
Dissertation

Practical CG Resarch, Game Development
and the European Union GameTools Project

ausgeführt
zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften

unter der Leitung von
Univ.Prof. Dipl.-Ing. Dr.techn. Werner Purgathofer,
Institut 186 für Computergraphik und Algorithmen,

und unter Mitwirkung von
Univ.-Ass. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

eingereicht
an der Technischen Universität Wien,

Fakultät für Technische Naturwissenschaften und Informatik,

von
Dipl.-Ing. Markus Giegl,

Matrikelnummer 8725379,
Dampfschiffstraße 14/11,
A-1030 Wien, Österreich,

geboren am 21. September 1968 in Wien.

Wien, im Mai 2007.

Markus Giegl (PhD Thesis)

Practical CG Resarch, Game Development
and the European Union GameTools Project

GAMETOOLS

geometry - visibility - illumination

www.cg.tuwien.ac.at/research/vr/mg, www.gametools.org
giegl@cg.tuwien.ac.at, giegl@arscreat.com

Reviewer
Werner Purgathofer

László Szirmay-Kalos
Michael Wimmer

Abstract

Computer graphics today plays an important role in 3D computer and video
game creation, since all the images which are presented to the player are
based on principles and algorithms devised from computer graphics research.

One important aspect with regards to the believability and consecutively im-
mersion of players within game worlds are shadows. Creating high–quality dy-
namic shadows in real-time is still a very open field of research. One real-time
shadowing approach that is very appealing due to its apparent elegant simplic-
ity is shadow mapping. The term “apparent” is used deliberately here, since
the elegance of shadow mapping comes at a price, namely the discretization
of the first-hit visibility problem to a grid storing occluder depth information with
regards to the light source. In practice this often leads to shadowing artifacts,
due to too little information being available to answer the visibility query with
enough accuracy. In this thesis, a new family of shadow mapping algorithms
is presented, which address the problem of the shadow map not containing
enough information, This is done without requiring a shadow map grid too
large to be stored in memory and which cannot be filled with depth informa-
tion in real time. Based on a basic brute-force approach, two smart algorithms
are presented, which work in a manner adaptive to the resolution requirements
of the scene, speeding up the process by at least an order of magnitude.

Another problem with relevance to the practical application of computer graph-
ics to games is how to render a large number of objects fast enough to give the
player a high level of responsiveness (and thereby, again, immersion). Noticing
that due to perspective shortening objects farther away from the player do not
need as much detail as objects which are nearer, computer graphics has come
up with the concept of level of detail (LOD), where farther away objects use
simpler representations; if done correctly, this leads to a large increase in ren-
dering speed. While LOD has been studied extensively in computer graphics,
one problem of the LOD technique dominating practical application, discrete
LOD, has been largely ignored: In discrete LOD the simpler representations
of an object are, as the name implies, discrete, i.e. they exist independently
of each other. Switching between representations of different complexity by
simply switching the representation in use leads to a disruptive discontinuity in
player perception. This thesis presents a practical algorithm, that addresses
this problem.

Linked to this research in the computer graphics fields of shadows and level
of detail, is the case study of the GameTools Project, a Europe-wide project,
funded by the European Union, which had as its agenda to bring the results

i

of current computer graphics research done within the project to European
game developing companies and companies from neighboring fields. The au-
thor holds the position of Community Manager within the GameTools Project,
and presents an overview over the project and a more detailed view of his work
as Community Manager.

ii

Kurzfassung

iii

iv

Acknowledgements

Thanks go out to the following people:

My wife, Gabriele Giegl (aka Gab - as in “mind the. . . ”), for putting up with
the stress of me juggling the two jobs of GameTools Community Manager and
computer graphics researcher.

Werner Purgathofer (aka A-Man) for agreeing to let me do my two jobs from
home without any problems.

Michael Wimmer (aka Reverso), for his knowledge of and people in the CG
field.

László Szirmay-Kalos, for agreeing to review this thesis.

Oliver Mattausch (aka CanDo Man), for many interesting and entertaining dis-
cussions, about life, the universe and everything.

Attila Neumann (aka Mr Brain), for many entertaining questions during institute
Konversatorium.

Alexander Wilkie (aka TG) - for agreeing to differ.

The institute secretaries, Anita Mayerhofer (aka Anitator) and Andrea Fübi, for
always being friendly and reliable.

The institute technicians (in alphabetical order), Alexander Piskernik, Stephan
Plepelits and Andreas Weiner, for keeping the system functioning within speci-
fied parameters.

And finally my son, Raffel Adrian Salvador Ismael Gabriel Vincent-Emmanuel
Immanuel Manuel Giegl (aka Bubu) - for just being there :-)

This research was supported by the EU in the scope of the
European Union GameTools Project

(www.gametools.org)
(IST-2-004363)

v

Contents

Abstract i

Kurzfassung iii

Acknowledgements v

1 Introduction 1
1.1 In the beginning . 1
1.2 Publications about this work . 1

2 Shadowing 3
2.1 Introduction . 3
2.2 Abbreviations . 3
2.3 Shadowing Techniques . 3
2.4 Shadowing in this Thesis . 6
2.5 Shadow Algorithms . 6

2.5.1 Planar Shadows . 6
2.5.2 Projected Shadows . 8
2.5.3 Blob Shadows . 10
2.5.4 Lightmaps . 10
2.5.5 Shadow Volumes . 11
2.5.6 Shadow Maps . 13
2.5.7 PRT and Spherical Harmonics Lighting 14
2.5.8 Beyond Spherical Harmonics 15
2.5.9 Further Reading . 17

2.6 A Closer Look at Shadow Mapping 17
2.6.1 The Shadow Map Aliasing Problem 18
2.6.2 The Shadow Map Biasing Problem 20

2.7 Previous Work about Shadow Mapping 20

3 Virtual Shadow Maps 23

vi

3.1 Introduction . 23
3.2 Abbreviations . 24
3.3 Virtual Tiled Shadow Mapping . 24

3.3.1 Creating the Shadow Map Tiles 25
3.3.2 Multi-Pass Shadowing . 25
3.3.3 Deferred Shadowing . 26

3.4 Shadow Result Texture . 29
3.5 Combination with Shadow Map Filtering 30
3.6 Problems with Brute Force Refinement 30
3.7 Conclusion . 30

4 Queried Virtual Shadow Maps 32
4.1 Introduction . 32
4.2 Abbreviations . 33
4.3 Queried Virtual Shadow Mapping 34

4.3.1 Smart Refinement Preferred 34
4.3.2 Queried Refinement: GPU Friendly & Smart 35

4.4 Jump Optimizations . 36
4.4.1 Maximum Refinement Jump 36
4.4.2 Opportunity Jump . 37

4.5 Results . 38
4.5.1 Extensions and Optimizations 42

4.6 Hardware Extensions for Better GPU to CPU Feedback 44
4.7 Conclusion . 44
4.8 QVSM Core Algorithm . 48

5 Fitted Virtual Shadow Maps 51
5.1 Introduction . 51
5.2 Abbreviations . 52
5.3 Fitted Virtual Shadow Mapping 52
5.4 Eye-Space Depth Buffer . 54
5.5 Shadow Map Tile Mapping Map - Motivation 54
5.6 Shadow Map Tile Mapping Map - Technical Details 57
5.7 Shadow Map Tile Grid Creation 58
5.8 Shadow Map Tile Grid Pyramid Creation 60
5.9 Shadow Map Tile Grid Pyramid Traversal 61
5.10 Apply Shadow to Scene . 62
5.11 Quality vs Performance Parameter 62
5.12 Shadow Map Tile Texture Size Optimization 63
5.13 Handling Semitransparent Objects 64

vii

5.14 Results . 65
5.15 Conclusion . 69
5.16 Influence of ξ . 70
5.17 SMTMM Creation Pixel Shader 73

6 Discrete LODs 75
6.1 Introduction . 75
6.2 LOD Switching . 76

6.2.1 Hard Switching . 76
6.2.2 Late Switching . 76
6.2.3 LOD Blending in Image Space 77
6.2.4 Geomorphing . 78

6.3 Popping Examples in Current Games 78

7 Unpopping 86
7.1 Introduction . 86
7.2 A New Method for LOD blending 87
7.3 Discussion . 88

7.3.1 Silhouette Mismatch . 88
7.3.2 Depth Discontinuity . 89
7.3.3 z-Fighting . 89

7.4 Practical Application . 89
7.4.1 Transition Time . 89
7.4.2 Animated LODs . 90
7.4.3 Combination with Geomorphing 90

7.5 Blending Different Objects . 90
7.6 Electronic Material . 90
7.7 Conclusion . 91
7.8 Unpopping Screenshots . 91

8 The European Union GameTools Project 95
8.1 Introduction . 95
8.2 Abbreviations . 96
8.3 The European Union GameTools Project 96

8.3.1 3D API . 98
8.3.2 3D Engine(s) . 99

8.4 GTP Research Areas . 100
8.4.1 Visibility (WP3) . 100
8.4.2 Geometry and Plants (WP4) 101
8.4.3 Global Illumination and Effects (WP5) 101

8.5 GTP Special Interest Group . 102

viii

8.5.1 SIG Membership Agreement 102
8.5.2 GameTools Evaluation License ? 104
8.5.3 GTP SIG Questionnaires 105
8.5.4 SIG Members . 105
8.5.5 GTP Software Repository 111

8.6 GTP Support Forum . 114
8.7 GTP Advertising . 114

8.7.1 GTP logo . 114
8.7.2 GTP webpage . 116
8.7.3 Game Developer Conference Europe 2005 117
8.7.4 GTP Demo Games . 118
8.7.5 Eurographics 2006 . 119
8.7.6 gamasutra.com et al . 119
8.7.7 Resfest 2006 . 120
8.7.8 GTP Game Developer Magazine Ad 120

8.8 GTP Demo Games . 121
8.8.1 Jungle Rumble . 121
8.8.2 Have U Seen My Shadow 121
8.8.3 Penta-G . 122

8.9 Why GTP Technology is Not Free 124
8.9.1 Free as in No Cost ? . 124
8.9.2 Public Domain Libraries 124
8.9.3 Commercial vs Open Source 125
8.9.4 Graphics Libraries . 127
8.9.5 The GameTools Libraries 127
8.9.6 Future Costs . 129
8.9.7 Conclusion: GTP Technology is Not Free 129

8.10 Taking Stock: An Early Postmortem 129

9 Game Development and the Game Industry 146

10 Why Buying a Computer Game is Not Like Going to the Movies 147
10.1 Recognizing Creative Minds . 147
10.2 Communication . 148
10.3 Pricing . 148
10.4 Social Activity . 149
10.5 Ease of Picking a Good One . 149
10.6 Fun at Picking a Bad One . 149
10.7 Time Investment . 149
10.8 Language Barrier . 150

ix

10.9 Controls . 150
10.10Bugfixes . 150
10.11Bootlegging . 150
10.12How to Improve the Situation . 151

11 The Quality Frontier in 3D Games 152

12 Why Computer Games are Seldom Art 154

Bibliography 157

Curriculum vitae 163

x

List of Figures

2.1 Shadow Mapping . 17

2.2 Visualization of projection and perspective aliasing. 19

3.1 VSM: Virtual Tiled Shadow Mapping 27

3.2 VTSM: Multi-pass vs Deferred Shadow Mapping 28

4.1 QVSM: Comparison with Conventional Shadow Mapping 32

4.2 QVSM: Forest Test Scene . 33

4.3 QVSM: Comparison with Conventional Shadow Mapping 35

4.4 QVSM: Projection Aliasing . 37

4.5 QVSM: Quality & Performance Comparison 38

4.6 QVSM: Performance Comparison along Path with VTSM 39

4.7 QVSM: Threshold Parameter ηmin 39

4.8 QVSM: Performance Gain from Jump Optimizations 40

4.9 QVSM: Quality Comparison in Forest Test Scene 46

4.10 QVSM: Projection Aliasing . 47

5.1 FVSM: Comparison with Conventional Shadow Mapping 51

5.2 FVSM Quality in Winter Forest 53

5.3 FVSM: SMTMM Creation . 55

5.4 FVSM: Performance Comparison with VSM 66

5.5 FVSM: Tile Creation Modes Comparison 66

5.6 FVSM: Screen Space Rect Optimization 67

5.7 FVSM: Influence of ξ . 70

6.1 LOD: Popping in Far Cry . 80

6.2 LOD: Popping in Far Cry . 81

6.3 LOD: Popping in F.E.A.R. 82

6.4 LOD: Popping in F.E.A.R. 83

6.5 LOD: Popping in Half-Life 2 . 84

6.6 LOD: Popping in Half-Life 2 . 85

xi

7.1 Unpopping: Transition between two LODs 87
7.2 Unpopping: Render State Settings during LOD Blend 88
7.3 Unpopping: Palm Tree - Popping 92
7.4 Unpopping: Palm Tree - Unpopping 93

8.2 GTP: Logo . 97
8.3 GTP: Consortium Members . 98
8.4 GTP: Old and New Logo . 115
8.5 GTP: Proto Logos . 116
8.6 GTP: CM Business Card . 116
8.7 GTP: Webpage - Start Page . 130
8.8 GTP: Webpage - News Section 131
8.9 GTP: Webpage - Videos/Demos Section 131
8.10 GTP: Game Developer Ad . 132
8.11 GTP: Jungle Rumble . 133
8.12 GTP: Have U Seen My Shadow 134
8.13 GTP: Penta-G . 135
8.14 GTP: Software Repository Scheme 136
8.15 GTP: Support Forum . 137
8.16 GTP: Free Web Advertising . 138
8.17 GTP: in profil 12/2005 . 140
8.18 GTP: GmG Webpage . 140
8.19 GTP: GmG Game Voucher . 141
8.20 GTP: Resfest Poster . 141
8.21 GTP: SIG Membership Agreement 142

xii

Chapter 1

Introduction

1.1 In the beginning

God created the heaven and the earth. And the earth was without form, and
void; and darkness was upon the face of the deep. . . . And God said, Let there
be light: and there was light. And God saw the light, that it was good: and God
divided the light from the darkness.([MosBC],[OAS+11],[PC97])

This thesis also deals with light and the absence of it, when an object block-
ing its path brings a quick end to the journey of the light ray, giving rise to
shadow. It deals with the light that shines in the eye of the computer graphic
professional, when he can render more objects, with the same speed and
nearly the same quality. It also deals with the light that playing brings to peo-
ples hearts, by touching several, sometimes dark, topics from the realm of
computer/videogame-development and -design. And last but not least, it is
also about the European Union GameTools Project, the endeavor of carrying
the torch of scientific knowledge into the alleged dark realm of the game devel-
oper.

1.2 Publications about this work

The author of this thesis has previously published results about it in the follow-
ing venues:

• The Queried Virtual Shadow Maps algorithm was published at the I3D
conference on 3D Graphics and Games in Seattle, WA: Markus Giegl
and Michael Wimmer. Queried virtual shadow maps. In Proceedings

1

Chapter 1 Introduction

of the 2007 Symposium on Interactive 3D Graphics and Games. ACM
Press, 2007 ([GW07b]).

• A more practically oriented version of the paper was published in the
5th installment of the excellent ShaderX book series: Markus Giegl and
Michael Wimmer. Queried virtual shadow maps. In ShaderX 5 - Ad-
vanced Rendering Techniques, pages 249-262. Charles River Media,
2007 ([GW07c]).

• The Fitted Virtual Shadow Maps algorithm was published at the Graph-
ics Interface conference held in Montreal, Canada: Markus Giegl and
Michael Wimmer. Fitted virtual shadow maps. In Proceedings of Graph-
ics Interface. CIPS, Canadian Human-Computer Communication Society,
A K Peters, 2007 ([GW07a]).

• The Unpopping image space LOD blending technique was published in
CGF in 2007: Markus Giegl and Michael Wimmer. Unpopping: Solving
the Image-Space Blend Problem for Smooth Discrete LOD Transitions
Computer Graphics Forum 26 (1), pages 46-49, March 2007 ([GW07d]).

• An early draft of the basic Unpopping algorithm appeared in the 2nd edi-
tion of one of the standard works on 3D computer graphics, “Real-Time
Rendering” by Tomas Möller and Eric Haines: Tomas Akenine Möller, Eric
Haines. 2002. Real-Time Rendering, Second Edition, pages 391f. A. K.
Peters Limited ([MH02]).

The author has furthermore participated in another related research topic, LOD
with Near- and Farfield rendering:

• Michael Wimmer, Markus Giegl, and Dieter Schmalstieg. Fast walk-
throughs with image caches and ray casting. In Michael Gervautz, Di-
eter Schmalstieg, and Axel Hildebrand, editors, Virtual Environments 99.
Proceedings of the 5th Eurographics Workshop on Virtual Environments,
pages 7384. Eurographics, Springer-Verlag Wien, June 1999. ISBN 3-
211-83347-1 ([WGS99a]).

• Michael Wimmer, Markus Giegl, and Dieter Schmalstieg. Fast walk-
throughs with image caches and ray casting. Computers and Graphics,
23(6):831838, December 1999. ISSN 0097-8493 ([WGS99b]).

2

Chapter 2

Shadowing

2.1 Introduction

A major part of this thesis deals with creating higher quality shadows in real-
time through shadow mapping. This chapter first gives a brief introduction into
the problem of shadowing a scene and techniques to do so. It then introduces
shadow mapping in more detail, and finishes with a closer look at research in
the field shadow mapping. Shadow mapping research is also the main focus
of the following chapters, where a new family of shadow mapping algorithms
to greatly increase the quality of shadows independent of the view direction is
presented.

2.2 Abbreviations

The following abbreviations are used in this chapter:

Abbreviation Meaning

SM Shadow Map
SMing Shadow Mapping

2.3 Shadowing Techniques

Shadows play an important role in (real-time) computer generated images.
Apart from applications e.g. in architecture, where one explicitly wants to sim-

3

Chapter 2 Shadowing

ulate the lighting (and therefore also shadowing) of a scene, shadows are of
general importance because they:

1. Convey spatial information to the viewer, allowing him to judge e.g. how
far above a surface an object is; i.e. it puts objects in relation to one
another in space. 1

2. Increase the realism of a scene by a large amount.2.

3. Greatly influence the mood of a scene. Unshadowed scenes are usually
perceived as being sterile and bland.

Shadowing is the problem of deducing which parts of the scene receive light
from a light source, i.e. it is linked strongly to visibility within the scene. A first-
order approximation of this problem is the problem of deducing which parts of
the scene are visible from a light source, i.e. reducing it to visibility within the
scene as seen from the light source; the parts of the scene, which cannot be
seen from a light source are then considered to be in shadow. This approxima-
tion is called “first hit shadowing” or “direct shadowing”, since it does not follow
the rays from the light source3 any further into the scene, but stops at the first
surface a ray hits.

This is obviously an approximation, since in reality light is remitted from sur-
faces, in many cases to a large part within the visible spectrum 4.

This first order approximation of shadowing can also be seen as a subprob-
lem of a general physical lighting simulation where shadows are not treated
explicitly, but are a natural result of the general simulation of the behavior of
light.

Techniques that follow the light rays emitted from the light source beyond the
first hit surface (i.e. go beyond first hit shadowing) are called global illumination
techniques. Their goal is to calculate a solution to the “rendering equation”,
which describes the complete light transport in the scene, and was introduced
by Kajiya [Kaj86] in 1986.

1For objects whose size is not known to the viewer, this information stemming from shadowing
is even more important than in reality, since the objects which are depicted currently neither are
rendered with enough surface detail to deduce their size, nor do the output devices on which they
are displayed have enough output resolution with regards to the typical viewing distance.

2This is even true for non-photorealistic rendering, such as “toon shaded” rendering (i.e. shad-
ing characters in the style of animated cartoon characters, with a hard shadow boundary)

3Computer graphics uses a ray approximation for the light, which is valid since the objects in
the scene typically have dimensions that are much larger than the wavelength of electromagnetic
light waves in the visible spectrum, therefore diffraction effects can be ignored.

4which is what rendering usually concerns itself with, contrary to e.g. emission in the infrared
part of the electromagnetic spectrum.

4

Shadowing Chapter 2

One global illumination technique is Radiosity [GTGB84]. Radiosity restricts all
surfaces to be perfect diffuse reflectors5; this leads to a lighting solution which
does not depend on the position of the viewer, i.e. which is static for static
light sources and a static scene geometry. Radiosity is therefore often used to
precalculate static global illumination solutions for eletronic games (see 2.5.4
below).

Basic ray tracing is another approach to approximate a solution to the rendering
equation. Basic ray tracing restricts the scene to only contain perfectly reflec-
tive and refractive objects. It then follows a ray in object space from the eye-
point through each screen pixel into the scene, recursively reflecting/refracting
the ray when it hits a surface, until it either hits a light source, or a maximum
recursion depth is reached.

If ray tracing stops at the first intersection with a scene surface, and from there
only checks if a ray6 from the intersection point at the surface to the light
source intersects scene geometry7, to discern whether the intersection point
(i.e. screen pixel) lies in shadow or not, ray tracing can also be used as a
shadowing technique8.

Stochastic ray tracing ([Kaj86]) can be used to calculate a full solution to the
rendering equation which converges statistically. This field is mathematically
complex due to its stochastic nature, since care must be taken that the solution
does in fact converge. Stochastic ray tracing does not require the restrictions
described under radiosity and basic ray tracing above, but can, in principle,
handle any type of surface9 is able to produce physically correct renderings
of an arbitrary scene. The price for this is, that it can easily take hours to
render one frame for a realistically sized frame buffer10. For an overview over
stochastic ray tracing algorithms please see Szirmay-Kalos [SK98].

An advantage of ray tracing is, that it can be parallelized well. Basic ray trac-
ing also has advantages when rendering very large models which do not fit
completely into main memory.

5i.e. the direction into which light is emitted from the surface does not depend on the incoming
light direction.

6“shadow feeler ray”
7i.e. whether the light source can be seen from the intersection point or not.
8although currently this approach is very slow
9depending on how accurately its surface properties can be measured or modeled

mathematically
10e.g. 1024×512 pixels

5

Chapter 2 Shadowing

2.4 Shadowing in this Thesis

In this thesis we treat shadowing as an orthogonal problem to the reflective and
absorptive nature of the the surfaces of a scene, i.e. we are only concerned
with discerning the pixels on the screen which are visible from a light source.

2.5 Shadow Algorithms

The following gives a brief overview over shadowing algorithms for real-time
first hit shadowing, from a game developer’s perspective.

Following the aim of this thesis, it classifies shadowing algorithms not following
strict computer graphics science, but more the way that game developers seek
solutions to the problem of real-time shadowing a scene within the restrictions
of a respective target hardware.

The order of the presented shadowing techniques is roughly from simple to
more complex, corresponding in most cases to a historic ordering with regards
to the first use of the shadowing algorithm.

The following terminology is used: A “shadow receiving surface” is a surface
which lies at least partially in shadow. A “shadow caster” is an object which
blocks light rays, thereby giving rise to shadow receiving surfaces being shad-
owed (in visibility terminology, the shadow caster occludes at least part of the
shadow receiving surface as seen from the light source, or, as visibility is recip-
rocal, vice versa).

2.5.1 Planar Shadows

Planar shadows (Blinn [Bli88]) use the simplifying assumption that all shadow
receiving surfaces can be approximated by a single plane. This shadow receiv-
ing plane is then placed “near” the actual shadow receiving surfaces. Evidently
this approximation works the better, the more often the shadow receiving sur-
faces actually coincide with this shadow receiving plane; This is e.g. the case
for shadows which fall on a flat floor. This type of shadow is mostly suited for
light sources like directional light coming approximately from above, or a point
light source hovering above the shadow caster.

Evidently it is not possible to simulate self-shadowing, the shadowing occurring
when an object shadows parts of itself, with this technique.

6

Shadowing Chapter 2

Planar shadows treat each shadow caster in the scene independently of other
shadow casters.

Planar Geometric Shadows

Planar geometric shadows render the geometry of the shadow caster projected
onto a plane by an additional projection matrix directly in black into the scene.
Due to using black for the shadow, overlaps in the projection which occur for
concave shadow casters do not pose a problem. Semitransparent shadows11

from a concave shadow caster (or overlapping shadows coming from different
shadow casters) will either display incorrect further darkening in regions that
overlap in the projection, or the already shadowed areas have to be protected
e.g. by use of the stencil buffer; since this is a very simple shadow approxima-
tion technique, this effort usually makes no sense in practice, since systems
with graphics cards which support stencil buffers normally are powerful enough
to support better shadowing techniques (see below).

An example of good use of planar geometric shadows is the 1999 first-
person shooter “Kingpin”12. Planar geometric shadows worked well in King-
pin, also due to the relatively planar nature of the levels. The illusion shat-
tered when an opponent would stand above the player on a staircase, and his
shadow would extend from his feet into thin air, showing the shortcomings of
this simple shadow technology.

Planar Texture Shadows

Planar texture shadows ([MH02], pg 253–260) work like planar geometric shad-
ows, with the only difference that the projected geometry is first rendered
opaquely (i.e. with α = 1) into the alpha channel of an initially completely trans-
parent texture (i.e. which has been filled with α = 0), which is then in turn
rendered into the scene as a textured quad, with alpha texturing enabled. The
rendering of the geometry of the shadow caster into the texture is done, as to
make maximal use of the texture resolution, i.e. so that the geometry touches
the sides of the texture.13

11i.e. shadows which are rendered into the scene semitransparently (instead of opaquely black)
to simulate an ambient-light term. In the particular case of planar geometric shadows, the projected
geometry is rendered α-blended with the scene.

12http://en.wikipedia.org/wiki/Kingpin:_Life_of_Crime
13In modern shadow mapping (see Section 2.5.6) terminology, one would say that the rendering

is done “focused” on the shadow caster.

7

Chapter 2 Shadowing

Planar texture shadows have the following advantages over planar geometric
shadows:

1. Semitransparency for a single shadow caster has no overlapping-
concave-parts artifacts, since the shadow caster geometry can be ren-
dered to the texture opaquely, and the textured quad can then be ren-
dered semitransparently into the scene. Overlapping shadows from dif-
ferent shadow casters still pose a problem.

2. For a static relationship between the shadow caster and the light source,
the texture can be cached; for complex geometry this makes the appli-
cation of the shadow to the scene faster, since only one textured quad
needs to be rendered14

3. If the light source is a directional light, the projected textures can be
shared between shadow casters which have the same geometry and ori-
entation in space (e.g. furniture [chairs etc], boxes, columns,. . .).

4. The shadow edges of the shadow can be antialiased by simply redrawing
the projected geometry in antialiased line drawing mode. This gives the
shadow a soft shadowy look.

5. The shadow texture can be blurred in image space, again to give the
impression of a soft shadow.

2.5.2 Projected Shadows

Projected shadows ([AWG78]) are the older brother of planar shadows, in that
they do not need the assumption of only a single shadow receiving plane, but
instead actually render a projection of the shadow caster onto the shadow re-
ceiving surfaces.

Projected Geometric Shadows

Projected geometric shadows render the geometric projection of the shadow
caster onto every shadow receiving surface; for this the projected geometry
evidently needs to be clipped to each receiving surface.

Projected geometric shadows have very little practical application, since they
have an overall complexity that is the product of the geometric complexity of

14What can potentially slow this method down is the need for texture switches, so for simple
geometry, planar geometric shadows can be faster.

8

Shadowing Chapter 2

the shadow caster and the shadow receivers15. In addition, they also share the
problem of concave shadow casters and overlapping shadows from different
shadow casters described under projected planar shadows above.

Projected Texture Shadows

Projected texture shadows ([SKvW+92a]) again treat each shadow caster in
the scene independently of other shadow casters. The first step in the algo-
rithm is the same as for planar texture shadows above: The projected shadow
caster geometry is rendered opaquely into a texture, only this time the texture
is oriented to be orthogonal to the light direction16. Then each shadow receiv-
ing surface is rendered again, textured with this projected shadow texture, with
a texture matrix which projects the texture onto the surface as if the projected
shadow texture was a cutout which was illuminated from behind by the light
source.

This effectively decouples the geometric complexities of the shadow caster and
shadow receivers, leading to a practical algorithm, which shares all the advan-
tages of planar texture shadows (see above) but can create shadows on any
kind of shadow receiving surface.

One problem of projected texture shadows is where the light frustum (which is
needed to discern which surfaces are in fact shadow receiving surfaces) shall
start: If the plane is set too far before the shadow caster (as seen from the light),
then surfaces which are not in shadow can be involuntarily be shadowed; if it
is too far behind the shadow caster, then surfaces which lie in the shadow will
not be shadowed.

Although this does not necessarily pose as big a problem in practice as might
seem, it is impossible to find a general solution to it, without adding depth infor-
mation to the projected texture, effectively arriving at the shadowing technique
of shadow maps, described below.

Evidently projected texture shadows can again not supply self-shadowing.

Projected shadows can also be used together with point lights and spot lights.
But note that for these types of light sources the size of the projection on a
shadow receiving surface becomes the larger the more the distance of the
shadow caster to the light source is smaller than the distance to the shadow

15. . . thereby revealing the full geometric complexity of the shadowing problem. A large part of
shadowing research deals with reducing the complexity of this problem.

16The extent of the shadow caster in light space can e.g. be calculated by projecting the bound-
ing box around the shadow caster onto a plane which is orthogonal to the light direction.

9

Chapter 2 Shadowing

receiving surface. When using these light source types together with projected
texture shadows one can therefore in practice run into undersampling artifacts,
i.e. too little available texture resolution, and therefore the texels of the texture
become visible on the shadow receiving surfaces. This is the price one pays for
having decoupled the complexity of shadow casters and shadow receivers by
discretizing the shadow caster to a texture; see also “shadow mapping” below,
where the same problem occurs, and where this thesis presents algorithms to
remove or at least reduce the problem.

2.5.3 Blob Shadows

Blob shadows17 also treat each shadow caster in the scene independently of
other shadow casters, and are the smaller brother of the above techniques:
They can be combined with either planar shadows or projected shadows, and
use the additional simplifying assumption that the silhouette of the projected
shadow can be approximated by a circle or ellipsoid (or similar simple geo-
metric shape). This is equivalent to assuming that the shadow caster can be
approximated with a sphere or other simple geometric form. Since this approx-
imation is very crude, it is usually only used in conjunction with the assumption
that the shadow caster has either a light source moving with it and shining on
it directly from above or is lit by a directional light coming from above; the main
purpose of this type of shadow, which has been used extensively in eletronic
games, is to supply spatial information to the viewer, especially with regards to
the distance of the shadow caster to the ground (e.g. when the player avatar
jumps).

2.5.4 Lightmaps

Light mapping18 is a shadowing technology that assigns a distinct texture or
part of a texture19 to each surface in the scene. These textures (“lightmaps”)
are calculated offline to carry static information about the shadowing of each

17Blob shadows are a simple technique, which, to the authors knowledge, has not been men-
tioned in any scientific publication or book, so no reference is given; they are mentioned here,
since, du to their simplicity, they have been used frequently in eletronic games.

18Since in practice the surfaces of the scene are rendered lit, without shadows, and the
“lightmaps” are then actually used to modulate (i.e. darken) their respective surface, “shadow
maps” would in the author’s opinion be a better name, which is, alas, already taken.

19collecting several textures in one larger texture is called a “texture atlas”; usually this is done
for performance reasons, to e.g. reduce the number of texture switches, or to use a GPU-enforced
quadratic texture efficiently.

10

Shadowing Chapter 2

surface, which can then be used during rendering to modulate the resulting
color of other shaders applied to the surface (diffuse color texture etc), giving
the impression of a shadow falling on the surface.

Since calculations are done offline, the lighting simulation used can be arbitrar-
ily complex; the only restriction is that the simulation must treat the surfaces as
diffuse, since otherwise the information in the lightmaps could not be static but
would depend on the position of the observer. Often radiosity ([GTGB84]) is
used to calculate the lighting solution encoded into the lightmap textures, since
it produces very convincing results and is inherently based on the assump-
tion of diffuse surfaces; other, faster methods such as ambient occlusion20,21

([Lan02]) are also used.

Lightmaps have been the backbone of static shadowing in eletronic games
since the time of id Software’s “Quake”22, due to the fact that they are fast,
can be applied efficiently with a fixed function pipeline which supports multi-
texturing and give nice, moody soft shadows. An interesting fact is that in-
creasing the resolution of the lightmap textures does not automatically lead to
better graphics, since very low resolution lightmap textures spread their few
texels (smoothly bilinearly interpolated by the graphics hardware) over a large
area, so that one cannot discern a clear shadow edge. If the area a texel
covers is quite large, an observer will just see a smoothly varying shadow; if,
however the texels become smaller, but not small enough (evidently subpixel
accurate would be ideal), then an observer will start to pick out distinct texels,
and the corresponding jaggy shadow edges, and the perceived visual quality
will actually be reduced.23

2.5.5 Shadow Volumes

Shadow volumes were first introduced in 1977 [Cro77]. They share character-
istics with projected geometric shadows, in that they also project the geometry
of the shadow caster onto the shadow receiving surfaces. To reduce the com-
plexity of this process, they do the projection in view space, with the surfaces

20http://en.wikipedia.org/wiki/Ambient_occlusion
21Due to its better performance, ambient occlusion is a technique that can also be used to

update lightmaps in real-time. Note, however, that ambient occlusion, as the name implies, does
not produce shadows coming from a light source, but gives only a shadowy impression in the
scene, as if it was lit by diffuse light coming from a clouded sky. For dynamically updated global
illumination solutions see also section 2.5.7.

22http://en.wikipedia.org/wiki/Quake
23This is a good example where a seemingly obvious improvement from a technical point of view

actually leads to a decrease in perceived quality.

11

Chapter 2 Shadowing

of the scene already rasterized into the depth buffer.

Shadow volumes require the shadow caster to be polygonal. The shadowing
operation is done by extending the edges of each polygon of a shadow caster’s
surface24 into the frustum formed by shooting rays from the light source25

through the polygon’s vertices, letting the frustum edges start at the polygon
vertices. This frustum (“shadow volume”) evidently then represents the visibility
of the scene with regards to this shadow caster polygon and light source: All
points lying within the frustum are in shadow, all points outside of the frustum
are not.

The shadowing operation in the depth buffer is then based on the following
observation: A point in the scene lies within a shadow volume if a line from
a point outside of the shadow volume to the point intersects more front-facing
shadow volume faces than back-facing ones. Whether this is the case, can
be answered using the scene rasterized into the depth buffer together with
the stencil buffer, as follows: For each shadow volume we first rasterize the
shadow volume faces which are frontfacing relative to the eye-point into the
depth buffer, with depth-compare on and depth-write off. In the stencil buffer,
we increase each pixel’s counter by one if the pixel on the frontfacing shadow
volume surface is visible (i.e. it lies before the nearest pixel in the scene). We
then do the same for all backfacing shadow volume faces, decreasing each
pixel’s counter in the stencil buffer by one if the pixel on the backfacing shadow
volume surface would be visible. After this operation, the stencil buffer contains
0 at a pixel, if that pixel lies within the light, and a number > 0 if he lies within
the shadow.

A complication occurs for shadow volumes who intersect the front-plane of the
view frustum; resolving this can be done by several means, which are beyond
the scope of this thesis, and which can for instance be found in [MH02].

An interesting observation is that in games such as “Doom3”26, which combine
shadow volumes with lightmaps (see above), the smoothly varying nature of
the lightmaps can clash visually with the completely geometric sharpness of
the shadow edges produced by conventional shadow volumes.27

One important restriction of shadow volumes28, as already noted above, is that
24As an optimization it actually suffices to do this operation not for all polygon edges, but only

for the edges along the boundary between shadow caster polygons which are front-/backfacing
relative to the light source, i.e. the silhouette of the shadow caster.

25basic shadow volumes work only with point or directional lights
26http://en.wikipedia.org/wiki/Doom3
27In Doom3 however the relatively low (diffuse surface) texture resolution used clashes even

stronger with the sharp shadow volume edges.
28Another important drawback is, that one easily gets large overdraw, if many shadow volumes

12

Shadowing Chapter 2

they only work with shadow casters which are polygonal objects29. Neither
higher-order surfaces (e.g. NURBS), nor alpha masked objects30 can be used
as shadow casters. Shadow maps (see Section 2.5.6) have no such restric-
tions.

An advantage of shadow volumes is, that, due to the fact that they work in ob-
ject space, they produce alias free shadows, something which poses a problem
for e.g. shadow maps. This thesis presents algorithms to remove or alleviate
this problem when using shadow mapping.

2.5.6 Shadow Maps

Shadow mapping dates back to 1978 [Wil78]. In shadow mapping, the scene
is first rendered into a depth buffer, called the “shadow map”, from the view of
the light. Then, while rasterizing the scene, each pixel is transformed from view
space into light space, and the distance (depth) of the current pixel to the light
is compared with the entry in the shadow map; if the distance is larger than the
shadow map entry, the pixel is shadowed.

Despite its elegance, shadow mapping is still rarely used in eletronic games,
due to the prevalence of disturbing undersampling artifacts (see Section 2.6
below).

A recent game to use shadow maps for dynamic shadowing (together with, the
author assumes, lightmaps for static shadows) is the role-playing game “Gothic
3”31. However, even though the shadow map is not used to shadow the whole
scene (giving rise to another type of rather unattractive artifacts where the
shadow is simply clipped by a plane at a certain distance), undersampling ar-
tifacts become visible, especially when moving the camera closer to the player
avatar.

Alhough shadow maps, contrary to projected texture shadows, are usually cre-
ated for the whole scene, there is nothing prohibiting one to create them on a
per-object basis (i.e. focused32 on an object instead of the whole scene), to
e.g. get better shadow resolution (reduced undersampling artifacts) for shad-
ows cast by important objects. The next-generation game engine Unreal 333,

overlap in screen space. For a complete list see again [MH02].
29For the optimization that, instead of extending every polygon in the shadow caster into a

shadow volume only its silhouette is used, its polygons must even form a topologically well-formed
polygon mesh.

30e.g. leaves on a tree which are commonly represented as one alpha-textured quad per leaf
31http://en.wikipedia.org/wiki/Gothic_3
32see Section 2.6 or directly [BAS02]
33http://en.wikipedia.org/wiki/Unreal_3

13

Chapter 2 Shadowing

recently used in the 3rd person shooter “Gears of War”34, seems to be using
this approach for high-quality shadows cast by dynamic actors. Evidently this
approach is better fitted for creating shadows of a small number of dynamic ob-
jects in high quality, and would become very expensive if one wanted to shadow
a large number of objects, such as a whole forest or an army.

Contrary to shadow volumes, shadow maps can be used with shadow casters
which are higher order surfaces (e.g. NURBS) or alpha masked35, in addition
to polygonal objects.

Improving the quality of shadow mapping is one of the main topics of this thesis.
Therefore section 2.6 below gives a more in-depth look at the algorithm and
previous research in this field.

2.5.7 PRT and Spherical Harmonics Lighting

Precomputed radiance transfer (PRT) and its most famous proponent, spheri-
cal harmonics lighting ([KSS02]), are, as the name implies, a precomputation
technique, which precalculates a global illumination solution. It then tries to
encode this solution efficiently by using a system of basis functions in which it
expands the solution and keeps only the dominant coefficients. This allows for
fast lookup-retrieval of the global illumination solution for a static scene with a
dynamic lighting environment during rendering.

Spherical harmonics lighting was introduced by Kautz et al in 2002 [KSS02]. It
is based on encoding the light that comes from the outside into the scene into
a low frequency environment light map; as the name implies, it uses spherical
harmonics as its base functions. The basic spherical harmonics algorithm is
not designed to allow for light sources within the scene.

Note that, since the global illumination solution is precalculated and then stored
compressed for a specific scene geometry, it is only dynamic in relation to the
light, not in relation to shadow casters and receivers in the scene.

The author sees several problems with the idea of precomputing and encoding
a global illumination solution, including first hit shadows: The approach means
that the whole visibility information of the scene from every point would need to
be stored with a high enough spatial resolution. The visibility of a typical, mod-
erately complex scene, say in eletronic games, can be become quite complex
very fast; this is due to the the discontinuous nature of visibility. Complexity

34http://en.wikipedia.org/wiki/Gears_of_War
35e.g. a fence or leaves on a tree, which are commonly represented as alpha textured quads for

performance reasons

14

Shadowing Chapter 2

means that a large amount of information needs to be stored. However any
lossy compression scheme (such as expanding into a function system such as
spherical harmonics and keeping only leading coefficients) can only cleverly
remove redundancies and drop “unimportant” information. If the information
needed to restore the visibility information well enough to reproduce high fre-
quency components in shadows (i.e. relatively sharp shadow edges) is com-
plex, then any compression scheme can only go so far, before the resulting
shadows will become unnaturally soft.

In practice, trying to use only spherical harmonics lighting to create shadows
in a scene, suffers from exactly this problem: For a realistically sized scene36,
even though the amount of data needed by the algorithm is large, it still gives
only extremely soft shadows37, which do not exhibit, at least in the author’s
eyes, the characteristics that makes them shadows cast by the objects in the
scene. Note that this is not the fault of the Spherical harmonics algorithm,
which explicitly states that it is for low frequency lighting, but is due to a
widespread misconception about what the algorithm is for, respectively what
it can deliver in practice.

In practice, the author believes that hybrid approaches, where the direct
shadow is computed with non-precomputation techniques, such as shadow
volumes or shadow maps, and only the indirect illumination comes from e.g.
spherical harmonics is an approach more suited to practical application.

Having said that, however there certainly are applications where a very soft, low
frequency dynamic global illumination solution is all one could need; a possible
example would be the illumination within the leaves of a tree.

The first-person shooter “Halo 2”38 tried to use spherical harmonics lighting on
a bigger scale, but ended up only used it in very few areas.

2.5.8 Beyond Spherical Harmonics

Bringing practical real-time global illumination to computer graphics is a very
active field of research, which is beyond the scope of this thesis. It is also still
unclear which algorithms might be developed to be practical enough to see
widespread use in eletronic games.

36for very small scenes, as always in computer graphics, spherical harmonics can produce im-
pressive results.

37In a way this is ironic, since in other shadowing techniques, achieving a soft shadow look is
usually what one aspires for; so, in a way, spherical harmonics come from the other side of the
spectrum. See also the comment on hybrid techniques below.

38http://en.wikipedia.org/wiki/Halo_2

15

Chapter 2 Shadowing

So the following are just two examples of algorithms which the author thinks
have practical potential and surpass spherical harmonics in its features.

“Precomputed light paths” is a hybrid algorithm combining conventional first-hit
shadowing with additional ray-bounces using precomputed paths of the light
through the scene stored in extended lightmaps. Precomputed light paths has
been developed within the GameTools Project39 by Szécsi et al [SSKS06]. In
contrast to spherical harmonics lighting, precomputed light paths do not require
the assumption of a far away light source, but allow for the light source to be
within the scene. One thereby arrives at dynamic (with regards to the light)
soft indirect illumination effects in addition to direct shadowing. High-quality
direct shadowing in algorithms such as [SSKS06] can e.g. be supplied by the
algorithms described in this thesis.

As another example, Lightsprint has developed a practically oriented real-time
global illumination technology with their “Lightsprint Vision” library40, which
uses a delayed update of the global illumination solution spread over several
frames to allow for a dynamic scene while still giving real-time performance.

Note that while allowing for the light source and the scene to be fully dynamic
is evidently the ultimate goal, allowing for dynamic light sources has in practice
much more impact on the possibilities in game design (think e.g. of the effect
of the player or player opponents carrying light sources); also, in most eletronic
games the scene actually does not actually lend itself to be as dynamic as
one would expect, since often large parts of it are architecture or trees/plants;
the former is evidently static by nature, while the small movement a tree or
a plant makes will have negligible influence on the indirect illumination of a
scene. Naturally dynamic objects in a scene, on the other hand, such as non-
player characters or (in some cases) chairs, etc, due to their small size, have
only small influence on the indirect illumination, and the player will most likely
not notice the difference.41 It is therefore the author’s opinion that having a fast
and stable indirect illumination of the static part of the scene together with direct
shadowing from dynamic objects will in many practical cases be preferable to a
fully dynamic solution for which e.g. shadows lag behind or the quality of direct
shadowing is reduced.

39http://www.gametools.org/
40http://lightsprint.com/
41It is evidently the other way around for the influence of these objects on direct

illumination/shadows.

16

Shadowing Chapter 2

Frame Buffer (r,g,b)

Depth Buffer (z
viewspace,scene

)

Shadow Map (z lightspace,SM
)

Z
lightspace,SM

[x
lightspace,scene

,y
lightspace,scene

] < Z
lightspace,scene

 ⇒ pixel in shadow

Z
lightspace,SM

[x
lightspace,scene

,y
lightspace,scene

] ≥ Z
lightspace,scene

 ⇒ pixel in light

Figure 2.1: Illustration depicting the principle idea behind shadowing a
complete scene with shadow mapping corresponding to a directional light
source. One can see that the problem is being discretized. Note that
the seemingly large resolution of the shadow map on the right is mislead-
ing: Even though shadow maps typically have larger resolution than the
frame buffer, due to their resolution being stretched over the whole scene,
undersampling artifacts become visible even for relatively small scenes.

2.5.9 Further Reading

An excellent overview of classical shadow algorithms in general can be found in
Möller and Haines’ Real-Time Rendering book [MH02], as well as in [HLHS03]
(especially for soft shadow algorithms).

Steiner [Ste06] gives an up-to-date overview over shadowing techniques in
general and shadow volumes in particular, whereas Scherzer [Sch05] does the
same for shadow mapping.

2.6 A Closer Look at Shadow Mapping

Shadow mapping [Wil78] is a very appealing approach to employ rasterization
to solve the first hit visibility problem and use this result to calculate the direct
light shadowing of a scene.

Figure 2.1 depicts the principal shadow mapping algorithm:

17

Chapter 2 Shadowing

1. First the scene is rendered into a depth buffer, called the shadow map,
from the viewpoint of the light. 42

2. Then the scene is rasterized into the frame buffer; at each pixel:

(a) The position of the pixel center is transformed into light space.

(b) Then the depth entry corresponding to the pixel center in light space
is looked up in the shadow map.

(c) Finally the z-coordinate of pixel center position in light space is com-
pared with the looked-up depth entry from the shadow map: If the
depth entry from the shadow map is smaller than the z-coordinate
of the pixel in light space, then it is assumed (see below) that the
light sees a different surface in the scene first 43, and the pixel lies
therefore in shadow; otherwise the pixel is assumed to lie in the light.

The term “. . . then it is assumed that the light sees a different surface in the
scene first . . . ” is used intentionally here, because the simple elegance of
shadow mapping has one fundamental problem: The shadow map must con-
tain enough information to allow the visibility queries to be answered with sub-
pixel accuracy for a given frame buffer resolution, otherwise artifacts will be
visible, due the regular discretization of the visibility problem.

2.6.1 The Shadow Map Aliasing Problem

The problem that the regular grid of the shadow map does not deliver enough
resolution along the SM-axes when being sampled during the SMing process
is called “shadow map aliasing”.

If there is not enough information contained in the shadow map, then all any
algorithm can do is try to mask these artifacts, e.g. by means of filtering.

Figure 2.2 visualizes the source for the two forms of shadow map aliasing:

Projection aliasing is stronger the more the texel in the shadow map is projected
onto a large area of the shadow receiving surface; this is the case the more the
surface normal is perpendicular to the light direction.

Perspective aliasing is stronger the nearer the shadow receiving surface is to
the eye-point; this is because due to the nature of the perspective projection,

42In the original implementation the light frustum, i.e. the extent of the light in world space was of
fixed size. In 2002 Brabec et al. [BAS02] introduced the concept of shadow map focusing, where
the light frustum is recalculated each frame as to give a tight fit around the intersection of the
view frustum with the scene, to make better use of the shadow map resolution. Unfortunately the
focusing at the same time introduces temporal aliasing artifacts.

43A ray from the lightsource to the the pixel has its first collision with a different surface.

18

Shadowing Chapter 2

Figure 2.2: Visualization of projection and perspective aliasing.

the closer an object is to the eye-point the more pixels it occupies on the screen.
Uniform shadow mapping does not take this into account, but uses the same
density of entries everywhere, whereas shadow map reparametrization tech-
niques (see Section 2.7 below) globally warp the geometry that is rendered
into the shadow map, so that there will be more information available near the
eye point when querying the shadow map; since the transformation is global,
they can however do nothing against the local effect of projection aliasing.

Aila and Laine [AL04] and Johnson et al [JLBM05] have proposed algorithms to
bypass the aliasing problem by dropping the regular rasterization in the shadow
map, and instead creating a shadow map which contains depth entries at the
exact locations where the shadow map queries in this frame will occur. These
extensions depend on hardware extensions for real-time performance which
are not currently available; it is also as of yet unclear how fast the creation
of these “irregular shadow maps” would be with an optimized hardware im-
plementation, as compared to “adaptive regular discretization” shadow map
algorithms, like the ones presented in this thesis, which are designed to run on
conventional graphics hardware.

An obvious way to increase the information contained in a uniform shadow map
is to increase the resolution of the shadow map texture. However this becomes
impractical very fast, due to its quadratic44 increase in memory consumption,
and also GPU limitations on maximum texture size. For example a 655362-float-
SM, the approximate size required to shadow a small-to-medium sized scene
with subpixel accuracy, would require 16GB of memory. Note that 16GB is not
only much more memory than is typically available for the CPU, much less the
GPU, but that the fillrate requirements would also be enormous, even if one
could store a SM of that size. On current hardware the maximum supported
textures size, typically 4096× 4096, is the limiting factor, before running out of

44See also section 3.6 (pg 30) for a discussion that the required increase is even larger from a
perceptive point of view.

19

Chapter 2 Shadowing

available GPU memory.

2.6.2 The Shadow Map Biasing Problem

The resolution of the depth entries in the SM (i.e. along the direction of the
light rays) is also a potential source of shadowing artifacts: If the resolution is
too low, then even with enough resolution along the direction of the SM-axes
artifacts will become visible, since the shadow mapping algorithm will not be
able to discern between a shadowed and a shadow casting surface, if they are
too close together in light space along the direction of the light rays.

The problem that the resolution in the direction of the light rays is too small, is
called the biasing problem, because one can try to hide it by adding a bias (i.e.
offset) to the depth entries in the SM. Note, however, that using SM biasing in
the end only moves the problem area around, trying to cover up the fact that
there is not enough available information.

The problem can also be reduced by clamping all depth entries to the maximum
extent of the view frustum along the direction of the light rays, before writing
them normalized to the range [0,1] into the SM.45

The problem of too little resolution in the SM depth entries has become less
important in recent times due to the emergence of support for textures with
f loat entries.

This thesis deals with the much more problematic area of having too little res-
olution along the SM-axes, and assumes that the resolution along the direction
of the light rays is hight enough, due to the use of linear f loat-SM depth en-
tries. Should the need arise, the techniques presented in this thesis can be
combined with any SM biasing technique (see Section 2.7 below).

2.7 Previous Work about Shadow Mapping

Shadow mapping was first introduced by Williams [Wil78] in 1978, whereas
Segal et al [SKvW+92b] in 1992 supplied the first implementation using stan-
dard graphics hardware.

Many of the existing shadow map publications try to solve the problem of
aliasing artifacts. Percentage closer filtering [RSC87] alleviates reprojection
problems by multisampling the shadow map and Second depth shadow map-
ping [WM94] can be used to reduce problems due to depth quantization and

45For instance under OpenGL the GL_depth_clamping_NV extension supports this operation.

20

Shadowing Chapter 2

self occlusions. Donnelly and Lauritzen [DL06] also store the variance of the
scene depth in the SM, to allow for better SM filtering46

A number of papers have tried to solve the perspective aliasing coming from
the perspective view frustum projection through shadow map reparametriza-
tion. Originally pioneered by Stamminger and Drettakis [SD02], who try to
remove perspective aliasing by subjecting the shadow map to the same per-
spective transform as the viewer, this idea was later refined by Martin and
Tan [MT04] with Trapezoidal Shadow Maps, Wimmer et al [WSP04] with Light
Space Perspective Shadow Maps and Chong et al [CG04] with A Lixel for Ev-
ery Pixel. However, all shadow map reparametrization methods deal only with
perspective aliasing. They cannot increase the principal resolution of shadow
maps, which would be necessary for example to improve projection aliasing,
or in cases where the scene is simply too large for the SM resolution, even if
the shadow map resolution is optimally (or near optimally) used. Furthermore,
they work well only for the case that light and view direction are orthogonal. If
these directions are parallel, they have to revert to uniform shadow mapping
because the shadow map parametrization runs across the whole screen, not
from near to distant points.47

Lloyd et al [LTYM06] have studied the use of more than one shadow map ap-
plied to the sides or slices of the view frustum together with reparametrization
techniques intensively, giving more insight into the underlying mathematical
structure of the problem. In Cascaded Shadow Maps, Engel [Eng07] presents
practical aspects of implementing a view frustum-slicing (see [LTYM06]) SMing
algorithm .

Another approach to solve the aliasing problem are adaptive shadow
maps [FFBG01], where shadow maps are stored in a hierarchical fashion in
order to provide more resolution where it is required due to different aliasing
artifacts. However, the approach requires multiple readbacks and does not
map well to current graphics hardware. Lefohn [LSK+05] has proposed an ex-
tension that makes better use of the GPU, but still performance can be slow.
Arvo [Arv04] slices the light view to increase the resolution of the SM.

Tadamura et al [TQJN99] partition in z-direction for illuminating landscapes with
sunlight, Kozlov [Koz04] uses a cube map in post projective space for SMing.

Brabec et al. [BAS02] improve uniform shadow map quality by focusing the

46it seems, however, that this approach only works well for scenes with small depth variance.
47Another way to put this, is to say that in this case the viewer sees the shadow map texels in

the same size (there is no perspective shortening), so no global reparametrization can use the
texels more efficiently, because there is no global imbalance in required shadow map resolution
(the resolution would need to be high everywhere).

21

Chapter 2 Shadowing

shadow map to the intersection of the view frustum with the scene.

Note, however, that shadow map focusing, when used without techniques to
guarantee subpixel accuracy in the resulting shadow (as presented in this the-
sis) introduce (dynamic) artifacts of their own: Shadow map focusing makes
the effectively available shadow map resolution depend on the view direction
and position of the camera in the scene; this leads to a dynamically chang-
ing resolution (quality) of the resulting shadow, effectively leading to non-static
shadows48 even in an otherwise completely static scene49.

A similar problem occurs when using shadow map reparametrization tech-
niques (see above), where the effective shadow map resolution also depends
on the view direction, leading to dynamically changing shadow quality, and
therefore artifacts in the form of non-static shadows.

Several publications have proposed hybrid approaches, which combine SMing
with other shadowing techniques, such as shadow volumes: McCool [McC00]
use a SM to construct shadow volumes from it. Sen et al [SCH03] store addi-
tional geometric information in the SM to be able to create a piecewise linear
approximation of the shadow silhouette in the pixel shader. Govindaraju et
al [GLY+03] use shadow-polygons together with SMs to shadow a static scene
with a dynamic light source. Chan and Durand [CD04] use shadow volumes at
the shadow edges, which are discerned from a SM.

Note that most hybrid approaches assume a polygonal nature of the shadow
caster geometry, forfeiting the advantage that SMs work with scenes containing
high order surfaces or alpha masked textures.

48To be precise, non-static shadow edges, since the shadow edges are the place where the
changing resolution of the shadow map becomes apparent. But any part of a shadow that would
be static in reality is perceived as making the shadow non-static, and therefore incorrect.

49The change in shadow quality is alas also very noticeable even if the scene is not static, i.e. if
the light source and/or the shadow casters move.

22

Chapter 3

Virtual Shadow Maps

3.1 Introduction

This chapter presents the basis for the following chapters, by introducing a
method which allows the increase of the effective resolution of a shadow map
applied to a scene far beyond the maximum texture size and (GPU) memory
limit, in a brute force manner. It does so by slicing the shadow map into a
regular grid of shadow map tiles. For each shadow map tile a shadow map
texture is then created on the fly and used to shadow the part of the scene that
lies within the light frustum of the tile; the shadow map texture is reused for
each tile, i.e. its contents are discarded immediately after it has been used to
shadow the scene.

The slicing of the shadow map into tiles overcomes the maximum GPU sup-
ported texture size limitation1, whereas the reuse of the shadow map texture
overcomes the physical GPU memory limitation2

To make the shadowing of the scene with the shadow map tiles fast, de-
ferred shadowing is introduced, which uses a linear view space depth buffer
to shadow the scene, avoiding the need to rerender it for each shadow map
tile.

The following chapters explore two much faster, non-brute approaches expand-
ing the principal concept to smarter, adaptive algorithms.

1typically around 40962 on current GPUs
2E.g. to store a complete 655362-float-SM, the approximate size required to high-quality shadow

map shadow a small-to-medium sized scene, would require 16GB of GPU memory.

23

Chapter 3 Virtual Shadow Maps

3.2 Abbreviations

The following abbreviations are used in this chapter:

Abbreviation Meaning

LiSPSM Lightspace Perspective Shadow Maps [WSP04]
SM Shadow Map

SMing Shadow Mapping
SM-tile Shadow Map Tile (see Section 3.3)

SM Shadow Map
VTSMs Virtual Tiled Shadow Maps

VTSMing Virtual Tiled Shadow Mapping

3.3 Virtual Tiled Shadow Mapping

“Virtual Tiled Shadow Mapping”3 (“VTSMing”) is a brute-force approach for
increasing the resolution of the shadow map beyond the maximum texture size
supported by the hardware.

Figure 3.1 illustrates the basic VTSMing algorithm, which works as follows.

1. Allocate the biggest shadow map texture supported by the GPU. For ex-
ample 4096×40964.

2. Partition the shadow map along the shadow map x- and y-axis into n×n

(e.g. 16× 16) equally-sized tiles (each tile using the full shadow map
texture resolution of e.g. 4096×4096 texels, i.e. the effective resolution of
the full shadow map in this example is (16∗4096)× (16∗4096) = 65536×
65536).

For each tile

(a) Render a shadow map into the shadow map texture (using culling to
the light frustum of the tile and overwriting the shadow map for the
previous tile).

3The term “virtual” here refers the fact that at no time there exists a complete shadow map in
memory, which is of the size with which the scene is effectively shadowed by the algorithm with; it is
also inspired by virtual computer memory, which also allows for applications to use more memory
than is actually physically present (Note that this analogy is however not complete, since virtual
computer memory uses a far slower medium, usually a hard disk, to swap unused memory pages
to, whereas Virtual Shadow Maps reuse the same fast memory repeatedly to bypass memory
limitations.).

4short: 40962

24

Virtual Shadow Maps Chapter 3

(b) Use it immediately to shadow (modulate) the part of the scene which
is covered by the current shadow map tile.

3.3.1 Creating the Shadow Map Tiles

To create the n2 SM-tiles, for each the of the tiles the part of the scene geome-
try, which lies within the light frustum of each SM-tile needs to be rendered.

An efficient way to do this would be to collect the geometry which is visible
within the light frustum of the whole SM in the first pass5. In addition, the
geometry could also already be culled vs the smaller light frusta6 of the SM-
tiles and collected at each SM-tile. Each SM-tile could then be created with the
minimal amount of effort.

Evidently it depends on the implementation effort one wants to invest and the
efficiency of the rendering of the geometry lying within a SM-tile light frustum
whether this optimization makes sense.

Note however that employing visibility culling in the SM-pass can make sense
even for normal SMing, especially if the overdraw in the SM is high; This is e.g.
the case when light from the setting sun shines onto a forest scene, leading
to a potentially huge overdraw, due to the light direction running alongside the
directions of maximum extent of the forest.

As described in the VTSMing algorithm overview above, in each pass only
those fragments which lie in the light volume of the current shadow-map tile
should be shadowed. Depending on the hardware it can be beneficial to avoid
branching in the pixel shader. This can be solved by using a one-pixel bor-
der containing the largest z-value around each shadow-map tile. Coordinates
of fragments lying outside of the current tile are clamped to this border and
therefore never shadowed.

There are two ways to implement the loop over the tiles: multi-pass shadowing
and deferred shadowing.

3.3.2 Multi-Pass Shadowing

One way to apply successive shadow map tiles to the scene is by multi-pass
rendering. In the first pass, the scene is rendered normally (with full shading

5This can be sped up by employing on-the-fly visibility culling, e.g. CHC by Bittner et
al [BWPP04].

6this could be done in projected light space, i.e. in 2D

25

Chapter 3 Virtual Shadow Maps

and depth-writes enabled), with the first shadow map tile applied to it. For each
subsequent shadow map tile, the scene is rendered again, but only shadow
mapping using the relevant tile is applied to the frame buffer. Pixels falling
outside the shadow map tile are suppressed. Depth writes and shading are
disabled and the depth comparison function is set to EQUAL in those passes
(depending on driver support, it can make sense to substitute LESSEQUAL for
EQUAL).

Multi-pass shadowing, although easy to implement, comes with a significant
performance overhead of rendering the pure scene geometry (without materi-
als, effects, etc) n2 times (i.e. as often as the number of SM-tiles). The next
subsection therefore introduces a method to speed the process up consider-
ably.

See however section 5.13 (pg 64) for an extension that can speed up multi-pass
shadowing, together with an application to rendering high-quality shadowed
semitransparent objects.

If multi-pass shadowing is to be employed in practice, it would make sense to
use some kind of optimization along the line of collecting the visible geometry in
the first pass (e.g. again by employing an on-the-fly visibility culling algorithm
such as CHC [BWPP04]), and then either only culling these objects against
the screen space bounding rectangle (if available; see Section 4.6 (pg 44) and
5.8 (pg 60)) of the current SM-tile, or creating an optimized buffer in GPU mem-
ory which contains only visible geometry and is ready to render (i.e. already
transformed to screen space).

3.3.3 Deferred Shadowing

To speed up the application of the shadow map tiles to the scene, we use a
variation of deferred shading we call “deferred shadowing” where the shadow-
ing is done using a linear depth buffer of the scene instead of re-rasterizing the
scene geometry, and the information needed to do the next shadowing pass,
i.e., the next shadow map tile, is created on the fly between the passes (same
as with multi-pass shadowing above). The scene is first rendered to a texture
that stores eye-space depth, called the Eye-Space Depth Buffer. Each subse-
quent tiled shadowing pass can then read this texture and calculate the world-
space position of the visible surface at each pixel using the screen coordinates
and the depth stored in the Eye-Space Depth Buffer. The world-space posi-
tion is then shadowed using the shadow map tile as before. Note that storing
the unmodified eye-space z-coordinate in the Eye-Space Depth Buffer guaran-
tees that the shadow map lookup produces the same results as if the original

26

Virtual Shadow Maps Chapter 3

scene objects were used for shadow mapping. This is important because any
other method of obtaining the z-value, e.g., using window-space z-coordinates
(which are highly non-linear) or a fixed-precision w-buffer (if it were still sup-
ported on current hardware) would inevitably lead to image artifacts.

In detail this works as follows:

1. In a first pass, render the scene as described above, but into a 4 com-
ponent 32bit floating point render target. In the pixel shader, store the
unmodified eye-space z-coordinate into the α-component. This compo-
nent forms the Eye-Space Depth Buffer (however for simplicity, we refer
to the whole 4-component target as the Eye-Space Depth Buffer). The
color of each pixel in the object when lit by this light (ignoring shadowing)
is written to the RGB channels. The rendering is done using a conven-
tional 1/z-depth buffer attached to the Eye-Space Depth Buffer, used for
hidden surface removal7.

7Using the eye-space z-coordinate for hidden surface removal would not be a good idea, since
we we would for instance void all the depth-buffering hardware acceleration mechanisms of the
GPU, such as hierarchical depth-buffer support.

Figure 3.1: Schematic side and top-down view of Virtual Tiled Shadow
Mapping: The shadow map (focused on the view frustum) is split into a
grid of SM-tiles (here 16× 16); on the right the light frusta extend from
the light through the SM-tiles (depicted in grey) towards the view frustum
(shown in green). Each SM-tile is created on the fly, used to shadow its
part of the scene, and then immediately discarded. If each SM-tile uses
a 40962 SM, then we arrive at an effective SM resolution of 65536×65536
in the example, 256 times larger than using only a single SM.
Note that with normal SMing, only the small “40962 SM”-square is used
for the whole scene.

27

Chapter 3 Virtual Shadow Maps

Figure 3.2: Performance comparison of Multi-pass and Deferred Vir-
tual Tiled Shadow Mapping: 10,000 objs, 1,6 Mtris, 4× 4 SM-tiles on a
GeForce 6600GT with 256MB, Pentium4 2.4GHz (1GB).

2. For each shadow map tile

(a) Render a shadow map into the shadow map texture as with multi-
pass shadow mapping above.

(b) Instead of rendering the geometry for the whole scene again, ren-
der a full-screen quad with the Eye-Space Depth Buffer bound as a
texture.

(c) In the pixel shader for each fragment, look up the eye-space depth
of the fragment in the Eye-Space Depth Buffer’s alpha-channel and
unproject it into world space (see Formula 3.1 and description be-
low). Using the unprojected fragment, calculate the shadowing term.
Then modulate the already-shaded RGB value from the Eye-Space
Depth Buffer with the shadowing term.

(d) The resulting shaded and possibly shadowed fragment is then writ-
ten to the RGB channel of the Eye-Space Depth Buffer.

3. Transfer the Eye-Space Depth Buffer RGB channels to the frame buffer.

The pixel shader operations in the individual passes are quite straightforward,
with the exception of the unproject operation. Unlike a standard viewport un-
projection, which transforms from window (xw,yw,zw)-coordinates to eyespace
(xe,ye,ze)-coordinates, this operation has to deduce eye-space (xe,ye,ze) from
(xw,yw) (given as texture coordinates, i.e. running from 0 to 1) and ze. This can
be done using the following matrix transform:

 xe

ye

ze

 = ze ·

1
ax

0 − bx
ax

0 1
ay

− by
ay

0 0 1

 ·

 2 0 1
0 2 −1
0 0 1

 ·

 xw

yw

1

 (3.1)

28

Virtual Shadow Maps Chapter 3

where the parameters ax, ay, bx, by in the first matrix should be taken from the
projection matrix P supplied to the graphics API:

P =

ax 0 bx 0

0 ay by 0

0 0

0 0 1 0

The second matrix simply transforms from texture-coordinates to screen coor-
dinates, i.e. [0,1] to [1,−1].

see Figure 3.2 for a performance comparison between Multipass and Deferred
Shadowing, in a scene containing a large number of objects.

3.4 Shadow Result Texture

The following introduces the concept of the Shadow Result Texture, which can
be used to decouple the result of the operation that discerns which pixels are
in shadow from the modulation of the scene RGB-colors.

The use of the Shadow Result Texture is a useful extension of Virtual Tiled
Shadow Maps, but essential to the algorithm described in the next chapter,
Queried Virtual Shadow Maps.

The “Shadow Result Texture” is a 1×byte texture with the same dimensions
as the frame buffer, into which we write only the results of the shadowing opera-
tion, i.e. whether a pixel is in shadow or not (or, in the case SM-filtering is used,
the shadow value in [0,255] which is the result of the SM-filtering operation for
this pixel).

Using the Shadow Result Texture allows us to avoid any potential problems with
slightly overlapping SM-tiles, since the shadowing results of a tile which is ap-
plied later can simply overwrite previous results. It also makes the application
of the SM-tiles faster, since we write to a surface with only one byte per pixel.
In addition the Shadow Result Texture can also be used to e.g. apply post-
processing effects to the shadow, such as screen space blurring depending on
distance to the shadow caster.

When the Shadow Result Texture is used with Virtual Tiled Shadow Mapping,
we write all the shadowing result values only to the Shadow Result Texture at
first. We then modulate the RGB values from the Eye-Space Depth Buffer with

29

Chapter 3 Virtual Shadow Maps

the entries from the Shadow Result Texture in the final step, when transferring
the Eye-Space Depth Buffer RGB-color entries to the frame buffer.

3.5 Combination with Shadow Map Filtering

Virtual Tiled Shadow Mapping can be combined with filtering techniques, such
as multi- or supersampling, or percentage closer filtering.

The only extension needed to support this is to make the SM-tiles slightly larger.
For filter operations such as percentage close filtering, using a filter kernel size
of θ shadow map texels, SM-tiles need to overlap by θ/2, so that each tile is
large enough to support the filter kernel.

Evidently the performance of using SM-filtering together with Virtual Tiled
Shadow Mapping is as good as with normal SMing, i.e. the performance hit
on newer cards, which have been optimized for SM-filtering multi-tap access to
textures, is very small.

3.6 Problems with Brute Force Refinement

One might think that the fillrate requirements of Tiled Shadow Maps increases
with n2, n again being the number of tiles along each shadow map axis. How-
ever, to get a noticeable increase in shadowing quality, one has to effectively
double the number of tiles along each axis, which leads to a quadrupling in the
number of SM-tiles (i.e. the number of SM-textures that need to be generated
each frame). The refinement level nr, with n = 2nr , is a much better measure
of the perceived shadowing quality than the number of SM-tiles n, and the fill-
rate requirements then become proportional to 4nr . This means that even for
interactive frame times (i.e. of around one second), the achievable maximum
virtual shadow map resolution is limited. In addition, for a typical scene, a lot
of unnecessary shadow map tiles are generated, due to the brute force nature
of the approach.

3.7 Conclusion

This chapter introduced Virtual Shadow Mapping in the form of Virtual Tiled
Shadow Mapping. Virtual Tiled Shadow Mapping increases the effective

30

Virtual Shadow Maps Chapter 3

shadow map resolution beyond hardware limits, in a brute force manner. De-
ferred Shadowing was introduced as an optimization to increase the speed of
Virtual Tiled Shadow Mapping.

The algorithm can be applied to applications that need high-quality shadow
map shadows created at interactive rates (< 1s; e.g. architectural walkthroughs
or the work view of 3D modeling applications8; see also below), or very high
quality shadow map shadows in a short time frame (< 1min; e.g. GPU-based
high-resolution shadow map shadowing for e.g. the 3D preview mode of 3D
modeling applications or architectural visualizations).

It is easy to implement and can be combined with shadow map filtering tech-
niques to give soft shadowy shadows with a negligible performance hit.

One way to combine the high shadow quality supplied by Virtual Tiled Shadow
Maps with a high interactivity is to use a single SM as long as the user moves
the camera, and start refining the SM progressively as soon as he stops. We
have found that a progression of SM-tiles per axis of n = 2,4,8, . . . ,2nr,max , i.e.
in powers of 2 up to a maximum refinement nmax = 2nr,max , is the most efficient
tradeoff between reaching a high SM-resolution fast, while at the same time
keeping the process visually pleasing.

Note that with this approach, the screen update rate drops to the framerate of
the Virtual Tiled Shadow Map rendering at n = nmax. This means that if there
are animated objects in the scene, they might move jerkily when the maximum
refinement nmax is chosen to be too high. Since in 3D modeling applications or
architectural walkthroughs the scene is usually static apart from light movement
induced by the user9, this approach is well suited for these applications.

It is evidently less suited for eletronic games, but could still be used, if nmax is
not chosen to be too high. See however the next two chapters, which introduce
two smarter Virtual Shadow Map algorithms, which adapt to the shadowing
needs of the scene, and thereby speed up the shadowing process by an order
of magnitude.

8e.g. Maya, XSI, 3DSMax or Poser
9or very slowly varying on its own, such as in simulated sun movement

31

Chapter 4

Queried Virtual Shadow
Maps

Figure 4.1: Left: shadow map reparametrization techniques (light space
perspective shadow mapping is used here) alone cannot guarantee sub-
pixel accuracy (leading to perspective aliasing in the lower right corner
and projection aliasing on the slope in the middle of the scene), even with
a 40962 shadow map. Right: Queried Virtual Shadow Maps prevent both
types of undersampling artifacts.

4.1 Introduction

In the previous chapter, Virtual Tiled Shadow Maps were introduced, a brute
force method to increase the effective shadow map resolution beyond the GPU
hardware limit. This chapter presents Queried Virtual Shadow Maps, a smart
algorithm which builds on Virtual Tiled Shadow Maps, also increasing the ef-

32

Queried Virtual Shadow Maps Chapter 4

Figure 4.2: The forest scene used for testing the QVSM algorithm.

fective shadow map resolution available to shadow the scene, while avoiding
the quadratic increase in memory consumption. But contrary to Virtual Tiled
Shadow Maps, it does so in an adaptive manner, creating more shadow map
resolution only where it is needed. It does so without the need to store infor-
mation from the previous frame, thereby making it suitable for fully dynamic
scenes. It can guarantee subpixel accuracy with regards to the shadow map
query, getting rid of both projection and perspective aliasing. Queried Virtual
Shadow Maps contain an intuitive to use quality vs speed tradeoff parameter,
which can be used to tune it to a wide range of graphics hardware.

Queried Virtual Shadow Maps, same as Virtual Tiled Shadow Maps, are or-
thogonal to and can therefore be combined with other techniques, such as
shadow map reparametrization; in the implementation the author used, it was
combined with Light Space Perspective Shadow Maps [WSP04].

Figure 4.1 (pg 32) shows a quality comparison between conventional shadow
mapping and Queried Virtual Shadow Mapping.

4.2 Abbreviations

The following abbreviations are used in this chapter:

33

Chapter 4 Queried Virtual Shadow Maps

Abbreviation Meaning

QVSMs Queried Virtual Shadow Maps
LiSPSM Lightspace Perspective Shadow Maps [WSP04]

SM Shadow Map
SMing Shadow Mapping

SM-Tile Shadow Map Tile (see Section 3.3)

4.3 Queried Virtual Shadow Mapping

4.3.1 Smart Refinement Preferred

Virtual Tiled SMing is a brute force approach, which makes its practical appli-
cability limited, due to the quadratic increase in the number of SM-tiles which
need to be generated to increase the SM resolution by one SM-texture extent.1

What we would like to do instead is to adaptively refine the shadow map only
where necessary: near the eye-point, and in regions with high projection alias-
ing. We would like to refine to a high level (n ≥ 16, i.e. ≥ 256 SM-tiles), but
do it fast enough so it can be done each frame, and without breaking the GPU
friendliness of the algorithm.

One hypothetical way to do this is as follows. Do not shadow the scene directly,
but write the results of the shadowing passes into an extra 1× f loat texture the
size of the frame buffer (“Shadow Result Texture”, see Section 3.4 (pg 29)).

Then refine the shadow map in quad-tree fashion: First, shadow the whole
Shadow Result Texture with a single shadow map tile; then split the tile into
2×2 subtiles, and shadow the Shadow Result Texture with each sub-tile, not-
ing how much the increase of the effective shadow map resolution improves
the Shadow Result Texture in each tile. If the improvement achieved by the
refinement is small enough, stop processing this tile further. If not, split this tile
again into 2×2 subtiles, and so on. Compared to the brute-force approach, this
would lead to a greatly reduced number of required shadow map tiles. Unfor-
tunately the GPU is very limited in its ability to execute such “smart” algorithms
efficiently, especially those using even moderately complex data structures,
such as quadtrees. Therefore we need to move the decision whether to further
refine a shadow map tile to the CPU. The only straightforward way to pass the
necessary information to the CPU would be reading back the whole Shadow

1with declinign return; see Section 3.6

34

Queried Virtual Shadow Maps Chapter 4

(a) 40962 conventional SM

(b) 32×32 20482 QVSM

Figure 4.3: Conventional shadow mapping using LiSPSM exhibits un-
dersampling artifacts on the trees in the foreground. The second image
was created using Queried Virtual Shadow Maps.

Result Texture after each refinement step and counting the changed pixels,
which would be prohibitively expensive.

4.3.2 Queried Refinement: GPU Friendly & Smart

Instead, we have come up with a novel use of the GPU Occlusion Query mech-
anism, which counts the number of fragments emitted from the pixel shader.
Occlusion queries were introduced to support image-space bounding volume
visibility tests, and have seen mainstream support by graphics hardware ven-

35

Chapter 4 Queried Virtual Shadow Maps

dors for some time now. We use the mechanism for another purpose: when
applying a shadow map subtile to the Shadow Result Texture, we instruct the
pixel shader to only produce a fragment if the resulting shadow value differs
from the previous refinement step (this can easily be done by accessing the
previous Shadow Result Texture in the shader). The number of produced frag-
ments η , which is identical to the number of changed pixels in the Shadow
Result Texture, is found by bracketing the application of each shadow map tile
with an Occlusion Query. The CPU can then decide whether to further refine a
tile by comparing the value returned by its corresponding occlusion query with
a threshold value ηmin: if a number of pixels larger than ηmin have changed,
the tile is split into 4 subtiles, otherwise the refinement for this tile stops. In
addition we use the maximum number of tiles allowed per shadow map axis,
ξmax, as a second refinement termination criterion. Thus, the decision whether
or not to refine a shadow map tile can be made without any frame buffer read-
back, which allows the whole algorithm to produce large effective shadow map
resolutions in real time.

4.4 Jump Optimizations

Using the maximum SM texture size supported in hardware for the virtual
shadow map texture is, in general, not the best choice. This comes from the
fact that the minimum number of Virtual Shadow Maps that need to be filled is
1 + 4 = 5 (the initial shadow map plus one refinement step). The following two
optimizations use this observation to speed up rendering by increasing the SM
texture size instead of splitting the SM:

4.4.1 Maximum Refinement Jump

This optimization makes use of the maximum tile refinement criterion ξmax, the
maximum allowed number of tiles per shadow map axis. Before splitting a tile
(of size s), we first test whether the maximum virtual shadow map resolution
ξmax · s could also be reached in one step by switching to a larger shadow map
texture (i.e., a higher shadow map resolution) instead of splitting the tile. With
ξ as the current tile refinement level, we make the jump if ξmax · s ≤ smax · ξ .
Since we know that we will reach the maximum user-defined virtual shadow
map resolution for this tile and therefore will not refine this tile further, we turn
off querying for the shadowing step.

36

Queried Virtual Shadow Maps Chapter 4

(a) 40962 conventional SM

(b) 32×32 20482 QVSM

Figure 4.4: Strong projection aliasing (a) is greatly reduced by QVSM
(b).

4.4.2 Opportunity Jump

The Opportunity Jump optimization uses a heuristic criterion to predict the fu-
ture development of η (the number of pixels in the Shadow Result Texture that
changed through the last refinement step). If the prediction is that η will be-
come smaller than ηmin within a “jump distance” (number of refinement steps)
smax

s , then we again do not refine the tile, but increase the shadow map texture
size instead. We assume that η decreases at least by a factor fη in each re-
finement step in the vicinity of ηmin; fη is a constant factor, which can be set by
the user according to his quality requirements (see Results section below for a
discussion of meaningful values for fη). We make the jump, if η ·(fη)

smax
s ≤ηmin.

37

Chapter 4 Queried Virtual Shadow Maps

We again turn off querying for the shadowing step and stop any further refine-
ment because, in the unlikely case that the tile does not reach the intended
resolution, it would be disproportionally expensive to split the tile further, be-
cause we would have to use 4 shadow maps with s = smax (which would be too
costly, since the premise is that we do not use s = smax for the SM-tiles from the
start because of the cost of generating several smax× smax shadow maps).

(a) 40962 uniform (b) 40962 LiSPSM (c) 20482 32×32 tiled

(d) 20482 32×32 queried (e) 20482 32×32 queried
+ Jump Optimization

Figure 4.5: Comparison of the different techniques using a 512× 512
frame buffer, 32×32 tiles maximum refinement and a 20482 shadow map
texture (framerates can be seen in the upper right corner).

4.5 Results

Figure 4.2 (pg 33) depicts the test scene used for the QVSM research. It has a
large number of high-frequency shadow casters (branches), which exhibit self
shadowing as well as receiving shadows in an irregular manner, by being far
from being able to be well approximated by a shadow receiving plane. It also
quite naturally leads to the eye-point being potentially very near to a shadow
receiver in the form of low hanging branches or the trunk of a tree, therefore
making it harder to hide shadow mapping artifacts. In addition the hilly structure

38

Queried Virtual Shadow Maps Chapter 4

Figure 4.6: Performance comparison between Virtual Tiled and Queried
Virtual SMing along path in forest test scene (figure 4.9 (pg 46)).

Figure 4.7: Performance comparison along path in forest test scene for
several values for QVSM threshold parameter ηmin.

of the ground gives rise to projection aliasing.

Unless otherwise noted, all results were created on an ATI Radeon X1900XTX
with 512 MB of RAM and a Pentium4 3.4 GHz (2 GB RAM).

Figure 4.6 (pg 39) shows frame time curves from a forest scene with 5×106 tri-
angles rendered into a 1024×1024 frame buffer. The uppermost curve depicts
brute force Virtual Tiled SMing, using 16× 16 40962 shadow maps; QVSM 1
& QVSM 2 show Queried Virtual SMs with 20482 SM-tiles, 32× 32 maximum
refinement and jump optimizations to 40962 using ηmin = 2500 and ηmin = 0 re-

39

Chapter 4 Queried Virtual Shadow Maps

Figure 4.8: Performance comparison along path in forest test scene for
QVSM Jump Optimizations.

spectively. The SM-curve finally gives the frame times for conventional SMing
using the maximum 40962 shadow map texture currently supported in hardware
(leading to greatly reduced shadow quality). LiSPSM [WSP04] was active for
all SM renderings. One can see that for ηmin = 0, i.e. the exact same shadow-
ing quality, Queried Virtual SMs are more than 4 times faster than brute force
Virtual Tiled SMing; for ηmin = 2500, which still gives excellent shadow quality,
Queried Virtual SMs are nearly 15 times faster. The effective Virtual SM reso-
lution used to shadow the scene is 32×2048 = 65536, as compared to 4096 for
conventional SMing. Figure 4.9 (pg 46) shows a screenshot along the path,
comparing the visual quality of conventional SMing and QVSMing.

The frame times for several values of ηmin (the minimal number of pixels that
need to change in a SM-tile refinement step for the tile to be refined further)
along the same forest path are shown in figure 4.7 (pg 39). One can see that
the frame times fluctuate more the smaller ηmin becomes. This is due to the
fact that a smaller ηmin makes the algorithm more sensitive towards changes in
the scene (eye-position, light direction etc), leading to more fluctuation in the
number of SM-tiles that need to be created.

Figure 4.8 (pg 40) compares frame times for jump optimizations with fη = 1
4 .

One can see that Opportunity Jumping has, in general, the greater effect. What
one can also see from the curve is that Opportunity Jumping also has a very
beneficial influence on the maximum frame times, in that it cuts the frame time
spikes, contributing to a smoother framerate. Having observed the behavior of
η in the vicinity of ηmin, fη should be chosen to lie between fη = 1

2 to 1
8 . fη = 1

2

40

Queried Virtual Shadow Maps Chapter 4

is a very conservative assumption, while fη = 1
8 is rather aggressive and can

lead to some minor artifacts when a tile does not get refined to the desired
quality; fη = 1

4 in general is a good compromise in practice.

Figure 4.1 (pg 32) shows a comparison between a scene shadowed with
a 40962 SM using lightspace perspective shadow mapping on the left and
Queried Virtual SMing on the right. The screenshot on the left exhibits not
only projection aliasing (on the slope in the middle of the screen), against
which lightspace perspective shadow mapping cannot help, but also perspec-
tive aliasing, due to the fact that the resolution of the shadow map is too small,
even with shadow map entry arrangement. QVSMing on the right gives sub-
pixel accuracy and thereby removes both types of aliasing artifacts.

Figure 4.3 (pg 35) shows typical undersampling artifacts on the trees in the
foreground, despite using LiSPSM. QVSM (depicted on the right) shadows the
scene subpixel accurate, using 19 SM-tiles (17×20482 and 2×40962; the latter
coming from optimization jumps) giving an effective SM resolution of 65,5362.
Figure 4.4 (pg 37) shows strong projection aliasing on the right due to self
shadowing. QVSM on the left removes the projection aliasing nearly com-
pletely; note that the high precision of the resulting shadow reveals the nature
of the underlying geometry by showing its triangular nature - one can see that
the terrain of the scene is much coarser than the trees.

The number of SM-tiles generated by the algorithm depends on the choice of
ξmax, ηmin and smax and the size of the frame buffer. For quad-splitting of the SM-
tiles, the number of SM-tiles generated by the algorithm is 1+4 ·k+ l jump−opt , i.e.
{1,5,9,13,17, . . .}+ l jump−opt , where l jump−opt is the number of tiles generated by
jump optimizations. In practice we found that for our test scene and frame buffer
size, a typical case would be k = 4 and l jump−opt = 2 leading to 19 SM-tiles.
Note that having 6 SM-tiles is a lower bound in practice, since the necessary
initial refinement step from 1 to 4 SM-tiles already leads to the generation of 5
SM-tiles overall; if this is followed by a jump optimization refinement, then we
arrive at 5 + 1 = 6 SM-tiles (having less SM-tiles would mean that brute force
refinement into 2×2 SM-tiles would be the better choice). In practice the initial
refinement step typically is followed by at least one further refinement step
and a jump optimization refinement, leading to (k = 2,l jump−opt = 1) 10 SM-tiles
overall.

Figure 4.5 (pg 38) shows a comparison between different shadow mapping
approaches and maximum refinement level ξmax. One can see that sample re-
distribution methods, represented here by LiSPSM, cannot sufficiently increase
the effective shadow map resolution for this view direction.

41

Chapter 4 Queried Virtual Shadow Maps

For the refinement parameter smax, we found that for an NVidia GeForce
6600GT with 256MB of RAM, 1024× 1024 shadow map textures together with
smax = 2048 proved to be efficient, whereas for an ATI Radeon 1900XTX with
512MB of RAM, using 2048×2048 with smax = 4096 proved to be a good choice
(both graphics cards support a maximum texture resolution of 4096×4096).

One problem that could arise in practice would be visible SM-tile boundaries in
the resulting shadow due to precision issues. We did not observe such prob-
lems in our implementation, but should this problem arise, it would be very easy
to fix by simply making the SM-tiles overlap by a slight amount. Overlapping
the SM-tiles leads to no artifacts, since the shadowing result does not need
to be combined with the existing Shadow Result Texture value, but overwrites
previous results. In addition higher refined SM-tiles will be generated later than
lower refined ones so there is also not even a potential reduction in quality in
the small overlap area.

Since shadow mapping and its artifacts (or absence thereof) are best observed
in motion, please also go to http://www.cg.tuwien.ac.at/research/vr/vsm, where
you can find some demonstration videos.

A non-scientific version of this chapter was published as an article in ShaderX 5
([GW07c]) from the excellent ShaderX book series; an executable and source-
code samples can be found on the CD-ROM accompanying the book.

4.5.1 Extensions and Optimizations

The following lists some further optimizations that can be applied to the algo-
rithm together with some results:

1. Instead of always splitting each SM-tile into 2×2 subtiles (quad-splitting),
one can also split it along each SM-axis alternatingly (binary-splitting).
Theoretically this would allow the algorithm to better adapt to scenarios
where the required SM resolution differs between the two SM-axes. We
have implemented this extension and have observed that frame times
were, in general, higher than with quad-splitting. An analysis of the cre-
ated SM tiles shows that the problem is twofold: First, in many cases
there is not enough difference in required SM-resolution along each SM-
axis; this means that in the end binary-splitting does a quad-split – but it
costs 2 + 2×2 = 6 tile generations (first split the tile into 2 subtiles along
one axis, then split the 2 subtiles into 2 sub-subtiles each), instead of
just 2×2 = 4 if we do the quad-split immediately. Second, binary-splitting
only gives information about the refinement status along one SM-axis in

42

Queried Virtual Shadow Maps Chapter 4

each refinement step; so even if this is not necessary the algorithm in
many cases has to do “one more split” to make sure that the tile resolu-
tion is adequate along both SM-axis. In addition, binary-splitting is harder
to combine with jump optimizations efficiently, again due to the fact that
in each refinement step only information about a single SM-axis is avail-
able. We conclude that the cost of binary-splitting outweighs its benefits
for practical applications.

2. Another idea would be to not split into 2× 2, but into nsub × nsub (nsub =
3,4, . . .) subtiles in each refinement step. We have included this in our
algorithm, but, again, this lead to worse frame times in all test scenes.
This is because the number of generated SM-tiles becomes extremely
large, even if only one tile is refined twice (which is typically the case
simply due to perspective aliasing near the eye-point): Even for 3× 3
splitting, this already leads to 1 + 2× (3× 3) = 19 tiles (the initial tile, a
subtile and sub-subtile), compared to 9 tiles (1+2×4) for nsub = 2.

3. Using the relative metric ηrel <
npixels−changed−in−tile

npixels−in−tile
instead of the absolute

ηabs < npixels−changed−in−tile could be a better choice for deciding whether to
further refine a shadow map tile. The problem here is to get npixels−in−tile:

(a) One possible way would be to reapply the shadow map tile to the
Eye-Space Depth Buffer (without shadow map lookups, of course),
again bracketed with an OcclusionQuery, but always emitting a frag-
ment in the pixel shader if it lies within the current tile. The result of
the OcclusionQuery would then be npixels−in−tile. We have tried this
and unfortunately the practical cost of this operation was so high
that it outweighed any potential benefit. See “Hardware Extensions
for Better GPU to CPU Feedback” below for a potential future better
way to get ηrel .

(b) A less accurate but faster method would be to calculate the number
of screen-space pixels in the projection of the shadow map tile onto
the ground plane of the scene (trapezoid clipped to screen-space
coordinates), and use this as an approximation for npixels−in−tile. It
would of course depend on the characteristics of the scene whether
this approximation works well or not.

4. Another approach to deferred shadowing would be to write each point’s
xyz-coordinates into a float render target (RT), using multiple-RT (MRT)
functionality to write the color to a second RT: We chose not to do so,
since even modern graphics cards often only support MRTs having the
same bit depth; this would have meant that we would have to use two

43

Chapter 4 Queried Virtual Shadow Maps

4× f loat RTs. Since the transformation given under 3.1 (pg 28) achieves
the same result with using only one linear depth entry which can be stored
conveniently in the alpha-channel of just one 4× f loat RT, we chose this
approach to implement deferred shadowing.

4.6 Hardware Extensions for Better GPU to CPU
Feedback

We use the hardware occlusion query mechanism as a counter to efficiently
pass back information from the GPU to the CPU. This mechanism is like a tiny
loophole, since only one value can be passed back per rendering pass, and
increasing the counter is linked to emitting a color value from the pixel shader
(which, fortunately, in our case is what we want to do anyway). We are sure that
many more smart, adaptive algorithms could be combined with fast GPU ren-
dering if this GPU functionality were extended to include several signed integer
registers similar to the occlusion query fragment counter, which could e.g. be
incremented/decremented (possibly by an arbitrary amount), and which would
support atomic min/max operations. Since these operations are independent
of the order of execution, they would be compatible with the highly parallel
vector processor design of modern GPUs. With just one additional counter
register, one could, for instance, count the total number of pixels correspond-
ing to the current shadow map tile in addition to the number of pixels that have
changed in the last refinement step, allowing us to employ different refinement
metrics. With 4 additional registers with min/max support one could find the
screen-space bounding box around the area influenced by a shadow map tile,
reducing the number of pixels that need to be touched when applying a shadow
map tile to the scene.

4.7 Conclusion

This chapter presented a novel approach to increase the effective resolution
of a shadow map without incurring the respective memory cost and bypassing
maximum texture size limits, in a manner that is adaptive to the shadowing res-
olution needs of the scene. Starting with the brute force approach of Virtual
Tiled Shadow Maps, we have shown that it can be made faster by an order
of magnitude by employing the GPU’s occlusion query mechanism to get back

44

Queried Virtual Shadow Maps Chapter 4

information about the effect of a SM-tile refinement step to the CPU. This infor-
mation in turn can be used by the CPU to guide the refinement process. The
refinement metric is directly correlated to the number of pixels that changed in
the scene due to the SM-tile refinement, allowing the algorithm to reduce or
even remove perspective and projection aliasing.

We have also proposed hardware extensions that should integrate well with
existing hardware architectures, which could be used to improve the efficiency
of the algorithm even further and allow for other smart algorithms that combine
GPU power with CPU versatility.

45

Chapter 4 Queried Virtual Shadow Maps

(a) 40962 conventional SM

(b) 32×32 20482 QVSM

Figure 4.9: Quality comparison in forest test scene, rendered to 10242

frame buffer. Screenshot taken along path whose frame times are de-
picted in figure 4.6 (pg 39). The effective SM resolution applied to the
scene on the right is 655362, 256 times larger than the SM on the left.

46

Queried Virtual Shadow Maps Chapter 4

(a) 40962 normal shadow map

(b) 32×32 QVSM

Figure 4.10: Comparison of quality and performance of normal SMing
with QVSM. Normal SMing exhibits strong projection aliasing; QVSM
strongly reduces the aliasing artifacts (thereby also revealing the coarse
polygonal nature of the terrain).

47

Chapter 4 Queried Virtual Shadow Maps

4.8 QVSM Core Algorithm

The basic version of Queried Virtual Shadow Maps works as follows (the follow-
ing is schematic C++ code to facilitate the understanding of the core algorithm,
not the actual implementation):

const int nr_tile_per_axis_max = 16;

const int nr_pixel_min_changed = 300;

ShadowResultTexture& srt = GetShadowResultTexture();

ShadowResultTexture& srt_old = GetShadowResultTextureOld();

// Set the current shadow result texture to "completely lit"

ClearTexture(srt,1.0);

// Render Scene, including the linear Viewspace Depth into

// (r,g,b,a=depth)-float-Texture with attached

// conventional depth buffer (clear both before rendering)

RenderSceneIntoEyeSpaceDepthBuffer();

// Calculate the light-space matrix

// and focus the whole shadow map

D3DXMATRIX light_space;

CalculateLightSpace(&light_space);

// Queue holding the shadow map tiles to be rendered

SmTileRefinementQueryContainer smtrqc_render;

// Queue holding the shadow map tiles with pending queries

SmTileRefinementQueryContainer smtrqc_pending;

// Prepare the initial SM-tile covering the whole

// SM for rendering

smtrqc_render.AddQuery(

new SmTileRefinementQueryPixelCount(

new SmTile(0,0,1) // tile at (0,0), nr_tile_per_axis = 1

)

);

// Refine & Render SM-Tiles

while(!smtrqc_render.empty() || !smtrqc_pending.empty()) {

// Copy current shadow result texture to

// old shadow result texture. The "old" is used

// as an input to the pixel shader to decide

// whether or not to reject the new fragment.

// On a NV GF6600 and ATI X1900, it is faster

// to not copy and use SRT_old = SRT instead.

CopyTextureFromTo(srt,srt_old);

48

Queried Virtual Shadow Maps Chapter 4

// Shadow the current ShadowResultTexture with all

// pending shadow map tiles

while(

SmTileRefinementQuery* p_smtrq_render =

smtrqc_render.PopNextQuery())

{

// Create the shadow map texture for the curren tile

const SmTile& sm_tile = p_smtrq_render->GetTile();

const ShadowMapTexture& smt =

RenderSceneInLightFrustrumIntoShadowMap(sm_tile);

// Shadow shadow result texture with the just created

// tile-SM, clamped with occlusion queries

p_smtrq_render->QueryStart();

ShadowShadowResultTextureWithSmTileShadowMap(

sm_tile.ProjectionMatrixGet()*light_space, // light frustrum

smt, // do SM lookups here

srt, srt_old // write into srt, compare with srt_old

);

p_smtrq_render->QueryEnd();

// Add query to the pending occlusion query queue

smtrqc_pending->AddQuery(p_smtrq_render);

}

// Wait until the first occlusion query is ready

while(!smtrqc_pending.FinishedQueryAvailableQ());

SmTileRefinementQuery* p_smtrq_ready =

smtrqc_pending.PopNextFinishedQuery();

// Decide whether to split the tile into 2x2 subtiles

if(p_smtrq_ready->NrTilePerAxis() < nr_tile_per_axis_max &&

p_smtrq_ready->NrPixelChanged() > nr_pixel_min_changed)

{

SmTile& sm_tile = p_smtrq_ready->GetTile();

// the subtiles live in a virtual space 2x

// as large in each dimension as the parent

int ix_sub = 2 * sm_tile.TilePosX();

int iy_sub = 2 * sm_tile.TilePosY();

int nr_tile_per_axis_sub = 2 * sm_tile.NrTilePerAxisGet();

for(int ix_rel=0; ix_rel < 2; ++ix_rel) {

for(int iy_rel=0; iy_rel < 2; ++iy_rel) {

smtrqc_render.AddQuery(

new SmTileRefinementQueryPixelCount(

new SmTile(

ix_sub + ix_rel,

iy_sub + iy_rel,

nr_tile_per_axis_sub

)

)

49

Chapter 4 Queried Virtual Shadow Maps

);

}

}

DEL(p_smtrq_ready); // this tile query is finished ;-)

}

}

// Shadow the scene by modulating it with the ShadowResultTexture

// FrameBuffer.RGB = ShadowResultTexture * EyeSpaceDepthBuffer.RGB

ShadowSceneWithShadowResultTexture();

50

Chapter 5

Fitted Virtual Shadow Maps

Figure 5.1: Left: Shadow map reparametrization techniques (lightspace
perspective shadow maps is used here) alone cannot guarantee subpixel
accuracy for neither all light directions nor large scenes, even with the
largest shadow map supported by the GPU. Right: Fitted Virtual Shadow
Maps allow the scene to be shadowed with subpixel accuracy, while still
supplying real-time framerates.

5.1 Introduction

This chapter presents Fitted Virtual Shadow Maps, another smart Virtual
Shadow Map based algorithm, able to remove or greatly reduce shadow map-
ping undersampling artifacts perspective and projection aliasing. Like Queried
Virtual Shadow Maps, it also aims to refine the shadow map only where
needed, and is also designed to be fast enough to do the full refinement each
frame.

51

Chapter 5 Fitted Virtual Shadow Maps

Contrary to Queried Virtual Shadow Mapping, instead of counting the number
of changed shadow pixels in the last refinement step, and use this metric to
decide whether to further refine a SM-tile into 4 sub-tiles, Fitted Virtual Shadow
Mapping tries to discern beforehand what SM-resolution is needed where in the
scene.

It does so by first sampling the scene from the eye-point on the GPU to be able
to calculate the needed shadow map resolution in different parts of the scene.
It then processes the resulting data on the CPU in several steps, finally arriv-
ing at a hierarchical grid structure, which is then traversed in kd-tree fashion,
shadowing the scene with shadow map tiles of the required resolution where
needed. Fitted Virtual Shadow Maps allow for shadow quality to be traded for
speed through an intuitive to use parameter, which allows for a homogenous
quality reduction in the whole scene, down to the quality of normal shadow
mapping.

Figure 5.1 compares the quality of conventional shadow mappingwith Fitted
Virtual Shadow Maps.

5.2 Abbreviations

The following abbreviations are used in this chapter:

Abbreviation Meaning

FVSMs Fitted Virtual Shadow Maps
LiSPSM Lightspace Perspective Shadow Maps [WSP04]

SM Shadow Map
SMing Shadow Mapping

SM-Tile Shadow Map Tile (see Section 3.3)
SMTMM Shadow Map Tile Mapping Map (see Section 5.3)

5.3 Fitted Virtual Shadow Mapping

FVSMs works by discerning each frame what SM-resolution is needed where in
the scene. The following gives an overview over the algorithm (see the following
sections for details): (In the following, ”supplying subpixel accuracy” for a SM-
tile means that for the current eye-point and frame buffer resolution, the SM-tile
has enough resolution in its corresponding SM texture, so that when the scene

52

Fitted Virtual Shadow Maps Chapter 5

(a) 40962 normal SM

(b) FVSM 32×32 max SM-tiles

Figure 5.2: Quality comparison at end of test path through winter forest
(LiSPSM SM reparametrization active in all screenshots).

is shadowed with the the SM-tile, the resulting shadow is subpixel accurate, i.e.
free of aliasing shadow map artifacts1).

1. Render the view-space linear depth information of the scene into the
Eye-Space Depth Buffer, as under Virtual Tiled Shadow Mapping (sec-
tion 3.3.3 (pg 26)).

2. Use the Eye-Space Depth Buffer bound to a fragment-shader to create
1In practical terms that means that for a static light the resulting shadow displays no visible

shadow map texels and is stationary even if SM focusing is used, i.e. it behaves as expected from
a shadow; another way to put it is, that it looks like a shadow cast by a shadow volume, while still
retaining shadow map advantages, such as needing no extra scene information, or being able to
shadow non-polygonal or alpha textured objects.

53

Chapter 5 Fitted Virtual Shadow Maps

what we call the “Shadow Map Tile Mapping Map” (“SMTMM”; see Fig-
ure 5.3 (pg 55)). The SMTMM contains information for each pixel in the
scene about 1) where the pixel will query the shadow map, when inquir-
ing whether it lies in the shadow, and 2) what resolution the shadow map
would require along each SM-axis at this position to supply subpixel ac-
curacy when answering the shadow map query.

3. Transfer the SMTMM to CPU memory and process it to create the
“Shadow Map Tile Grid”. The Shadow Map Tile Grid contains infor-
mation about what resolution each SM-tile of a virtual n× n Tiled SM
would need along each SM-axis to supply subpixel accuracy when used
to shadow the scene.

4. Construct the “Shadow Map Tile Grid Pyramid” above the Shadow Map
Tile Grid, by pulling up the maximum needed SM-tile resolution along
each axis.

5. Traverse the Shadow Map Tile Grid Pyramid recursively top down, build-
ing an implicit kd-tree of SM-tiles. When the resolution requirement of a
such created SM-tile can be satisfied along both SM-axes with a SM-tile-
texture with dimensions supported by the GPU, the corresponding SM-tile
shadow map is created and immediately used to shadow its part of the
scene as under Deferred Shadowing (section 3.3.3 (pg 26)).

The following explains the steps in more detail, and in section 5.12 introduces
an important optimization to the basic algorithm:

5.4 Eye-Space Depth Buffer

First, we render the view-space depth information of the scene into the Eye-
Space Depth Buffer, as under 3.3.3 (pg 26). For efficiency reasons we again
use a 4× f loat RGBA-buffer and at the same time render into it the unshad-
owed RGB color of the scene, so we do not have to rerender the scene (Note:
If an application is using depth-first rendering, i.e. starting with a z-only pass,
then a 1× f loat buffer should be used for the Eye-Space Depth Buffer for the
z-only pass, again with a conventional 1/z-depth buffer attached).

5.5 Shadow Map Tile Mapping Map - Motivation

This section motivates the concept of the SMTMM, and gives a high level de-
scription of how its entries are constructed.

54

Fitted Virtual Shadow Maps Chapter 5

Figure 5.3: Illustration of Shadow Map Tile Mapping Map (SMTMM) cre-
ation.

To know beforehand what SM-resolution is needed where in scene we want to
calculate for each screen pixel

1. During shadow mapping, at which point will the pixel query (sample) the
SM ?

2. What is the extent of the pixel as seen from the light ?

The first question is straightforward to understand: Each pixel corresponds to a
3D-point in world space (where the ray from the eye-point intersects the scene).
If we project this point into the SM, we know where the pixel will query the SM.

The second question needs some explaining: What do we mean by “extent of
the pixel as seen from the light” ? Each pixel on the screen can be interpreted
as a small “pixel-view frustum” going from the eye-point through the 4 corners
of the pixel into the scene. The pixel actually represents the area in the scene,
where the pixel-view frustum intersects the scene (One can visualize this as a
spot light located in the eye-point projecting the pixel onto the scene). We are
interested in the the size and the orientation of the projection of the pixel into
the scene, locally approximated by a planar patch (“pixel-patch”2).

2Note that “patch” is used in its more common meaning here, not in the sense of e.g. a patch in
NURBS modeling.

55

Chapter 5 Fitted Virtual Shadow Maps

The size of the pixel-patch is related to perspective aliasing, since the less the
pixel-view frustum extends into the scene before intersecting it, the smaller the
patch that is projected onto a screen pixel will be, the more resolution the SM
will need at this spot, so that the SM-texel covering the spot is not larger than
the patch.

The orientation of the patch relative to the direction of the light rays is related
to projection aliasing, since the more the orientation of the patch is orthogonal
to the light direction in the area of the patch, the more resolution the SM will
need at this spot, so that the projection of the SM-texel onto the patch does not
become larger than the patch.

More mathematically put, what we do is the following: We construct a planar
patch approximation of the scene area which is projected onto a screen pixel.
Then we project this patch into the SM, getting a quadrilateral in the SM. This
quadrilateral needs to have a 1:1 correspondence to a SM-texel in the SM, if
the resulting shadow at the scene area of the patch (i.e. at the screen pixel)
shall be pixel accurate. To get the required SM-resolution at the point where
the pixel will sample the SM from the quadrilateral, we compute an SM-axis-
aligned bounding rectangle around it. We store the extent of the quadrilateral
bounding rectangle along each SM-axis in the SMTMM, as a measure for the
required SM-resolution along each SM-axis at this pixel.

The only remaining question is, how to efficiently construct the pixel-patch ? We
do this using the linear depth information (zview stored in the Eye-Space Depth
Buffer). First we calculate the positions of the centers of the 4 left/right and
upper/lower neighboring pixels of the current screen space pixel, and look up
their respective linear depth. Following that, we pick the left or right neighboring
pixel which has the larger absolute depth difference to the depth of the current
pixel. The reason why we pick the point with the larger absolute difference
in depth is that we do not want to miss a surface which is seen at a strafing
angle from the eye-point. We then do the same for the upper/lower neighboring
pixel, arriving, together with the current pixel center, at 3 points which span
a plane which we use to construct the pixel-patch. We do so by calculating
the positions of the left/right and upper/lower neighboring pixels on the plane,
which we then transform from (xscreen,yscreen,zview to view space ((xeye,yeye,zeye)
using the Deferred Shadowing unproject transformation 3.1 (pg 28). Applying
the inverse view space transform we then arrive at the world space coordinates
of the pixel-patch.

Note that due to the neighboring pixels coordinates being calculated in screen
space (i.e. post-projective space), the pixel-patch automatically is correctly
“perspective un-shortened” through the unproject transformation 3.1, i.e. he is

56

Fitted Virtual Shadow Maps Chapter 5

the larger the farther away he is from the eye-point.

From there we can easily project the pixel-patch into SM-space via the light
space transform, arriving at the SM quadrilateral corresponding to the pixel-
patch in light space, around which we finally construct the SM-axis aligned
bounding rectangle.

Note that due to using the depth information in the vicinity of the current pixel in
the calculation of the pixel-patch, the algorithm also works if the SMTMM has
a smaller resolution than the screen.

Figure 5.3 (pg 55) shows the SMTMM pixel grid, a corresponding pixel-patch
(in red) being projected into the SM, and the resulting information about the
SM projected center of the pixel and the pixel-patch bounding rectangle being
stored at the SMTMM pixel.

5.6 Shadow Map Tile Mapping Map - Technical
Details

The “Shadow Map Tile Mapping Map” (“SMTMM”) is a 4× byte buffer. One
can think of it as being laid on top of the frame buffer, normally having less
resolution than the frame buffer, and containing information about the shadow
map resolution needs of the scene in the area that each SMTMM “pixel” covers.

The first two byte values in each SMTMM entry (“pixel”) contain information
about the position where the center of the frame buffer rectangle will query
the shadow map; the last two byte entries represent the resolution needed
along each SM-axis at the position in the shadow map. We use byte values
for the entries to keep the read-back operation and the CPU processing in the
next step fast; for the same reason, the SMTMM is normally chosen to have
lower resolution than the frame buffer (see the results section for a practical
range of values). Using byte values for the shadow map gives us information
about the needed SM-resolution discretized to a 256×256 grid of SM-tiles; this
is no restriction in practice, since for e.g. 40962 SM-tile-textures, a maximum
refinement of 256×256 gives subpixel accuracy even for large scenes.

The position in the shadow map is calculated in the pixel shader by trans-
forming the screen-space coordinates (xw,yw) of the pixel (passed to the pixel
shader as texture coordinates) and the eye-space z (=depth) entry ze, read from
the Eye-Space Depth Buffer, into eye-space (xe,ye,ze) using the matrix given
in section 3.3.3, formula 3.1 (pg 28); from there it is transformed into the light
space of the shadow map. Since the coordinates will already be in the range

57

Chapter 5 Fitted Virtual Shadow Maps

[0,1], simply outputting them to the 4×byte SMTMM surface will automatically
lead to it being converted to byte range ([0,255]) by the graphics hardware.

The resolution requirement along each SM-axis is approximated as follows in
the pixel shader: First we calculate the (x,y)-coordinates of the neighboring
screen space-pixels in x- and y-direction in [0,1]2 (i.e. the left/right and up-
per/lower screen space neighbors position in texture coordinates) from the
texture coordinate of the current pixel passed to the pixel-shader. We then
use these texture coordinate to look up the corresponding view-space depth
values in the Eye-Space Depth Buffer; from these, we calculate the smaller
absolute ∆z along the x- and y-axis, ∆zx and ∆zy. We then use these ∆z val-
ues together with the x,y-coordinates of the neighboring pixels to construct
an approximate rectangle representing the current pixel in space. Then we
project this rectangle into SM-space, and calculate a SM-axis-aligned bound-
ing box around it. The half length of each of this bounding box’s extent, ∆sm axis,
with sm axis = {0,1}, is then used as the base measure for the required SM-
resolution along each SM-axis at this point.

To then quantize the needed SM-resolution along the SM-axis into a byte value,
we use the following formula:
−log2(round(∆sm axis + f loat2(0.5,0.5))/256
(i.e. we output it as a logarithmic value normalized to the range [0,1], which the
the graphics hardware again automatically converts to byte range).

The conversion to a logarithmic scale allows us to represent a large scale of
required SM-resolutions in a byte value, from 1 × 1 to 2255 × 2255.

We add 0.5 before the logarithmic transformation to not get a one-too-small
required SM-resolution value when the resulting logarithmic value, normalized
to [0,1] by dividing by 256, is quantized to the integer byte range (mapped onto
the 255 byte values) when the pixel shader result is written into the SMTMM.

The full SMTMM creation pixel shader can be found in section 5.17 (pg 73).

5.7 Shadow Map Tile Grid Creation

To create the “Shadow Map Tile Grid” (“SMTG”) we then read back the
SMTMM to CPU memory. In practice it suffices for the SMTMM to have lower
resolution than the frame buffer, e.g. 256×256, which makes the readback and
CPU processing fast (note that the equality of the SMTMM dimension of 256
in this example and the number of 256 distinct values in the SMTMM entries is
coincidental).

58

Fitted Virtual Shadow Maps Chapter 5

Note that the SMTMM is in screen space whereas the SMTG is in light space.

What we want is a n×n SM-tile-grid structure, with each grid cell containing the
needed resolution along each SM-axis and the screen space bounding rect-
angle for each SM-tile, an axis aligned rectangle around the pixels on screen
that are affected by the SM-tile. As in brute-force n× n Virtual Tiled Shadow
Mapping above, n is the maximum number of SM-slices along each SM-axis
we would like to allow; a typical value for n would be 16 or 32, corresponding
to 256 or 1024 SM tiles for Virtual Tiled Shadow Maps.

The random memory access ability of the CPU is well suited for this task; af-
ter having read back the SMTMM, we lock the surface and process each pixel
entry: We use the stored information about the SM-tile position to access its
corresponding SM-tile-grid cell, and update 1) its needed SM-resolution en-
tries along each SM-axis (minimally by maximizing the existing value with the
entries in the SMTMM; see below for details) and 2) its screen space bounding
rectangle (through extending it to enclose the pixel position of the current pixel
in the SMTMM).

Since the SMTMM generally is chosen to have a much larger resolution than
the SM-tile-grid, e.g. 256 entries per axis compared to e.g. 32, data from
several SMTMM entries will be accumulated in the same SM-tile-grid cell.

Minimally it would suffice to only record the maximum needed resolution along
each SM-axis in each grid cell; however, to be able to allow for discarding very
few pixels requiring a large resolution later on (which can come from e.g. a
very small area on screen having an orientation which leads to large projection
aliasing), we actually count the number of pixels in each grid cell requiring a
certain resolution. We use fixed size arrays at each SM-tile-grid-cell to hold the
pixel count statistics. To allow us to use fixed size arrays and keep them small,
we count the number of pixels below a resolution η0 and above a threshold
resolution η1 in one array entry respectively, and the number of pixels needing
a resolution in between each in their own entry; this is to keep cache locality
high, since we are not interested in the detailed statistics of pixels with very
small resolution requirements, because evidently they are easy to fulfill, and
hypothetical pixels with extremely high resolution requirements, which do not
occur in practice. See the results section for practical values for η0 and η1.

The following pseudocode illustrates the Shadow Map Tile Grid Creation:

// smtg ... instance of the SMTG

// shift ... shift-converts from the SMTMM SM-coordinates

// entries to SMTG ones (e.g. [0,255] => [0,31])

const int shift = 256/smtg.n

// smtmm ... instance of the SMTMM

59

Chapter 5 Fitted Virtual Shadow Maps

// smtmm.n ... extent of SMTMM along both axes

for ix_smtmm = 0 to smtmm.n - 1

for iy_smtmm = 0 to smtmm.n - 1

SMTMM_Cell c_smtmm = smtmm(ix_smtmm,iy_smtmm)

SMTG_Cell c_smtg =

smtg(smtmm.ix_sm >> shift,smtmm.iy_sm >> shift)

// Update the screen-space, axis aligned bounding box

// around the SM-tile

c_smtg.abb_screen.ExpandToIncludePoint(

ix_smtmm/smtmm.n,iy_smtmm/smtmm.n

)

// Update the maximum needed SM-resolution

c_smtg.sm_res_x = MAX(c_smtg.sm_res_x,c_smtmm.sm_res_x)

c_smtg.sm_res_y = MAX(c_smtg.sm_res_y,c_smtmm.sm_res_y)

5.8 Shadow Map Tile Grid Pyramid Creation

After we have filled the SM-tile-grid with data from the SMTMM, we proceed
by building a pyramid (“Shadow Map Tile Grid Pyramid”, “SMTGP”) of SM-
tile grids on top of it, where each successive grid has halved dimensions of its
predecessor and the needed resolution along each SM-axis is the maximum of
the corresponding 2× 2 grid cells in the predecessor grid; i.e. we pull up the
needed resolution along each SM-axis by replacing 2×2 cells with one cell in
the next smaller grid, containing the maximum value of each of the 4 cells and
the screen space bounding rectangle around all 4 bounding rectangles.

Note that the “needed resolution along each SM-axis” refers to a theoretical
single shadow map focused on the scene, with a resolution large enough to
give subpixel accurate shadows; replacing the 2×2 = 4 values with their maxi-
mum in the parent cell in the next higher Shadow Map Tile Grid Pyramid level
is therefore not a heuristic, but a mathematically exact operation (The 1×1 top
level grid then contains the resolution needs for this theoretical single shadow
map; as can be seen in the Results section, it grows to dimensions ≥ 131072
(= 16× 8192) even for medium-sized scenes, which would require ≥ 64 GB of
GPU memory).

The Shadow Map Tile Grid Pyramid Creation in pseudocode:

// smtg ... instance of the initial SMTG

// smtg.n ... extent of SMTG along both axes

// i_pyramid ... SMTGP index

const int i_pyramid = log2(smtg.n)

60

Fitted Virtual Shadow Maps Chapter 5

while(i_pyramid > 0)

// smtgp ... instance of the SMTGP

smtgp(i_pyramid) = smtg

for ix = 0 to smtgp(i_pyramid).n - 1

for iy = 0 to smtgp(i_pyramid).n - 1

SMTGP_Grid_Cell c_curr = smtgp(i)(ix,iy)

SMTGP_Grid_Cell c_parent = smtgp(i-1)(ix >> 1,iy >> 1)

// Update the screen-space, axis aligned bounding box

// around the parent SM-tile

c_parent.abb_screen.ExpandToIncludeABB(c_curr.abb_screen)

// Update the maximum needed SM-resolution

c_parent.sm_res_x = MAX(c_parent.sm_res_x,c_curr.sm_res_x)

c_parent.sm_res_y = MAX(c_parent.sm_res_y,c_curr.sm_res_y)

i_pyramid = i_pyramid >> 1

5.9 Shadow Map Tile Grid Pyramid Traversal

Finally we traverse the grid pyramid top down, building an implicit kd-tree as we
recursively traverse it, as follows: If the resolution requirement of the SM-tile-
grid cell along at least one axis cannot be satisfied with a SM-tile-texture with
dimensions supported by the GPU (e.g. on current GPUs typically: required
SM-dimension > 4096), we split it symmetrically along one or both SM-axis
into 2 or 4 subcells. We split into 2 subcells if only one axis has SM resolu-
tion requirements which cannot be fulfilled, otherwise we split into 4 subcells.
Otherwise we use Deferred Shadowing (see Section 3.3.3) immediately cre-
ating the SM-tile with the required resolution along each axis and shadowing
the Shadow Result Texture (see next paragraph) with it, using the Eye-Space
Depth Buffer to get the depth values of the scene, as described in section 3.3.3.

The “Shadow Result Texture” again (see Section 3.4 (pg 29)) is a 1× byte

texture with the same dimensions as the frame buffer, into which we write only
the results of the shadowing operation.

Pseudocode for the traversal of the Shadow Map Tile Grid Pyramid:

// SMT ... SM-tile instance

// P ... SMTGP pos index + pyramid index

// smtq ... queue holding SMT

smtq.push(SMT(P(0,0),P(0,0)))

while(!smtq.empty())

SMT smt = smtq.pop()

int ip_x = smt.ip_x, int ip_y = smt.ip_y

int sx = max(0,ip_y-ip_x), int sy = max(0,ip_x-ip_y)

61

Chapter 5 Fitted Virtual Shadow Maps

Rect rect(ix << sx,iy << sy, ((ix+1) << sx)-1,((iy+1) << sy)-1)

// ex and ey are 0 for no further refinement, 1 otherwise

int ex = RefineQ(smtgp(

MAX(ip_x,ip_y)).MaxSmResInRect(rect).sm_res_x,ip_x,framebuffer.nx)

int ey = RefineQ(smtgp(

MAX(ip_x,ip_y)).MaxSmResInRect(rect).sm_res_y,ip_y,framebuffer.ny)

if(ex > 0 || ey > 0) // refine this SM-tile further

int ip_x_sub = smt.ix + ex, int ip_y_sub = smt.iy + ey;

int ix_sub = smt.ix << ex, int iy_sub = smt.iy << ey;

for diy=0 to ey

for dix=0 to ex

smtq.push(SMT(P(ix_sub+dix,ip_x_sub),P(iy_sub+diy,ip_y_sub)))

else // do not refine this SM-tile further

ShadowShadowResultTextureWithSmTile(smt)

with

// sm ... SM-texture

RefineQ(sm_res_needed,i_refinement,framebuffer_nx_or_ny) {

return sm_res_needed > i_refinement -

log2(sm.n) - round(log2(framebuffer_nx_or_ny/smtmm.n)+0.5)

}

5.10 Apply Shadow to Scene

In a final step we combine3 the scene RGB from the Eye-Space Depth Buffer
with the Shadow Result Texture, and write the resulting shadowed scene into
the frame buffer.

The whole algorithm not only leads to a greatly reduced number of SM-tiles
that need to be created compared to the brute-force approach, but also uses
smaller and rectangular SM-tile textures for farther away SM-tiles. It therefore
makes much higher quality shadow maps possible in real-time. Please see the
Results section for a quantitative comparison.

5.11 Quality vs Performance Parameter

Fitted Virtual Shadow Maps allow for the introduction of a very intuitive quality
vs performance parameter ξ : Subtracting an integer number ξ from the loga-
rithmic resolution requirement value coming from the SMTMM, when deciding

3e.g. modulate the scene RGB with the Shadow Result Texture

62

Fitted Virtual Shadow Maps Chapter 5

whether to further refine a SM-tile, allows us to intuitively influence the quality
of the resulting shadow in the scene; the larger ξ , the fewer tiles will be cre-
ated and the better the performance will be. This allows the algorithm to be
tuned to a wide range of hardware. Note that the influence of the parameter is
smooth, in the sense that it influences the shadow quality of the whole scene
in the same way. If ξ is chosen to be large enough, so that only one SM-tile is
created, then the shadow quality of Fitted Virtual Shadow Mapping is the same
as normal shadow mapping.

5.12 Shadow Map Tile Texture Size Optimization

The basic FVSM algorithm refines the shadow map until the required resolution
of each SM-tile along each SM-axis is small enough that it can be satisfied with
the maximum quadratic SM texture size which the GPU can handle. In practice,
the resolution needs along the SM-tile axes often actually do not require a SM-
texture which is quadratic and has the maximum GPU supported resolution, but
instead a rectangular SM-texture with less resolution could be used. This can
be understood from the fact, that there will always be perspective shortening in
the scene, i.e. the pixels farther away from the eye-point will always require less
SM-resolution (Note that due to the splitting of the SM into tiles this is always
the case for farther away tiles, independent of the view direction relative to the
light direction, contrary to SM reparametrization techniques, which can only
profit from the perspective shortening for light directions which are not parallel
or antiparallel to the view direction); projection aliasing can of course counteract
this, but even then, the projection aliasing does not normally influence both SM-
axes at the same time.

This leads to the optimization that, to reduce the fillrate requirements of the
algorithm, instead of using a quadratic maximum-sized texture for all SM-tiles,
we create a rectangular SM according to the resolution requirements along
each axis. There are 3 different ways to do this:

1. Render into a sub-rectangle of the same quadratic, maximum sized tex-
ture.

2. Render into a sub-rectangle of a series of quadratic power-of-two shadow
map textures, where each texture in the series has halved dimensions
relative to its predecessor.

3. Render into shadow map textures with the exact needed dimensions (=
resolution) along each SM-axis.

63

Chapter 5 Fitted Virtual Shadow Maps

At first glance it might seem obvious that the first approach is the best, since
it evidently requires the minimum amount of GPU memory. However, it is not
the fastest approach, which can be seen by realizing that the rows of a texture
are usually arranged consecutively in GPU memory; this means, that memory
and cache coherence suffer, when one renders to a sub-rectangle of a texture
which has a larger width than the sub-rectangle (see Figure 5.5 (pg 66) to see
how much performance difference there is in practice).

Due to this, choosing the right approach becomes a trade-off between speed
and GPU memory consumption. The following analyzes the memory require-
ments of the different approaches.

The memory requirements of the 4 different approaches are as follows (with
tmax being the maximum texture dimension, and w and h being the needed min-
imum width and height SM texture dimensions to satisfy the SM-tile resolution
requirements):

Optimization SM dimension mem usage for tmax = 4096

none tmax
2 1 64 MB

#1 w×h sub-rect of tmax
2 1 64 MB

#2 w×h sub-rect of max(w,h)2 4/3 85 MB
#3 w×h 2 ·4/3 171 MB

This can be seen, by observing that the for optimization 2, the required SM tex-
tures have dimensions: {tmax

2,(1
2 tmax)2,(1

4 tmax)2, . . .} leading to the series (with
tmax

2 pulled out) ∑1+ 1
4 + 1

16 + . . . = ∑n=0 (1
4)n ≤ 1

1− 1
4

= 4
3 .

For optimization 3, we arrive at the series (tmax
2 pulled out again)

∑(1 ·1+ 1
2 ·1+1 · 1

2)+(1
2 ·

1
2 +(1

2 ·
1
2) · 1

2 + 1
2 · (

1
2 ·

1
2))+ . . . =

2 ·∑1+ 1
4 + 1

16 + . . . = 2 · 4
3 .

The effective memory consumption given for tmax = 4096 is for 1× f loat SM
textures.

Evidently what we want is a combination of small GPU memory consumption
together with good performance; please see the Results section below for a
performance comparison of the different approaches and a resulting recom-
mendation which optimization variation to use in practice.

5.13 Handling Semitransparent Objects

When using deferred shadowing semitransparent objects must be treated sep-
arately, due to the fact that only the depth entry of the foremost opaque pixel is

64

Fitted Virtual Shadow Maps Chapter 5

stored in the Eye-Space Depth Buffer.

The following lists several approaches to handle semitransparent objects in a
scene together with FVSMing:

1. A trivial solution is evidently to render the semitransparent objects after
having shadowed the scene without shadowing them; this will give them
a (slight) glow effect, which might or might not be acceptable.

2. A second approach would be to again render the semitransparent ob-
jects after having shadowed the scene, shadowing them with with con-
ventional shadow mapping (i.e. using a single shadow map). In practice,
semitransparent objects are usually implemented to only receive shad-
ows, but not cast them, due to the increased complexity of the shadowing
problem when semitransparent objects are involved. The fact that in this
case no self shadowing can occur makes this approach practical. Also
note that the shadow (and therefore any artifacts) will be less visible the
more transparent the object is.

3. Less practical but more accurate solutions would work along the line of
rendering the semitransparent objects to a separate buffer storing the
color and linear depth of the foremost semitransparent object. One could
then use this buffer later on to also shadow the foremost semitransparent
object correctly. Note that in this case one also needs twice the number
of entries int the SMTMM.

4. Finally, a completely different approach would be to not use Deferred
Shadowing, but Multi-Pass Shadowing (see Section 3.3.2 (pg 25)) to
apply the SM-tiles to the scene, sped up by restricting the part of the
scene that needs to be rerendered to the screen space extent (see first
paragraph of section 5.8 above) of each SM-tile. In this case the semi-
transparent objects can be rendered and shadowed (with each SM-tile)
as if only a single shadow map were being used.

5.14 Results

Unless otherwise noted, all results were created on an NVidia GeForce
8800GTS with 640 MB of RAM and a Pentium4 3.4 GHz (2 GB RAM).

The aim of our work is to research the applicability and improve the quality of
dynamic shadow map shadows when applied to large to medium-sized scenes.
In practice, the resolution of shadow maps currently supported in hardware suf-
fices to create shadows for light sources with a small area of influence (spotlight

65

Chapter 5 Fitted Virtual Shadow Maps

Figure 5.4: Performance comparison between normal, Virtual Tiled and
Fitted Virtual SMing along path in forest test scene. The FVSM curve was
done using SM-tile texture size optimization #2 (see Section 5.12 (pg 63)).

Figure 5.5: FVSM performance comparison between different SM-tile
creation modes (see Section 5.12 (pg 63)). One can see that each op-
timization smoothes the frame time peaks by a larger amount, getting
closer to the general real-time rendering goal of a constant framerate.

located near the ground with a small spread angle, point light lighting a small
room, etc), especially when combined with shadow map reparametrization. In
addition, evidently the render costs of an algorithm such as FVSMs, although
being much faster than brute-force Virtual Tiled SMing, are currently too high to
apply it to several light sources (see Figure 5.4 for a frametime ccomparsion).

66

Fitted Virtual Shadow Maps Chapter 5

Figure 5.6: FVSM SM-tile application to Shadow Result Texture: Com-
parison between using a fullscreen rectangle and using the SM-tile screen
space bounding rectangle. Again one can see that the optimization has
the beneficial effect of smoothing the frametime peaks.

Our test scene of broad-leaf trees on a hilly terrain was chosen accordingly:
It is a medium-sized outdoor scene, which makes it of practical interest, since
dynamically shadowing outdoor scenes in high quality continues to be a chal-
lenge. It will in many cases be lit by the sun, i.e. a single light source which can
be modeled by a directional light or far away spotlight, and which can therefore
be shadowed using a single shadow map (preferably of a very high resolution).
It also lends itself to be efficiently modeled and rendered using alpha textured
geometry, and can therefore not be shadowed e.g. by shadow volumes; in our
case the fence and the leaves on the trees are alpha textured quads (this could
be extended to e.g. using billboards or billboard clouds for farther away trees).
Additionally, animating the direction of the sunlight turns it into a fully dynamic
scene from the point of view of shadowing it (Note that even if the scene itself is
completely static, any change in the light position, direction etc would result in
invalidating any cached shadow map information, making it unsuited for algo-
rithms that are built on caching shadow map information from previous frames
to work efficiently).

Figure 5.1 shows a screenshot from our test scene; it compares the quality of
normal shadow mapping (40962 shadow map) with Fitted Virtual Shadow Maps
(lightspace perspective shadow maps (LiSPSM) active in both cases).

Figure 5.4 shows frame time curves from a path through a for-
est scene with 105 triangles rendered into a 1024 × 1024 frame buffer

67

Chapter 5 Fitted Virtual Shadow Maps

(you can download the videos of the flythrough along the path at
http://www.cg.tuwien.ac.at/research/vr/fvsm). The uppermost curve depicts
brute-force Virtual Tiled SMing, using 16× 16 40962 shadow maps; the FVSM
curve shows Fitted Virtual SMs with adaptive SM-tile shadow map textures size
optimization #2 (see Section 5.12 (pg 63)) and 32× 32 maximum refinement.
The 1× 1 SM-curve finally gives the frame times for conventional SMing us-
ing a 40962 shadow map texture (leading to greatly reduced shadow quality).
LiSPSM was active for all renderings. Figure 5.2 shows screenshots at the end
of the path through the forest scene

Figure 5.5 shows a performance comparison (along the same path in the
scene) between different FVSM SM-tile creation modes (see Section 5.12).
The important thing one can see is, that this optimization smoothes the frame-
time peaks, i.e. it improves the worst case performance of the algorithm. One
can also see that each of the SM-tile creation modes is faster than its predeces-
sor. Since the memory consumption of the 3rd scheme relative to the first two
is 4/3 (i.e. it consumes only one third more memory), in practice rendering to
a sub-rectangle of a series of quadratic power-of-two shadow map textures is
the best compromise between performance and memory consumption in most
cases.

Figure 5.6 compares the performance of applying the SM-tiles to the Shadow
Result Texture using a fullscreen quad or the screen space bounding rectangle
around each respective SM-tile (see Section 5.8). Note that again the frame-
time peak at around 3.5s is smoothed, improving the worst case performance
of the algorithm by around 25%.

For a 10242 frame buffer we found that a 2562 SMTMM gave good results, while
at the same time keeping the SMTMM creation and processing overhead low.

For the detailed SM-tile-required-resolution-statistics parameters η0 and η1, we
have found that η0 = 17 and η1 = 22 work well in practice.

Section 5.16 (pg 70) below discusses the influence of the quality vs perfor-
mance parameter ξ for ξ = 0, . . . ,5, where ξ = 5 gives equivalent shadow qual-
ity to normal shadow mapping. One can see that the shadow quality decreases
homogenously in the whole scene.

The absence or presence of undersampling artifacts when using shadow map-
ping with focusing can be best seen in motion, so please see some videos and
screenshots on the corresponding webpage4.

4http://www.cg.tuwien.ac.at/research/vr/fvsm

68

Fitted Virtual Shadow Maps Chapter 5

5.15 Conclusion

This chapter described Fitted Virtual Shadow Maps, a new smart shadow
map algorithm which allows for the efficient shadowing of large scenes with-
out undersampling artifacts, while at the same time making use of previous
shadow map improvements, such as shadow map focusing and shadow map
reparametrization techniques. Virtual Shadow Mapping allows the algorithm to
bypass the memory cost and texture size limits of current GPUs. Instead of
brute-force Virtual Tiled Shadow Mapping, Fitted Virtual Shadow Maps employ
a combination of GPU and CPU processing to create a map which contains
information about what resolution would be required where in a shadow map
to give subpixel accuracy when shadowing the scene. This leads to a per-
formance increase of at least an order of magnitude over the brute-force ap-
proach, while still greatly reducing or even removing perspective and projection
aliasing. The algorithm can be tuned with several parameters according to the
quality requirements of the scene; most importantly the shadow quality can be
uniformly reduced down to normal shadow mapping by use of a very intuitive
quality-vs-speed parameter.

69

Chapter 5 Fitted Virtual Shadow Maps

5.16 Influence of ξ

The following screenshots show the influence of the FVSM quality vs perfor-
mance parameter ξ on the graphical quality of the resulting shadow and per-
formance. One can see that with increasing ξ , the shadow quality is reduced
homogenously in the whole scene.

(a) FVSM ξ = 0

(b) FVSM ξ = 1

Figure 5.7: Influence of FVSM quality vs performance parameter ξ .

70

Fitted Virtual Shadow Maps Chapter 5

(c) FVSM ξ = 2

(d) FVSM ξ = 3

(e) FVSM ξ = 4

Figure 5.7: (continued) Influence of FVSM quality vs performance pa-
rameter ξ .

71

Chapter 5 Fitted Virtual Shadow Maps

(f) FVSM ξ = 5

(g) normal SMing

Figure 5.7: (continued) Influence of FVSM quality vs performance pa-
rameter ξ . The last screenshot shows 40962 normal shadow mapping for
comparison; one can see that FVSM with ξ = 5 above gives the same
quality.

72

Fitted Virtual Shadow Maps Chapter 5

5.17 SMTMM Creation Pixel Shader

Ps_OUT PsCreateShadowMapTileMapping(Ps_IN IN)

{

Ps_OUT OUT;

// texture coordinate of center of current pixel

float2 tc_pixel_center = IN.v2_tc.xy;

// texture coordinates of right,left,upper and lower neighbor

// of current pixel, clamped to rendertarget extent

float2 tc_pixel_neighbor_right =

float2(clamp(tc_pixel_center.x +

rendertarget_nr_pixel_inv.x, 0, 1), tc_pixel_center.y);

float2 tc_pixel_neighbor_left =

float2(clamp(tc_pixel_center.x -

rendertarget_nr_pixel_inv.x, 0, 1), tc_pixel_center.y);

float2 tc_pixel_neighbor_upper =

float2(tc_pixel_center.x, clamp(tc_pixel_center.y +

rendertarget_nr_pixel_inv.y, 0, 1));

float2 tc_pixel_neighbor_lower =

float2(tc_pixel_center.x, clamp(tc_pixel_center.y -

rendertarget_nr_pixel_inv.y, 0, 1));

// read viewspace z for current pixel from \ESDB{}

float z_view_center = tex2D(tex_shadow_depth_buffer, tc_pixel_center).w;

float2 v2_dz_view_use = float2(

sm_tile_mapping_pick_smaller_dz(z_view_center,

tc_pixel_neighbor_left,tc_pixel_neighbor_right),

sm_tile_mapping_pick_smaller_dz(z_view_center,

tc_pixel_neighbor_lower,tc_pixel_neighbor_upper)

);

// pos of left neighbor of current pixel in the shadowmap

// ScreenspaceToShadowmapCoordinatesAndLightspaceDepth uses

// the "Deferred Shadowing" matrix to transform to eye-space.

float3 pos_sm_left = ScreenspaceToShadowmapCoordinatesAndLightspaceDepth(

tc_pixel_neighbor_left.x, tc_pixel_center.y,

z_view_center - v2_dz_view_use.x

);

// pos of right neighbor of current pixel in the shadowmap

float3 pos_sm_right = ScreenspaceToShadowmapCoordinatesAndLightspaceDepth(

tc_pixel_neighbor_right.x, tc_pixel_center.y,

z_view_center + v2_dz_view_use.x

);

// pos of lower neighbor of current pixel in the shadowmap

float3 pos_sm_lower = ScreenspaceToShadowmapCoordinatesAndLightspaceDepth(

73

Chapter 5 Fitted Virtual Shadow Maps

tc_pixel_center.x, tc_pixel_neighbor_lower.y,

z_view_center - v2_dz_view_use.y

);

// pos of upper neighbor of current pixel in the shadowmap

float3 pos_sm_upper = ScreenspaceToShadowmapCoordinatesAndLightspaceDepth(

tc_pixel_center.x, tc_pixel_neighbor_upper.y,

z_view_center + v2_dz_view_use.y

);

float2 pos_sm_max =

Max(pos_sm_left.xy,pos_sm_right.xy,pos_sm_lower.xy,pos_sm_upper.xy);

float2 pos_sm_min =

Min(pos_sm_left.xy,pos_sm_right.xy,pos_sm_lower.xy,pos_sm_upper.xy);

// Approximate extent of the current pixel projected onto the shadowmap

float2 dxy_pixel_on_shadowmap = 0.5 * (pos_sm_max - pos_sm_min);

// Measure of resolution needed to shadow this pixel with subpixel accuracy

float2 pixel_shadowmap_resolution_measure;

// use pixel_shadowmap_resolution_measure =

// -log2(round(dxy_pixel_on_shadowmap + float2(0.5,0.5))/256

frexp(sqrt(2.0) * dxy_pixel_on_shadowmap,

pixel_shadowmap_resolution_measure);

//pixel_shadowmap_resolution_measure *= (1.0/256.0);

// [0,255] => [0,1] (for output to 8-bit surface)

pixel_shadowmap_resolution_measure =

ldexp(-pixel_shadowmap_resolution_measure, -8);

// Postion of pixel center in the shadowmap

float3 pos_shadowmap =

ScreenspaceToShadowmapCoordinatesAndLightspaceDepth(

tc_pixel_center.x, tc_pixel_center.y, z_view_center

);

// Output SM-tile position and resolution measure along SM x- and y-direction.

OUT.color =

float4(pos_shadowmap.x, pos_shadowmap.y,

pixel_shadowmap_resolution_measure.x,

pixel_shadowmap_resolution_measure.y

);

return OUT;

}

74

Chapter 6

Discrete LODs

6.1 Introduction

The previous chapters have dealt with increasing the visual quality of shadows
produced by shadow mapping, by increasing the resolution supplied by the
shadow map used to shadow a scene in a smart manner. The following two
chapters deal with another problem of visual quality, this time in the temporal
domain: discrete LOD switching.

Discrete level-of-detail (LOD) rendering is a well known acceleration technique
where complex objects are replaced by successively simpler (in geometry
and/or shading) representations the farther they are from the eye point. During
runtime, the renderer chooses from a series of so-called levels of detail (LODs)
for each object.1.

While discrete LOD creation and selection have been widely researched, LOD
switching, i.e., the question how to stage the transition between two different
discrete levels of detail of an object, is a significant open problem in using
discrete LODs, as evidenced by popping artifacts due to “hard” (i.e. instan-
taneous) LOD switching in state-of-the-art computer games such as Far Cry,
Half-Life 2 or F.E.A.R..

Since LOD switching seems to be a simple task, we have found that most
computer graphic researchers assume that the straightforward approach of do-
ing a conventional (α,1-α)-blend between different levels of discrete LODs
solves the problem. However, this approach does not work, as can be

1This LOD selection is often based either on the distance of the object from the observer, or on
an estimate of the number of projected pixels of the object [FS93]. A detailed and comprehensive
discussion of most level-of-detail techniques can be found in [LRC+02]

75

Chapter 6 Discrete LODs

seen by considering the intermediate states of such a blend, where both
LOD representations—and therefore the whole object—are rendered semi-
transparently, therefore blending with previously rendered objects and/or the
background-color.

The blend could be done using offscreen buffers, but this would have a high
performance and memory usage penalty. Another commonly held opinion is
that the problem can be solved by simply hard-switching at a large enough
distance; while this may be true in a mathematical sense for purely geometric
LODs that do not depend on the environment (e.g., via shaders), we argue
that in practice this does not work due to the nature of the human perception
system and that it defeats the purpose of LODs.

6.2 LOD Switching

Several solutions have been proposed for the problem of LOD switching, i.e.,
the question how to stage the transition between two different discrete levels of
detail of an object2:

6.2.1 Hard Switching

The simplest approach is hard switching, i.e., one LOD is replaced by another
at some point in time. Although simple and fast, due to the nature of human
perception this method leads to very noticeable and visually disturbing temporal
discontinuity artifacts (“popping”).

6.2.2 Late Switching

One seemingly obvious solution is so-called late switching, i.e., to hard-switch
at a “large enough” distance, where the difference between the two LODs is
“no longer noticeable”.

There are several problems with this approach, which make it unfit for practical
use:

It tries to fulfill two conflicting goals: on the one hand, increasing the frame rate
to keep the application real time by switching as early as possible, and on the
other hand, trying to reduce popping artifacts by switching as late as possible.

2more precisely: between its LOD representations; we are using LODs and their representa-
tions interchangeably for brevity reasons.

76

Discrete LODs Chapter 6

To switch as early as possible is necessary because the number of objects
(and therefore the render cost) in a typical 2.5D scene (with a homogeneous
object distribution) for which a more complex LOD has to be rendered increases
quadratically with the switching distance. This is because the number of objects
with distance smaller than r to the viewpoint is ∝ r2.

In addition, fill rate for costly shaders used for nearer LODs of an object is only
saved when the object still covers a significant amount of screen space when
the switch occurs.

As if this were not enough by itself, the second, contradicting goal to reduce
popping by switching as late as possible, can in general not even be attained in
itself, since the human visual system is fine-tuned to notice even small discon-
tinuous changes. This is problematic because two LODs, even when rendered
far from the viewpoint, cannot be guaranteed to produce identical images. The
goal becomes completely unattainable when different shading effects (e.g., en-
vironment maps vs. simpler shading, or rendering specular highlights vs. dif-
fuse shading only) are used for the different LODs, which is frequently the case
in today’s games.

We conclude that late switching is not a practical approach. On the contrary,
one wants to switch to lower LODs as early as possible in order to make good
use of LODs.

6.2.3 LOD Blending in Image Space

LOD blending in image space is often mentioned as a generic way to do the
transition between LODs. However, just linearly blending the two LODs is not
possible, since an incorrect, semitransparent object would result during the
blend, when both LODs get rendered semitransparently into the scene (see
figure 7.1 and the 2nd paragraph in Section 7.2).

A more complex variation of this method would be to render the two LODs
opaquely into separate offscreen buffers and do an (α,1-α)-blend between
them: The render cost to do so is high because it requires two offscreen buffers
(+ depth buffers), the size of the frame buffer, combined with costly render
target switches to the offscreen buffers and back to the frame buffer to render
the result of the LOD blend into the scene. This also requires depth buffer
writes in the pixel shader, prohibiting modern hardware depth buffer speedup
techniques, such as hierarchical depth buffers.

Multisampling hardware (as was supported by the SGI Infinite Reality [EJ00]),
produces worse results than our approach, since the number of stages in the

77

Chapter 6 Discrete LODs

transition is limited to the number of samples in the multisample mask.

6.2.4 Geomorphing

Some mesh representations allow a technique called geomorphing [Hop96,
Hop98], where vertex positions are interpolated between the two LODs. This
requires that each vertex of one LOD can be uniquely identified with a ver-
tex of the second LOD, which is only possible for special multiresolution mesh
representation techniques. While geomorphing is widely referred to as the
highest-quality LOD-switching technique, it can make solid structures (like ter-
rains) appear to be moving in a quasi-organic way, and this effect can be as
disturbing as hard switching itself (although recent approaches have brought
significant improvements in this area, for example for terrain visualization ap-
plications [CGG+03]). While a lot of very interesting research has been done
in this field, due to the comparatively large implementation effort required, and
problems to get it to work fast with modern graphics hardware, very few com-
puter games use geomorphing. Note that even if the geometry transition can be
made fairly smooth, appearance switches (e.g., less complex shaders, which
might be even more important than geometric simplification in today’s games)
are still hard switches and will therefore pop. Also, progressive representa-
tions do not allow completely different LOD representations (e.g., disjointed vs.
skinned LODs). Discrete LODs do not suffer from these limitations, and can
stage such transitions smoothly using the method presented in the following
chapter.

6.3 Popping Examples in Current Games

This section discusses screenshots taken from current, successful computer
games, which all use discrete LODs with hard switching, and therefore exhibit
popping artifacts.

Popping is a phenomenon linked to our temporal perception, it is very obvious
when perceived in action, but can be hard to spot when just comparing two
screenshots on a page; therefore please check the Unpopping webpage3 to
perceive the hard switching dynamically4,5

3http://www.cg.tuwien.ac.at/research/vr/unpopping/examples
4The images on the page take a few seconds to load. Move your mouse over/out of the images

to observe the popping.
5If you view this thesis electronically, you will also find direct links to the online images under

the popping screenshots found on the following pages.

78

Discrete LODs Chapter 6

Figure 6.1 shows 2 screenshots taken in computer game Far Cry6 (released
in March 2004): One can see that the representation of the small palm tree
in the center of the screen changes instantly from a decal imposter (i.e. a
textured quad) to a 3D mesh. The Unpopping algorithm presented in the next
chapter can handle smooth switching between different LOD representations,
such as decal imposter to 3D mesh. Far Cry uses discrete LOD for all its
environment and objects, therefore popping artifacts occur all the time when
the player moves.

Screenshots from Half-Life 27 (released in November 2004) are depicted in
Figures 6.5 and 6.6. Half-Life 2 also uses shader/effect switching in its LOD
system: Figure 6.5 depicts effect switching from a diffuse textured gasoline
tank on the side of the truck to an environment-mapped tank representation.
This is an example of a LOD switch which can not be handled by geometric
smooth-LOD methods; smooth effect switching is made possible through the
Unpopping algorithm presented in the next chapter. Figure 6.6 shows part of
an object (the sideboards of the truck) appearing out of nowhere, making the
hard switch clearly visible even though it takes place far from the player.

Figures 6.3 and 6.4 show popping in the computer game F.E.A.R.8(released
in October 2005). Both show hard switching between different 3D mesh rep-
resentations. Since the quality of rendering in the game is high, and in these
scenes there is nothing to distract the player, the popping is very prominent,
even though F.E.A.R. does use LODs sparingly. Figure 6.3 depicts a LOD
switch only a short distance from the player, showing that commercial games
also do switch LOD early, not late; unfortunately if the switch is done hard, the
popping becomes ever more prominent the closer the player is. Unpopping
(see next chapter) allows for smooth near LOD-switching.

6http://www.wikipedia.org/wiki/Far_Cry
7http://www.wikipedia.org/wiki/Half-life_2
8http://www.wikipedia.org/w/index.php?title=F.e.a.r.&redirect=yes

79

Chapter 6 Discrete LODs

Figure 6.1: Discrete LOD hard switching in Far Cry computer game:
The small palm tree in the center of the screenshot instantly changes its
geometric representation from a decal imposter to a 3D mesh.
To perceive the hard switch dynamically, please visit:
http://www.cg.tuwien.ac.at/research/vr/unpopping/examples/html/fc-1.html.

80

Discrete LODs Chapter 6

Figure 6.2: Discrete LOD hard switching in Far Cry computer game:
Far Cry uses large-scale discrete LODs for its terrain, in addition to the
complete vegetation, stones, etc. Switching of the terrain can be ob-
served on the rock face in the center of the screen. This switch is very
visible dynamically, since a large part of the rock face changes abruptly;
it is however very hard to spot in the screenshots.
Here especially, to perceive the hard switch dynamically, please visit:
http://www.cg.tuwien.ac.at/research/vr/unpopping/examples/html/fc-2.html.

81

Chapter 6 Discrete LODs

Figure 6.3: Discrete LOD hard switching in F.E.A.R. computer game:
Though the differences in the 3D mesh representation are hard to spot
here (they occur in the upper arm and leg region), the dead soldier lying
on the floor is only a few meters away from the player when the hard
switch occurs, making the popping very prominent.
To perceive the hard switch dynamically, please visit:
http://www.cg.tuwien.ac.at/research/vr/unpopping/examples/html/fear-1.html.

82

Discrete LODs Chapter 6

Figure 6.4: Discrete LOD hard switching in F.E.A.R. computer game:
The 3D mesh representation of the far away dead soldier lying on the
floor changes abruptly. The 3D mesh changes by a larger amount than
in Figure 6.3 (see for instance the area below the right shoulder pad) and
popping is therefore again very prominent, even though it occurs farther
away.
To perceive the hard switch dynamically, please visit:
http://www.cg.tuwien.ac.at/research/vr/unpopping/examples/html/fear-2.html.

83

Chapter 6 Discrete LODs

Figure 6.5: Discrete LOD hard switching in Half-Life 2 computer game:
The 3D mesh representation and the effects used on the truck are
switched abruptly. The geometry switch leads to an abrupt change in
lighting; the effect switch on the gasoline tank on the side of the truck
switches hard between plain diffuse texturing to environment mapping
the tank.
To perceive the hard switch dynamically, please visit:
http://www.cg.tuwien.ac.at/research/vr/unpopping/examples/html/hl2_-_4.html.

84

Discrete LODs Chapter 6

Figure 6.6: Discrete LOD hard switching in Half-Life 2 computer game:
The 3D mesh representation used on the truck is switched, making the
whole side panels over the load floor appear out of nowhere. Parts of
an object that appear abruptly out of nowhere are evidently especially
problematic; even though the hard switch takes place relatively far from
the player, it is still clearly visible and disturbing.
To perceive the hard switch dynamically, please visit:
http://www.cg.tuwien.ac.at/research/vr/unpopping/examples/html/hl2_-_1.html.

85

Chapter 7

Unpopping

7.1 Introduction

In the previous chapter we have seen that existing approaches to change the
discrete LOD representations of an object either suffer from visually disturbing
artifacts, defeat the aim of LODs, or do not work at all. It was also addressed
that in modern applications, shader LOD1 is as important as geometric LOD2

and that shader LOD cannot be addressed by geometry-based LOD tech-
niques such as geomorphing. In addition, geometry-based LOD techniques
cannot handle smooth switching between different LOD representations, such
as 3D meshes and decal imposters. 3

In this chapter, we present a practical algorithm for discrete LOD switching
that is at the same time visually pleasing, simple to implement and has a very
small runtime overhead. The method is based on a new image-space blend
formulation of two representations of an object. Only standard, fixed-pipeline
graphics hardware features are used. Therefore the method is fast, leads to no
conflict with modern hardware acceleration features such as hierarchical depth
buffers, and is also suitable for less potent devices such as handhelds.

The algorithm greatly improves the visual quality when changing two discrete
LOD representations, and also works for shader LODs.

1the use of simpler/faster shaders/effects or rendering techniques for farther away objects
2see Figure 6.5 (pg 84)
3but see Section 7.7 for a possible combination of the two techniques

86

Unpopping Chapter 7

Figure 7.1: A spherical object in transition between two LODs that
project to a 6- and 12-sided polygon in screen space respectively. In
the background are a spaceship, a planet surface and a text object. Left:
Conventional blending leads to semitransparency during the blend, mak-
ing objects behind the LOD object visible—the player could wrongly see
the spaceship. Right: In the new method, one of the LODs is drawn
opaquely, solving the transparency problem.

7.2 A New Method for LOD blending

The aim of LOD blending is to stage a smooth transition between two level-of-
detail representations, called LOD1 and LOD2. The transition should take place
for a parameter t, depending for instance on time or distance, running from 0 to
1. The problem then is how to render the object as a blend between LOD1 and
LOD2 at any parameter value t between 0 and 1.

The traditional interpretation of alpha-blending suggests a blend of 1− t times
LOD1 (usually implemented by setting the transparency value of the object
to 1− t), and t times LOD2. However, this interpretation is unsuited for LOD
blending in practice because during the blend both LOD representations would
be rendered semitransparently over previously rendered objects and the back-
ground (see figure 7.1). If the LOD-blend parameter t is based on distance to
the eye-point, the user will see a permanently transparent object as long as his
distance to the object stays the same. But even if the blend is done over time,
there is no sweet spot for the blend time: Either the blend is short enough,
then we perceive popping, or it is longer, then the object is perceived to be
semitransparent (which is more disturbing than the pop).

What we would need is an object that at least approximately fills the depth
buffer correctly before the blend, so that the scene behind does not shine
through. The main idea of our new algorithm is to use the LODs themselves
for this purpose, which together with the right choice of depth buffer writes and
depth comparison gives a continuous LOD transition in image space:

First, from t = 0 to 0.5, render the current LOD, LOD1, opaquely and with depth

87

Chapter 7 Unpopping

Unpopping (α,1-α)
t ∈ [0,0.5[t ∈ [0.5,1] t ∈ [0,1]

α 1 2(1− t) t
LOD1 z-test true true true

z-writes true false false
α 2t 1 1− t

LOD2 z-test true true true
z-writes false true false

Figure 7.2: The table shows render state settings during the LOD blend.
The last column shows the render state settings of the conventional (α,1-
α)-blend in comparison.

writes, and “fade in” the new LOD, LOD2, by rendering it alpha blended without
depth writes but depth compares on top of it. Then, when LOD2 is faded in
completely (i.e., both LODs are rendered opaquely atop of each other and are
therefore interchangeable), switch roles, rendering LOD2 opaquely, and “fading
out” LOD1 from t = 0.5 to 1. Thus, at any one time during the transition, one
of the two objects is rendered opaquely, and will therefore create a valid depth
buffer.

Figure 7.2 shows the different render state settings during the blend.

The new algorithm can also be interpreted the following way: the first stage
blends from LOD1 towards the CSG-union of the two LODs, whereas the sec-
ond stage blends from the union towards LOD2.

7.3 Discussion

In the algorithm presented, the opaque LOD provides the depth buffer content
also for the transparent LOD. This leads to the following minor artifacts:

7.3.1 Silhouette Mismatch

First, in areas where the silhouettes of the two LODs do not match exactly, the
semitransparent LOD will blend with the rest of the scene. Also, the part of
the semitransparent LOD protruding from the opaque LOD will be hidden by a
more distant opaque object if it is drawn afterwards. We have found that these
effects are negligible for all practical purposes, since the areas were these
effects occur are very small and appear and disappear smoothly. If one still
wanted to get rid of the latter effect and minimize the former, one simply would

88

Unpopping Chapter 7

have to draw the opaque LODs first, and the semitransparent LODs back-to-
front afterwards (just like conventional semitransparent objects in the scene).

7.3.2 Depth Discontinuity

Second, if a LOD-blended object intersects other geometry, there will be a dis-
continuity in depth space at t = 0.5, when the switch between the LOD being
rendered into the depth buffer occurs. In this case a discontinuity at the in-
tersection between the object and the scene will occur, because the transition
is not smooth in depth space. This is not a problem in practice, because in
correctly modeled scenes intersections between objects and the scene do not
occur. In any case, the artifacts that occur are much less pronounced than
the popping coming from a hard switch, because the screen space area that
changes abruptly is only a small part compared to the area affected by a hard
LOD switch.

7.3.3 z-Fighting

One other possible problem is “z-fighting”, which can occur if two LODs contain
very similar polygons in depth space, which at the same time differ significantly
in image space (e.g. due to shading, for example if the normal vectors of the
two LODs differ by a large amount). If the LODs are modeled by hand, this
problem can easily be avoided by the artist. If they are created automatically
and the problem appears, one can extend the algorithm to add a small polygon
offset to one of the two LODs.

7.4 Practical Application

7.4.1 Transition Time

In practice a very short transition phase (below one second) is sufficient to
eliminate popping and provide a smooth transition. This also gives the best
performance since only a small number of objects incur the overhead of being
drawn with two LODs at any one time.

89

Chapter 7 Unpopping

7.4.2 Animated LODs

The method also works well for animated models with LODs—another area
where progressive mesh techniques have a hard time providing good visual
quality for low-detail meshes. Geomorphed meshes have a tendency of show-
ing effects like foldovers and too-slim body parts when animated. With discrete
LODs, on the other hand, disjointed models (even using line rendering) can be
used for the lower-detail LOD representations.

7.4.3 Combination with Geomorphing

The algorithm we presented can also be combined with progressive mesh tech-
niques, for instance doing very high resolution progressive mesh rendering of
a model in the foreground, and blending to a discrete, disjointed model LOD
representation farther away.

7.5 Blending Different Objects

What might be surprising is the extent to which our visual system is willing to
accept any transition as long as it is smooth enough. In practice one finds that
the two objects being blended are not necessarily restricted to represent levels
of details. It is possible to blend two totally different objects, obtaining the effect
of a visually smooth transition between them.

7.6 Electronic Material

At the Unpopping webpage4 you can find videos and screenshots comparing
hard switching (artifact: popping), the “standard” (α,1-α)-blend (artifact: see-
through of background; popping, when blend time becomes � 1s), and our
algorithm. Please note that the artifacts are more pronounced during the actual
rendering than in the videos, due to the unavoidable blurring/softening done by
the video codec. You can also find videos that show the use of the technique
in the commercial computer game “FBI Academy” (and screenshots depicting
LOD popping in current computer games, as presented in the last chapter).

4http://www.cg.tuwien.ac.at/research/vr/unpopping/examples/

90

Unpopping Chapter 7

7.7 Conclusion

LOD switching is an underestimated problem: Even the most current computer
games still show visible popping artifacts, since the obvious approaches to
reduce the popping do not work.

In this chapter we have presented a new interpretation of blending which works
on current graphics hardware, with all LOD schemes, and integrates well with
the rendering pipeline by providing a valid depth buffer. It can be added to all
real-time applications with minimal implementation effort.

7.8 Unpopping Screenshots

The following pages present a comparison between hard switching and the
Unpopping algorithm on the example of GameTools Project demogame “Have
U Seen My Shadow”, which supports built-in switching between hard switching
and Unpopping for LOD switching for comparison.

Figure 7.3 shows two consecutive frames with a minimal amount of forward
movement between them displaying different representations of the palm tree
which is hard switched between the screenshots, which are just one frame
apart.

Figure 7.4 shows a series of six screenshots displaying smooth Unpopping-
blending based on distance to the camera. One can observe that, even though
the two palm tree 3D mesh representations actually differ quite a bit (compare
Figure 7.3), the algorithm does a good job of blending smoothly between them.

91

Chapter 7 Unpopping

Figure 7.3: Discrete LOD hard switching on example of palm tree in
GameTools Project demogame “Have U Seen My Shadow”: The two ge-
ometric representations are switched abruptly, leading to popping.

92

Unpopping Chapter 7

Figure 7.4: Unpopping LOD smooth switching on example of palm tree
in GameTools Project demogame “Have U Seen My Shadow”: The two
geometric representations are switched smoothly, avoiding popping arti-
facts. Note that there is only a minimal forward movement between the
two frames. 93

Chapter 7 Unpopping

Figure 7.4: (continued from last page) Unpopping LOD smooth switching
on example of palm tree in GameTools Project demogame “Have U Seen
My Shadow”: The two geometric representations are switched smoothly,
avoiding popping artifacts.

94

Chapter 8

The European Union
GameTools Project

Figure 8.1: GameTools Special Interest Group members.

8.1 Introduction

This chapter deals with a subject closely related to computer graphics re-
search: The GameTools Project, an European Union project that has as its
main agenda leading edge real-time computer graphics research in the fields
of Geometry/Plants, Visibility and Illumination, the implementation of C++ 3D
graphics libraries based on the research results, and consecutively the tech-

95

Chapter 8 The European Union GameTools Project

nology transfer to companies developing eletronic games or other 3D graphics
based software in the form of the libraries and support.

The author of this thesis holds the position of Community Manger in the Game-
Tools Project and this chapter gives an overview over the project in general, his
work as Community Manger, things that went right and things that went wrong,
and suggestions for the future.

8.2 Abbreviations

This chapter uses the following abbreviations:

Abbreviation Meaning

CM Community Manager (position held in the GTP by the author)
EU European Union

GTP GameTools Project
LGPL GNU Lesser General Public License

PC Project Coordinator
PM Project Manager
SIG Special Interest Group
UdG Universitat de Girona (University of Girona)
WP Work Package

8.3 The European Union GameTools Project

The “GameTools Project” (“GTP”) is a European Union specific targeted re-
search project funded under Contract number IST-2-004363 in the IST 6th

framework programme1. It started in September 2004 and is scheduled to
run for 33 months, ending in May 2007, so at the time of writing it is in its final
stage.

Figure 8.3 (pg 98) from the GameTools contract [CotEC04] shows the GTP
consortium members, which consist of 6 universities (“academic (consortium)
members”), 1 non-profit organization and 5 companies (“industrial (consor-
tium) members”) from the fields of game development and virtual reality.2

1http://cordis.europa.eu/ist/
2At the time of writing, two of the industrial consortium members, 3Democracy/Sektor4 and

PGM Trading/Saber Interactive3 unfortunately no longer are in the project.

96

The European Union GameTools Project Chapter 8

GAMETOOLS

geometry - visibility - illumination

Figure 8.2: The GTP logo. The 3 symbols on the side of the cube repre-
sent the three main areas of GTP research: the sun on top for Illumination
& Effects, the tree on the left for Geometry & Plants, and the eye on the
right for Visibility.

The GTP’s main goal is the creation of C++ 3D libraries based on leading edge
3D research from several real-time rendering fields done by the participating
academic consortium members; the aim is then to transfer this technology to
European companies or companies developing software within the EU, thereby
strengthening the European software industry and reducing the brain drain to
the US.

The author’s job as Community Manager (“CM”) of the GTP is to advertise GTP
technology to companies and inform them about its benefits and the possibility
of joining the GTP Special Interest Group (“SIG”), to get free preliminary access
to GTP technology.

97

Chapter 8 The European Union GameTools ProjectGameTools FP6-004363 Annex I

3-Participant list

 List of Participants

Partic.R
ole*

Partic.
no.

Participant name Participan
t short
name

Country Date enter
project**

Date exit
project**

CO 1 Universitat de Girona UdG Spain 1 33

CR 2 Universitat Jaume 1r UJI Spain 1 33

CR 3 Universitat Politècnica de
València

UPV Spain 1 33

CR 4 Budapest University of
Technology and Economics

BUTE Hungary 1 33

CR 5 Vienna University of
Technology

VUT Austria 1 33

CR 6 Digital Legends

Entertainment

DLE Spain 1 33

CR 7 Université de Limoges Unilim France 1 33

CR 8 PGM Trading *** PGM
TRADING

Austria 1 33

CR 9 Asociación de Investigación
de la Industria del Juguete,
Conexas y Afines

AIJU Spain 1 33

CR 10 3Democracy 3Democra
cy

Denmark 1 33

CR 11 Infowerk
softwareentwicklungs

Infowerk Austria 1 33

CR 12 Gedas Iberia Gedas Spain 1 33

*CO = Coordinator
 CR = Contractor

** Normally insert “month 1 (start of project)” and “month n (end of project)”
These columns are needed for possible later contract revisions caused by joining/leaving participants

*** The company is currently changing the name from Kernco PGM Trading to PGM Trading

20/07/2004 – Final EC approved Page 6 of 65

Figure 8.3: GTP Consortium Members (excerpt of the GTP EU con-
tract [CotEC04], pg. 6)

8.3.1 3D API

At the GTP Kickoff meeting in September 2004, it was decided that the main
Graphics API that would be targeted would be Direct3D 9. The question which
graphics API to officially endorse was brought up by the GTP CM. GTP CM and
the industrial consortium members argued for Direct3D 9, since the Microsoft
Direct3D graphics API was and continues to be the dominant API used by game
developers worldwide, and Direct3D 9 was the – then relatively new – incarna-
tion that supported for the first time Shader Model 3.0, which was a necessary
requirement for many planned GTP technologies, especially from the field of
real-time global illumination (see next section). The OpenGL API, though pop-

98

The European Union GameTools Project Chapter 8

ular with academic researchers, due to its clearer design and greater interface
stability from version to version, was not endorsed as an official GTP API; nev-
ertheless, due to this preference, many GTP technologies are also available in
OpenGL implementations.

8.3.2 3D Engine(s)

The GTP contract [CotEC04] states that “The tools will be developed around
the software that sits at the core of a computer game, the 3D engine.”. The
main engine that was to be used was already decided before the start of the
project: The open source (LGPL4) OGRE 3D engine5 was named the official
3D engine for which all GTP technology would be implemented. OGRE had
the benefit of its maturity, its large & active user and developer base, and its
relatively modern object oriented C++ design.

Although the GTP EU contract did not call for this, GTP CM pointed out that
OGRE was a PC-only 3D engine, with no support for video game consoles.
Due to its open source nature and related licensing issues, potential future
support for video game consoles (e.g. Sony Playstation 2, Playstation 3; Mi-
crosoft Xbox, Xbox 360; Nintendo Gamecube and Wii) seemed also doubtful. A
second concern raised was that developing for only one 3D API would increase
the risk that the code would turn out to depend on specific OGRE features or
even be engrained into the engine itself; this would evidently have hurt the
ease with which companies could have integrated GTP technology into their
engines (since OGRE is a general purpose, open source, PC-only engine it is
extremely rare to see it used in commercial projects, especially in game de-
velopment). To counter both problem areas the author suggested to endorse
a second (commercial) 3D engine with support for video game consoles. As
an additional benefit, all customers of the chosen engine could automatically
benefit from GTP technology (once they became GTP SIG members), since it
would already be integrated in “their” engine. It was unanimously agreed by all
GTP consortium members to commit to adding support for a second engine to
the GTP agenda.

Several middleware solutions (including Gamebryo6, RenderWare7, Shark 3D8

and Unreal 2 & 39) were evaluated by the author.

4http://www.gnu.org/licenses/lgpl.html
5http://www.ogre3d.org/
6http://www.gamebryo.com/
7http://en.wikipedia.org/wiki/RenderWare
8http://www.shark3d.com/
9http://www.unrealtechnology.com/

99

Chapter 8 The European Union GameTools Project

From this two prime candidates emerged: RenderWare by UK based Criterion
Software 10 and Shark 3D by Germany based middleware supplier Spinor 11.
Both companies were developing C++ 3D middleware solutions within the EU,
and both RenderWare and Shark 3D supported a wide range of video game
consoles. Talks with both companies followed, and while Renderware was
the more widely used product, at the time there were persistent rumors that
Electronic Arts (then and now the largest developer and publisher of electronic
games worldwide), who had bought Criterion in July 2004, was going to cease
licensing it to third party developers, instead turning it into a pure in-house tool.
This, together with the fact that Spinor seemed more inclined and able (due to
their smaller size) to cooperate flexibly and efficiently with the GTP, indicated
Shark 3D to be the overall better choice.

Shark 3D was consecutively tested in the CG23 game development lab
course12 by two teams of students to see how well it worked in practice. The
test went well and, following the suggestion of GTP CM, Shark 3D was finally
picked to be the second engine to be supported by the GTP.

The decision against RenderWare proved to be a wise one, when Electronic
Arts consecutively did proceed to turn RenderWare into an in-house tool.

The following section gives an overview of the real-time research areas GTP
technology was researched and developed in.

8.4 GTP Research Areas

Research and implementation of GTP results is done in the following real-
time research areas, represented within the GTP contract in the work package
(“WP”) 3, 4 and 5 respectively:

8.4.1 Visibility (WP3)

Visibility research was carried out at Vienna University of Technology (“VUT”).

The areas researched and implemented included:

1. Online (“on-the-fly”) visibility culling in image space

2. Precomputed Visibility

10http://www.criteriongames.com/
11http://www.spinor.com/
12regularly held each year for several years running by GTP core consortium member VUT

100

The European Union GameTools Project Chapter 8

(a) Quasi-exact

(b) Progressive Sampling-based

8.4.2 Geometry and Plants (WP4)

Geometry and Plant research was carried out at Universitat Jaume 1r (“UJI”),
Universitat Politcnica de Valncia (“UPV”), Universit de Limoges (“Unilim”), Uni-
versitat de Girona (“UdG”) and Vienna University of Technology.

The areas researched and implemented included:

1. Continuous Level of Detail for

(a) General Geometry

(b) Trees and Plants

2. Offline Level of Detail Creation, with simplification metric being

(a) Geometric

(b) Image Based

3. Billboard Cloud Trees

4. Smooth Switching of Discrete Levels of Detail13

8.4.3 Global Illumination and Effects (WP5)

Global Illumination and Effects research was done at Budapest University of
Technology and Economics (“BUTE”), Vienna University of Technology, Uni-
versitat de Girona and Universit de Limoges.

The areas researched and implemented included:

1. Global Illumination

(a) Raytrace Effects: Environment Depth Maps for Reflections and Re-
fractions14

(b) Exact GPU Raytracing

(c) Indirect Illumination

(d) Ambient Occlusion

13author’s work; see Chapter 7.
14Raytrace Effects employ approximate raytracing on the GPU to give much improved qual-

ity for reflection and refraction effects applied to arbitrarily shaped geometry, especially if the re-
flected/refracted objects are near the reflector/refractor, i.e. without a far-field assumption.

101

Chapter 8 The European Union GameTools Project

2. Shadow Maps

(a) Shadow Map Reparametrization

(b) Virtual Tiled Shadow Maps15

3. Effects

4. Depth Imposters16

(a) Single (e.g. explosions)

(b) Clustered (e.g. fog)

5. Metallic Surfaces

6. Depth of Field

7. Glow

8. Rain

8.5 GTP Special Interest Group

The GTP Special Interest Group (“GTP SIG”) is defined in the GTP EU contract
as the legal instrument for the technology transfer from the GameTools Project
to companies developing software within Europe.

8.5.1 SIG Membership Agreement

Although the primary goal of the GTP is to give software companies developing
in Europe free access to GTP technology, this does not mean that the GTP
libraries are freeware.

The reason why the GTP libraries cannot be freeware is the restriction imposed
by the GTP goal of boosting the European software industry (while at the same
time aiming to exploit the technology economically): Only companies employ-
ing GTP technology for software development within the EU should be allowed
to use it for free (EU Focus).
This created the need for a license agreement between the GTP and those
companies.

15author’s work; see Chapters 3,4 and 5.
16Depth Imposters solve the problem of conventional flat, semitransparent decals intersecting

with opaque scene geometry, which normally shatters their volumetric illusion. Their more technical
name is “Spherical Billboards”.

102

The European Union GameTools Project Chapter 8

Since the GTP SIG had been created for companies to join to get access to
GTP technology together with support, it was natural to integrate the software
license into the GTP SIG membership, leading naturally to the concept of the
GTP SIG Membership Agreement.

Though the restriction of EU Focus described above in itself required a legal
agreement of some sort, there were also other interests by the GTP and its
consortium members which had to be fulfilled by it. These were established by
the author through communication with other GTP consortium members, and
then formally categorized and defined as follows:

1. SIG Membership Official (together with use of SIG members name and
logo to this respect): This allows e.g. for SIG members to be listed on
the GTP webpage together with their logo. This has a positive effect not
only for the SIG member (free advertising, potential for networking with
other SIG members), but also the GTP (since the more companies have
already joined, the easier new companies will also decide to join17) and
the EU, since the public can see on the GTP webpage that the project is
fulfilling its goals, i.e. the EU money is well spent.

2. Credit: This is similar to “SIG Membership Official” above, only with re-
gard to the fact that SIG members are required to give credit to the GTP
when they ship a product which uses GTP technology: Same as with
many libraries, SIG members are required to state that they are using Ga-
meTools technology in their product when shipping it. To this effect, the
GTP logo with the text “based on technology from the GameTools Project
(www.gametools.org)” below it must be included in either the product’s
manual or credits.

3. Scientific Results: Since the GTP represents leading edge research, the
participating universities (academic consortium members) need to have
protection against their technology being used by someone else to pro-
duce scientific results and publications. SIG members get full access to
optimized sourcecode (and even support), something which is not nor-
mally done in the academic community, since no researcher or research
team wants to lose the edge he/they might have developed in a particu-
lar field due to being able to build on the software base that was already
implemented for previous research in the same field.

4. Library Creation: Since the GTP is supplying its libraries for free to SIG
members, it does not want to allow SIG members to create and/or sell
libraries based on GTP technology. This is also related to another GTP

17One could say that most people have a tendency to be, in this regard, bosonic by nature.

103

Chapter 8 The European Union GameTools Project

goal, that of exploiting the results after the end of the project in a commer-
cial manner; one way to do this is evidently by selling the GTP libraries
(to non-SIG members in the EU or customers outside of the EU, e.g. in
the US or Japan).

GTP CM authored several drafts of the agreement, being in contact with GTP
Project Coordinator, Mateu Sbert, and GTP Project Manager, Jordi Palau. He
also included feedback from a representative medium sized game develop-
ment company which takes IP infringement issues seriously, under what con-
ditions they would be interested in becoming a GTP SIG member, respectively
what would put them off. After a decision was reached on how to address po-
tential intellectual property infringement issues (copyright, patents, etc) in the
SIG draft, the 1.0β version was emailed to IPR Helpdesk for a final checkup.
IPR Helpdesk18 is an organization funded by the EU to supply legal assistance
regarding intellectual property issues to EU projects. The relatively minor is-
sues the IPR Helpdesk lawyers highlighted where integrated into the final 1.0
version of the document by GTP CM, which was consecutively accepted by all
GTP consortium members.

The agreement was voluntarily kept as concise and liberal as possible, as to
make the task of checking it by potential SIG members as hassle free as pos-
sible, also aiming to keep legal costs on the side of a potential SIG member as
low as possible, should he decide to involve a lawyer.

Figure 8.21 (pg 142) shows the 4 pages of the current GTP SIG Membership
Agreement (v1.1).

The agreement consists of a general and a specific part, where the General
Part contains standard game middleware software licensing stuff, such as Con-
fidentiality, Copyright & Ownership, etc. The Special Part establishes the re-
strictions described above and the right of the GTP SIG member to use GTP
technology for any purpose, condition to these restrictions. See also the GTP
webpage section about the SIG membership agreement19.

8.5.2 GameTools Evaluation License ?

The author has considered offering an “evaluation license”, to enable com-
panies to check the libraries and documentation before they become full SIG
members, but decided against it, for two reasons:

18http://www.ipr-helpdesk.org/
19http://www.gametools.org/html/sig_membership_agreement.html

104

The European Union GameTools Project Chapter 8

First, he knows from experience that evaluation versions of commercial libraries
often sits on an employees hard drive for a long time, since no one finds the
time to actually do the evaluation; this is especially true for game development
companies, which have some of the tightest deadlines in the industry and there-
fore very little time for such tasks. This would have meant that in many cases
companies would not have become SIG members, simply due to this fact.

And second, since it was clear from the start that it would, in any case take quite
some time for the GTP libraries to become full fledged and mature enough to
stand up to scrutiny.20 This would have meant that the author as GTP CM
could have started his job of advertising the GTP to potential SIG members
even later, to not risk scaring companies away by a too early version of the
GTP libraries.

8.5.3 GTP SIG Questionnaires

The author designed a GTP SIG questionnaire21 which he mailed to all existing
SIG members on 28 02 2007. The questionnaire contained questions about:

• The usefulness of GTP technology to the companies.

• The companies current and planned future use of GTP technology.

• The development libraries & tools etc employed by the companies.

• Interest in Participating in GameTools events.

• General interest in respectively specific interest to participate from the
start in “GameTools 2”22

8.5.4 SIG Members

The following lists the current 20 GTP SIG members, together with their logo
and webpage, where you can find up-to-date information about each respective
company.

20Although in the end it turned out to take even longer than the author expected.
21http://www.gametools.org/GTP_SIG_Questionnaire.rtf
22the GTP follow-up project

105

Chapter 8 The European Union GameTools Project

Animante Baleares

http://www.animante.com/

Sproing

http://www.sproing.com/

Brainstorm Multimedia

http://www.brainstorm.es/

Invictus

http://www.invictus-games.com/

106

The European Union GameTools Project Chapter 8

TAB-Austria

http://www.tab.at/tab/en/

VIS

http://www.vis-games.de/

bouncing bytes

http://www.bouncingbytes.at/

Elektra Project

http://www.elektra-project.org/

107

Chapter 8 The European Union GameTools Project

Blue Space Media GmbH

http://www.blue-space.de/

Bogengang GmbH

http://www.bogengang.de/

Candella Software LTD

http://www.candellasoftware.com/

Framework Studios

http://www.framework-studios.com/

108

The European Union GameTools Project Chapter 8

Over the Edge - 3D Engine

http://www.otee.dk/

Tragnarion

http://www.tragnarion.com/

Carintia

http://www.carintia.es/

Vizrt

http://www.vizrt.com/

109

Chapter 8 The European Union GameTools Project

Nemesys

http://www.nemesys.hu/

Phoenix interactive

http://phoenix-i.fr/

Project: syntropy

http://www.project-syntropy.de/

vr3 virtual production

http://www.vr3.de/

110

The European Union GameTools Project Chapter 8

8.5.5 GTP Software Repository

Following an evaluation by the author, Subversion23,24, was finally chosen over
alternatives such as CVS25, as the GameTools software repository solution.
The decision was taken through a poll in the internal GTP forum26 open to all
GTP consortium members.

The author then proceeded to create several iterations of repository schemes,
discussing them via email with GTP WP3 members Michael Wimmer, Jiřı́ Bit-
tner and Oliver Mattausch.

The final GTP software repository scheme is depicted in figure 8.14 (pg 136);
The following is the description of the structure, sent out through email to all
GTP members on 22 02 2006:

1) The toplevel dir contains 5 subdirs:

GTP

GTP-Internal

NonGTP

obsolete

OGRE

GTP ... contains all code that the GTP is responsible

for (copyright infringement etc)

GTP-Internal ... contains code that is for internal GTP use

only; GTP SIG members will have no access to this directory; you

are not required to put anything in here, but if you have GTP

internal documents etc, which you want to store in the

repository: Here is the place.

NonGTP ... Non-GTP libraries, such as boost, devil etc

obsolete ... nomen est omen: Old stuff which you might want to

keep for reference; we stored our old visibility projects

structure here.

OGRE ... Since OGRE is partially our code and partially external

code, it got its own directory; the OGRE version stored here is

1.07. If you are still using an older OGRE version, please

23http://subversion.tigris.org/
24{http://www.wikipedia.org/wiki/Subversion_%28software%29}
25http://www.wikipedia.org/wiki/Concurrent_Versions_System
26http://www.gametools.org/egroupware/login.php

111

Chapter 8 The European Union GameTools Project

upgrade to this version. You must not check in your own OGRE

version, but must use the existing one ! Changes made to the

OGRE engine should go into \OGRE\trunk\ogre_changes. If a file

you changed already exists, you are responsible for merging it

with your changes.

2) Each subdir contains the standard SVN folders:

trunk, branch, and tags

The "trunk" folder is for the current development branch of the

tree, meaning that code developments should only be made in the

"trunk" folder.

The tags folder is to check in milestones, stable versions, etc.

The branch folders is for development that is done away from the

main development in trunk, but which will later be merged with

the sourcecode in trunk again.

The following is an excerpt from an email by the author to all GTP WP lead-
ers, sent on 21 09 200627 suggesting additional improvements to the content
in the software repository (slightly reformatted):

1) Each project must include a file "README.txt" at its root

level, which explains

a) The effect/technology provided (including rough status of

completition)

b) Benefits of the new algorithm(s)

c) How to get the project to build / run (OGRE paths etc; other

requirements)

d) Any other additional information that comes to mind, that

might be useful to someone who is not a computer graphics

researcher to get interested in this GTP part and to help him

understand what we are doing and how he could apply it in a game

/ 3D application.

2) Each project should have a stable executable, which anyone

can start to get a quick look at what the project does. This is

your easiest way to get people to actually use your effect - so

27Incidentally the author’s birthday :-).

112

The European Union GameTools Project Chapter 8

try to make this impressive (for instance, try to avoid

rendering into a 640x480 window or smaller by default, if a

GF6800 or higher is fast enough for higher resolutions).

3) Every executable should adhere to the following standard

(Displaying a helpscreen when F1 is pressed is by far the most

important):

F1: Help screen(s); displays an in-game help screen or help

screens, giving short information on all user input

possibilities (keyboard, mouse) and some information

about the demo (1-2 lines). This does not have to be fancy, but

should simply output some text giving information on how to use

the program.

ESC: Exit game (without query)

P: Pause/Unpause the game (toggle)

W, Keypad 5, Cursor Up: Forward movement

A, Keypad 1: Strafe left

D, Keypad 3: Strafe right

S, Keypad 2, Cursor down: Backward movement

Cursor Left: Turn left

Cursor Right: Turn right

Space, J: Jump

Alt, Return, Enter, I, Right Mouse Button: Interact

Left Mouse Button, Ctrl: Fire (in the broadest sense)

Mouse movement: standard mouselook (mouse up ... look up, mouse

left ... look left, etc)

The README.txt file is the most important measure - please see

that every project has someone responsible to add this file and

that it is done quickly ! Stable executables are a close second,

together with F1 displaying a help screen.

The suggestions were consecutively implemented to a large degree, improving
the overall accessibility of the GTP content in the repository.

113

Chapter 8 The European Union GameTools Project

8.6 GTP Support Forum

In his function as GTP CM, the author created a GTP support forum28, to allow
the GTP WPs and Spinor to efficiently give support to GTP SIG members, GTP
demogame teams, and other student teams (such as the Shark CHC team at
VUT). The author decided to use a phpBB forum29 hosted at VUT, with a GTP
design based on the phpBB ChunkStyle template.

The forum was in the end mostly used for support of the Shark CHC port and
to a small extent for the GTP demogames. The author made sure that every
GTP SIG member was aware of the forum’s existence and had a valid account
there, by instructing every new SIG member to create an account for the Game-
Tools support forums30, and consecutively sending the GTP Software Reposi-
tory (see Section 8.5.5) access information through a private forum message;
despite that, GTP SIG members did not use the GTP SIG forum. The returned
GTP questionnaires seem to indicate that the reason for this is, that unfortu-
nately most of them had not had found the time to look at GTP technology
thoroughly enough to post support questions to the forum.

Figure 8.15 (pg 137) shows the GTP support forum start page.

8.7 GTP Advertising

8.7.1 GTP logo

The original GTP logo is depicted on the left of Figure 8.4: The author in his
function as GTP CM criticized the original logo design, because it did not indi-
cate what the GameTools Project was about, but on the contrary, through the
dominant wrench depicted in the back, emphasized the wrong impression that
GTP was about some sort of game development “tools”.31

Evidently the term “tools” also already appeared in the name of the project,
which was unfortunate, since most people from the industry think of e.g. 3D ed-
itors when they hear about “tools for game development”, and not 3D libraries.

28http://forums.gametools.org/
29http://www.phpbb.com/
30followingthenamingconvention"SIG"+<companyname>,foreasieridentification
31in addition the author thought that the wide, backward looking “g” did not send the right “next

generation graphics libraries” message, especially when the wrench, who supplied some upward
motion, was removed.

114

The European Union GameTools Project Chapter 8

(a) old logo

GAMETOOLS

geometry - visibility - illumination

(b) new logo

Figure 8.4: Old GTP logo on the left, which was replaced at the start of
the project with the design of the author on the right (depicted in the GTP
webpage color scheme).

Since misconceptions about the aim of the GTP would make the job of adver-
tising harder, and the name of the project could not be changed any more (due
to being in the EU contract), the author lobbied for a change of the GTP logo.

UdG then hired an external designer, who, alas and despite the author’s best
efforts, did only produce designs which seemed to be built on the concept of
children’s toys or gambling; again this was, in the author’s opinion, not the
image the GTP, having as its aim the creation of professional libraries for a
high-pressure industry which was a far cry from childrens’ toys or gambling,
wanted to project.

So finally the author created the design based on a “GTP cube” (representing
technicality), whose sides showed symbols representing the 3 major areas of
research within the GTP: the sun for illumination/effects, the eye for visibility
and the tree for geometry/plants; he included the text ”geometry - visibility -
illumination” at the top of the logo, to supply additional information about the
GTP.

After some internal struggle, and several design iterations, the design was fi-
nally accepted as the new, official GTP logo. Figure 8.2 shows the final logo
in the “ice blue cube” color scheme, figure 8.6 shows an example of the logo
used on the GTP CM business card.

Figure 8.4 compares the old with the new logo (in the GTP webpage color

115

Chapter 8 The European Union GameTools Project

(a) proto logo 1 (b) proto logo 2

Figure 8.5: Two earlier designs for the new GTP logo.

scheme). Figure 8.5 shows two earlier designs from which the final GTP logo
emerged.

Markus Giegl
Community Manager

GameTools Project
www.gametools.org

cm@gametools.org
Mob +43 676 9228818

7
0

0
2

-
4

0
0

2

GAMETOOLS

geometry - visibility - illumination

Figure 8.6: Example of GTP logo use on GTP CM business card.
The business card also incorporates information about the runtime

of the project (2004-2007) into its design.

8.7.2 GTP webpage

Since the author did not have access to an advertising budget, the GameTools
webpage was the obvious and most important advertising instrument to attract

116

The European Union GameTools Project Chapter 8

companies to join the GTP Special Interest Group (see Section 8.5).

Unfortunately the original webpage design was based around a small fixed-size
(HTML) content area window, which was not well suited to display e.g. a list
of GTP demo videos or more than a few sentences of information. It also had
some very obvious graphical errors (e.g. non antialiased parts of the border
slices).32 This combined gave it an unprofessional and dated look.

The author then tried to work with the persons responsible for webpage design
and maintenance at UdG. Unfortunately, despite a large effort on the author’s
side, response times were very slow, and the author therefore agreed to take
over webpage maintenance as time permitted, to speed up the improvement of
the webpage to become an advertising tool.

The webpage remained in the author’s care until October 2006, when a conflict
between GTP PC Mateu Sbert and GTP CM over who should decide what con-
tent is put on the webpage33 led to the webpage maintenance being transferred
back to UdG.

During the time the author maintained the webpage, he has expanded it consid-
erably, introducing all major sections, in addition to overhauling it several times
and continuously adding content whenever he got hold of videos/images/etc
which helped advertise the GTP to companies. No major changes have oc-
cured after the transfer back to UdG and to this day the largest part of the con-
tent on the webpage (with the exception of the videos, which where created by
the different GTP WPs) comes from the author.

Figure 8.7 depicts the current GTP start page; figure 8.8 and 8.9 show the
webpage news and video/demo section.

8.7.3 Game Developer Conference Europe 2005

The author attended the Game Developer Conference Europe 2005
(GDCE 05), held from the 30 08 2005 until 01 09 2005 in London, to test the

32In addition to very basic problems, such as the use of Microsoft BMP graphics file format for
images.

33The main point of the conflict was about whether all GTP members should have the right to
publish whatever they like on the webpage, or whether this should be filtered to fit the purpose of
advertising the GTP. The webpage had been developed as an advertising tool by the author for
one-and-a-half years at this point, and the sudden change to turn the webpage from an adver-
tising tool to a blog where everyone could post what he saw fit came therefore very abrupt and
unexpected. The author also had managed to get free GTP advertising on several important game
development webpages at this point (see Section 8.7.6), following the launch of the first GTP de-
mogame (see Section 8.8) so he managed to postpone the switch at least until the news value of
the announcement had faded.

117

Chapter 8 The European Union GameTools Project

waters, preliminary advertise the GameTools Project to European game devel-
opers and also to learn first hand about future trends in game development.
Preliminary, because at this time the GTP was still in an early stage, and not
yet in the position to allow SIG members8.5 (pg 102) in, since there was not
enough available technology. Opening the GTP SIG to early, i.e. with little to no
useable content, would have risked getting bad word of mouth by disappointing
the companies who had gone through the process of evaluating whether to join
(see Section 8.9 (pg 124)).

The author talked to a lot of game developers and people from neighboring in-
dustries, swapping contact information and handing out GTP information cards.

Due to the large number of approximately 700 attendees it was of course impos-
sible to reach all of them through personal conversation. The author concluded
that one would have to either invest in a stand or a flyer being included in every
attendee bag to get the maximum benefit out of such an event. Note however
that the cost of such measures are considerably higher than simply attending,
and therefore have to be weighed against e.g. advertising in a magazine.

Note that while giving a talk about the GTP might look like the perfect free
advertising opportunity, in the author’s experience, alas only a very small num-
ber of people at such conferences attend such specialized talks by unknown
speakers, limiting the potential audience considerably.34

He also talked to British electronic gaming journalists, advertising the GTP;
in this context it became obvious that, while the message was received in a
friendly manner, the question was raised, why there were no British companies
or universities involved in the GTP as core consortium members. There is a
lesson to be learned here, in that a project such as the GTP should in the
future aim to include companies and universities from the UK, since it is by far
the country with the largest game development industry in Europe.

8.7.4 GTP Demo Games

The GTP demo games, developed by students of Vienna University of Technol-
ogy, have their own section (8.8) below, since they also serve other purposes,
apart from being an advertising instrument.

34down to near zero, if the talk is scheduled in parallel to a big presentation, such as by Sony or
Microsoft

118

The European Union GameTools Project Chapter 8

8.7.5 Eurographics 2006

At Eurographics 2006, Europe’s premium computer graphics conference, held
in Vienna from the 4thto the 8thof September 2006, the GameTools Project
was presented at its own booth, showcasing live GTP technology demos to an
interested audience. GTP information flyers and contact information in the form
of business cards (see Figure 8.6) were also made available.

For further exposure the GTP, together with NVidia35, also sponsored
the Graphics meets Games competition at Eurographics 200636. Fig-
ures 8.18 (pg 140) and 8.19 (pg 141) show GTP advertising at the Graphics
meets Games competition at Eurographics 2006.

The Eurographics news was consecutively presented on the newly introduced
News section of the GTP webpage37 (see Figure 8.8 (pg 131)).

8.7.6 gamasutra.com et al

Although there still alas was not as much content in the GTP Software Repos-
itory as the author would have liked, after Eurographics 2006, the author de-
cided that it was nevertheless time to finally officially open the GTP Special
Interest Group. The first GTP demogame, “Jungle Rumble”, had been finished,
and this together with the SIG opening would hopefully create enough news-
worthiness to be listed on the respective game development news sites on the
web.38

The author created a three tiered news message, a one-liner, short- and long
version, each aiming to entice the reader to learn more, and submitted it to
gamedev.net39, devmaster.net40 and gamasutra.com41; these sites are impor-
tant, not only because they are themselves being frequented by game devel-
opers, but also because the news they accept is also automatically listed on
other, less specific tech news sites.

In addition the news was also posted to gamedev.org42, a forum visited by
many game developers.

35http://developer.nvidia.com/
36http://www.cg.tuwien.ac.at/events/EG06/graphicsmeetsgames.php
37http://www.gametools.org/html/news.html
38E.g. one site the author submitted to listed 30 news items with pending reviews for the day;

from these, only 2 actually appeared on the page.
39http://www.gamedev.net
40http://www.devmaster.net
41http://www.gamasutra.com
42http://www.gamedev.org/forum/index.php?board=7.0

119

Chapter 8 The European Union GameTools Project

The GTP SIG opening & demogame launch news was accepted on all
sites43,44,45 and in the end lead to 8 new companies joining the GTP SIG.

8.7.7 Resfest 2006

In November 2006 the GTP was present at the international Multimedia Resfest
at the Museumsquartier at the heart of Vienna. Resfest46 is an international
festival for Independent films and multimedia which tours major cities the whole
world over, drawing a crowd from the creative industry.

Figure 8.20 shows the poster used to advertise the GTP at the Resfest 2006.

8.7.8 GTP Game Developer Magazine Ad

In February 2006, after GTP CM evaluating several different options, GTP CM
together with the GTP CFO at VUT (WP3 leader Michael Wimmer) decided to
advertise the GameTools Project in Game Developer magazine47.

Game Developer magazine is the worlds premium publication aimed specif-
ically at game developers, being read by more game developers worldwide
than any other publication. Other venues considered were for instance the
German game development publications Game Face48 and /Gamestar/dev49

and renowned UK game magazine ”EDGE”50.

Game Developer magazine in the end won over EDGE, presenting the best
value for money, with a newly created advertising section in the center of the
magazine and due to its large international appeal in the main target group.

Figure 8.10 depicts the ad, which was designed to be seen on a dark grey
background, taking up a quarter of a page, together with 3 other adverts from
the game industry.

43http://www.gamedev.net/community/forums/topic.asp?topic_id=416808
44http://www.devmaster.net/news/index.php?storyid=1201
45http://www.gamasutra.com/php-bin/news_index.php?story=11077
46http://www.resfest.com
47http://www.gdmag.com
48http://www.game-face.de
49http://www.gamestar.de/dev/
50http://www.edge-online.co.uk/

120

The European Union GameTools Project Chapter 8

8.8 GTP Demo Games

The author supervised the creation of 3 GameTools demogames by teams of
students, which were created to showcase GTP technology in game environ-
ments.

8.8.1 Jungle Rumble

Jungle Rumble was the first GTP demogame to be finished. It is a comic-style
fun driving & shooting game, where the player controls a giraffe sitting in a
bouncy, nutshell-like car, and has to battle it out with a host of fun weapons
with several motorized zebras.

The games consists of several separate distinct levels, all having their own
colorful theme, such as volcano, alien crash site or sugar island. Each level is
set on an island surrounded by water, where the terrain of the island can be
demolished by the weapons at the players and his opponents disposal. The
player weapons include: miniguns, sci-fi blasters, bombs and a flamethrower
and ice-gun.

The game showcases the GameTools effects of Depth Imposters (see Section
4 (pg 102)) and Raytrace Effects (see Section 1a (pg 101)) very well: Depth
Imposters are employed for large explosions, flames in the volcano level, the
ice-gun and especially the flame thrower (where they are also combined with a
heat blur effect). Raytrace Effects are used on several larger items in the game.
Raytrace Effects are a relatively costly effect, and they have been cleverly in-
cluded into the engine to support several objects using the effect, including
interreflections and -refractions, at high framerates.

Jungle Rumble is fun to play and employs freely downloadable music from
several bands51 to increase the gameplay experience.

Figure 8.11 (pg 133) shows screenshots from Jungle Rumble. The game can
be downloaded from its GTP webpage subpage52, where you can also find
more screenshots.

8.8.2 Have U Seen My Shadow

“Have U Seen My Shadow” was the the last GTP demogame to be started.
Have U Seen My Shadow is a small 3D adventure game set on a caribbean

51with the bands permission, of course
52http://www.gametools.org/html/jungle_rumble.html

121

Chapter 8 The European Union GameTools Project

island, following along the lines of such classics as “Monkey Island”53. The
basic story evolves around the idea that the player has lost his shadow, and
must try to find it again.

The Have U Seen My Shadow demogame team initially consisted only of a
single developer, which was after some time joined by two artists, which pro-
ceeded to produce high quality 3D art for the game. The programmer and team
leader in the team had only minimal game engine design and implementation
experience at the beginning of the demogame project, and also had to work
besides his studies. Have U Seen My Shadow has therefore not been coming
along as fast as initially planned. Despite this, also due to the author sharing
his experience in engine design with the Have U Seen My Shadow team, the
game is looking nice and making progress.

Figure 8.12 (pg 134) shows screenshots from Have U Seen My Shadow. Note
that the light direction in the screenshot is orthogonal to the view direction, lead-
ing to the optimal LiSPSM case; shadow quality therefore reverts to uniform
shadow mapping when the camera is turned to look into the light. Vegetation
and terrain use the author’s Unpopping algorithm to blend smoothly between
discrete LOD representations.

8.8.3 Penta-G

Penta-G54 was the GTP demogame launched first and with the largest team,
having 3 team members, 2 of which were programmers from the start. Penta-
G was to planned to be a small first person shooter. The core programmers,
contrary to the other two GTP demogame teams, claimed prior experience in
having successfully implemented game engines (for fun, i.e. non-commercial);
this led to high expectations on the side of the author, and he accordingly in-
vested the most time to this team, managing to add another two artists to it,
and trying to steer it into the right direction55, according to the prime guideline
for all GTP demogames: “Visual quality should be high & display GTP libraries
capabilities, gameplay should be engaging. Small & simple, but excellent is the

53http://www.wikipedia.org/wiki/Monkey_Island_%28series%29
54from the greek “penta”, five
55Apart from the obvious GTP focus, another pitfall, especially in this team, was overambitious-

ness. The initial game concept presented to the author was overambitious according to his own
experience, and could not only have not been finished on time, but ran a very high risk of never
being finished at all, a fate that many university game projects suffer. The time it has taken Penta-G
to come this far proves the author right.

122

The European Union GameTools Project Chapter 8

goal :-)”56

Unfortunately the core team always had a hard time understanding that this
project, for which they expected to be graded for the amount of 12 hours of
work per week each, was not their private playground for programming a game
for fun, but aimed at “display[ing] [the] GTP libraries capabilities” in the best
way possible. Their attitude towards the GTP libraries, which naturally were at
the time at an early stage, of which they had been informed before the start
of the demogame project, contrasts interestingly with the Jungle Rumble team
above: While the Penta-G team insisted that GTP Raytrace Effects were too
slow and gave too poor a quality to be used in practice, the Jungle Rumble
team had already implemented them well into their engine and continued to
improve their use until the game was finished.57

The “prior experience” did alas also not manifest itself, especially the one pro-
grammer who also started his master thesis in computer graphics under the
author, and of whom the author unfortunately had to discover that his own self
assessment with regards to his programming skills was in crass contrast to
reality, when he was forced to take over the research implementation and do
the implementation of QVSM himself58, due to the students silent dropping out
from his master thesis59

There have been a lot of other problems with the Penta-G team during the time
the author oversaw its development, such as the team not understanding that
enemies and the base level and opponent design should evidently be created
first60, without a high level of detail, to find out problem areas early on, and
allow for changes to be implemented fast by the artists, but the game is already
taking up too much space in this thesis, so the author will not go into any more
detail.

In the meantime a lot of people have worked on Penta-G, and it looks like it is

56from an email of the author to the Penta-G team at the start of the Penta-G GTP demogame
project, on 18 10 2005.

57Interestingly enough, they also insisted that the existing, proven to work LiSPSM [WS06] code
accompanying the book “Shader X4 - Advanced Rendering Techniques” could not be integrated
into their engine, and that the GTP Coherent Hierarchical Culling algorithm (CHC) [BWPP04] did
not work in practice. They have held to the latter belief until the time of this writing, even stating it
in their written work about the project.

58in a conversation before that the student had tried to convince the author that the QVSM
algorithm could not work in principle, alleging that hardware occlusion queries could not be used
in the way the author intended.

59of whom he had initially stressed that he absolutely needed to have it finished in the summer
of 2006. To the author’s knowledge he has not finished his studies to this day, one year later.

60see e.g. Half-Life 2 for a high profile example that followed this paradigm that seems very
obvious to the author.

123

Chapter 8 The European Union GameTools Project

finally nearing completion. Unfortunately the interesting visual design concept
of the author, based on a 5-sided symmetry has been watered down to look like
a Shareware commercial first person shooter rip-off61 This is glossed over by
a standard post processing glow effect and well executed 2D control elements.

The problems with the underlying implementation alas persist to this day, and
the program is still bugged by unexplainably low framerate, badly working CHC
implementation, and stuttering, which the team still seems to have troubles to
fix.

Figure 8.13 (pg 135) shows screenshots from an earlier version of the game,
still based ont the author’s design; the author is convinced that, had the team
been willing, the demogame could have been finished from this point on within
one month.

8.9 Why GTP Technology is Not Free

8.9.1 Free as in No Cost ?

The concept of the GameTools Project seems to imply that the technology
created within the project is “free”, where “free” is taken to mean “incurring
no costs”. It is the author’s impression, that many GTP members, including the
GTP PC, adhere to this view.

This section discusses why no software library, and especially the libraries &
technologies created within the GTP, can ever be “free” in that sense.

8.9.2 Public Domain Libraries

Let us first start by looking at a software library that is in the public domain,
meaning that there are no restrictions of any kind linked to using it, and anybody
is allowed to do with it whatever he likes.

Certainly public domain libraries can be seen as being “free” in the most ex-
treme sense of the word, so it might come as a surprise, that using them in a
commercial software project does not come without a price; the costs incurred
by public domain libraries for a company are as follows, in temporal order:

61at least it has also incorporated good ideas from other games created at VUT, such as the
rolling polyhedron with a light inside of it, shining through holes in its sides, taken from the VUT
student game “Cubophobia” (http://www.cubophobia.at.tt/)
http://stud4.tuwien.ac.at/ e0126452/cubophobia/screenshots/full7.jpg, created during
the course of an 4 hour per week student’s course.

124

The European Union GameTools Project Chapter 8

1. The company has to invest time (i.e. money), to look at libraries that
might fit its needs.

2. The company has then to evaluate, i.e. take a closer look at, the libraries
that made it through the previous step. If more then one library shall be
employed, then interoparability needs to be tested also.

3. Once the presumably best library has been chosen, it needs to be em-
ployed in an actual commercial project. Evidently this is more costly than
the last step, where usually only a single employee’s time is invested,
with no side effects on other parts of the company, whereas here a whole
project might stall, if the library does not hold up to a real life situation.

4. Finally the company has to invest into bugfixing and extending the li-
braries functionality to better adapt it to its needs. Bugs that pop up in
the library when a product has shipped are evidently a great financial
risk62

8.9.3 Commercial vs Open Source

An interesting thing to note is, that much the same steps/costs occur for any
kind of software technology/library, whether it is in the public domain, or under
some sort of open source or commercial license.

A clear advantage of commercial libraries here is, that as long as the company
who sells the libraries stays in business, it will be responsible for fixing bugs
and extending the functionality of its library according to its customers’ needs,
simply to stay in business.

In addition, serious bugs in a commercial library can seriously damage the
companies reputation, again hurting business, so there is an incentive to avoid
such bugs.63

Another important aspect in the evaluation of software libraries by a company
are Intellectual Property “IP” infringement issues64. License agreements in
commercial libraries usually do legally safeguard the buyer against all or at
least most of these infringement issues.

62More or less so, depending on the specific business field; i.e. a serious bug in a console video
game is very bad, whereas in a PC game customers are more used to using bugfix patches; on
consoles it might not even technically possible to patch the executable to fix the bug, depending on
the console type and whether it is connected to the internet.

63Note that due to the costs and difficulties of switching a library in use, this might not be as
harmful to a company selling software libraries as it sounds, as long as bugs are fixed in a timely
manner.

64copyright infringement, patent infringement,. . .

125

Chapter 8 The European Union GameTools Project

Public domain and open source licenses usually have no such safeguard
clauses. This is evidently quite natural, since the developers are not making
any money with the libraries, so there is not even a possibility for them to take
over the costs of legal disputes.65

Big open source projects, which have existed for some time, have a relatively
stable contributor base and especially a large user base, which includes com-
mercial use, have, in a sense, a natural “immunization” against IP infringement:
The stable contributor base is usually close nit and takes the project very se-
riously, so none of these people will introduce code that is e.g. taken from
another library or a commercial code base. In addition, since the project has
existed for some time, any IP infringement in at least the core code base has
a large likelihood of having been exposed already. For software patent in-
fringements the situation is, as ever, the most volatile, due to the large number
of trivial patents that have been issued, especially in the US. But also in this
case, anybody using the library will, due to the large user base, at least not be
alone, in case of an alleged infringement; the number of users gives strength,
especially if IT heavyweights with an open source agenda, such as IBM, are
employing the library in their products.

On the other hand, public domain and open source software has the advantage
that you get unlimited access to the sourcecode66 and you can download67 and
start evaluating it immediately.

Additionally the programmers behind an open source project are usually much
more accessible, and, at least for large, well known projects the large user
base is usually a good source for support68. In addition, a large user base can
in itself be seen as at least a strong indication that the library is stable and
useable.

65In the author’s impression, in practice this thought is not even entertained, stopping at a (un-
derstandable) “Hey, you are getting it for free. What do you want ?” attitude

66This option is available with many commercial libraries, but usually at greatly increased extra
cost. If a commercial evaluation license is not a (full) sourcecode license, then the evaluation will
be less accurate, since the reviewer will not be able to assess how well a library’s sourcecode is
written and documented.

67copy it from a DVD,. . .
68albeit with no guaranteed reaction time and at times not completely reliable; it might also be

more difficult to get “support” for more complicated questions. In addition, posting questions about
a sensitive part of a commercial software project into a public-access forum might be problematic.

126

The European Union GameTools Project Chapter 8

8.9.4 Graphics Libraries

The author would like to point out that graphics libraries are a relatively prob-
lematic type of library, since what most companies require is a full game/3D
middleware solution, which supplies scene management & loading, basic ren-
dering, lighting, shadows and effects rendering, animations, collision detection
/ physics simulation, saving of the world state, sound, user input,. . . For larger
companies all of this combined with multi-platform support for PC and as many
video game platforms69 as possible.

Since the GTP supplies only a small part of this, which is supposed to sit on top
of it70, it faces the additional problem of needing to be compatible or at least
easily integrable with the existing “base” library.

8.9.5 The GameTools Libraries

So what does that all mean for the “free” libraries created within the GameTools
Project ?

Unfortunately, the GTP is somewhere in the middle, combining some of the
worse properties of both public domain/open source and commercial software
libraries: Potential users cannot immediately download and evaluate the code
and their is also no large user base. Documentation of the libraries can also
not be evaluated before signing the GTP SIG membership agreement.71 On
the other hand, he also does not get any kind of security against IP infringe-
ment72; in addition to not having a proven code base and large user base, this
is more problematic in the case of the GTP, since potential SIG members were
of course aware that the GTP libraries were created at universities, an environ-
ment not known for its strict adherence to any kind of license or IP rules.

The next section details the effort necessary to become a SIG member.

69Playstation 1, 2 & 3; Xbox, Xbox 360, Gamecube, Wii,. . . ; in some cases also mobile gaming
platforms such as the Nintendo GameBoy series or Nokia N-Gage.

70a bit like a high tech cherry.
71see Section 8.5.2 for the reasons why the GTP offered no evaluation license.
72The author lobbied for supplying at least a limited IP infringement security, e.g. excluding

patent infringement; this proposal was turned down, advocated by the GTP PC. While the au-
thor can understand that the participating universities (industrial consortium members did not sup-
ply code to the GTP library) did not relish the thought of guaranteeing that no one of their re-
searchers/developers had copy & pasted code from an intellectually protected source into the GTP
libraries, it unfortunately does not build trust with companies considering to become SIG members;
especially larger companies are naturally much more sensitive to these issues, because they are
much wealthier targets for IP infringement lawsuits.

127

Chapter 8 The European Union GameTools Project

Becoming a GTP SIG Member

To get access to GTP technology, a prospective SIG member first has to invest
time to scour the available information, i.e. the information on the GTP web-
page, especially the videos/demos or information that e.g. GTP CM supplies.

He then needs to contact GTP CM, to inquire if anything would prohibit him
from becoming a GTP SIG member.73

After this has convinced him to proceed, he needs then to download the GTP
SIG agreement, and either read and evaluate its implications himself, or pass
it on to a lawyer. Even though the agreement was written to be as short, con-
cise and lenient as possible, it is still a legal document, and therefore needs
some time to assess; in addition such decisions usually have to go through the
management of a company, since a developer cannot pass it to a lawyer or the
legal department on his own.

After the agreement was greenlighted, it has to be filled out, someone with the
authority to do so has to sign it on every page, and it then needs to be faxed to
two fax numbers, at VUT, FAO74 GTP CM, and at GTP HQ at UdG, FAO GTP
PM75

One can see that the amount of work (and therefore money) and trust a po-
tential SIG member has to put in up to this point, where he becomes a SIG
member, is considerable. Even at this point, it is clear, that the GTP libraries
are far from being free in the sense that they incur no costs.

Evaluating the GTP Libraries

After having emailed GTP CM that the fax had been sent, the newly made SIG
member would receive instructions on how to create an account int the GTP
support forum (see Section 8.6), through which he would get his access data
to the GTP software repository (see Section 8.5.5) through a private forum
message.76

After he had got the software repository access information (and having down-
loaded and installed a Subversion client, if need be), he can check out77 the

73The author got e.g. inquiries from private persons, universities and companies outside of the
EU, asking if they could get access to GTP technology.

74abbr.: for the attention of
75Initially it was faxed only to GTP CM to keep the process simpler, but GTP PC requested that

it also be faxed to Girona.
76this was done, so that new SIG members were aware that the forum existed and definitely had

a valid account, in addition to avoiding sending the access data via email.
77“download”

128

The European Union GameTools Project Chapter 8

several GB that are currently stored in the GTP software repository, and can
then finally start to evaluate the libraries.

8.9.6 Future Costs

All of the costs (effort) described above, is in addition to the costs a potential
SIG member can anticipate with regards to missing or bad documentation,
support, bugfixing and costs of integrating the libraries into his own framework.
Even if documentation and support turn out to be excellent, bugfixing fast and
the integration costs low, then the GTP still has a known limited lifespan78, and
support and bugfixing are therefore unclear after that.

8.9.7 Conclusion: GTP Technology is Not Free

From all of the above one can clearly see that GTP technology is not free for
GTP SIG members, whether they actually chose to use it or not.

Even in the sense that “no money is transferred from the SIG member to the
GTP or its partners” the GTP libraries are finally not free, due to the GTP EU
contract which calls for charging SIG members for support and future exten-
sions after the end of the project.

8.10 Taking Stock: An Early Postmortem

78contrary to a company or an open source project

129

Chapter 8 The European Union GameTools Project

Figure
8.7:

C
urrentlook

ofthe
G

TP
startpage

at
h
t
t
p
:
/
/
w
w
w
.
g
a
m
e
t
o
o
l
s
.
o
r
g
/.

130

The European Union GameTools Project Chapter 8

Figure 8.8: GTP webpage News section
(http://www.gametools.org/html/news.html)

Figure 8.9: GTP webpage Videos/Demos section
(http://www.gametools.org/html/demos videos.html)

131

Chapter 8 The European Union GameTools Project

Figure 8.10: GameTools advert appearing in April 2007 edition of
Game Developer magazine (http://www.gdmag.com/).

132

The European Union GameTools Project Chapter 8

(a) conventional decal imposters

(b) GTP depth imposters

Figure 8.11: Screenshots from the volcano level of GTP demogame
Jungle Rumble, comparing conventional, flat decal imposters with GTP
depth imposters.

133

Chapter 8 The European Union GameTools Project

(a) LiSPSM (optimal case)

(b) uniform SMing

Figure 8.12: Screenshots from the GTP demogame Have U Seen My
Shadow. LiSPSM shadows are compared with uniform shadow mapping.
Vegetation and terrain use the author’s Unpopping algorithm.

134

The European Union GameTools Project Chapter 8

(a) Penta-G rotating blaster gun in action

(b) GTP Raytrace Effects on a weird looking statue

Figure 8.13: Screenshots from GTP demogame Penta-G; the original
Penta-G concept by the author (shown here) explored a world design
based on a 5-sided symmetry. This has unfortunately been watered down
to a generically looking commercial FPS rip-off look in newer versions.

135

Chapter 8 The European Union GameTools Project

Figure 8.14: The 1.0 version of the GTP software repository scheme.

136

The European Union GameTools Project Chapter 8

Figure 8.15: The GTP support forum start page at
http://forums.gametools.org/.

137

Chapter 8 The European Union GameTools Project

(a) gamasutra.com

(b) gamedev.net

Figure 8.16: Examples of free GTP advertising on the web on several
important game development news/discussion sites.

138

The European Union GameTools Project Chapter 8

(c) gamedev.org

(d) devmaster.net

Figure 8.16: (continued) Examples of free GTP advertising on the web
on several important game development news/discussion sites.

139

Chapter 8 The European Union GameTools Project

Figure 8.17: GameTools exposure in the December 2005 issue of
renowned Austrian news magazine “profil”.

Figure 8.18: GTP at the Graphics meets Games competition at
Eurographics 2006: GmG webpage.

140

The European Union GameTools Project Chapter 8

G
A
M
E
TO
O
L
S

w w w
.
g
a

m
e
t
o
o

l
s
.
o
r
g

d e v
e
l
o

p
e
r
.
n
v
i

d
i
a
.
c
o
m

sp
on

so
re

d
by

G
R
A
P
H
IC
S

M
E
E
T
S

G
A
M
E
S

Ga
me

 Vo
uc

he
r

fo
r

1 C
om

pu
te

r/V
ide

og
am

e

Gr
ap

hic
s m

ee
ts

 G
am

es

(((
(((

Figure 8.19: GTP at the Graphics meets Games competition at
Eurographics 2006: Game prize voucher.

Figure 8.20: GTP poster for Resfest 2006.

141

Chapter 8 The European Union GameTools Project

(Place, Date)

(Signature)

GameTools Project
Special Interest Group Membership Agreement

between

The GameTools Project
University of Girona

Plaça Sant Domènec, 3, 17071, Girona
Spain

and

Company

Address

Telephone

FAX

Webpage

represented by

Name (First Last)

Position / Job Title

Telephone

Mobile

FAX

email

By signing this agreement, the undersigned also states that he/she is authorized to enter into
this legally binding agreement on behalf of his company. To prove the authenticity of the
content of each page of this agreement, each page needs to be signed.

Figure 8.21: The GTP SIG Membership Agreement (4 pages).

142

The European Union GameTools Project Chapter 8

(Place, Date)

(Signature)

Sense and Purpose of the Agreement
The GameTools Project (from here on “GTP”, http://www.gametools.org/) develops next
generation 3D libraries and is funded by the European Union in its 6th framework programme.
This agreement has the main purpose of allowing members of the GTP Special Interest Group
(from here on “SIG”) to use the technology developed in the GTP as a compiled part of their
products at no charge to strengthen the EU economy/job market, while at the same time
strengthening the GTP consortium members by giving them exclusive rights to publish
scientific results about GTP research results and sell it as a software development library.

General Part

Copyright & Ownership

The Software Package (programs, libraries, sourcecode and documentation) is owned by the
respective GTP core consortium members.
All rights reserved.

Distribution

You must not make any part of the software package accessible to a third party.

Confidentiality

All information included in the software package is strictly confidential and cannot be
communicated to any third party, unless you got this information lawfully from another
source.

Transferability

The rights you acquire through this agreement are not transferable to any third party.

Termination

Should you violate any of its terms, you agree that the GTP can at any time terminate this
agreement and all the rights you have obtained through it. In that case you agree to render all
copies of the software package and any software based on it immediately unusable.

143

Chapter 8 The European Union GameTools Project

(Place, Date)

(Signature)

Disclaimer

You are aware and agree that you use the Software Package at your sole risk and that it is
provided to you "as is" (i.e. without warranty of any kind, express, statutory, implied or
otherwise, including without limitation any warranty of merchantability or fitness for a
particular purpose). No warranty for the software will be created by any information or advice
you are given. You also may not rely on any such information or advice.

Liability

Under no circumstances shall anyone participating in any way in the GTP be liable to you for
any special, consequential, incidental or indirect damages of any kind (including without
limitation the cost of cover, damages arising from use, profits, loss of data, goodwill, or
property damage), whether or not he/she has been advised of the possibility of such loss,
however caused and on any theory of liability arising out of this agreement. These limitations
shall apply notwithstanding the failure of essential purpose of any limited remedy.

Governing Law and Jurisdiction

This Agreement is governed by and construed and enforced in accordance with the internal
laws of Spain, and shall be binding upon the parties hereto worldwide. The exclusive
jurisdiction to adjudicate any dispute arising out of this Agreement shall lie with the courts
within Barcelona. Barcelona, Spain is the place of jurisdiction.

Severability

The validity of the remaining terms and conditions shall not be affected, if any provision of
this agreement becomes ineffective or void. In that case the contracting parties shall replace
the void or ineffective stipulation with another effective regulation appropriate to the sense
and purpose of the agreement.

Specific Part

SIG Membership Official

When becoming a SIG member you agree for this to be official.
You agree specifically that the GTP may use your name and/or logo to publish the fact that
you are a SIG member.
This includes but is not limited to that you agree to your name and/or logo being listed on the
GTP webpage, being included in a press release, talk, video, tv-show or any other publication
about the GTP.

144

The European Union GameTools Project Chapter 8

(Place, Date)

(Signature)

The use of your name & logo is, in any case, limited to expressing solely your SIG
membership, and will not be used for any other purpose by the GTP without your prior
consent.

Use of GTP technology/software

By signing this contract and thereby becoming a SIG member you will get preliminary access
to the technology/software as it is being developed by the GTP, and you are allowed to use
the technology/software for any purpose, including commercial purposes, condition to the
following restrictions:

EU Focus

All of the software development using the Software Package has to be done in the EU. If the
SIG member is an international company which also has development studios outside of the
EU and this condition cannot therefore be fulfilled for practical reasons, then most of the
Software development using the Software Package has to be be done in the EU.

Credit

If you make a work/program that is based in whole or part on the Software Package available
to a third party you have to give clear credit to the GTP, by including the GTP logo with the
text "based on technology from the GameTools Project (www.gametools.org)" below it in
either your work’s/program’s manual/documentation and/or credits.

Scientific Results

You are not allowed to publish (including but not limited to at conferences, in journals or
books and over the web) research results, based on and about technology developed in the
GTP during the duration of the GameTools Project.

Library Creation

You are not allowed to make libraries (either compiled or in sourcecode form), based on the
Software Package or parts of it, available to third parties in any form which can be used for
software development.

145

Chapter 9

Game Development and the
Game Industry

The following short chapters present thoughts and observations by the author
about different topics in game development and the game industry. They ad-
dress questions and topics the author has either come across repeatedly with
regards to game development1 (“Why Buying a Computer Game is Not Like
Going to the Movies”, “Why Computer Games are Seldom Art”), or which the
author has developed himself and thinks could help in not wasting resources in
game development (“The Quality Frontier in 3D Games”).

1e.g. in Game Developer magazine

146

Chapter 10

Why Buying a Computer
Game is Not Like Going to
the Movies

The one industry the game industry is most often compared with is the movie
industry. And there are certainly a lot of parallels: Both are creative industries,
both are done by large teams of people working together (as compared to
e.g. literature, which is usually done by one individual alone), both create a
comparable amount of revenue and both are “the winner takes it all” economic
areas, where only a small percentage of top titles create nearly all the profit
(and are desperately needed to offset the losses of the rest). But there is one
major difference, namely that playing computer and video games does not not
nearly have the same mass appeal as going to the movies. Apart from very few
exceptions (e.g. ”The Sims”), computer and video games are mostly played by
the male half of the population. And within this male half, it is still a specific
subgroup that is not nearly as large as the number of the male population that
goes to see movies. This chapter deals with some observations concerning
differences between the two industries, and concludes with what could be done
to improve the situation.

10.1 Recognizing Creative Minds

Recognition of the creative mind(s) behind a computer game is the exception,
not the norm (Peter Molyneux, Sid Meier, false example: ”John Carmack”),

147

Chapter 10 Why Buying a Computer Game is Not Like Going to the Movies

contrary to movies, where at least directors are stars in their own right, and are
recognized by the audience. Movie directors (and to a lesser extent producers)
are brands: If they make a bad movie (pick the wrong script, wrong actors,...),
their reputation is diminished, not the one of the film studio. Computer games
on the contrary are created by ”faceless drones” as far as the gamer is con-
cerned, and are usually mostly associated with the publisher. What matters
though, are the actual people creating a movie, or a computer/video game.

10.2 Communication

Seeing a movie allows one to talk about it with your partner, friends & cowork-
ers. That this is possible because of two reasons: First going to the movies is
still a leisure activity that many more people participate in (the games industry
might have overtaken Hollywood in terms of money [because games are so ex-
tremely expensive], but certainly not in terms of people worldwide participating
in playing them), and second the likelihood that many of the people you know
have seen the same movies as you did is much higher than that them having
played the same games (if they play games at all): Going to the movies is a
short event as compared to playing a computer game, while at the same time
being much cheaper (even assuming that you pay for 2 tickets, it should cost
no more than 16 Euro to see a movie, as compared to 50+ Euro to buy one
computer game), so many people can watch several movies per months.

10.3 Pricing

The longevity of computer games combined with their high price poses a prob-
lem of its own kind: If a computer game only offers a short playing experience,
then players will be even less inclined to buy it (or its sequel); but since the
playing experience is much longer than a movie, there is room for less games
in peoples lives. Therefore games such as the hugely successful GTA series
can pose a huge problem for other publishers, since the games, being released
in a regular fashion, occupy so much of gamers time and money. This problem
is amplified in massive multiplayer games, where players will normally be sub-
scribed to one game at a time, playing them for periods of several months at
least.

148

Why Buying a Computer Game is Not Like Going to the Movies Chapter 10

10.4 Social Activity

Going to the movies is (currently) a much more social activity than playing a
computer game: Most people do it together with their partner and/or friends, it
is part of a whole bunch of evening activities, so even if the movie turns out to
be only mildly entertaining, the overall experience can still be fun.

10.5 Ease of Picking a Good One

Picking a movie which you will at least enjoy a little bit is much easier than
doing the same thing with a computer game; Computer games have so much
more elements that one could not like (e.g. for me control mechanism of most
3rd person videogames, such as ”The Simpsons”, ”Rayman 3D” etc) that the
likelihood of picking the right one is much smaller.

10.6 Fun at Picking a Bad One

Even if the movie was really bad, although no one would deliberately go to
see it (apart from Star Wars Episode 3, maybe), one can still have fun taking it
apart with other people who didn’t like it. With a computer game, if it turns out
to be bad, that’s it: You spent a lot of money, and all you got in return is this
colorful box, that shouts at you how good the game supposedly is, and which
you won’t throw away, because it cost a lot of money, only to have it remind you
how much the game that came in the box sucked, every time you look at it.

10.7 Time Investment

If a movie has its weak sections, then in most cases the viewer will still watch
the whole movie (because it lasts less than 2 hours or the people he went
to the movie with don’t want to leave or...), and therefore might not be (as)
disappointed by the whole experience. Playing a computer game takes a lot
of time investment on the part of the player, and if a game is unenjoyable over
a longer stretch of time, then the player will most likely stop playing it, and
therefore never get to the more enjoyable sections; this is most pronounced
at the beginning of a game, where the player has to learn the controls and
the subtle differences in game logic that even games of the same genre exhibit

149

Chapter 10 Why Buying a Computer Game is Not Like Going to the Movies

(e.g. ”do I have to check every door if it can be opened, or are ther visual/sound
clues telling me, which ones are just dummies”). Actually this initially happened
to me with one of the best games I have ever played, Deus Ex 1: I downloaded
& played the demo, which consists of the first level of the game, and was very
dissapointed: The graphics were not very good, there was not much of the -
supposedly excellent - story to be seen and I wasn’t too convinced about the
basic FPS game mechanics. So I decided against buying it; fortunately I found
it in a bargain bin some time later and decided to give it another try, mostly
because it was the american version, and therefore came in a funny box, and
it was really cheap - about the price of a movie ticket, if I recall correctly.

10.8 Language Barrier

Language of game: Free to choose (e.g. System Shock 1)

10.9 Controls

Controls of a game: No need to learn to ”control your movie experience”.

10.10 Bugfixes

No ”bugfixes” for movies.

10.11 Bootlegging

Bootleg Copies: Illegal copies are of course a problem for both the movie and
the game industry, and at first glance it might seem as if both suffer the same
from people using their product without paying for it. But is that really so ? Let’s
first observe that watching a bootlegged movie is, of course, like watching the
DVD to a film, and not like going to the movies: The whole social experience
of going out, meeting friends etc that has been discussed above is missing
in addition to not being presented the movie on abig screen with THX sound.
But even with the bootlegged copy of the movie (with DVD sales of course
being a big source of revenue for the movie industry) the experience the viewer
gets is normally not the same as with the original product: Either the bootleg

150

Why Buying a Computer Game is Not Like Going to the Movies Chapter 10

is filmed off a movie screen, which gives such horrendous quality, that one
must deduce that these people really don’t want to spend the money at all;
or the DVD has been downsampled to fit on a 4.7GB write-once DVD (while
this is in the process of changing, the advent of high definition movies will
probably balance the scales in this area once more). On the other hand with
computer games, when you use a bootleg copy, you get at least the same
playing experience than with a legal copy; I say ”at least”, because ironically
because the cracked copies have the copy protection mechanism removed,
saving the player the hassle of having one of the games discs in his drive when
starting the game. The only thing the player using the bootleg copy is missing is
the box the game comes in (increasingly just a standard DVD box, so not much
there) and the handbook, something which most games don’t need nowadays,
and which has been reduced to such an extent that it is pointless to read it
anyway, if you have any experience playing games (”the left mouse button fires
the weapon” - really ?). In addition again the high cost of computer games lures
people to copy them: You can pick up a DVD for 5 Euros, freshly released they
cost 15-20 Euros, which is still only around one-third of the price of a computer
game.

10.12 How to Improve the Situation

Now that we have seen that there are in fact a lot of differences between the
game and movie industry with regards to its customers, what could be done to
improve the situation ? Buyers can win something (which money can’t buy, e.g.
a trip to a big developer studio, a trip to E3 with backstage pass, etc). Buyers
can return the game for a refund (maybe in the form of a voucher). This could
be extended as follows: By some technical mean (connection to a server on the
internet, rub off card shipped within the gamebox etc) the player unlocks level
after level of a game. If he stops playing the game, he is refunded the levels he
did not play. Alternatively this could be turned around, so that buying a game
is very cheap, and the player has to buy the levels before he plays them. Both
approaches, of course, require the publisher to be quite sure that players will
like their products from start to end.

Age: Movies have been around for much longer, so older people know them.
But still: Many people feel that, once they reach a certain age, they are “too old
to play electronic games”.

Money: In poor countries people can go to the movies, but they cannot afford
the expensive equipment necessary to play electronic games.

151

Chapter 11

The Quality Frontier in 3D
Games

This part of the thesis introduces the concept of the “quality frontier”. In general
the quality frontier is the curve through the quality of all the parts that make up
a whole thing. In a 3D computer/video game it is the curve through the quality
of all the areas that make up the game, such as graphics, sound, controls, ar-
tificial intelligence,. . . . A very important part of modern 3D game is graphics,
and the quality frontier here again runs through the different subareas, such
as water, light, shadows, surfaces,. . . rendering. Quality here is measured as
compared to an ideal rendering. For example for most first person shooters
the ”ideal rendering” would be to have everything look like in the real world,
with maybe a touch of hyperrealism. Therefore each graphical area can be
categorized as to how far it is from that goal. The thing one wants to avoid at
all costs is, to have a certain area of the rendering shatter the illusion of the
whole. Example: If a game world is depicted with the graphical quality of Doom
1, no one would expect to see puddles on the floor that reflect the environment
distorted through physically correctly modeled ripples on its surface; would one
include such an effect into the engine, one would not get better overall graphi-
cal quality, but worse, since the perfectly rendered puddle would only highlight
how badly the rest of the environment is depicted in comparison ! Therefore
the goal must be to have a quality frontier curve which is as uniform as possi-
ble. In practice that also means, that it does not make sense to invest money &
effort to push the graphical quality in certain areas of a game only, while others
lag behind. The goal has to be to advance the quality frontier as uniformly as
possible. The principle of the quality frontier also holds for other areas of game

152

The Quality Frontier in 3D Games Chapter 11

development: The more realistically computer controlled allies (henchmen) to
the player are rendered, the more it becomes obvious if their animation (or an-
imation blending) or AI cannot keep up. Good examples for a uniform quality
frontier are ”Half-Life 2” and ”Unreal Tournament 2003/2004”. Half-Life 2 for
instance is the first game that can hide the typical ”water collides hard with the
shore because of depth buffer” problem by blending the critical area near the
shore (which, on closer inspection is of course not a perfect solution, but which
withstands all but the closest scrutiny, and will certainly not disrupt the visual
quality of the game while playing it). ”Unreal Tournament 2003” introduced di-
agonal sidestep animations for opponents, making the combat sequences the
player experiences much more believable (negative examples along that line
include Quake 3 and games based on this engine; for instance in Jedi Knight
2, even the storm troopers backpedalled and strafed left/right while display-
ing a simple simply ”moving their legs up and down”-animation - in this regard
even the stormtroopers from the original Star Wars first person shooter, Dark
Forces 1, had looked better). Another negative example is Doom 3, which
uses shadow volumes together with too small textures (it is amazing how much
textures the game evidently uses, even though it looks so similar everywhere
one goes), leading to ridiculously blurry surfaces from even a moderate dis-
tance which clash violently with the razor sharp shadow volume edges casting
shadows onto the surfaces; in its predecessors only low resolution light maps
where used (which are still present in Doom 3 and work fine there), avoiding
such problems. The only exception to the ”uniform quality frontier”-rule is, if
you are trying to sell your game on being the first to feature a specific graphical
effect. In this case you most certainly will not increase the quality of your game,
but due to a certain tech savvy buyers and a greater echo in the games press,
you might shift more units.

153

Chapter 12

Why Computer Games are
Seldom Art

1. Games ⇒ Playing ⇒ Entertainment

2. excludes most negative emotions, that touch us in a higher place, such
as art does.

3. So we need another term in any case (”Virtual Interactive Art” ?)

4. Most people do not consume art in any form, why should they in games
?

5. Creating a computer game is the most time consuming way of express-
ing oneself, short of a Hollywood movie. So the question is, if it is a
good medium for artistic expression ? What are its unique characteris-
tica, which distinguish it from all other forms ?

6. INTERACTION (Chracteristicum #1): The ”game” reacts to another per-
sons actions or it tries to coerce reactions to its own action (feedback); it
can mix the real environment with the virtual gameworld (face textures,
integrate real world geometry into game, etc)

7. Isn’t art mostly about silent reflection ? Or is this just cultural prjudice ?

8. Art in commercial games, problems:

(a) Ever increrasingly expensive to make⇒must be ”surfire” hits. Holly-
wood does seldomly produce art either (but it does sometimes come
near !).

(b) Target audience is mostly 14 year old males. Probably the part of
the population that has the least connection to art.

154

Why Computer Games are Seldom Art Chapter 12

9. Time you have to invest into it as a ”player”: If you don’t like a painting,
photograph, etc artwork, or it does not touch you, you can simply move
on to the next. Not so in a game.

10. ”Playing games is something that children do”

11. Only artistic game: ”Deus Ex 1”

(a) Not everything is as it seems

(b) What is ”good” and what is ”evil” ?

(c) What makes a human ”human” ? What can you take away from a
human, without him losing his soul (Cyborgs ”monsters”) ?

(d) Is it OK to manipulate the world ”for its own good” ?

(e) End question: What future world will you create ? Reflect about
utopian future. 3 choices:

i. Take control over the world by merging with an AI, becoming a
benevolent dictator

ii. Plunge world into dark age (technological breakdown)

iii. Leave everything as it is (Illuminati fractions scheming in the
background and controlling the wold through manipulation)

Choice one seemed tempting: You could right all wrong, bring peace to
the planet, etc. But: Benevolent dictator is a scheme that has gone wrong
time and time again. What if the AI is the dominant part ? What if you
loose your humanity, immediately or over time ? What if you go mad
immediately or after some time ? What if absolute power corrupts you
absolute ? Or even in the best case: Are you really sure, you know what
is best for everyone ? Suddenly it did not seem to be such a good choice
anymore. Choice two was the next favorite: Break the manipulative grip
of the Illuminati over the world, destroy the evil technology that allowed
for mass manipulation and control. Give people back their freedom !
But what would such a world be like ? A new worldwide middle age,
where the physically strongest dominate the weaker ones; where local
warlords and kings take what they like and do how they please (”ius prime
nocte”). Where control over remnants of technology gives great power.
And a world that in the end, would probably even end up where it is right
now. So to my own surprise I picked option three, seeing the relative
freedom of the people to do what they want and aspire for what they
choose, a high standard of living, free choice of religion etc as the best
of three bad choices: A world, even if manipulated by warring factions

155

Chapter 12 Why Computer Games are Seldom Art

of humans at the highest level seemed better than one dominated by
one not-quite-human dictator or one where the strongest, most brutal
individuals where the most likely to wield absolute power in local areas.
Of course, given the choice I would have opted for choice 4: Eliminate the
Illuminati, and bring the world one step closer to being a fair, democratic,
utopian society. But be wary: Just as when you elimite all bacteria and
fungi on an old painting, all you achieve might be to only to replace it with
the fastest growing one, which does more damage to the painting than
the power balanced heterogenous scenario. Why where these questions
so important to me in the first place ? The answer is: Because I had
become emotionally involved with the world that Deus Ex portrays, by
fighting in it, and fighting to reach this decision point (although, of course,
expecting that the decision would have been made for me by the game
designer). So the interactivity, which we described as one of the main
distinguishing factors of electronic games, plays a vital role in making the
decision emotional and engaging.

This is where a commercial game can give an experience which might, in
a sense, make it valid to call it a work of art.

156

Bibliography

[AL04] Timo Aila and Samuli Laine. Alias-free shadow maps. In Proc.
Eurographics Symposium on Rendering 2004, pages 161–166,
2004. 19

[Arv04] Jukka Arvo. Tiled shadow maps. In Proc. Computer Graphics
International 2004, pages 240–247, 2004. 21

[AWG78] Peter Atherton, Kevin Weiler, and Donald Greenberg. Polygon
shadow generation. In SIGGRAPH ’78: Proceedings of the 5th
annual conference on Computer graphics and interactive tech-
niques, pages 275–281, New York, NY, USA, 1978. ACM Press.
8

[BAS02] Stefan Brabec, Thomas Annen, and Hans-Peter Seidel. Practical
shadow mapping. Journal of Graphics Tools, 7(4):9–18, 2002.
13, 18, 21

[Bli88] J. Blinn. Me and my (fake) shadow. IEEE Comput. Graph. Appl.,
8(1):82–86, 1988. 6

[BWPP04] Jiřı́ Bittner, Michael Wimmer, Harald Piringer, and Werner Pur-
gathofer. Coherent hierarchical culling: Hardware occlusion
queries made useful. Computer Graphics Forum (Proc. Euro-
graphics 2004), 23(3):615–624, 2004. 25, 26, 123

[CD04] Eric Chan and Frédo Durand. An efficient hybrid shadow render-
ing algorithm. In Proceedings of the Eurographics Symposium
on Rendering, pages 185–195. Eurographics Association, 2004.
22

[CG04] H. Chong and S. J. Gortler. A lixel for every pixel. In Proceedings
of Eurographics Symposium on Rendering 2004, 2004. 21

[CGG+03] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton,
Federico Ponchio, and Roberto Scopigno. BDAM – batched dy-

157

Bibliography Bibliography

namic adaptive meshes for high performance terrain visualiza-
tion. Computer Graphics Forum, 22(3):505–514, 2003. 78

[CotEC04] Information Society Directorate-General Commission of the Eu-
ropean Communities. Gametools - advanced tools for developing
highly realistic computer games. IST 6th Framework Programme,
Contract Number 004363, 2004. 96, 98, 99

[Cro77] Franklin C. Crow. Shadow algorithms for computer graphics.
Computer Graphics (Proc. ACM SIGGRAPH 77), 11(2):242–248,
1977. 11

[DL06] William Donnelly and Andrew Lauritzen. Variance shadow maps.
In SI3D ’06: Proceedings of the 2006 symposium on Interactive
3D graphics and games, pages 161–165, New York, NY, USA,
2006. ACM Press. 21

[EJ00] George Eckel and Ken Jones. OpenGL Performer Programmer’s
Guide. SGI techpubs library, 2000. Document Number 007-
1680-060. 77

[Eng07] Wolfgang Engel. Cascaded shadow maps. In ShaderX 5 - Ad-
vanced Rendering Techniques, pages 197–206. Charles River
Media, January 2007. ISBN 1-584-50499-4. 21

[FFBG01] Randima Fernando, Sebastian Fernandez, Kavita Bala, and
Donald P. Greenberg. Adaptive shadow maps. In Proc. ACM
SIGGRAPH 2001, pages 387–390, 2001. 21

[FS93] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive display
algorithm for interactive frame rates during visualization of com-
plex virtual environments. In SIGGRAPH 93 Conference Pro-
ceedings, pages 247–254, 1993. 75

[GLY+03] Naga K. Govindaraju, Brandon Lloyd, Sung-Eui Yoon, Avneesh
Sud, and Dinesh Manocha. Interactive shadow generation in
complex environments. In SIGGRAPH ’03: ACM SIGGRAPH
2003 Papers, pages 501–510, New York, NY, USA, 2003. ACM
Press. 22

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and
Bennett Battaile. Modeling the interaction of light between diffuse
surfaces. In SIGGRAPH ’84: Proceedings of the 11th annual
conference on Computer graphics and interactive techniques,
pages 213–222, New York, NY, USA, 1984. ACM Press. 5, 11

158

Bibliography Bibliography

[GW07a] Markus Giegl and Michael Wimmer. Fitted virtual shadow
maps. In Graphics Interface Proceedings 2007. CIPS, Cana-
dian Human-Computer Communication Society, A K Peters, May
2007. 2

[GW07b] Markus Giegl and Michael Wimmer. Queried virtual shadow
maps. In Proceedings of the 2007 Symposium on Interactive
3D Graphics and Games. ACM Press, April 2007. 2

[GW07c] Markus Giegl and Michael Wimmer. Queried virtual shadow
maps. In ShaderX 5 - Advanced Rendering Techniques, pages
249–262. Charles River Media, January 2007. ISBN 1-584-
50499-4. 2, 42

[GW07d] Markus Giegl and Michael Wimmer. Unpopping: Solving the
image-space blend problem for smooth discrete lod transition.
Computer Graphics Forum, 26(1):46–49, March 2007. 2

[HLHS03] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and
François Sillion. A survey of real-time soft shadows algorithms.
In Eurographics State-of-the-Art Reports, 2003. 17

[Hop96] Hugues Hoppe. Progressive meshes. In Holly Rushmeier, edi-
tor, SIGGRAPH 96 Conference Proceedings, Annual Conference
Series, pages 99–108. ACM SIGGRAPH, Addison Wesley, Au-
gust 1996. held in New Orleans, Louisiana, 04-09 August 1996.
78

[Hop98] Hugues Hoppe. Smooth view-dependent level-of-detail control
and its application to terrain rendering. In Proceedings of the
conference on Visualization ’98, pages 35–42, 1998. 78

[JLBM05] Gregory S. Johnson, Juhyun Lee, Christopher A. Burns, and
William R. Mark. The irregular z-buffer: Hardware acceleration
for irregular data structures. ACM Trans. Graph., 24(4):1462–
1482, 2005. 19

[Kaj86] James T. Kajiya. The rendering equation. In SIGGRAPH ’86:
Proceedings of the 13th annual conference on Computer graph-
ics and interactive techniques, pages 143–150, New York, NY,
USA, 1986. ACM Press. 4, 5

[Koz04] Simon Kozlov. Perspective shadow maps: Care and feeding.
GPU Gems, 1:214–244, 2004. 21

[KSS02] Jan Kautz, Peter-Pike Sloan, and John Snyder. Fast, arbitrary
brdf shading for low-frequency lighting using spherical harmon-

159

Bibliography Bibliography

ics. In EGRW ’02: Proceedings of the 13th Eurographics work-
shop on Rendering, pages 291–296, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association. 14

[Lan02] H. Landis. Production-ready global illumination. ACM SIG-
GRAPH 2002 Course Notes #16, pages 87–101, 2002. 11

[LRC+02] David Luebke, Martin Reddy, Jonathan D. Cohen, Amitabh
Varshney, Benjamin Watson, and Robert Huebner. Level of De-
tail for 3D Graphics. Elsevier Science Inc., 2002. see also
www.lodbook.com. 75

[LSK+05] Aaron Lefohn, Shubhabrata Sengupta, Joe M. Kniss, Robert Str-
zodka, and John D. Owens. Dynamic adaptive shadow maps on
graphics hardware. In ACM SIGGRAPH 2005 Conference Ab-
stracts and Applications, 2005. 21

[LTYM06] Brandon Lloyd, David Tuft, Sung-eui Yoon, and Dinesh Manocha.
Warping and partitioning for low error shadow maps. In Proceed-
ings of the Eurographics Symposium on Rendering 2006, pages
215–226. Eurographics Association, 2006. 21

[McC00] Michael D. McCool. Shadow volume reconstruction from depth
maps. ACM Trans. Graph., 19(1):1–26, 2000. 22

[MH02] Tomas Möller and Eric Haines. Real-Time Rendering, Second
Edition. A. K. Peters Limited, 2002. 2, 7, 12, 17

[MosBC] Moses. Genesis. approx. 1500-1200 BC. 1

[MT04] T. Martin and T.-S. Tan. Anti-aliasing and continuity with trape-
zoidal shadow maps. In Proc. Eurographics Symposium on Ren-
dering 2004, pages 153–160, 2004. 21

[OAS+11] John Overall, Lancelot Andrewes, Hadrian Saravia, Richard
Clarke, John Layfield, Robert Tighe, Francis Burleigh, Geoffrey
King, Richard Thomson, and William Bedwell. The Bible: King
James Version. Robert Barker, 1611. 1

[PC97] Stephen Prickett and Robert Carroll. The Bible: Authorized King
James Version (Oxford World’s Classics). Oxford Paperbacks,
1997. 1

[RSC87] William T. Reeves, David H. Salesin, and Robert L. Cook. Ren-
dering antialiased shadows with depth maps. Computer Graph-
ics (Proc. ACM SIGGRAPH 87), 21(4):283–291, 1987. 20

160

Bibliography Bibliography

[SCH03] Pradeep Sen, Mike Cammarano, and Pat Hanrahan. Shadow
silhouette maps. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Pa-
pers, pages 521–526, New York, NY, USA, 2003. ACM Press.
22

[Sch05] Daniel Scherzer. Shadow mapping of large environments. Mas-
ter’s thesis, Institute of Computer Graphics and Algorithms, Vi-
enna University of Technology, Favoritenstrasse 9-11/186, A-
1040 Vienna, Austria, 8 2005. 17

[SD02] Marc Stamminger and George Drettakis. Perspective shadow
maps. ACM Transactions on Graphics, 21(3):557–562, 2002. 21

[SK98] Laszlo Szirmay-Kalos. Stochastic methods in global illumination -
state of the art report. Technical Report TR-186-2-98-23, Vienna,
Austria, 1998. 5

[SKvW+92a] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and
Paul Haeberli. Fast shadows and lighting effects using texture
mapping. In SIGGRAPH ’92: Proceedings of the 19th annual
conference on Computer graphics and interactive techniques,
pages 249–252, New York, NY, USA, 1992. ACM Press. 9

[SKvW+92b] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and
Paul Haeberli. Fast shadows and lighting effects using texture
mapping. SIGGRAPH Comput. Graph., 26(2):249–252, 1992.
20

[SSKS06] László Szécsi, László Szirmay-Kalos, and Mateu Sbert. Light an-
imation with precomputed light paths on the gpu. In GI ’06: Pro-
ceedings of the 2006 conference on Graphics interface, pages
187–194, Toronto, Ont., Canada, Canada, 2006. Canadian Infor-
mation Processing Society. 16

[Ste06] Christian Steiner. Shadow volumes in complex scenes. Master’s
thesis, Institute of Computer Graphics and Algorithms, Vienna
University of Technology, Favoritenstrasse 9-11/186, A-1040 Vi-
enna, Austria, May 2006. 17

[TQJN99] Katsumi Tadamura, Xueying Qin, Guofang Jiao, and Eihachiro
Nakamae. Rendering optimal solar shadows using plural sun-
light depth buffers. In CGI ’99: Proceedings of the International
Conference on Computer Graphics, page 166, Washington, DC,
USA, 1999. IEEE Computer Society. 21

161

Bibliography Bibliography

[WGS99a] Michael Wimmer, Markus Giegl, and Dieter Schmalstieg. Fast
walkthroughs with image caches and ray casting. In Michael
Gervautz, Dieter Schmalstieg, and Axel Hildebrand, editors,
Virtual Environments ’99. Proceedings of the 5th Eurographics
Workshop on Virtual Environments, pages 73–84. Eurographics,
Springer-Verlag Wien, June 1999. ISBN 3-211-83347-1. 2

[WGS99b] Michael Wimmer, Markus Giegl, and Dieter Schmalstieg. Fast
walkthroughs with image caches and ray casting. Computers and
Graphics, 23(6):831–838, December 1999. ISSN 0097-8493. 2

[Wil78] Lance Williams. Casting curved shadows on curved surfaces.
Computer Graphics (Proc. ACM SIGGRAPH 78), 12(3):270–274,
1978. 13, 17, 20

[WM94] Yulan Wang and Steven Molnar. Second-depth shadow map-
ping. Technical Report TR94-019, University of North Carolina at
Chapel Hill, 1994. 20

[WS06] Michael Wimmer and Daniel Scherzer. Robust shadow mapping
with light space perspective shadow maps. In Wolfgang Engel,
editor, Shader X4 - Advanced Rendering Techniques, ShaderX,
chapter 4. Shadows. Charles River Media, Inc., March 2006. 123

[WSP04] Michael Wimmer, Daniel Scherzer, and Werner Purgathofer.
Light space perspective shadow maps. In Proc. Eurographics
Symposium on Rendering 2004, pages 143–151, 2004. 21, 24,
33, 34, 40, 52

162

Curriculum vitae

Name: Dipl.-Ing. Markus Giegl
Date of birth: September 21, 1968 in Vienna, Austria
Nationality: Austria
Email: giegl@cg.tuwien.ac.at, giegl@arscreat.com
Languages: German, English

Education

Sep 1979 - Jun 1987: Highschool (BRG3 Radetzkystraße); graduated with
distinction in Mathematics, Physics, German and En-
glish.

Oct 1987 - Jan 1996: Study of Theoretical Physics at Vienna University of
Technology, in parallel to work as database developer.

Jan 1996: Graduated with distinction in Theoretical Physics on
”Automatic Calculation of Green Functions of Arbi-
trary Quantum Field Theories” done using Wolfram
Research’s Mathematica at the Institute of Theoretical
Physics, Vienna University of Technology.

since Oct 2004: Doctoral program (Ph.D.) in computer science at the
Vienna University of Technology in parallel to job as
Community Manager of the European Union Game-
Tools Project.

Jobs

Feb 1993-Oct 1994: Database Architect & Developer at W.A. Richter; Cre-
ated AMLV business workflow database solution under
MS Access and SQL Server.

Jan 1996–Aug 1996: Military service in Austrian army (served whole manda-
tory term of 8 months).

Oct 1996-Nov 2000: Project Leader and C++ Lead Programmer for role-
playing & horror-shooter game Cryptichon1.

Oct 2000–Jan 2001: Developed ”Moorhuhn 3D” computer game under Ars-
Machina in C++.

Jan 2001–Sept 2001: Project Leader for “FBI Academy” 3D shooter game for
Data Becker2

1http://www.arscreat.com/cryptichon/
2http://www.databecker.de/

163

Mar 2001–Nov 2001: Authored, produced and promoted a cartoon book par-
ody of Ulrich Strunzs “forever young” German best-
seller on jogging.

Oct 2001–Nov 2002: Lotus Domino Developer at Kendoel Ges.m.b.H.: IBM
Lotus Domino development using Java, LotusScript,
FormulaLanguage and Javascript.

Mar 2002–Feb 2003: Developed EOS method to combat Unsolicited Bulk
Email (“SPAM”); Drafted & applied for US Provisional
Patent (PPA); proof of concept reference implementa-
tion in .NET C# and Java.

Jan 2004–Sep 2004: System Architect at Topcall International: Design and
implementation of flexible setup and installation system
for workflow solution mostly employed in telecommuni-
cations and banking industry.

Oct 2004–May 2007: Community Manager in The European Union Game-
Tools Project3.

3http://www.gametools.org/

164

