a
scene:

Lo(p, ωo) = Le(p, ωo) + Ls(p, ωo)

Lo(p, ωo) is the radiance outgoing from point p in direction ωo.
Le(p, ωo) is the emitted radiance from point p in direction ωo.
Ls(p, ωo) is the radiance scattered at point p in direction ωo.

The scattering term Ls(p, ωo) can be extended to give the full rendering equation1:

Lo(p, ωo) = Le(p, ωo) +
∫

Ω
ρ(p, ωi, ωo)Li(p, ωi) cos θ dωi (2.1)

ρ(p, ωi, ωo) is the BRDF (or BSDF when transmittance is included, see Section 2.3)
which characterizes the surface reflection properties at point p.

Li(p, ωi) is the incoming radiance at point p from direction ωi. It can also be
formulated as the outgoing radiance at that point p′ that is visible to p
in direction ωi, i.e. the first hit of a ray from p in direction ωi:
Li(p, ωi) = Lo(h(p, ωi),−ωi) = Lo(p′, ω′)

The angle θ is the angle between the surface normal at point p and ωi. Together
with the differential angle dωi, it describes the geometric relationship
between incoming light and the surface at point p.

Ω is the upper hemisphere of surface point p, or the entire sphere if trans-
mittance is included.

The rendering equation geometry is illustrated in Figure 2.2. Ω is the set of all directions
along which a surface point can receive or emit radiance. It is usually taken to be a
hemisphere centered around the surface normal. The BRDF describes which parts of the

1This is an alternative form of Kajiya’s original rendering equation. The original formulation does not
incorporate angles or directions
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2.2 The Rendering Equation Global Illumination

Lo(p, ωo)

Li(p, ωi) = Lo(p′,−ωi)Ω

θ

p

p′

θ

Figure 2.2.: Left: the rendering equation geometry. Right: the cosine term in the rendering equation
describes that light hitting a surface at shallow angeles has less intensity per surface area.

incoming radiance are reflected in a given direction and depends on material properties
of the surface (see section 2.3 for more information on BRDFs). Light hitting the surface
at shallow angels (i.e. a large angle with the surface normal) has less intensity per area
than light hitting the surface at steep angles (small angle with the surface normal), since
the same amount of radiance is dispersed over a larger area (see Figure 2.2, right). The
factor for the decrease in light intensity is cos θ, where θ is the angle between incoming
light direction and surface normal and corresponds to the cosine term in the rendering
equation.
An algorithm that can efficiently find solutions to the rendering equation would be a
solution of the rendering problem. Unfortunately the equation is very difficult to solve
analytically. Nevertheless, it can serve as a benchmark for existing algorithms, to deter-
mine which parts of the equation they only approximate or completely ignore.

One difficulty of solving the equation is that it is recursively formulated. The incoming
light Li at a point p from a direction ωi is the outgoing radiance of some point p′ that is
visible to p in direction ωi, i.e. p′ is the first hit of a ray from p in direction ωi.

Li(p, ωi) = Lo(h(p, ωi),−ωi) = Lo(p′, ω′) (2.2)

In its short form, the rendering equation is written:

Lo = Le + TLo (2.3)

(TLo)(p, ωo) =
∫

Ω ρ(p, ωi, ωo)Lo(h(p, ωi),−ωi) cos θ dωi

T is a linear operator on Lo. In this form it is clearly visible, that the two sides of the
equation are coupled. The radiance Lo(p, ω) coming from a point p depends on the ra-
diance Lo(p′, ω′) coming from p′ towards p. The radiance Lo(p′, ω′) may in turn depend
on the radiance Lo(p,−ω′) from p towards p′ or on the radiance from any other point
p′′. Imagining two parallel mirrors helps visualizing the problem. The short form of the
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2.3 BRDFs Global Illumination

rendering equation can be expanded accordingly:

Lo = Le + TLo

= Le + T (Le + T (Le + . . . (2.4)

By the law of the conservation of energy, new energy cannot be created in a reflection T ,
but existing energy can be absorbed by a material. The deeper the recursion in equation
2.4, the less the influence of the terms on the resulting radiance. This allows us to approx-
imate the rendering equation using only the first few terms of the recursion, i.e. the first
few light bounces.

2.3. BRDFs

The bidirectional reflectance distribution function characterizes the reflection properties of a
material. It describes how a surface point scatters the light coming from a given direction.
More precisely, the BRDF is the fraction of energy incident on a surface point from one
direction that is reflected in another direction [28]. Traditionally, the BRDF is a four-
dimensional function: two dimensions for the incoming direction and two dimensions
for the outgoing direction.

ρ(ωi, ωo) =
Lo(ωo)

Li(ωi) cos θ dωi
(2.5)

WhereLo(ωo) is the radiance reflected in direction ωo, Li(ωi) the incident radiance coming
from ωi, θ the angle between ωi and surface normal and dωi the differential solid angle of
Li and Lo. Including dependence on a two-dimensional parametrization of the surface
position, the BRDF becomes a function of six variables, as in the rendering equation.

Figure 2.3.: Polar plots of the reflectance of a perfectly diffuse BRDF (left) and a specular BRDF (right) for
light incident along the white ray. The diffuse BRDF scatters light equally in all directions,
the specular BRDF reflects stronger around the specular reflection angle (green arrow).

A BRDF for a specular surface reflects directionally, with large values typically centered
around the angle of reflection (see Figure 2.3). For a perfectly diffuse surface, the BRDF
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2.3 BRDFs Global Illumination

reduces to a four-dimensional function. The light intensity is no longer dependant on
the outgoing direction, since all incoming light is scattered equally in all directions. For
simplicity, the cosine term in the rendering equation (equation 2.1) is often included in
the BRDF, although it is not a property of the material itself.

BTDF is the bidirectional transmittance and is defined similar to the BRDF, but on the
opposite hemisphere. Together with the BRDF it forms the bidirectional scattering distribu-
tion function BSDF, although it is rarely used.

BRDFs are either measured from real materials and stored in tables, or an analytical
expression is used. Several analytical models have been developed that approximate the
reflectance properties of real materials[29, 3, 6].

Lambertian Phong Oren-Nayar Cook-Torrance Anisotropic
Cook-Torrance

Figure 2.4.: A few common analytical BRDFs applied to spheres (images from [2]).
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3. State of the Art

3.1. Spherical Harmonics

Figure 3.1.: The spherical harmonics basis functions of the first four bands.

Spherical harmonic lighting is a technique for lighting geometry from large area light
sources. It was introduced by Sloan, Kautz and Snyder at Siggraph 2002 [36]. The key
feature of spherical harmonic lighting is to represent functions over the hemisphere of
a receiver point in the spherical harmonics basis (in similar techniques, other bases are
used, like the wavelet basis [26, 27, 23, 42, 39]). Although this incurs approximation error,
hemisphere functions can be represented as a single vector of coefficients. Operations on
SH coefficient vectors are usually very efficient.

The spherical harmonics basis is a set of orthonormal functions defined over the surface
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3.1 Spherical Harmonics State of the Art

Figure 3.2.: SH basis function types. Red areas are negative function values, green areas positive values.

of a sphere. The set of functions is ordered into bands, which group the functions by
frequency. Starting at band 0, which contains just one constant function, the frequency
increases with the band number. The number of functions in each band also increases
with the band number, each band has two more functions than the next lower band.
Spherical harmonics basis functions are written

yml (θ, ϕ) with l ∈ R+ and − l ≤ m ≤ l

where l is the band number, m the position inside the band and (θ, ϕ) polar coordinates
on the sphere surface. For convenience, the functions are sometimes indexed in a specific
order

yi(θ, ϕ) = yml (θ, ϕ) with i = l(l + 1) +m

Figure 3.1 shows the spherical harmonics basis functions for the first four bands. Posi-
tive values are colored light green, negative values dark red.

SH basis functions are also distinguished by the way they divide the sphere surface
into zones or segments of positive and negative values. Latitudinal divisions are called
zones and the corresponding set of basis functions y0

l zonal harmonics (see Figure 3.2).
Divisions along the meridians are called sectors and the corresponding set of basis func-
tions y−ll and yll sectoral harmonics. The set of all remaining basis functions are called
tesseral harmonics.

Mathematically, spherical harmonics are the angular portion of a set of solutions to
Laplace’s equation in spherical coordinates. They are calculated using the Associated
Legendre Polynomials. For details on the equations and sample code see appendix A.

A spherical function f(s) can be approximated with a linear combination of the spher-
ical harmonics basis functions

f(s) =
∞∑
i=0

ciyi(s) (3.1)

where s is some parametrization of the sphere surface. The coefficients ci of the linear
combination form the SH coefficient vector (or simply SH vector, from here on written in
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3.1 Spherical Harmonics State of the Art

boldface italic):
f = (c0, c1, c2, c3, . . . )

The vector of corresponding SH basis functions will be denoted y(s). An order n SH vec-
tor has n2 coefficients, corresponding to the basis functions of first n bands, all other co-
efficients are zero. A low-order SH vector can only capture the low-frequency behaviour
f̃(s) of a spherical function f(s).

f̃(s) =
n2−1∑
i=0

ciyi(s) = f ·y(s) (3.2)

Properties of SH Functions

The spherical harmonics basis has some properties that make it well suited for calculating
global illumination type of lighting.
SH functions are rotationally invariant, meaning that the SH approximation of a rotated
function g(s) = f(R(s)) is just like the SH approximation of the original function f(s)
with rotated input.

g̃(s) = f̃(R(s)) (3.3)

Where R(s) is an arbitrary rotation on the sphere. Rotations of SH functions do not
deform the functions in any undesired way. This is an important property when using
the SH basis for scene lighting, because it can guarantee that there are no objectionable
aliasing artifacts, like light intensity fluctuations, when rotating objects.

The second property stems from the orthonormality of the SH basis. Given two SH
functionsf̃(s) and g̃(s), the integral of the two function’s product reduces to the dot prod-
uct of their coefficient vectors f and g.∫

S
f̃(s)g̃(s)ds = f · g (3.4)

This is a very convenient property for SH lighting, because integrals like the exit ra-
diance at a diffuse receiver point can be calculated in the SH basis using a single dot
product. ∫

S
L(s)t(s)ds ≈

∫
S
L̃(s)t̃(s)ds = L · t

Where L(s) is the incoming light and t(s) the transfer function.
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3.1 Spherical Harmonics State of the Art

Figure 3.3.: SH projection of a simple spherical function. The projected function only retains the low-
frequency behaviour of the original function. The small negative valued fin on the back of
the projected function is a ringing artifact caused by high frequencies at the joint of the three
lobes.

3.1.1. Projecting a Function

Given a spherical function f(s), the SH vector f representing its low-frequency behaviour
is obtained by projecting the function to the SH basis via

f =
∫
S
f(s)y(s)ds (3.5)

where y(s) is a vector of SH basis functions of the same dimension as f . The higher
the order of the SH vector f , the closer the reconstructed function f̃(s) (see equation 3.2)
corresponds to the original function f(s).

f̃(s) = f ·y(s) ≈ f(s) (3.6)

Figure 3.3 shows a simple spherical function consisting of three lobes projected to the
SH basis using the first four SH bands.

The integral in equation 3.5 can be solved using Monte Carlo integration [21]. In Monte
Carlo integration, a large number of randomly distributed samples of the function to be
integrated is collected. The choice of probability distribution of the samples is important,
as it affects the accuracy and number of samples needed for integration. The samples
are then scaled by the probability density p(s) at each sample location, summed up and
divided by the number of samples:∫

f(s)ds ≈ 1
N

N∑
j=0

f(sj)w(sj) (3.7)

Where N is the number of samples, w(s) = 1
p(s) and sj the location of sample j. If the

samples are uniformly distributed, then the weight function w(s) is a constant w and
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3.1 Spherical Harmonics State of the Art

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

θ

φ

Figure 3.4.: 10.000 samples generated using jittered stratification.

equation 3.7 becomes ∫
f(s)ds ≈ w

N

N∑
j=0

f(sj) (3.8)

Since f(s) is a spherical function, a uniform distribution over the surface of a sphere is
needed. Using two uniformly distributed random variables over the domain of the polar
coordinates (θ, φ) results in a sample distribution that is too dense at the poles of the
sphere and too sparse in between. To correct this, the latitudinal polar coordinate θ has to
be adjusted. The following transformation from uniformly distributed random variables
ξ1 and ξ2 to polar coordinates (θ, φ) results in a uniform sample distribution over the
sphere:

θ = 2 arccos(
√

1− ξ1) and ϕ = 2πξ2 (3.9)

This sample distribution suffers from large variance, deteriorating the accuracy of the
integration if samples are not approximately equally spaced.

Jittered Stratification [21] (see Figure 3.4) reduces the variance and results in a more
reliable equal spacing of samples. The range of the random variables is divided into cells
or strata and one sample is picked in each strata. The sum of variances of each strata is
at most as high as the variance of random sampling over the whole sphere and usually
much smaller.

With a uniform sample probability of p(s) = 1
4π over the whole sphere, the Monte Carlo

Integration becomes: ∫
f(s)ds ≈ 4π

N

N∑
j=0

f(sj) (3.10)

Using this form of Monte Carlo integration to solve the integral in equation 3.5, the
equation for projecting a polar function f(s) to the SH basis becomes

f ≈ 4π
N

N∑
j=0

f(sj)y(sj) (3.11)
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3.1 Spherical Harmonics State of the Art

3.1.2. SH Rotations

The rotation invariance property of the SH basis (see Section 3.1) states that given an
SH vector f of order n with reconstructed function f̃(s), we can find an SH vector f ′

which has a reconstructed function f̃ ′(s) that is a perfect rotation of f̃(s). In other words,
f̃ ′(s) = f̃(Rs).

In a naive approach, f̃(s) is reconstructed from f and projected back to the SH basis
with rotated input.

f ′i =
∫
S
f̃(Rs)yi(s)ds =

∫
S

n∑
j=0

f jyj(Rs)yi(s)ds (3.12)

This is a relatively inefficient approach, as it requires SH reconstruction and projection.
Since the SH basis is orthonormal, an SH rotation is a linear transformation on the

coefficients of an SH vector. It is possible to find a matrix MR that directly transforms the
coefficients of f to f ′ [8]. The orthonormality of the SH basis implies that MR is a block
diagonal sparse matrix and that coefficients of different bands do not interact [10]. Figure
3.13 shows the composition of an SH rotation matrix.

MR =



1 0 0 0 0 0 0 0 0 . . .

0 X X X 0 0 0 0 0 . . .

0 X X X 0 0 0 0 0 . . .

0 X X X 0 0 0 0 0 . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .
...

...
...

...
...

...
...

...
...

. . .


(3.13)

Rotating an SH vector using MR requires only one matrix multiplication with a sparse
matrix and is more efficient than the naive approach.

f ′ = MRf (3.14)

The Problem, however, is finding an efficient method to construct the matrix MR given a
rotation R. MR can be constructed by projecting the rotated SH basis functions to the SH
basis:

(MR)ij =
∫
S

yi(Rs)yj(s)ds (3.15)

For low-order SH vectors, a useful method for finding the (MR)ij as a function of R’s
components is to do symbolic integration on the above equation. For higher-order SH
vectors however, this method becomes increasingly inefficient.

Several methods have been proposed to speed up SH rotations. The method by Kautz
et al.[17] is more efficient for higher-order SH vectors. The rotation R is decomposed into
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3.1 Spherical Harmonics State of the Art

its zyz rotation components (α, β, γ). The rotation around y is further decomposed into a
rotation around x by π

2 , followed by a rotation around z by β and a rotation back around
x by −π

2 .
MR = MRzMRxMRzMRxMRz (3.16)

The rotations around x have a fixed angle and the matrix components (MR)ij for these
rotations can be precomputed. The matrix components for z-axis rotations can be found
using a simple formula [10, 17]. Křivánek et al. [19] describe an algorithm for rotating
SH vectors around the z-axis without constructing a matrix.

Ivanic and Ruedenberg [12, 13] use recursive functions to build rotation matrices of
order n+ 1 from rotation matrices of order n.

Křivánek et al. [19] propose a fast, approximative method for SH rotations. The y-
rotation in the zyz rotation decomposition is approximated by its truncated Taylor expan-
sion. The computational complexity is reduced from O(n3) for Ivanic and Ruedenberg’s
method and the zxzxz method of Kautz et al. to O(n2). The downside is that the method
only accurately approximates SH rotations about the y-axis for small rotation angles.

Sloan et al. [37] propose working with only a subset of the SH basis functions that can
be rotated more efficiently: the zonal harmonics y0

l (see Figure 3.1). An order-n projection
g of a function to zonal harmonics has n components, since there is one zonal harmonic
basis function in each SH band. Zonal harmonic basis functions are all circularly sym-
metric around the z-axis, so the range of functions they can approximate is limited to the
functions that are, too, circularly symmetric around the z-axis. Sloan et al. approximate
general functions using combinations of rotated basis functions. ZH projections have the
advantage, that they can be rotated from the z-axis to an arbitrary axis s∗ by a simple
formula:

(g ′)ml = yml (s∗)

√
4π

2l + 1
gl (3.17)

where g ′ is the SH rotation of g, in other words g̃ ′(s) = g̃(R−1s). Note that g ′ has to
be an SH vector, since the rotated function g̃ ′(s) is not circularly symmetric around the
z-axis anymore.

3.1.3. SH Products and Squares

Products of functions that are represented in the SH basis are useful when computing the
visibility effects of multiple overlapping blockers. Calculating the visibility directly in
the SH basis avoids costly SH projections.

Given two order-n coefficient vectors f and g, the product of their SH functions can
be approximated by projecting the product of the reconstructed functions f̃(s) and g̃(s)
back to an order-n coefficient vector f ∗ g, called the SH Product [32]:

f ∗ g =
∫
s
f̃(s)g̃(s)y(s)ds (3.18)
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3.1 Spherical Harmonics State of the Art

The product f̃(s)g̃(s) of the reconstructed functions may require a coefficient vector of
order up to 2n − 1 to be represented accurately in the SH basis. The order-n projection
f ∗ g is a low-frequency approximation.

Substituting the right part of equation 3.2 for f̃(s) and g̃(s) and rearranging gives the
following equation:

(f ∗ g)i =
∑
jk

f jgk

∫
s

yi(s)yj(s)yk(s)ds =
∑
jk

f jgkΓijk (3.19)

Γijk are the tripling coefficients [27]. They form a sparse, symmetric order-3 tensor Γ,
called the SH Triple Product Tensor [32], defined as:

Γijk =
∫
s

yi(s)yj(s)yk(s)ds (3.20)

The Γijk correspond to the well studied Clebsch-Gordan coefficients [8], but can also be
computed by numerically solving the Integral using Monte Carlo Integration (see Section
3.1.1).

In a naive approach using each Γijk, the SH product of two order-n SH vectors isO(n6),
since Γ has n6 components. Taking advantage of the sparsity of Γ, the computational
complexity can be reduced to O(n5) [27]. For real-time applications, the Γijk are usually
precomputed to avoid having to evaluate the integral at run-time.

The SH product f ∗ g of the SH vector f with an arbitrary vector g is a linear trans-
formation of the components of g. Hence, the SH product matrix (or transfer matrix when
used for shadowing) Mf can be defined, which describes the linear transform of the com-
ponents of an arbitrary SH vector g to match f ∗ g [36, 32].

f ∗ g = Mfg for any g (3.21)

Mf is defined by

(Mf )ij =
∫
S
f̃(s)yi(s)yj(s) =

∑
k

fkΓijk (3.22)

Using the product matrix, the computational complexity of an SH product is reduced to
O(n4), but the product matrix Mf of one of the SH vectors needs to be known in advance.

3.1.4. SH Exponential and Logarithm

SH exponentials are useful when accumulating blocker visibility. Zhou et al. [44] finds
the total blocked visibility g at a receiver point by computing the product of blocker
visibility functions g[i] of the individual blockers in the SH basis.

g = g[1] ∗ g[2] ∗ · · · ∗ g[m] (3.23)

wherem is the number of blockers and g[i] the SH projection of the blocker visibility func-
tion g[i](s) of blocker i, defined over incident illumination directions of a receiver point.
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3.1 Spherical Harmonics State of the Art

g[i](s) takes on values of 0 for directions where blocker i is blocking and 1 everywhere
else.

Instead of using expensive SH products, Ren et al. [32] accumulate the log of blocker
visibilities using inexpensive sums.

g = exp(log(g[1]) + log(g[2]) + · · ·+ log(g[m])) (3.24)

The logarithm is usually precomputed offline and a fast approximation is used for the ex-
ponential. The remainder of this section will describe the SH exponential and SH logarithm
methods proposed by Ren et al. [32].

The SH Exponential is typically computed at run-time, so it has to be a fast operation.
Using the Volterra Series [34] and Taylor expansion, Ren at al. show that

exp(f) = 1 + f +
f2

2
+
f3

3!
+ . . .

≈ exp∗(f) = 1 + f +
f ∗ f

2
+
f ∗ f ∗ f

3!
+ . . . (3.25)

where 1 is the unit SH vector (
√

4π, 0, 0, . . . , 0). The error of the approximation

fp ≈ f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
p times

is acceptable if the reconstructed function f̃(s) of f is bound in a small interval, e.g. [0, 1],
as in the blocker functions.

When using a finite number of terms of the Taylor expansion, error increases as the
magnitude ‖f‖ increases. To keep the magnitude low, f ’s DC component f0, the coeffi-
cient of the constant SH basis function y0

0, is isolated and handled separately.

f =
(
f0√
4π

)
1 + f̂ (3.26)

f̂ = (0,f1,f2, . . . ,fn2−1)

The SH exponential is then

exp∗(f) = exp
(
f0√
4π

)
exp∗(f̂) (3.27)

When using DC isolation on SH vectors of order 4 or lower, the first two terms of the Tay-
lor expansion in equation 3.25 provide sufficient accuracy. Replacing the SH exponential
in equation 3.27 with the two-term Taylor expansion, we get:

exp∗(f) = exp
(
f0√
4π

)(
a(f̂)1 + b(f̂)f̂

)
(3.28)
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The coefficients a(f̂) and b(f̂) are chosen to provide the least-squares best projection of
exp∗(f̂) onto the vectors 1 and f̂ .

a(f̂) =
exp∗(f̂) ∗ 1

1 ∗ 1
b(f̂) =

exp∗(f̂) ∗ f̂
f̂ ∗ f̂

(3.29)

The value of a(f̂) and b(f̂) usually depends on the SH vector f̂ , that is, on the blocker
model. But experiments by Ren et al. have shown, that a(f̂) and b(f̂) agree on their
values for SH vectors f̂ with the same magnitude when the magnitude is small, roughly
‖f̂‖ < 4.8. This makes it possible to precompute the a, b values and tabulate them by SH
vector magnitude ‖f̂‖.

exp∗(f) = exp
(
f0√
4π

)(
a(‖f̂‖)1 + b(‖f̂‖)f̂

)
(3.30)

This approximation of the SH exponential is O(n2), with n the number of bands of f .
Accurate results are only guaranteed for ‖f̂‖ < 4.8.
Using the relation

exp(x) =
(

exp
( x

2p
))2p

(3.31)

SH vectors of larger magnitude ‖f̂‖ can be used with this method. First, the input SH
vector f is scaled by 2−p before using it in equation 3.30. The result is repeatedly squared
p times to undo the scaling.

exp∗(f) =
(

exp∗

(
f

2p

))2p∗

(3.32)

where f2p∗ denotes p repeated squarings of f using SH products. SH products areO(n5),
so the SH exponential becomes O(n5), when using the scaling/squaring method.

The SH Logarithm should closely match the inverse of the approximation used for the
SH exponential. Starting from the Taylor expansion in equation 3.25

g = exp(f) = 1 + f +
f ∗ f

2
+
f ∗ f ∗ f

3!
+ . . .

= 1 + f +
Mf f

2
+

M2
f f

3!
+ . . . (3.33)

where Mf is the SH product matrix of f (see Section 3.1.3), Ren et al. show that

log(g) = RTg q
′(Dg) Rg(g − 1) (3.34)

q′(x) =
log(x)
x− 1
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where RTgDgRg is the result of an eigenanalysis of the product matrix Mg of g. Rg is
a rotation matrix that projects an input vector to a basis of eigenvectors and Dg is the
diagonal matrix of associated eigenvalues. q′(x) is applied to each component of the
diagonal of Dg . The eigenvalues on the diagonal of Dg are clipped to a small ε to avoid
applying the log to negative values or to values close to zero.

Because of the eigenanalysis involved, finding the SH logarithm is an expensive oper-
ation typically not done at run-time.

3.2. Precomputed Radiance Transfer

Figure 3.5.: Model with environment lighting only (left) and with self-shadows and interreflec-
tions using precomputed radiance transfer (right). (Images from [36].)

The paper by Sloan et al. [36] was the first in a row of papers dealing with precomputed
radiance transfer. It introduced spherical harmonics as a novel method to store precom-
puted values for a receiver point, thereby reducing the storage cost.

Under the assumption of an infinitely distant light source (e.g. an environment map),
the incident light at a receiver point p can be described as the product of the radiance
coming from the light source and a local transfer function Tp:

Li(p, ωo) = Lenv(ωi)Tp(ωi) (3.35)

where Lenv is the infinitely distant light source. Tp describes which parts of the radiance
from the light source Lenv arrive at the receiver point p. When only calculating the shad-
owed response of a receiver point, Tp is a visibility function Vp(ωi) which takes on values
of 1 everywhere the light source is visible and 0 everywhere else (see Figure 3.6). When
including reflections, Tp also describes which parts of Lenv arrive at the receiver point by
way of reflections.

Tp(ωi) = Vp(ωi) +Rp(ωi) (3.36)
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Vp

Figure 3.6.: The visibility function Vp of the red receiver point displayed as a cubemap. The blue dots are
other receiver points on the model.

where Rp(ωi) is the fraction of the radiance of Lenv arriving at p through reflections. In
both cases, Tp is a linear transform on Lenv.

Using this in the rendering equation (see equation 2.1), we get its reduced form for
precomputed radiance transfer:

Lo(p, ωo) =
∫

Ω
ρ(p, ωi, ωo)Lenv(ωi)Tp(ωi) (3.37)

The cosine term has been included in the BRDF ρ. Integration is done over the entire
sphere, but the lower hemisphere us usually zeroed out by the BRDF. Note that there is
no emittance term, since we assume that light is only emitted from the infinitely distant
light source Lenv.

In a scene with static objects, the transfer functions can be precomputed at densely sam-
pled receiver points on an object’s surface to describe the light transport on that object.
However, storing these functions is expensive and has been a problem in prior methods.
Here, spherical harmonics provide a compact way to represent the transfer functions.
Usually no more than 5 bands, i.e. 25 coefficients, are needed per transfer function.

Diffuse BRDFs

Diffuse BRDFs can be included in the precomputed transfer function, since they remain
constant at run time. If the distant lighting is represented in the spherical harmonics ba-
sis, too, calculation of the outgoing light at a receiver point (see equation 3.37) simplifies
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to:

Lo(p) = l · fp (3.38)

l =
∫

Ω
Lenv(ωi) y(ωi) dωi

fp =
∫

Ω
ρp(ωi)Tp(ωi) y(ωi) dωi

A simple dot product between the SH vector l, approximating the distant lighting and the
SH vector fp, approximating the precomputed product of transfer function and diffuse
BRDF. Note that l and t can only capture the low-frequency behaviour of the light source
and the transfer function.

Glossy BRDFs

Glossy BRDFs are more difficult to compute. Since glossy BRDFs are dependent on
view direction, they cannot be precomputed and stored in the transfer vector like dif-
fuse BRDFs. In their original method [36], Sloan et al. can only handle a special kind of
isotropic glossy BRDF. Kautz et al. [17] and later Sloan et al. [35] improve the method
to handle arbitrary glossy BRDFs. The glossy BRDF is stored as a table of SH vectors
over all view directions. Each coefficient of the stored SH vectors can be described as a
function over all view directions, which can itself be projected to the SH basis, resulting
in a n2 × n2 matrix for a glossy BRDF, where n is the number of SH bands.

Bij =
∫
ωo

∫
ωi

yi(ωo)yj(ωi)ρ(ωi, ωo)dωidωo (3.39)

where B is the BRDF matrix for the glossy BRDFB. The outgoing light at a glossy receiver
point can then be calculated with

Lo(p, ωo) = y(ωo)(BRpTp)l (3.40)

where Tp is the SH product matrix (see Section 3.1.3) of the transfer vector. Tp transforms
the distant radiance l to radiance incident at the point p, including shadows and inter-
reflections. Rp is an SH rotation (see Section 3.1.2) rotating the incident radiance to the
BRDF’s local coordinate frame. Only moderately glossy BRDFs can be handled in this
way. A prohibitive amount of SH coefficients would be necessary to get useful approxi-
mations of highly specular BRDFs.

Local light sources

When only using their method for shadowing, Sloan et al. [36] show that it is possible to
handle local, dynamic light sources. The incident radiance field, i.e. the radiance coming
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directly from light sources is calculated at key points1 on an object’s surface. In between,
the radiance field is interpolated. The assumption of this method is, that lighting varia-
tion is not too high over the surface of an object. Since reflections are ignored, the radiance
coming from a receiver point depends only on the interpolated incident radiance field at
the position of the receiver point and on the transfer vector. Radiance incident at a re-
ceiver due to reflections would be dependent on the incident radiance field of the point
that reflected the light and could therefore not be calculated locally at the receiver point.
Note that this is only an issue with local lights. When using environment lighting only,
the incident radiance field is constant everywhere in the scene.

Volumetric Data

In their paper, Sloan et al. [36] also show how transfer vectors can be precomputed for
volumetric data, like clouds, and how shadows and reflections from dynamically moving
objects can be transferred to other objects by precomputing a field of transfer matrices
around the moving object.

With the method of Sloan et al. [36], extended by [17, 35], real-time performance can be
achieved for diffuse and moderately glossy materials in static scenes with dynamic view
and lighting changes.

3.3. Ambient Occlusion

Figure 3.7.: Comparision of images generated with and without ambient occlusion. Left: image lit
by environment lighting without using ambient occlusion. Right: image generated
using ambient occlusion. (Images from [20].)

Ambient occlusion is a term used to describe the inaccessibility of a receiver point, i.e.
how much of its hemisphere is occluded. The method was originally used to darken the

1The sample points for the incident radiance field are found by using the iterated closest point
algorithm[22]
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classical ambient term [29] in areas like creases or corners that are not fully exposed to
the environment, giving objects a more convincing appearance.

Although Landis [20] coined the term ambient occlusion as a cheap alternative to
global illumination for offline rendering, a similar technique was used before by Zhukov
et al. [45] to calculate the obscurance of a point, which is a generalization of ambient
occlusion:

W (p) =
1
π

∫
Ω
f(h(p, ω)) cos θ dω (3.41)

where f is a function of this distance h(p, ω) of a point p to the first hit of a ray cast from p

in direction ω. θ is the angle between ω and the surface normal and
∫

Ω integrates over the
upper hemisphere of p. Intuitively, the closer objects are to the receiver point, the more it
is obscured by them.

Ambient occlusion simplifies the obscurance technique by replacing the function f

with a visibility function V , which takes on values of zero in directions where no ge-
ometry is visible and one everywhere else:

A(p) =
1
π

∫
Ω
V (p, ω) cos θ dω (3.42)

When using local illumination rendering (like in most current games and other real-time
applications), the ambient occlusion term A can be used to darken inaccessible regions of
an object, giving it a more global-illumination like appearance. (see Figure 3.3).

The ambient occlusion term is usually computed using raytracing to determine the
occluded directions at each receiver point. This limits the use of ambient occlusion in real-
time rendering to static objects, where the ambient occlusion term can be precomputed.

The bent normal

Often it is also useful to determine the "bent normal" at each receiver point [20]. The bent
normal represents the average unoccluded direction, i.e. the average direction of incom-
ing light at a receiver point. It can be found by normalizing the average of all unoccluded
rays during raytracing. The bent normal is useful when calculating the ambient occlu-
sion with environment lighting. An average of the environment light in the direction
of the bent normal approximates the incident environment light at a receiver point. Al-
though this is not always correct (the bent normal may point to a direction that is actually
occluded), the results are usually visually pleasing.

Ambient Occlusion for dynamic scenes with indirect lighting

Recently, ambient occlusion has been extended in several methods. Bunnell [4] calculates
the ambient occlusion terms dynamically at run-time by approximating the surfaces of
scene geometry with small discs. He also describes how to incorporate diffuse indirect
lighting in additional rendering passes.
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Figure 3.8.: Left: image lit by environment lighting using ambient occlusion. Right: The same
image with indirect lighting. (Images from [4].)

Each object in the scene is covered with discs, one disc for each vertex. The size of the
disc is determined by the size of adjacent faces. The ambient occlusion caused by one disc
at a receiver point can be calculated analytically, derived from the solid angle subtended
by the disc on the receiver point’s hemisphere. Figure 3.9 shows the geometric relation
between disc and receiver point. The ambient occlusion term of a single disc d is given
by:

A(p, d) = 1−
rpd cos θdmax(1, 4 cos θp)√

Ard
π + rpd2

(3.43)

where rpd is the distance between the receiver point and the disc center and Ard the area
of the disc. θd is the angle between disc normal and the direction towards the receiver
point, θp the angle between the surface normal at the receiver point and the direction
towards the disc.

In a first pass, the ambient occlusion terms of all discs in the upper hemisphere are
summed up at each receiver point. This overestimates the real ambient occlusion values
since overlapping discs are not handled correctly, resulting in shadows that are too dark.
In a second pass, the same shadowing procedure is repeated, but this time, the ambient
occlusion caused by a disc is multiplied by the occlusion of the disc itself, i.e. the ambient
occlusion value from the first pass. The result is an underestimation of the real ambient
occlusion values. The true ambient occlusion values are approximated by taking the
average of first and second pass.

Indirect lighting is handled in separate passes. One pass is needed for one light bounce.
In each pass, the diffuse radiance is calculated for each disc, possibly using information
from previous passes. The form factor used for indirect illumination is different from the
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p

d

θp

θd

rpd

Figure 3.9.: The geometric relation between receiver disc and emitter disc.

one used for shadowing (equation 3.43):

T (p, d) =
Ard cos θd cos θp
πrpd2 +Ard

(3.44)

Shadowing for indirect illumination is done the same way as when calculating the ambi-
ent occlusion term, but the light transfer form factor T is used.

Ambient Occlusion fields

Kontkanen and Laine [18] and Malmer et al. [25] both describe methods for computing
shadows from dynamic objects using ambient occlusion fields.

In Kontkanen and Laine’s method, an approximate ambient occlusion value is calcu-
lated at each receiver point. The visibility function V (p, ω) of an object as viewed from a
receiver point p is approximated by the visibility of a spherical cap Vcap(p, w) in the mean
direction of the object (see Figure 3.10). The approximation is accurate for one object, as
long as the solid angle subtended by the cap is approximately equal to the solid angle
subtended by the object.

A(p) =
1
π

∫
Ω
V (p, ω) cos θ dω ≈ 1

π

∫
Ω
Vcap(p, ω) cos θ dω (3.45)

A spherical cap has two parameters, the average direction of occlusion and the size of the
cap, i.e. the solid angle subtended on the hemisphere of the receiver point. These two pa-
rameters are stored for each direction around an object as functions of the distance from
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Vcap(p, ω)

p

Figure 3.10.: The spherical cap for a teapot object. The arrow points in direction ω and the angular radius
is depicted by the yellow angle.

the object. Using a function with a fixed number of coefficients to represent the spheri-
cal parameters for one direction instead of explicitly storing sampled values reduces the
storage cost. At run-time, the parameters for the spherical cap approximation as seen
from a receiver point p are retrieved by evaluating the radial function that it stored for
an object in direction to p. The ambient occlusion term for a given spherical cap is then
looked up in a precomputed table.

To combine the ambient occlusion effects of multiple occluders at a receiver point p,
the accessibility values 1−A(p) of all objects are multiplied. Kontkanen and Laine show
how this multiplicative blending is statistically justified.

Malmer et al. [25] use a similar method to compute ambient occlusion shadows from
dynamic objects. Instead of using functions to store the spherical cap parameters around
an object, they propose storing them in a 3D grid around the object. This increases the
memory cost, but allows faster lookups.

Malmer et al. combine the effect of multiple occluders by blending size and direction
of the spherical caps in a way similar to Kontkanen and Laine. The blended values for
each receiver point are accumulated in an occlusion buffer.

Lighting from environment maps is handled by first computing the unoccluded inci-
dent environment map lighting at a receiver point using the surface normal and then
subtracting from it the environment map lighting coming from the cone of occluded di-
rections which can be looked up in the occlusion buffer.

Since ambient occlusion methods average over a receiver point hemisphere, they are usu-
ally less exact than PRT (precomputed radiance transfer) methods that explicitly store
hemispherical information of a receiver point in some function basis. However, am-
bient occlusion methods are a cheaper alternative to the more exact PRT methods, es-
pecially when used in conjunction with traditional real-time rendering techniques like
local-illumination rendering and shadow maps.
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3.4. All-frequency PRT

Figure 3.11.: All-frequency PRT image. Note the
relatively sharp shadows and the glossy materials.
(Image from [27].)

The spherical harmonics basis is only suitable for handling low-frequency light transport
effects like soft shadows and diffuse reflections. For high frequency effects, like specu-
lar highlights and sharp shadows, excessive amounts of SH coefficients are needed and
ringing artifacts deteriorate the quality of the approximation. Ng et al. [26, 27] propose
using a 2D Haar wavelet basis instead to precompute high frequency light transport ef-
fects. The wavelet basis used by Ng et al. is orthonormal and defined as follows (after
Stollnitz et al. [38]):
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The 2D Haar wavelet basis

There is one scaling basis function defined over the unit square:

Φ(x, y) = 1 for (x, y) ∈ [0, 1]2 (3.46)

All other basis functions are scaled and translated versions of three Haar mother
wavelets:

Ψ01(x, y) =
{

1 if x < 0.5
−1 if x ≥ 0.5.

(3.47)

Ψ10(x, y) =
{

1 if y < 0.5
−1 if y ≥ 0.5.

(3.48)

Ψ11(x, y) =
{

1 if (x− 0.5)(y − 0.5) > 0
−1 if (x− 0.5)(y − 0.5) ≤ 0.

(3.49)

The Haar mother wavelets are defined over the unit square and are implicitly zero
outside their domain. Scaling and translating is done quadtree-like:

Ψlij
M = 2lΨM (2lx− i, 2ly − j) i, j ∈ [0, 2l) (3.50)

where l defines the scale of the wavelet basis function and i and j the position on
the unit square. The following figure shows part of the wavelet tree for the Ψ11

mother wavelet. Grey areas denote zero values.

Ψ11

Ψ111
11Ψ110

11Ψ101
11Ψ100

11

Ψ213
11Ψ212

11Ψ203
11Ψ202

11

Wavelet approximation

In [26, 27], visibility, the BRDF and environment lighting are all approximated in the
wavelet basis. Since 2D Haar wavelets are not defined over a sphere like spherical har-
monics, Ng et al. first discretize the spherical functions to cubemaps and then project
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each cubemap face to the wavelet basis. In contrast to spherical harmonics, high frequen-
cies are accurately represented in the wavelet basis. The wavelet basis coefficients are
quantized to 6,7 or 8 bits and only non-zero coefficients are retained. When compared
to the cubemap representation, this non-linear wavelet approximation achieves a data
compression rate of roughly two to three orders of magnitude.

More coefficients are needed for all-frequency wavelet approximations than for low-
frequency spherical harmonics, but much less coefficients are needed than when trying
to capture high-frequency effects with spherical harmonics. Ng et al. [26] show that
about 100 wavelet coefficients are enough to retain high-frequency lights in an HDR en-
vironment map and that spherical harmonics still does much worse than wavelets with
as much as 10000 coefficients (partly due to high-frequency ringing).

Factoring the transport function

In their first paper on wavelet PRT [26], Ng et al. computed a single transport function for
BRDF and visibility T (ωi, ωo, p). When using arbitrary BRDFs, this transport function is 6-
dimensional: light direction ωi, view direction ωo and surface position p. This function’s
memory requirements are very high, so Ng et al. had to limit their method to either
diffuse BRDFs or fixed viewpoint to eliminate the transport function’s view-dependency
and reduce its dimensionality to a more manageable size.

In their second paper [27], Ng et al. factor the transport operator into BRDF and visi-
bility function. The visibility function is four dimensional, and the BRDF is four dimen-
sional, too, if it could be rotated to a global coordinate frame during run-time.

T (ωi, ωo, p) = ρ̃p(ωi, ωo) ∗ V (ωi, p) (3.51)

where ρ̃p is the local BRDF at p rotated to a global coordinate frame. However, wavelet ro-
tation is an expensive operation, so Ng et al. instead use the full 6D BRDF representation
(including normal direction) for general, isotropic BRDFs and a reduced representation
for the special cases of Lambertian (i.e. perfectly diffuse) and Phong BRDFs. Ng et al.
report that when reparametrizing the BRDF to use the reflection vector ωr instead of the
view vector ωo and sampling the normal direction sparsely, the BRDF representation is
compact and the wavelet approximation of the BRDF usually needs less space than the
wavelet approximation of the 4D visibility.

Triple Product Wavelet Integrals

At run-time, the Integral of the triple product of visibility V , BRDF ρ and lighting L has
to be computed at each receiver point p (the cosine term is included in the BRDF):

Lo(p, ωo) =
∫

Ω
ρ(n, ωi, ωo)Lenv(ωi)Vp(ωi) (3.52)

The BRDF ρ is only dependent on the normal n at surface point p and the incoming and
outgoing light direction if we assume that the material does not change over the surface of
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an object. Ng et al. [27] fetch the precomputed visibility for a given receiver point and the
BRDF for a given view direction in each frame from the precomputed tables, removing
the dependency on view direction and surface normal. The triple product integral for a
specific receiver point and view direction is given by:

Lo(p, ωo) =
∫

Ω
ρn,ωo(ωi)Lenv(ωi)Vp(ωi) (3.53)

Ng et al. developed methods to solve such triple product integrals efficiently in various
function bases, including wavelets and the spherical harmonics. Triple Product Integrals
also need to be evaluated for products done directly in a function basis, like the SH prod-
ucts for spherical harmonics (see Section 3.1.3). Triple product integrals in the wavelet
basis perform best with a linear time complexity O(n) where n is the number of coeffi-
cients. Triple product integrals in the SH basis have a time complexity of O(n

5
2 ).

Using the techniques described above, Ng et al. can handle all-frequency light transport
effects with arbitrary BRDFs in static scenes with changing illumination and viewpoint.
They achieve near-interactive rates of 3-5 seconds per frame for typical scenes.

BRDF separation

To decrease the dimensionality of the BRDF, Liu et al. [23] and Wang et al. [42] sepa-
rate BRDFs into a purely view-dependent part and a purely light-dependent part using
singular value decomposition (as in [16]):

ρ(ωi, ωo) = G(ωi)F (ωo) (3.54)

The light-dependent termG(ωi) can then be included in the light transport operator with-
out increasing its dimensionality. The view-dependent term is looked up at run-time.

Using BRDF separation, interactive rendering times can be achieved for arbitrary BRDFs
in all-frequency lighting environments with changing illumination and viewpoint [23].

Multi-function product integrals

Recently, Sun and Mukherjee [39] developed a general method for product integrals of
m functions represented in the 2D Haar wavelet basis (where m may be > 3). The time
complexity of the method is O(nm) where n is the number of basis coefficients and m the
number of functions.

Sun and Mukherjee use this method for their Just-in-time Radiance Transfer (JRT) tech-
nique. In JRT, one object at a time can be interactively manipulated (e.g. scaled, trans-
lated, etc.). This is achieved by splitting the visibility function into the local visibility of
an object that describes self-shadowing and the global occlusions due to other objects in
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the scene. All functions are stored in the wavelet basis. The relighting of a scene can then
be computed with:

Lo(p, ωo) =
∫

Ω
Lenv(ωi)ρ(p, ωi, ωo)V (p, ωi)O1(p, ωi)O2(p, ωi) . . . On(p, ωi) dωi (3.55)

where Lenv is the environment light, ρ the BRDF, V the local visibility function and Oi
the global occlusion due to object i. One of these functions is allowed to change during
normal rendering, the product of all other functions is precomputed on the fly in a few
seconds from their wavelet representations using Sun and Mukherjee’s new method. The
product of the fixed functions is the transfer vector T .

For example, when the lighting is allowed to change, the viewpoint and all object oc-
clusions must remain fixed (i.e. the objects must remain static). When the lighting is fixed,
the BRDF may change, allowing for a changing viewpoint. When an object is translated
(i.e. one of the Oi is changed), lighting and viewpoint must remain fixed.

Rendering is fast, because only a simple dot product between transfer vector and the
wavelet representation of the function that is allowed to change has to be computed at
each receiver point.

Other function bases

Figure 3.12.: Images rendered using
the method by Green et al. [9]. Note the
convincing specular highlights. (Im-
ages from [9].)

Other function bases suited for glossy surfaces have recently been proposed. Tsai and
Shih [40] propose using spherical radial basis functions (SRBFs). With SRBFs, usually
fewer coefficients than in the wavelet basis are needed to approximate the light trans-
fer function and in contrast to wavelets, SRBFs are naturally defined over the sphere,
eliminating the need of an intermediate cubemap representation. There are also some
drawbacks when using SRBFs, like having to constrain lighting changes to rotations of
the environment map. For more details see [40].

Green et al. [9] propose using a nonlinear Gaussian function basis. Green et al. can
render convincing highly glossy materials in real-time with changing lighting and view-
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point, although it is unclear whether the method can also handle other all-frequency light
transport effects such as sharp shadows. Fore more information see [9].

3.5. PRT for dynamic scenes

PRT works well on static scenes [36, 35] and can handle moderately glossy BRDFs [17, 35]
and general all-frequency light transport effects [26, 27, 23, 42, 9, 40, 39]. Dynamic scenes
and deformable objects are however more difficult to handle.

Local, deformable PRT

Sloan et al. [37] found a method to handle local deformations on objects by only working
with a subset of spherical harmonics where rotations can be implemented with simple
rules, in contrast to full spherical harmonics.

The zonal harmonics basis functions are a subset of the spherical harmonics basis func-
tions (see Section 3.1.2). They are symmetric around the z-axis. From spherical convo-
lution, Sloan et al. derive a simple formula to rotate a function represented in the ZH
basis:

ĝml = yml (ω∗)

√
4π

2l + 1
gl (3.56)

where ĝml are the SH coefficients of the rotated ZH vector g. ω∗ is the axis g has been
rotated to and yml are the basis functions. A single rotated ZH function is called a lobe.
An arbitrary SH vector fml can be approximated by the sum of N such lobes:

fml ≈ f̃
m

l =
N∑
i=1

yml (ω∗i )

√
4π

2l + 1
gl,i (3.57)

The lobe axis ω∗i and the corresponding ZH vector gl,i are stored for each of the N lobes.
These are enough to reconstruct the approximated SH vector f̃

m

l at any time. The ZH
coefficients gl of each of the N lobes for approximating an SH vector fml are found it-
eratively by first using a least squares best match for the first lobe, then subtracting the
resulting approximation from fml and approximating the residue with the second lobe
and so on. The least squares best match is found with:√

4π
2l + 1

gl =
∑l

m=−l yml (ω∗i )f
m
l∑l

m=−l(yml )2(ω∗i )
(3.58)

Sloan et al. use BFGS minimization [30] to improve the approximation.
To rotate a function, the axis of each lobe is rotated. This simple rotation allows rotating

the PRT transport vector from a rest coordinate frame to some deformed coordinate frame
at run-time. Using this method, the local light transport effects on deformed parts of a
model can be approximated with the rotated transport vector.
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p

Figure 3.13.: Illustration of hemispherical rasterization. The projected red triangle is rasterized on a grid
tangent to the surface at receiver point p.

Hemispherical rasterization

Kautz et al. [15] presented a method that can handle shadows in dynamic scenes with
deformable objects using the SH basis. They use hemispherical rasterization to compute the
transfer vector at each vertex on the fly. To compute the SH coefficients of the transfer
vector, the following integral has to be evaluated:

(Tp)i(ωo) =
∫

Ω
yi(ωi)Vp(ωi)ρ(ωi, ωo)max(0, cos θ) dωi (3.59)

where (Tp)i(ωo) is the i-th component of the transfer vector at receiver point p for a given
view direction ωo, yi is the i-th SH basis function, ρ is the BRDF and Vp is the visibility
function at p. θ is the angle between surface normal and light direction ωi. Note that
ρ is not dependent on the receiver point p, since calculations are done in the p’s local
coordinate frame and the material is assumed to be constant over the surface of an object.
Then, the only term of equation 3.59 that is not straightforward to calculate is the visibility
function Vp. Hemispherical rasterization is used to approximate this term.

Hemispherical rasterization works as follows: For each vertex, all triangles in the scene
are rasterized into a visibility mask. The visibility mask is a regular grid inside the unit
disc centered at the vertex. Each cell of the grid contains binary visibility values, which
are found by projecting the area of the triangle, as visible from a receiver point, to the
grid. Precomputed tables are used to speed up this operation. Multiple triangles are
rasterized by using cell-wise OR operations on the visibility of each triangle. The total
visibility function for a vertex is then multiplied with the BRDF and the cosine term and
projected to the SH basis as described in equation 3.59. The resulting transfer vector can
then be used to determine the exit radiance for a vertex.
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O

q

Figure 3.14.: Illustration of an object occlusion field. The visibility of the green object O is sampled at
points in O’s sourrounding space. Right: the cubemap sampled for point q.

Since this method works on the triangles of scene objects at run-time, deformable, dy-
namic objects can be handled. Kautz et al. report interactive rates for scenes with a few
thousand polygons.

Shadow fields

Zhou et al. [44] present a different method for soft shadows in dynamic scenes. They use
precomputed object occlusion fields (OOF) that describe the shadowing effects of an object
on its surrounding space. Local lights can also be handled by using source radiance fields
(SRF) that describe the incoming light at points sampled around the light source.

At each point of the SRF, the incident radiance is precomputed and stored in a cube-
map. OOFs are computed similarly, but visibility values are stored instead of radiance
values. In their raw form, the SRF and OOF consume a large amount of storage space.
Thus, Zhou et al. compress the SRF and OOF using spherical harmonics for diffuse shad-
ows or wavelets for all-frequency shadows.

At run-time, objects O and local light sources S are sorted by distance from a receiver
point p. Only objects closer to the receiver point than a light source may occlude the
light source. The occlusion of Object O at receiver point p is fetched from O’s OOF using
trilinear interpolation of the 8 closest entries to p. Similarly, the lighting from one local
light source L incident at p is determined by interpolating the corresponding entries of
the L’s SRF. The occluded light from L incident at the receiver point p is determined by
multiplying the OOF entries of all occluders that are closer to p than Lwith the SRF entry
of L. Light from multiple light sources is summed up at the receiver point.

Using this method, soft shadows from dynamically moving objects can be handled in
real-time and all-frequency shadows at near interactive rates. As noted by Zhou et al.,
the main performance bottleneck of the method is the computation of products of OOF
and SRF entries. Since they are represented in the spherical harmonics or wavelet basis,
expensive SH or wavelet products have to be calculated at each receiver point for each
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object in the scene.

Soft shadows using SH exponentiation

Figure 3.15.: Images rendered using the method of Ren et al. [32]. The rightmost image shows
the sphere approximation of scene objects. (Images from [32, 33].)

Ren et al. [32] concentrate on soft shadows only, using the low-frequency SH basis. They
try to avoid expensive SH products by summing the log of visibility functions instead.
Also, Ren et al. compute visibility functions on the fly to keep the storage requirements
of their method low.

The outgoing radiance at a receiver point is calculated as usual for PRT2:

Lo(p) =
∫

Ω
L(ωi)ρ(n, ωi)Vp(ωi) dωi (3.60)

where L(ωi) is the environment lighting, ρ the diffuse BRDF, rotated from the surface
normal n to the global z-axis and Vp the visibility at receiver point p. The cosine term
is included in the BRDF ρ. This triple product integral can be evaluated efficiently in
the SH basis with the method described by Ng et al. [27], but double product integrals
in the SH basis are still much faster, as they require only a single dot product. For this
reason, the SH projection of the product of L(ωi) and ρ(n, ωi) is precomputed and stored
in a table. Finding the outgoing radiance of a point at runtime then only requires a dot
product between the precomputed SH projection of L(ωi)ρ(n, ωi) and the SH projection
of the visibility function Vp(ωi):

Lo(p) ≈ Lρ(n) · V p (3.61)

Lρ(n) =
∫

Ω L(ωi)ρ(n, ωi) y(ωi) dωi

where Lρ is the SH projection of the product L(ωi)ρ(n, ωi) and V p the SH projection of
the visibility function. The drawback is that lighting is not allowed to change. Changing

2For simplicity, we assume a diffuse BRDF. Glossy BRDFs can also be handled but require more storage
space.
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lighting can be handled if the SH projection of ρ is multiplied with the product matrix
ML (see Section 3.1.3) of the light in every frame.

The visibility vectors V p are calculated on the fly in every frame. For this purpose, all
scene objects are approximated by sets of spheres in a pre-processing step. Spheres are
chosen as approximating geometry, because they are rotationally invariant. The occlusion
of a sphere at a receiver point p is described by the blocker visibility function gp:

gp(ωi) =
{

1 if the sphere blocks in direction ωi as seen from p

0 otherwise.

Since the blocker visibility function is axially symmetric, it can be approximated with
a single ZH lobe in the direction of the sphere center with the same angular radius the
sphere has on p. The SH visibility vector for all possible configurations of one sphere as
seen from a point p can then be computed by fetching a precomputed ZH vector of the
same angular radius as the sphere and rotating it to the direction of the sphere center.

The combined visibility function of multiple blockers at a receiver point is calculated
similar to Zhou et al. [44] as the product of the blocker visibility functions of each sphere:

V p = gp[1] ∗ gp[2] ∗ · · · ∗ gp[m] (3.62)

where gp[1] is the SH projection of the blocker visibility function of the i-the sphere as
seen from point p which can be fetched from the precomputed table.

To avoid expensive SH products, Ren et al. add the log of blocker visibilities:

V p = exp
(
log(gp[1]) + log(gp[2]) + · · ·+ log(gp[m])

)
(3.63)

Ren et al. developed new SH exponentiation and SH logarithm techniques to evaluate
equation 3.63 efficiently, details are described in Section 3.1.4. For each receiver point p,
the combined light and BRDF vector Lρ(n) can then be retrieved for the surface normal
at p. The dot product of the visibility vector V p and Lρ(n) approximates the shadowed
outgoing radiance at p (see equation 3.61).

This method can handle approximated soft shadows at near real-time rates for scenes
consisting of a few ten thousand receiver points (usually vertices) and an average of
about 50 processed spheres at each receiver point.

The method described in this diploma thesis is based on the method by Ren et al.
Relevant parts of the soft shadow method by Ren et al. will be discussed in more detail
in the next chapter.
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4. Soft Shadows and Diffuse Reflections in
Dynamic Scenes

Figure 4.1.: Images rendered with the new method proposed in this chapter.

This chapter describes a new method for approximative diffuse reflections and soft shad-
ows in dynamic scenes. It is largely based on the method by Ren et al. [32], described at
the end of the previous chapter.

The basic idea is as follows: Soft shadows and diffuse reflections are calculated sep-
arately. For soft shadows, the method described in [32] is used. The geometry of every
object in the scene is approximated with spheres. Since spheres are rotationally invariant,
the visibility of a single sphere can be calculated in the SH basis using simple rules. The
total visibility is then computed at each receiver point by summing the log of the single
sphere visibilities and using SH exponentiation.

To handle one bounce of diffuse reflections, each sphere also stores radiance values on
its surface which represent diffuse reflections from the geometry it is approximating. For
each sphere in the scene, the diffuse reflections are updated in each frame using sample
points on the geometry surface that have been defined in a precomputation step. At each
receiver point, the visibility of a single sphere is calculated as the product of the visibility
functions of all closer spheres. The average color of a single sphere as seen from a receiver
point is calculated using a form factor on the stored radiance values. The product of
visibility value and average color approximates the diffuse reflections from a sphere. The
sum of these products from all spheres in the scene approximates the incident radiance
from diffuse reflections.

This chapter is organized as follows: First, we describe how to precompute the approx-
imating sphere set of a scene object (Section 4.1). Then, we briefly review the method for
soft shadows proposed by Ren et al. [32] which forms the basis for our method and
is used for calculating soft shadows (Section 4.2). Finally, we describe how to use the
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Figure 4.2.: The sphere hierarchy of a squirrel model. The leftmost image shows the leaf spheres.

sphere set approximation in precomputation and at run-time to handle one bounce of
diffuse reflection (Section 4.3).

4.1. Sphere Hierarchy precomputation

The influence of geometry on diffuse reflections and soft shadows decreases quickly with
increasing distance from a receiver point. Thus, at larger distances from a receiver point,
coarser sphere approximations provide sufficient accuracy. As in [32], a sphere hierarchy
is used to adapt the resolution of the sphere approximation to the distance from a receiver
point.

To exploit spatial coherency, receiver point on an object’s surface are clustered. At run-
time, a sphere cut, i.e. spheres from the appropriate levels in the sphere hierarchy, is
found for each receiver point cluster.

Leaf sphere construction

Leaf spheres are constructed with the method described in [43]. The method approxi-
mates solid objects with sphere sets and will be reviewed here briefly.

All geometry in a scene is bounded within sphere sets. The algorithm we will describe
aims at minimizing the outside volume of a bounding sphere set while maintaining its
bounding property. The outside volume of a sphere Si with respect to an object O is
defined as the volume inside the sphere, but outside the object, i.e. how much the sphere
"sticks out" of the object. The outside volume of a sphere set {Si} is defined as the sum
of the outside volumes of all spheres in the set.

E({Si}, O) =
ns∑
i=0

V (Si/O) (4.1)

where ns is the number of spheres in the sphere set {Si} and V (Si/O) the volume inside
Si but outside O. The outside volume is a measure of how well the contour of an object
as viewed from any direction is approximated by the sphere set.
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Figure 4.3.: The outside volume of the squirrel model (as seen from one direction). The image on the right
shows a closeup on one of the spheres.

A variant of Lloyd clustering [24] is used to minimize the outside volume of a sphere
set with a given number of spheres. The geometry to be approximated is discretized into
a set of surface points and a set of inner points. The points should be approximately
equally spaced to keep the number of points low. For the inner points, a regular grid and
inside/outside tests define the point positions. For the surface points, a slight variation
of the method for even point distribution by Turk [41] is used1. A given number of
spheres Si are initialized at random positions inside the Object O. These spheres are then
iteratively updated using three steps: point assignment, sphere optimization and sphere
teleportation.

In the point assignment step, each point is assigned to exactly one sphere, and the
sphere radii are adjusted to bound all points assigned to them. Points are assigned in a
flood-fill order, starting from the sphere centers. Points are always assigned to the sphere,
whose outside volume increases least.

Sphere optimization is done after each point has been assigned to a sphere. The center
of each sphere is optimized for minimum outside volume, while constraining the radius
to bound all points that have been assigned to the sphere. Powell’s multidimensional
minimization [31] is used to find the sphere center with minimum outside volume.

After optimization, all sphere radii and point assignments are reset and point assign-
ment is started again with the new sphere centers. This process is iterated until the out-
side volume improvement of an iteration falls below a given threshold. At this point,
sphere teleportation [5] is used to escape local minima. The most redundant sphere is
warped to the location where it is needed most: The sphere SO with largest overlap is re-
moved and instead, the sphere SE with largest outside volume is split into two spheres,
the new centers being the two points with largest distance in the set of points assigned to

1The repelling force in Turk’s method is calculated using the geodesic distance after projection onto a plane.
Here, the 3D euclidean distance is used instead. This avoids some problems with concave surfaces that
are close together in geodesic distance after projecting, but relatively far away in 3D space.
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Figure 4.4.: Receiever point clusters on the squirrel model.

SE . Sphere teleportation is followed by another iteration of point assignment and sphere
optimization. If the outside volume improved, the teleportation is accepted, otherwise
the sphere set is returned to its previous state.

For more details on this method see [43].

Parent sphere construction

Parent spheres are constructed in a similar manner, as described in [32]. Child spheres are
assigned to parent spheres in the next higher hierarchy level using Lloyd clustering [24].
A given number of parent spheres Pi are initialized at random locations and child spheres
Si are assigned to the closest parent spheres based on sphere center distance ||cSi − cPi ||.

After all child spheres have been assigned, the radius of each sphere is updated to
bound all assigned child spheres. Powell’s method [31] is then used to optimize the
parent sphere’s radius by adjusting its center and constraining the radius to continue
bounding all assigned child spheres. The parent spheres then become the child spheres
for the next higher hierarchy level. This process is repeated until a maximum depth has
been reached. The number of parent spheres is usually determined from the number of
child spheres by using a given branching factor.

Note that every hierarchy level continues to bound the original geometry, although
with a larger outside volume.

Receiver point clusters

Receiver points are clustered using Lloyd clustering [24], as in [32]. A given number of
clusters is initialized with random center positions. Each receiver point is assigned to
the closest cluster. After all points have been assigned to clusters, each cluster bound-
ing sphere radius is minimized by optimizing its center. Point assignment and cluster
optimization is repeated until there is no more significant cluster radius improvement.
Teleportation is not used, as it is usually not necessary to achieve good results.
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environment lighting

p

Figure 4.5.: Shadowing from multiple blocker spheres at the receiver point p.

4.2. Soft Shadows

Soft shadows are calculated as in Ren at al. [32]. This section will briefly review this
method.

In precomputed radiance transfer, soft shadows are calculated using the visibility, in-
coming light and BRDF at each receiver point. Assuming we only use diffuse BRDFs, the
shadowed outgoing radiance at a receiver point can be formulated in this way:

Lp =
∫

Ω
Vp(ωi)ρn(ωi)Lenv(ωi) dωi (4.2)

where ωi is the incoming radiance direction, Vp the visibility function at receiver point p,
ρn the BRDF for normal n and Lenv the incoming radiance from the environment.

The main problem in dynamic scenes is finding the visibility function Vp for each re-
ceiver point at run-time, since Vp may change in every frame, depending on the scene
configuration. Ren et al. try to solve this problem by approximating every object with a
set of spheres. Sphere sets have the advantage, that they can approximate the 2D shape of
an object as seen from any viewpoint, while the shape of the single parts composing the
shape of the object (i.e. the spheres) remain relatively constant from any viewpoint. This
allows us to compose the shape of any object from any viewpoint, and thus the visibility
from that viewpoint, at run-time using a relatively small set of simple primitives that can
be precomputed and stored in a table.

The blocker function of a blocker object B at a receiver point p is defined as:

Bp,B(ωi) =
{

0 if the object B blocks in direction ωi
1 otherwise.

(4.3)

Bp,B can be approximated by the product of a set of m spherical blocker functions Bp,Si :

Bp,B(ωi) ≈ Bp,S1(ωi)Bp,S2(ωi) . . . Bp,Sm(ωi) (4.4)
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ω
θ

Figure 4.6.: Parameters for the blocker SH vector of a single blocker sphere.

The Bp,Si correspond to the m spheres in the sphere set approximation of the blocker B.
The total visibility function Vp at a receiver point p is the product of all blocker functions
and can be approximated by the product of the blocker functions of all n spheres in the
scene:

Vp(ωi) ≈ Bp,S1(ωi)Bp,S2(ωi) . . . Bp,Sn(ωi) (4.5)

Visibility and blocker functions are represented in the SH basis (see section 3.1), so equa-
tion 4.5 becomes:

V p ≈ V ′p = Bp,S1 ∗Bp,S2 ∗ . . . ∗Bp,Sn (4.6)

where Bp is the SH projection of Bp and ∗ denotes the SH product. SH products are
expensive, so instead of using SH products, we can sum the log of the blocker functions
and use the SH exponential on the result to get the visibility SH vector:

V p ≈ V ′p = exp (log (Bp,S1) + log(Bp,S2) + . . . + log(Bp,Sn)) (4.7)

where exp denotes the SH exponential and log the SH logarithm. For more information
on SH exponentials and SH logarithms see Section 3.1.4. The SH logarithm es even more
expensive than the SH product, but since the possible shapes of the sphere blocker func-
tions are limited, the SH logarithmGp,Si of theBp,Si can be precomputed.

The blocker SH vector Bp,Si of a sphere Si at receiver point p can be explicitly defined
by two parameters, the direction ω from p to the center of the blocker sphere Si and the
angular radius θ of Si as seen from p (see Figure 4.6). Since Bp,Si is circularly symmetric,
it can be represented as a zonal harmonics vector Bθ of given angular radius θ rotated
to direction ω. The rotation to ω can be done at run-time using the simple rotation rules
for ZH vectors (see Section 3.1.2). The logGp,Si ofBp,Si is also circularly symmetric, so it
obeys the same rotation rules. This allows us to store the log blocker vectors of spheres in
a 1D table of angular radius, instead of a 3D table of angular radius and center direction.
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Precomputation

During precomputation, we tabulate the logGθ of the ZH blocker vectorsBθ by angular
radius θ. The table is relatively compact, since ZH vectors only have nl components,
where nl is the number of SH bands.

To rotate a ZH vector with nl bands to a direction ω, we have to know the value of each
SH basis function yml at ω, up to band nl − 1. These values are also precomputed and
tabulated for directions ω.

Efficient SH exponentiation also requires precomputed a,b coefficients as described in
Section 3.1.4. The a,b coefficients are precomputed using the Gθ and corresponding Bθ

and tabulated by the magnitude of the ZH vectorGθ.
In total, we need three tables to compute the visibility at a receiver point: the 1D table

of log ZH vectors Gθ, the 2D table of SH basis function values and the 1D table of a,b
coefficients.

Runtime

At runtime, the tabulated Gθ and yml are interpolated at each receiver point for the spe-
cific angular radius θ and center direction ω of each sphere Si. At each receiver point, the
log of the blocker vectors of all spheres in the scene is then summed up and the SH ex-
ponential is used on the sum to approximate the total visibility vector V p, as in equation
4.7. For efficient evaluation of the SH exponential, the precomputed a,b coefficient tables
are consulted with the magnitude of the input SH vector.

With a given visibility function V p, expressed in the SH basis, evaluating the integral
in equation 4.2 only requires a triple product integral [27] of the three terms visibility,
BRDF and incoming radiance, each expressed in the SH basis. Another possibility is to
precompute the product of BRDF ρn and incoming radiance Lenv in the SH basis. Eval-
uation of equation 4.2 at each receiver point given the visibility then reduces to a simple
dot product between the visibility SH vector and the precomputed product of BRDF and
incoming radiance, although the lighting Lenv must then remain fixed.

Avoiding problems with receiver points inside spheres

All receiver points on the surface of an object O are inside at least one of the spheres
of the sphere set approximation {Si}O of O, since {Si}O bounds the object O. Receiver
points should not be shadowed by these spheres, so the same rules as in Ren et al. [32]
are used to adjust the spheres at each receiver point. A sphere S with center xs and radius
rs is adjusted at a receiver point p with surface normal n and tangent plane Tp using the
following rules:

• If S is completely in front of Tp, do not adjust S.

• If S is completely behind Tp, remove S. We do not handle material transmittance,
so these spheres have no influence on the receiver point p.
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p
d

q1

q0

Figure 4.7.: Blocker sphere adjustments for spheres containing the receiver point.

• If S intersects Tp and the center xs is in front of Tp, reduce the sphere radius rs and
adjust the center xs so that S becomes tangent to Tp (see Figure 4.7, red sphere).

• If S intersects Tp and the center xs is in behind Tp, remove S if the receiver point p is
contained in S. If p is not contained in S, reduce the radius of S and move it along
the direction of the normal n until it is in front of and tangent to Tp (see Figure 4.7,
blue sphere). To avoid discontinuities when p moves from inside S to the outside,
S is scaled as a function of p’s distance to S using the following factor α:

α = min(1,
||p− q1|| − d

d
) d =

√
r2
s − (rs − ||q1 − q0||)2

These rules ensure, that p is not contained in any sphere that is used for calculating the
visibility at p.

Using sphere hierarchies

So far we have only considered the leaf spheres of sphere set approximations. Sphere
hierarchies are used in a way similar to Ren et al. [32], although with small changes that
are necessary due to diffuse reflections. The Section 4.3 will explain why these changes
are necessary. In contrast to Ren et al., we choose only spheres from a single level in
the hierarchy. Which level in the hierarchy is used is determined once per receiver point
cluster and the same hierarchy level is used for all points in the cluster.

Given a receiver point cluster with a bounding sphere of radius rc and center xc, the
maximum angular radius subtended by a given sphere Si at any point in the cluster is
given by

θmax = sin−1

(
rs

||xs − xc|| − rc

)
(4.8)
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where rs is the radius and xs the center of Si. The level in the sphere hierarchy is chosen
so that the angular radius θmax of any sphere in the hierarchy level is not larger than a
given threshold.

To avoid discontinuities between clusters that use different hierarchy levels, at each
receiver point in the cluster, a ratio is applied to the log visibility SH vectors F p,Si of all
spheres at the chosen hierarchy level. The ratio is calculated once in every cluster by
computing two visibility vectors for each sphere at the cluster center xc: the bounding log
visibility vector F b of a parent sphere Si and the detailed log visibility vector F d. F d is the
sum of the log visibility vectors of Si’s child spheres. The ratio vector then scales each
band of F b to match F d:

(W Si)l =
∑l

m=−l(F b)lm(F d)lm∑l
m=−l(F b)2

lm

(4.9)

At run-time, the ratio vector is used to scale each band of the log sphere visibility func-
tionsF p,Si at each receiver point. A similar ratio is calculated for diffuse reflections which
will be described in the next section.

4.3. Diffuse Reflections

Figure 4.8.: Left: image with soft shadows, rendered using the method of Ren et al. [32]. Right:
The same image with one bounce of diffuse reflections.

This section describes a possible method to extend the soft shadows method by Ren et al.
[32] to handle approximate diffuse reflections.

To complement soft shadows, diffuse reflections also have to originate from the sphere
set approximations of objects in the scene. If different approximating geometry was used,
soft shadows and diffuse reflections cast on a surface would not match.

In a precomputation step, the surface properties of an object that are relevant for diffuse
reflections are approximated in the sphere set approximation of that object. Each sphere
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in the set stores diffuse surface color (i.e. the albedo for each r,g,b frequency band) and
surface position and normal samples of the object’s surface in the sphere’s vicinity.

In a first pass, this information is used to approximate the diffuse reflections coming
from an object as seen from any direction. The direct illumination of the object’s surface,
including soft shadows, is projected to the sphere set approximation of the object. Each
sphere approximates the illumination of a part of the object’s surface. The approximated
illumination is stored in an SH vector on each sphere, called the radiance vector.

In a second pass, each receiver point determines one unclamped color for each sphere
by multiplying the radiance vector with a form factor vector. The resulting color ap-
proximates the average diffuse reflections coming from the direction of the sphere. This
color is then multiplied with the visibility of the sphere and the BRDF to determine the
contribution of the sphere to diffuse reflections at the receiver point. The sum of the dif-
fuse reflection contributions of all spheres approximates the total incident radiance from
diffuse reflections at the receiver point.

4.3.1. Precomputation for diffuse reflections

At run-time, diffuse reflections are calculated from information stored in the sphere ap-
proximation, rather than using the actual geometry. Surface properties of an object are
projected to its sphere set approximation in a precomputation step. For each sphere in
the sphere set approximation, surface color environments and surface sample points are pre-
computed. Surface color environments store the diffuse surface color, i.e. the albedo, of the
object’s surface. Surface sample points store the surface position and normal for a prede-
fined set of sample directions.

Surface color environments

The surface color environment describes the diffuse color of the surface of an object in
the vicinity of a sphere. For an object O and a sphere Si, the surface color environment
cSi is obtained by projecting the diffuse color of O to the surface of Si, i.e. each direction
ω on the sphere represents the diffuse color of O at the intersection point of a ray starting
at the center of the sphere Si in direction ω. The surface color environment cSi is stored
as three SH vectors (cSi)r, (cSi)g and (cSi)b over the surface of sphere Si, one for each of
the r,g,b color components.

First, a segment of the surface of object O is assigned to each sphere. A sphere Si gets
the set of surface points PSi which have the smallest distance to Si. We use a distance
measure d that takes into account the radius of Si:

d(p, Si) =
||p− xSi ||

rSi

(4.10)

where p is a surface point onO, xSi the center of sphere Si and rSi the radius. This ensures
that each part of the surface is only approximated by a single sphere.
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Figure 4.9.: Surface color sampling. The left figure shows the first two cases, for a sphere center is inside
the model. The right figure shows the third case for a sphere center outside the model.

Now, we shoot rays from the center of each sphere Si in all directions ω and record the
intersection points with the surface of object O.

cSi(ω) = co(h(xSi , ω)) (4.11)

where co is the diffuse surface color of object O and h(xSi , ω) is the intersection point of
a ray, cast from the center xSi of sphere Si in direction ω, with the surface of object O.
We want to capture the color of the object surface as seen from a direction opposite to
the ray’s direction, so we ignore intersections with the front side of the surface and only
handle intersections with the back side.

When shooting rays from Si, the surface of O may be hit more than once in any given
direction ω. In general, there are three possible cases (see Figure 4.9):

• There are one or more ray intersection points with PSi . In this case, the farthest
intersection point contained in PSi is used. More than one intersection with PSi

may happen if the sphere approximation is very coarse (e.g. on higher levels of the
hierarchy). In such a case, we can assume that the viewpoint is relatively far away
from the sphere (otherwise a finer sphere approximation would have been used)
and the outermost surface is visible in direction ω.

• There are only intersection points outside PSi . Since the sphere set bounds the ob-
ject O, there must be another sphere So of the sphere set in direction ω that approxi-
mates the surface color in that direction. Using black (i.e. no diffuse reflections) for
that direction is perfectly valid, because the sphere Si will always be occluded by So
in direction ω. By using black for these directions, we include occlusions from in-
tersecting spheres in the surface color environment. These precomputed occlusions
will be useful at runtime when calculating the visibility of a sphere (see Section
4.3.3).
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• There are no intersections. Since geometry for sphere approximation has to be
closed, this means that the sphere center is outside the object. In this case, we shoot
a ray in the opposite direction ω′, this time allowing only the front sides of surfaces
to be hit. If this ray does not hit a surface either, use black as the color (i.e. zero
albedo, no diffuse reflections at run-time). This case is very rare for usual geometry
as the sphere centers are usually inside the object.

Sampling of the object’s surface has to be dense in order not to miss any textural detail.
Sampling the surface with rays would require to shoot a large amount of rays, making
this approach impractical. Instead, the surface color environment is determined by ren-
dering the object to a cubemap using OpenGL.

For every sphere Si in the sphere set {Si}O, we position the camera at the center of
the sphere. We only use the set of triangles that are closest to Si, using the distance
measure d defined above. If parts of a triangle are closer to another sphere, we do not
split the triangle, but instead assign it to both spheres. Objects are usually tessellated
finely enough so that this approximation is not noticeable in the final SH vectors cSi . For
each cubemap face, the camera is rotated to look in the direction of the cubemap face. We
then render the object without clipping planes such that triangles behind the camera are
rendered, too, but have a lower depth. Triangles are rendered back facing with inverted
depth function. The resulting cubemap is then projected to the SH basis for each color
component to get the surface color environment SH vectors cSi

Surface sample points

Surface sample points describe the surface position and normal of an object in the vicinity
of a sphere. In contrast to surface color environments, the surface positions and normals
are stored as sample points for a set of predefined, evenly spaced directions {ωj} on the
sphere. Given a sphere Si and an object O, for each direction ωj a ray is cast from the
center of Si in direction ωj and intersections with O are recorded (see Figure 4.9):

nSi [j] = n(h(xSi , ωj)) (4.12)

pSi [j] = h(xSi , ωj) (4.13)

For sphere Si, nSi [j] denotes the surface normal at the sample point for direction ωj and
pSi [j] the surface position. n(x) is the normal of the surface at point x and h(xSi , ωj) is
the intersection point of a ray, cast from the center xSi of the sphere Si in direction ωj ,
with the object O. The same surface segmentation defined for the surface environments
is used and the same three rules are applied to intersection points with O, only this time,
directions ωj are marked as invalid by using a zero-length normal instead of the color
black.

The directions {ωj} are derived from the vertices of a geodesic sphere (see Figure 4.10).
This set of directions is chosen, because it is approximately evenly spaced over the sphere.
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Figure 4.10.: The vertices of an icosahedral geodesic sphere.

We assume that object surfaces are relatively smooth, so we find the positions and
normals by shooting a single ray per direction ωj . If the surface of an object was not
smooth, the average of multiple rays would have to be used for each direction ωj .

4.3.2. First Pass: Approximate diffuse reflections in sphere sets

Figure 4.11.: Radiance SH vectors displayed on the surface of each sphere. The image on the left
shows the actual geometry, the image on the right shows the radiance SH vectors
of all spheres.

In the first pass, the surface sample points are used to approximate the diffuse reflections
of an object in the vicinity of a sphere. The shadowed exit radiance from direct illumina-
tion is calculated at each surface sample point of the sphere using the color white (i.e. no
absorption) instead of the actual surface color. The resulting sample radiance values are
projected to an SH vector and multiplied with the surface color environment SH vector
using SH products. The result is the radiance SH vector rSi , defined over the surface of a
sphere. A radiance SH vector is computed for each sphere in the sphere set approxima-
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tion of an object. It approximates the diffuse reflections of that object in the vicinity of the
sphere. Using only the radiance SH vectors, we can approximate the diffuse reflections
coming from that object in the second pass. Figure 4.3.2 shows the radiance SH vectors
of all spheres in a sample scene.

Consider a sphere Si of the sphere set approximation {Si}O of object O. In the pre-
computation step, a surface color environment SH vector cSi and surface sample points
pSi [ωj ] and nSi [ωj ] have been assigned to the sphere.

The shadowed outgoing radiance is calculated at each surface sample point using the
method for soft shadows by Ren et al. (see Section 4.2):

Lp =
∫

Ω
Lenv(ωi)ρn(ωi)Vp(ωi) dωi (4.14)

We make some assumptions about the BRDF that are common in real-time rendering: We
assume that the BRDF of a diffuse white surface (i.e. no absorption) is constant over all
wavelengths and that the diffuse surface color r,g,b values uniformly scale the BRDF for
their respective frequency bands.

ρn,cc(ωi) = icc ρn,1(ωi) (4.15)

where cc is one of r,g,b and icc is the reflection intensity (i.e. albedo) for color component
cc. ρn,1 is the BRDF of a diffuse white surface and ρn,cc is the BRDF for one of the r,g,b
frequency bands.

Under these assumptions, we calculate the shadowed outgoing radiance for each of
the r,g,b frequency bands at each surface sample point pj using a white diffuse surface
color and multiply with the reflection intensity icc of each of the r,g,b later. Equation 4.14
can then be rewritten for each frequency band as:

Lp,cc = icc Mp,cc(ωi) (4.16)

Mp,cc(ωi) =
∫

Ω Lenv,cc(ωi)ρn,1(ωi)Vp(ωi) dωi

The Mp,cc are unclamped r,g,b color values representing the maximum outgoing diffuse
radiance (i.e. no absorption) at each of the surface sample points pj of a sphere Si. These
radiance samples are used to construct an SH vector over the sphere Si. Because the
directions ωj of the surface sample points are evenly spaced on their sphere Si, we can
construct the SH vector on Si via (see Section 3.1.1):

M cc =
4π
m

m∑
j=1

Mpj ,cc y(ωj) (4.17)

where m is the number of sample directions ωj and Mpj ,cc is the maximum outgoing
diffuse radiance for color component cc at the surface sample point pj with direction ωj .

If a large number of SH bands is used for this projection, there might be too few sample
directions ωj , resulting in undersampling of the SH basis functions. To avoid this, we in-
crease the sample directions and use nearest-neighbour interpolation between the sample
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Figure 4.12.: Voronoi cells of the geodesic samples pj (black dots) on the sphere surface. The value sampled
at pj is used for all samples inside pj ’s Voronoi cell.

values Mpj ,cc of the original set of directions, effectively projecting a function consisting
of the Voronoi cells of the original geodesic samples pj (see Figure 4.12):

M cc =
4π
N

N∑
k=1

MV (p̂k),cc y(ω̂k) (4.18)

where N is the new increased number of sample directions ω̂k, N � m. V (p̂k) is the
center of the Voronoi cell containing the sample point p̂k of direction ω̂k, i.e. the nearest
neighbour of p̂k in the old set of samples. The set of new sample directions can then be
grouped into m disjoint sets ω̂vk , each set containing the directions of the sample points in
a single Voronoi cell. Equation 4.18 can then be rewritten as:

M cc =
4π
N

(
Mp1,cc

N1∑
k=1

y(ω̂1
k) +Mp2,cc

N2∑
k=1

y(ω̂2
k) + · · ·+Mpm,cc

Nm∑
k=1

y(ω̂mk )

)
(4.19)

where Nv is the number of sample points in Voronoi cell v and
∑m

v=0Nv = N . The new
set of directions is chosen randomly as described in section 3.1.1 and each sample point
p̂k is assigned to the Voronoi cell containing p̂k (i.e. to the closest sample point in the old
set of samples). The sums of the basis function samples over each Voronoi cell in equation
4.19 can be precomputed. Thus, the computational complexity at run-time remainsO(m)
instead of O(N).

Given the SH projection of the maximum diffuse radiance MSi,cc , the radiance SH
vector rSi of a sphere Si is calculated by using SH products to multiply MSi,cc with the
surface color SH vector cSi,cc for each color component cc:

rSi,cc = MSi,cc ∗ cSi,cc (4.20)
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Figure 4.13.: TODO: write caption

4.3.3. Second Pass: Calculate exit radiance at receiver points

In the second pass, diffuse reflections from all spheres in the scene are accumulated at
each receiver point. The sum of the occluded diffuse reflections of all spheres in the
approximating sphere set {Si}O of object O approximate the diffuse reflections coming
from O. The exit radiance at a receiver point p due to diffuse reflections is then given by:

LRp =
∫

Ω
Lp,S(ωi)ρn(ωi) dωi =

ns∑
i=0

∫
Ω
Lp,Si(ωi)ρn(ωi)Vp,Si(ωi) dωi (4.21)

where Lp,S is the incident radiance due to diffuse reflections coming from all spheres
in the scene and Lp,Si is the unoccluded incoming radiance from sphere Si. ρn is the
BRDF for normal n. Since the visibility functions Vp,Si of any two spheres don’t overlap,
the integral over the hemisphere can be replaced by a sum of ns integrals, one for each
sphere in the scene (see Figure 4.13).

For each sphere Si, an average of the sphere radiance SH vector rSi in direction of a
receiver point is computed to get the average radiance L̃p,Si from Si to the receiver point
p. This average L̃p,Si is used instead of the function Lp,Si(ωi) to approximate equation
4.21:

LRp ≈
ns∑
i=0

L̃p,Si

∫
Ω
ρn(ωi)Vp,Si(ωi) dωi =

ns∑
i=0

L̃p,Si Ṽp,Si (4.22)

The remaining visibility value Ṽp,Si can be determined with a simple dot product of the
BRDF SH vector ρn and the visibility SH vector V p,Si of sphere Si. Equation 4.22 can be
evaluated efficiently at run-time. This is critical, since the equation has to be evaluated at
each receiver point.

After LRp is found, it is added to the radiance value calculated by the soft shadows
method LSp to get the final shadowed exit radiance value including diffuse reflections at
a receiver point p.

Lp = LRp + LSp (4.23)

The next two sections describe how to find the average sphere radiance L̃p,Si and the
sphere visibility value Ṽp,Si .
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p
θα

γ

Figure 4.14.: The form factor geometry. The form factor function is the cosine of angle γ for the angular
radius θ of the sphere at the receiver point p.

Average sphere radiance

To determine the average diffuse radiance coming from a sphere incident at a receiver
point (i.e. the average sphere color as seen from the receiver point), we dot the radiance
SH vector of the sphere with a form factor SH vector f resulting in a correctly weighted
average of the radiance SH vector.

The form factor SH vector f for a sphere Si at receiver point p depends on the center
direction ω and the angular radius θ of Si at p. f is always circularly symmetric, so it
can be represented with a ZH vector and rotated to the direction ω at runtime using the
simple rotation rules for ZH vectors (see Section 3.1.2). This allows us to precompute and
tabulate f only by angular radius θ. The form factor function fθ is defined on the sphere
Si and weighs each point on the sphere by the cosine of the angle between surface normal
at that point and receiver point direction, similar to the cosine term in the rendering
equation (see Figure 4.14). It is a function of angular distance α from the direction −ω
from sphere center to receiver point and given by:

fθ(α) = max
[
0, sin

(
tan−1

(
1− sin θ cosα

sin θ sinα

)
− α

)]
(4.24)

In a precomputation step, this fθ(α) is normalized, projected to the ZH basis and tabu-
lated by θ. At run-time, given a sphere Si, we look up the ZH vector f θ in the precom-
puted table using the angular radius of Si at the receiver point p. Then we rotate f θ to
the direction of p and dot the resulting SH vector with the sphere radiance SH vector rSi

to get the average radiance L̃p,Si from Si to p.

L̃p,Si = rSi ·Rp(f θ) (4.25)

where f θ is the form factor SH vector for the angular radius θ and Rp denotes the ZH
rotation of f θ to the direction of p.
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Si

Vp,Si

p

Figure 4.15.: The visibility function Vp,Si
of sphere Si at the receiver point p with multiple occluding

spheres. Zero values are black, values of 1 are white.

Sphere visibility value

The visibility function of a single sphere at a receiver point is computed similar to Ren et
al. [32].

Consider a receiver point p and a sphere Si. The sphere visibility function is defined as
follows:

Vp,Si(ω) =
{

1 if Si is visible in direction ω at receiver point p
0 otherwise.

(4.26)

The sphere blocker function (see Section 4.2) is defined as:

Bp,Si(ω) =
{

0 if Si blocks in direction ω at receiver point p
1 otherwise.

(4.27)

Note that Vp,Si(ω) 6= 1−Bp,Si(ω), since sphere blocker functions do not depend on other
blockers in the scene, in contrast to sphere visibility functions, which can, in principle,
have any shape. For this reason, only sphere blocker functions Bp,Si can be precomputed
and tabulated.

To compute the sphere visibility functions at a receiver point p, all spheres in the scene
are sorted by distance from p. The sphere visibility function of a sphere Si can then be
computed by multiplying the product of the blocker functions of all sphere closer to p

than Si with the unoccluded sphere visibility function 1−Bp,Si of Si (see Figure 4.15):

Vp,Si(ω) = (1−Bp,Si(ω)) Bp,Si−1(ω) . . . Bp,S1(ω) (4.28)

where all sphere Sj with j < i are closer to the receiver point p than Si. The visibility of
a sphere is computed in the SH basis:

V p,Si = B̂p,Si ∗Bp,Si−1 ∗ . . . ∗Bp,S1 (4.29)
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where ∗ denotes the SH product and B̂p,Si the SH projection of 1−Bp,Si(ω). As explained
by Ren et al., it is more efficient to sum the log of the blocker functions:

V p,Si = exp
(

log(B̂p,Si) + log(Bp,Si−1) + . . . + log(Bp,S1)
)

(4.30)

The log of the Bp,Si is precomputed and tabulated as described in Section 4.2. B̂p,Si

however is not well suited for the log operation, since the value of the corresponding
function 1 − Bp,Si(ω) is zero in most parts of its domain for typical spheres Si. B̂p,Si

would have to be clamped in large parts of its domain, increasing the approximation
error. Also, log(B̂p,Si) results in an SH vector with large magnitude which is difficult to
handle with SH exponentiation. Instead, we use the difference between sphere blocker
function products to determine the sphere visibility function SH vector V p,Si . Equation
4.28 is reformulated as:

Vp,Si(ω) = Bp,Si−1(ω) Bp,Si−2(ω) . . . Bp,S1(ω)

− Bp,Si(ω) Bp,Si−1(ω) . . . Bp,S1(ω) (4.31)

V p,Si = exp ( log(Bp,Si−1) + log(Bp,Si−2) + . . . + log(Bp,S1) )

− exp ( log(Bp,Si) + log(Bp,Si−1) + . . . + log(Bp,S1) ) (4.32)

Using this formulation, we avoid using B̂p,Si , although at the cost of an additional SH
exponential.

At each receiver point, the sphere visibility SH vector V p,Si is then dotted with the
precomputed BRDF SH vector ρn for normal n to get the sphere visibility value Ṽp,Si :

Ṽp,Si = V p,Si · ρn (4.33)

Sphere intersections are difficult to handle when calculating the visibility of a sphere
Si. The region of Vp,Si blocked by a sphere that intersects Si may not be circularly sym-
metric (see Figue 4.16) and is therefore difficult to precompute. We distinguish two cases
for intersecting spheres. In the first case, spheres in the sphere set approximations of
different objects intersect. To avoid this case, we do not allow the sphere set approxi-
mations of different objects to intersect. In the second case, spheres in the same sphere
set approximation intersect. Since we assume that objects are not deformable, these in-
tersections are already known at precomputation. We approximately handle these in-
tersections by using the rules for precomputing surface color environments (see Section
4.3.1) and ignoring spheres that intersect Si in the computation of the visibility V p,Si . The
rules for precomputing surface color environments already account for these intersecting
spheres and approximate their blocking effect on V p,Si by integrating their occlusions in
the sphere color environment.
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Figure 4.16.: The visibility for two intersecting spheres. Their visibility functions at the receiver point
(red and blue regions on the hemisphere) are not circularly symmetric.

Using sphere hierarchies with diffuse reflections

How to use sphere hierarchies at run-time is described primarily in Section 4.2. As
pointed out in that section, only spheres of a single level in the sphere hierarchy are used.
The reason for this is, that the precomputed blocking effects of intersecting spheres that
are included the sphere color environments are only valid for spheres in the same level
of the hierarchy. Sphere color environments of spheres in different levels of the hierarchy
would therefore not match.

To avoid discontinuities at cluster borders, ratios similar to those in Section 4.2 are also
calculated for diffuse reflections coming from spheres. These ratios are calculated once
in every frame at each cluster center pc. For this purpose, the occluded diffuse reflection
value (L̃pc,Si Ṽpc,Si) of each sphere Si at the chosen hierarchy level is computed at the
cluster center pc. This value is compared to the sum of the occluded diffuse reflection
values of all child spheres of Si and the ratio is calculated via:

wSi =
L̃pc,Si Ṽpc,Si∑n
j=0 L̃pc,Sj Ṽpc,Sj

(4.34)

where the Sj are the n child spheres of Si.
At run-time, all receiver points in a cluster multiply the occluded diffuse reflection

value of each sphere Si with the ratio wSi , thus equation 4.22 becomes:

LRp ≈
ns∑
i=0

L̃p,Si Ṽp,SiwSi (4.35)

Object Transformations

Adjusting the sphere set approximation for transformed objects is only possible with-
out major effort for some types of transformations. Translation and uniform scaling are
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Figure 4.17.: Rotations of diffuse reflecting objects. To handle object rotations, the form factor direction
is rotated with the inverse object rotation. Surface sample points and the surface color
environment are kept in the local coordinate frame of each sphere.

straight-forward. Surface sample points have to be translated/scaled along with the ob-
ject and for uniform scaling, the sphere center and radius has to be scaled accordingly.

For object rotations, the surface sample points, as well as the surface color environ-
ments of each sphere would have to be rotated to global coordinates along with the
spheres. However, rotating an SH vector like the surface color environment is an ex-
pensive operation. Additionally, when using global coordinates for the SH vectors on
each sphere, the precomputed SH basis function sums used for projecting the surface
sample radiance values to an SH vector (see Section 4.3.2) would not match the rotated
surface sample points. Instead, the surface color environment and the projected radiance
value vector are kept in local coordinates so that they do not need to be rotated. When
calculating the average sphere colors at each receiver point, the form factor ZH vector
(see Section 4.3.3) is rotated with the inverse rotation of the sphere, resulting in a correct
average sphere color for the rotated sphere (see Figure 4.17).

Object deformations are more difficult to handle. For typical articulated motion, we
need to update the surface environments and the normal and position for the surface
sample points, i.e. the surface of the object would have to be re-sampled at each sphere.
Finding methods to re-sample and object’s surface that are suitable for computation at
run-time is left for future work (see Section 7).
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5. GPU Implementation

Since we only handle low-frequency effects like soft shadows and diffuse reflections,
dense sampling on an object’s surface is usually not required. In our implementation,
we sample at each vertex and increase the tessellation of an object if necessary. We work
with n = 4 SH bands (i.e. 16 component vectors). This number of bands usually gives
good results for low-frequency effects and fits well into the 4-float architecture of older
GPUs. Our implementation needs a relatively large amount of temporary GPU registers,
as will be explained later in this section. At the time of this writing, the GeForce 8800 has
by far the most temporary registers and we assume that future hardware will continue
this trend.

Before using an object for rendering in our implementation, it is first transformed into
a suitable format. This format contains vertex clusters and a sphere set approximation of
the object, including surface color environments and surface sample points (as described
in Section 4.1).

In a precomputation step, we generate all needed tables and store them in textures (see
Figure 5.1): The product of environment lighting and BRDF ρn ∗ Lenv is stored as SH
vectors on a cubemap of normal directions n, i.e. one SH vector per cubemap pixel. This
would require four cubemaps for 16-component SH vectors. To save texture units, we
place the cubemap faces of all four cubemaps on a standard 2D texture, using the layout
illustrated in Figure 5.1. Erroneous interpolation between neighbouring cubemap faces
on the 2D texture is avoided by restricting the texture coordinates to be outside the zones
of erroneous interpolation. Texture coordinates inside these zones are clamped to the
nearest valid texture coordinate (see Figure 5.1). The SH basis function samples yml (ωj)
needed for ZH vector rotation (see Section 3.1.2) are stored similar to the product of light-
ing and BRDF, as SH vectors on a cubemap of sample directions ωj . The precomputed
sphere blocker functionsB(θ) for angular radius θ, the a, b SH exponentiation coefficients
for a given vector magnitude and the form factor SH vectors f(θ) for angular radius θ are
stored as 1D tables in a texture, as well as the sum of SH function samples for the Voronoi
cells (see Section 4.3.2).

At run-time, two passes are performed in every frame. In each pass, scene information
is first prepared on the CPU and then sent to the GPU for processing at each vertex.
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5.1 First Pass GPU Implementation

Figure 5.1.: Two textures that store the tables generated during precomputation. The left image shows a
closeup of one of the cubemap faces. Texture coordinates in the red areas are clamped to the
closest value outside the red areas to avoid erroneus interpolation.

5.1. First Pass

In the first pass, the diffuse reflection approximation from each sphere is found by first
calculating the shadowed diffuse exit radiance at each surface sample point and then
projecting the resulting unclamped color values to an SH vector defined over the sphere
and forming the SH product with the surface color environment (see Section 4.3.3). Figure
5.2 gives an overview of these steps.

Three textures are prepared on the CPU in each frame. The sphere info map [32] contains
one sphere cut (i.e. the spheres of one hierarchy level of each object in the scene) in each
row of the texture. One sphere cut is computed for each sphere in the scene and used by
all surface sample points on the sphere. Each sphere cut stores radius, center and ratio
vector of the spheres in the cut. Thus, the texture size limits the maximum number of
spheres in a sphere cut. We use a texture size of 256 × 256 pixels for a maximum of 128
spheres per cut. The surface sample info map contains position, normal and sphere id of
the surface sample points of all sphere in the scene. The sphere id determines the row
(i.e. the sphere cut) in the sphere info map that is used for a specific surface sample point.
Finally, the sphere color environments texture stores the surface color environments of each
sphere.

These textures are then used in two steps on the GPU. The results of each step are
rendered directly to textures using OpenGL frame buffer objects, to avoid slow transfers
between video memory and main memory. In the first pass, the surface sample info map
and the sphere info map are used to calculate the shadowed outgoing radiance at the
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5.2 Second Pass GPU Implementation

Figure 5.2.: The computation steps in the first pass. Round boxes correspond to computation steps
and square boxes correspond to textures. For details on the precomputed textures see the
beginning of Section 5.

surface sample points of each sphere. The resulting color values are stored in a texture.
The second step operates on spheres. The result from the first pass and the sphere color
environments texture are used at each sphere to construct an SH vector defined over
the sphere and multiply it with the surface color environment of the sphere using SH
products. The resulting radiance vectors rSi are written to four textures of the same size.
Four corresponding pixels in the textures contain the SH vector for one color component
of the radiance vector rSi . Four textures have to be used, because we can only write to
one pixel in each texture and the SH vector resulting from this step needs 16 floats (when
using n = 4 bands), i.e. 4 pixels. Most modern video cards have enough texture units to
handle these four textures directly in the following steps, but if necessary, we could use
a third step to merge the four textures into a single texture.

5.2. Second Pass

In the second pass, we use the sphere radiance vector maps from the first pass to calculate
the shadowed exit radiance value including diffuse reflections at each receiver point, as
described in Section 4.3.3. Figure 5.3 gives an overview of the steps in the second pass.

First, the vertex info map and the sphere info map are prepared on the CPU, as in [32]. The
vertex info map contains the position, normal and cluster id of each vertex in the scene.
The sphere info map is similar to the sphere info map used in the first pass. Each row
contains a sphere cut for one vertex cluster. For each sphere, center, normal, ratios are
stored. Additionally, a pointer to the sphere radiance vector maps from the first pass is
stored for each sphere Si, i.e. the texture coordinates of the radiance vector rSi of sphere
Si in the radiance vector maps (the texture coordinate is the same for all four textures,
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5.2 Second Pass GPU Implementation

Figure 5.3.: The computation steps in the second pass. Either vertex or pixel shaders can be used to
compute vertex colors.

only one texture coordinate has to be stored per sphere). The cluster id in the vertex info
map is used at each vertex to identify the row in the sphere info map corresponding to
the cluster of the vertex. The spheres in each row of the sphere info map are pre-sorted
by distance from the cluster center using the CPU.

The remainder of the method has been implemented both as vertex and pixel shader.
The pixel shader implementation runs faster, even on modern GPUs like the GeForce
8800. The vertex shader implementation requires one less video memory to video mem-
ory copy, but the implementation runs slower. Also, we do not need a vertex info map
for the vertex shader implementation, because the vertex data is passed to the GPU using
the standard fixed function pipeline. For the pixel shader implementation, we first ren-
der the vertex colors (i.e. the diffuse exit radiance value at each vertex, including diffuse
reflections and soft shadows) to the frame buffer, one pixel for each vertex color. Then
we read the result to a vertex buffer using the OpenGL function glReadPixels, as de-
scribed in [32]. The vertex colors in the buffer are then used in a standard render pass
without lighting to render the final image.

The shaders used for both implementations are largely identical: On the GPU, the
sphere cut for a vertex is found by using the row in the sphere info map corresponding to
the cluster id of the vertex. The pre-sorted spheres in the cut are now sorted by distance
from the vertex. The list of spheres is already nearly sorted, so a simple insertion sort
performs well. The sorted sphere information is stored in temporary registers so we do
not need to do texture lookups when accessing sphere information. As of this writing, the
GeForce 8800 has by far the most temporary registers 1, although we assume that future

1The GeForce 8800 has 4096 temporary registers, followed by the Radeon X1 series with 128 temporary
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5.2 Second Pass GPU Implementation

hardware will have a number of temporary registers at least comparable to the GeForce
8800. The sorted spheres and the sphere radiance vector maps are then used to calculate
the shadowed exit radiance including diffuse reflections as described in sections 4.2 and
4.3. For the SH exponentiation in equation 4.7, either the optimal linear approximation
or the hybrid method is used (see Section 3.1.4 for more details on these methods). Both
variants were tested and the results are described in the next chapter.

registers.
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6. Results

The method for soft shadows and diffuse reflections described in the last chapters achieves
framerates of over 20 fps in dynamic scenes by approximating the relatively expensive
calculations for soft shadows and diffuse reflections on the actual geometry with cheaper
calculations on simple primitives. It can be thought of as a per-sphere ambient occlusion
technique, since a single visibility value is calculated for each sphere which is then multi-
plied with the average diffuse radiance from the sphere. Thus, this method is more exact
than pure ambient occlusion, but less exact than pure precomputed radiance transfer, as
described in [36]. In the following, we will describe sources of approximation error in
this method.

First, as pointed out by Ren et al. [32], SH products only approximate the product
of their reconstructed functions. Thus, when multiplying blockers for soft shadows or
when calculating the sphere visibility values for diffuse reflections, the result will con-
tain approximation error. This results in somewhat darker shadows and darker diffuse
reflections. Ren et al. identified the approximation with SH products as the largest source
of approximation error in the soft shadows method.

Second, the blocker accumulation in log space introduces approximation error due to
the optimal linear or hybrid approximations of SH exponentiation. As stated by Ren et
al., the approximation error of the hybrid method is typically small when compared to
the approximation error of SH products. When using the optimal linear method however,
it can become noticeable for SH vectors with large magnitude, e.g. if a blocker sphere is
close to a receiver point and fills most of its hemisphere (see Figure 6). Later in this
chapter, we will compare the performance of the hybrid and the optimal linear methods
for SH exponentiation.

Third, the sphere set approximation causes approximation error. How well the sphere
set approximates soft shadows and diffuse reflections depends on the number of spheres
used. For diffuse reflections, the number of SH bands for the sphere radiance vectors is
also important, because it determines how much surface detail a single sphere can ap-
proximate. Apart from the resolution of the sphere set, the precomputed occlusions for
intersecting spheres also cause approximation error. These occlusions would normally
be view-dependent, but in precomputation, we include the occlusions in the color envi-
ronment, making them less dependent on the viewpoint. The result is a brightening of
diffuse reflections for some configurations of intersecting spheres (see Figure 6.2). In our
tests, approximation of diffuse reflections in the sphere sets and the precomputation of
occlusions for intersecting spheres were the largest sources of approximation error. The
former can be alleviated by increasing the number of spheres in a sphere set approxima-
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Figure 6.1.: Comparision of the optimal linear and the hybrid method for SH exponentiation. The
images show a closeup of the scene depicted on the left. The left closeup was rendered
using the optimal linear method, the right closeup using the hybrid method. The left
closeup is slightly too bright, due to the approximation error of the optimal linear
method. The rightmost figure shows the difference between the two closeups (the
color values were multiplied by a value of 10 to enhance visibility).

tion at the cost of speed. This is a decision of quality versus performance. The latter could
be solved by calculating the visibility of intersecting spheres at run-time. This could pos-
sibly be done by precomputing the visibility for possible configurations of intersecting
spheres, but this is left for future work (see Section 7).

precomputed occlusion
for yellow sphere

precomputed occlusion
for blue sphere

Figure 6.2.: Approximation error due to precomputed occlusions of intersecting spheres. The left images
shows a setup without approximation error. Both spheres have correct visibility. In the right
image, too little of the blue sphere is occluded, resulting in diffuse reflections that are too
bright.

In our current implementation, the performance of the algorithm depends quadrati-
cally on the number n of spheres in the sceneO(n

2

2 ), since every sphere has to be occluded
by every sphere closer to the receiver point. This could be reduced to O(mn), where m
is the average number of intersections per sphere, if results were re-used during the cal-
culation of the sphere visibility value, i.e. large parts of equation 4.32 are identical for
different spheres at the same receiver point and could be calculated only once. The dif-
ficulty in re-using results is that only parts of the results from intersecting spheres can
be re-used. Finding efficient ways to store and re-use such results on the GPU is left for
future work.
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Performance tests were done on a PC with an Athlon 64 X2 4200+ processor, 1024 MB
ram and a GeForce 8800 GTX. Frames were rendered at a resolution of 800 × 600 using
OpenGL.

The method was tested on three scenes. In each scene, vertices were clustered in a
precomputation step and a sphere hierarchy is used for each object causing soft shadows
and diffuse reflections (i.e. all objects except the ground box). Soft shadows are always
calculated using hybrid SH exponentiation. For diffuse reflections, both hybrid and opti-
mal linear SH exponentiation was tested. Ratios are used for both diffuse reflections and
soft shadows (see Section 4.2 and 4.3.3). All scenes are illuminated by the grace cathedral
environment lighting [7]. Both the pixel shader and the vertex shader implementations
were tested for all scenes.

The squirrel scene is an animated sequence where a squirrel model and a few balls slide
down an inclined box. It contains 21k vertices, 14 leaf spheres and 25 vertex clusters. The
duck scene contains three rubber ducks in close proximity on a ground box. It contains
33k vertices, 30 leaf spheres and 40 vertex clusters. The vase scene consists of five vases
on a ground box. It contains 15k vertices, 20 leaf spheres and 35 vertex clusters. All
geometry in the scenes is dynamic. Figure 6.3 shows images from each of the scenes.

The method by Ren et al. for soft shadows achieves real-time frame rates for each
scene. Frame rates for the method by Ren et al. are summed up in the following table:

Pixel Shader Vertex Shader

squirrel & balls 102 fps 287 fps

ducks 57 fps 107 fps

vases 95 fps 215 fps

The vertex shader implementation outperforms the pixel shader implementation, since
one less video memory to video memory copy is needed.

The measured frame rates using the new method for soft shadows and diffuse reflec-
tions remain relatively constant in each scene and are summed up in the following table:

Pixel Shader Vertex Shader

ol hyb ol hyb

squirrel & balls 29 fps 21 fps 17 fps 10 fps

ducks 9 fps 7 fps 5 fps 3 fps

vases 25 fps 21 fps 20 fps 14 fps

The “hyb“ column was measured with hybrid SH exponentiation and the “ol“ column
with optimal linear SH exponentiation. The pixel shader implementation consistently
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outperforms the vertex shader implementation, even though one less video memory to
video memory copy is needed for the vertex shader implementation. When using hy-
brid SH exponentiation in the pixel shader, the performance only drops by 20% − 30%
compared to the optimal linear method. In the vertex shader, the hybrid method makes
performance drop by 30%−40%. We achieve interactive performance for the ducks scene
and relatively smooth framerates of over 20 fps for the squirrel scene and the vase scene
using the pixel shader for both optimal linear and hybrid SH exponentiation.
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ducks scene (33k vertices, 30 leaf spheres and 40 vertex clusters)

vases scene (15k vertices, 20 leaf spheres and 35 vertex clusters)

animated squirrel scene (21k vertices, 14 leaf spheres and 25 vertex clusters)

Figure 6.3.: Images from the test scenes. The left column was rendered with soft shadows only, using
the method of Ren et al. [32]. The right column was rendered with one bounce of diffuse
reflections using the new method. All objects are dynamic.
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7. Conclusion

Precomputed radiance transfer provides a method for rendering realistic images in real-
time. Until recently, it has been limited to static scenes, but in the past two or three years,
methods for dynamic scenes have been developed, although all of them still have some
limitations that make their implementation in general dynamic real-time applications like
games difficult. In this thesis, we have tried to contribute to the development of dynamic
PRT by presenting a method for approximative diffuse reflections and soft shadows in
dynamic scenes, based on the method by Ren et al. [32]. We achieve framreates of over 20
fps for moderately complex geometry and relatively simple sphere approximations and
interactive rates for more complex sphere approximations. This performance is achieved
by approximating all geometry in the scene with simple primitives and calculating soft
shadows and diffuse reflections using only this less complex approximation. We have
described how the diffuse reflections of an object can be approximated in a sphere set
and how these approximated diffuse reflections can be used at each receiver point.

This method can be extended in several ways. First, we could handle sphere inter-
sections at run-time, e.g. by tabulating the sphere visibility functions for all possible
configurations of the intersection of two spheres. Intersections of multiple sphere could
be handled by multiplying the visibility functions of the appropriate two-sphere inter-
sections. Handling sphere intersections at run-time would avoid approximation errors
caused by the precomputation of occlusions for those intersections.

Also, our method does currently not handle object deformations. To handle these,
we would have to change the surface color environment at run-time, possibly by using
sample points on an object’s surface.

The quadratic dependency of the current implementation on the number of spheres
could be made linear if results of the sphere visibility computations at a receiver point
could be re-used, as described in Chapter 6.

Currently, our method only simulates one light bounce for diffuse reflections. To ex-
tend the method to handle multiple light bounces, we would only need to adjust the way
the radiance at the sphere sample points is computed to include diffuse reflections, i.e.
use the same algorithm for sphere sample points and receiver points.
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A. Formulas for the SH Basis Functions

The spherical harmonics basis functions can be obtained by adapting the 1D associated
Lengendre polynomials to the 2D surface of a sphere. Most of the following code and
formulas have been adapted from [10].

The associated Legendre polynomials are real-valued functions defined over the range
[−1, 1]. Like the spherical harmonics basis functions, they have band index l and position
inside the band m which is in the range [0, l]. The associated Legendre polynomials are
orthogonal with respect to a constant for a fixed l (i.e. inside a band) and orthogonal with
a different constant for a fixed m (i.e. between bands).
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Figure A.1.: The associated Legendre polynomials up to band 2.

The polynomials can be constructed from the following three recurrence relations, build-
ing polynomials in higher bands from lower-band polynomials:

(l −m)Pml (x) = x(2l − 1)Pml−1(x)− (l +m− 1)Pml−2(x) (A.1)

Pmm (x) = −1m(2m− 1)!!(1− x2)
m
2 (A.2)

Pmm+1(x) = x(2m+ 1)Pmm (x) (A.3)

In [30], Press et al. describe a strategy to efficiently build higher-order polynomials using
these relations. Equation A.2 is a good starting point, since it does not build on lower-
order polynomials. It just requires one application for any Pmm and therefore introduces
less roundoff error than iterating any of the relations to get to Pmm . For the remaining
polynomials with m < l, the other two relations A.1 and A.3 have to be used. A.1 is
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Formulas for the SH Basis Functions

preferable over A.3 since it introduces less roundoff error. Starting at the Pmm with highest
possiblem, we have to apply A.3 once and then iterate A.1 until reaching the desired Pml .
This algorithm is summed up in the following C code:

double P(int l, int m, double x)
{

// calculate P_m^m (second recurrence relation)
double pmm = 1.0;
if(m>0) {

double somx2 = sqrt((1.0-x)*(1.0+x));
double fact = 1.0;
for(int i=1; i<=m; i++) {
pmm *= (-fact) * somx2;
fact += 2.0;

}
}
if(l==m) return pmm;

// calculate P_{m+1}^m (third recurrence relation)
double pmmp1 = x * (2.0*m+1.0) * pmm;
if(l==m+1) return pmmp1;

// iterate the first recurrence relation until reaching P_l^m
double pll = 0.0;
for(int ll=m+2; ll<=l; ++ll) {

pll = ( (2.0*ll-1.0)*x*pmmp1-(ll+m-1.0)*pmm ) / (ll-m);
pmm = pmmp1;
pmmp1 = pll;

}
return pll;

}

Adapting the associated Legendre Polynomials to the 2D surface of a sphere using trigono-
metric functions gives the spherical harmonics basis functions. In general, the spherical
harmonics basis functions are defined on imaginary numbers:

Y m
l (θ, ϕ) = Nm

l emiϕ Pml (cos θ) (A.4)

where Nm
l is a normalization constant:

Nm
l =

√
2l + 1

4π
(l −m)!
(l +m)!

(A.5)
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However, we are only interested in real-valued functions. Spherical harmonics for real
functions are defined as follows:

yml (θ, ϕ) =


√

2Nm
l cos(mϕ)Pml (cos θ) if m > 0

√
2Nm

l sin(−mϕ)P−ml (cos θ) if m > 0

N0
l P

0
l (cos θ) if m = 0.

(A.6)

where m is in the range [−l, l]. The following C code calculates values for the spherical
harmonics basis functions using the transformations on the associated legendre polyno-
mials described above:

double N(int l, int m)
{

return sqrt( ((2.0*l+1.0)*factorial(l-m)) /
(4.0*PI*factorial(l+m)) );

}

double SH(int l, int m, double theta, double phi)
{

const double sqrt2 = sqrt(2.0);
if(m==0) return N(l,0)*P(l,m,cos(theta));
else if(m>0) return sqrt2*N(l,m)*cos(m*phi)*P(l,m,cos(theta));
else return sqrt2*N(l,-m)*sin(-m*phi)*P(l,-m,cos(theta));

}
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