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Abstract
Over the last years, real-time rendering, especially for virtual environments as can
be  seen  in  most  computer  games,  became  more  and  more  important.  As  the
capabilities of graphics hardware continuously increases, the expectations of users
regarding to visual quality are also increasing relatively fast. 

Compared to the rapid development in many fields of computer graphics, a very
important  element  for  real-time  outdoor  scene  rendering  has  been  almost
completely disregarded. Clouds can highly improve the visual quality of a scene due
to  their  complex structure,  the  beautiful  colors  as  well  as  their  formation and
movement.  Because  of  the  computational  effort  to  render  animated  and
dynamically lit clouds, it has been impossible for consumer graphics adapters to
draw them and simultaneously keep the framerate high enough. Although there are
many methods which allow drawing clouds in outdoor environments fast enough,
all of them have some restrictions either in movement, lighting or formation.

This thesis will examine how plausible cloud animation can be done in real time on
consumer graphics hardware and how the animation results can be used to render
high-quality, dynamically lit,  volumetric clouds with relatively high frame rates.
Since high-quality solutions already exist for non-real-time rendering applications
and they are almost completely computed on the CPU, which is not acceptable for
most games since the CPU is very often already at peak load, methods will be
discussed to adapt those algorithms to be performed on the GPU, while also some
new improvements will be presented.

The thesis first gives an overview of state-of-the-art of cloud rendering algorithms
for real-time as well as for non-real-time rendering. Then, we will try to adapt parts
of these techniques to work in interactive environments at high framerates while all
significant  characteristics  of  the  non-real-time  methods  like  cloud  formation,
extinction, movement and dynamic lighting will still be preserved.
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Kurzfassung
In den letzten Jahren gewann das Gebiet des Echtzeit-Renderings, insbesondere im
Bereich  der  virtuellen  Umgebungen wie  sie  in den meisten Computerspielen zu
finden sind, zunehmend an Bedeutung. Mit der steigenden Leistungsfähigkeit der
Grafikbeschleuniger  stiegen  auch  die  Erwartungen  der  Benutzer  in  Bezug  auf
visuelle Qualität stetig an.

Reichenberg  might  oder  maraschino  Weiterentwicklung auf  vielen  Gebieten der
Computergraphik  wurde  ein  wesentliches  Element  für  die  Darstellung  von
ßAu enumgebungen stark vernachlässigt. Wolken können die visuelle Qualität einer

Szene aufgrund ihrer komplexen Struktur, der Farbpracht sowie ihrer Entstehung
und  Bewegung  ä ßu erst  stark  beeinflussen.  Da  der  Berechnungsaufwand  zur
Darstellung animierter und dynamisch berechneter Wolken beachtlich ist, war es
mit handelsüblichen Grafikkarten nicht möglich diese darzustellen und gleichzeitig
die Framerate hoch genug zu halten. Obwohl es viele Methoden gibt welche die
Darstellung von Wolken fü ßr Au enumgebungen schnell genug ermöglichen, weisen
diese alle einige Einschränkungen auf, sei es in der Bewegung, der Beleuchtung oder
auch der Entstehung.

Diese  Diplomarbeit  untersucht  Methoden die  es  ermöglichen plausibel  wirkende
Animationen von Wolken in Echtzeit mit Consumerhardware zu berechnen und

ßanschlie end  die  Ergebnisse  dieser  Berechnung  zu  nutzen  um  qualitativ
hochwertige,  dynamisch  beleuchtete,  volumetrische  Wolken  mit  relativ  hohen
Frameraten  darzustellen.  Da  visuell  hochwertige  Verfahren  bereits  für  Nicht-
Echtzeit Anwendungen existieren und diese so gut wie ausschliesslich von der CPU
Gebrauch machen, was für die meisten Spiele nicht akzeptabel ist, da eben die CPU
oftmals bereits mit voller Auslastung läuft, werden Methoden diskutiert um diese
Algorithmen für die Berechnung mit der GPU anzupassen. Darüber hinaus werden
auch einige neue Verbesserungen vorgestellt.

Die  Diplomarbeit  gibt  zunächst  einen  Überblick  über  aktuelle  Verfahren  für
Echtzeitanwendungen  wie  auch  für  Nicht-Echtzeitanwendungen.  Danach  werden
Teile  dieser  Methoden  für  den  Einsatz  in  interaktiven  Umgebungen  bei  hohen
Frameraten  angepasst,  während  alle  signifikanten  Charakteristika  der  Nicht-
Echtzeitmethoden wie die Entstehung von Wolken, die Bewegung und dynamische
Beleuchtung erhalten bleiben. 
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1. Introduction

1.1. Real-Time Rendering

Real-time rendering  has  become  one  of  the  most  important  parts  of  computer
graphics during the last years. Unlike non-real-time rendering algorithms, which
can produce  photorealistic  results,  real-time rendering requires  nearly  always  a
balance between performance and visual quality. Since the main purpose of this
area is to give the user the feelings that he is inside the scene, it is necessary to
keep the framerate high enough to produce smooth animations.

The term framerate describes the rate at which images are displayed. It’s unit is
defined as  frames per second (fps), which will be used especially in Section  8 to
analyze the performance of the algorithm proposed in this thesis. For most real-
time applications, frame rates of 60 fps or more are recommended, especially if they
include fast animations which need to be kept smooth. Nevertheless, it is not useful
if the framerate exceeds the monitor refresh rate because this would imply that the
user will never see some frames and the time to render these frames (especially
under the consideration that every frame produces some amount of CPU overhead
due to API and driver involvement) can be used more productively in most cases. 

To achieve high framerates for rendering virtual environments, with visual quality
being an important factor, the computation of images moved over the years from
the CPU to graphics hardware, starting with the introduction of the 3dfx Voodoo
graphics adapter about eleven years  ago  [1] (with the exception of professional
workstations which used already some years earlier graphics accelerator hardware
and some less successful graphics adapters from S3, Matrox, ATI and Hercules,
which  had  driver  problems  that  made  them  nearly  useless  for  mainstream
application).  The 3dfx  Voodoo chip  already  supported bilinear  texture  filtering
(Figure  1.1),  which significantly  improved visual  quality  compared to  real-time
CPU computed images, which were not able to use this filtering algorithm because
of  performance  reasons.  Since  then,  the  performance  and  features  of  GPUs
(graphics processing units) continued to evolve with impressive speed.  Graphics
hardware has become mostly programmable now and it is possible to run complex
programs for every single pixel which should be rendered, and it is also powerful
enough to use multiple rendering passes for rendering at interactive frame rates
(Figure 1.2). This allows not only nearly photorealistic results, it opens also new
paths to perform general purpose computations which can be easily parallelized,
which is especially the case for the algorithm proposed in this thesis.
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Figure 1.1: Screen shot from Tomb Raider. The left image is rendered using the CPU (a
Pentium 133 chip) without bilinear texture filtering at approximately 15 fps  while the

right image is rendered using a 3Dfx Voodoo graphics adapter with bilinear filtering
enabled at 30 fps.

Figure 1.2: Nalu, created by NVIDIA to show the potential of Shader Model 3.0
graphics hardware. The real-time demo shows simulation of hair, advanced skin

rendering, soft shadows and shafts of light from water surface. The image is rendered
using 19 passes.
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1.2. Importance of Cloud Rendering

„ “ „ “ –It  is  a  nice day,  isn’t  it?  Yes,  not a  single cloud in the sky.   In virtual
environments,  unlike  in  the  real  world,  the  viewer  will  immediately  notice  the
absence of clouds, since clear sky is not very common and also not very interesting
to look at (as can be seen in Figure 1.3). In many computer games (which are the
main application of real-time rendering) some kind of clouds can be seen. Until
now, most of them are very simple and restricted in animation and lighting options
–  in  fact,  they  are  often  just  precomputed  and  mapped  to  a  skybox.  With
increasing  hardware  capabilities  and  programmable  GPUs,  which  are  already
widely available on consumer PCs, the expectations have also dramatically grown.
Players don’t want to see the same technologies (like static sky boxes) for years
without  any  improvement,  they want  animated clouds which appear  physically
correct and with the same impressive formations and colors as in the real world.

This  becomes even more important because for most games,  cloud rendering is
absolutely necessary. Therefore, a simple and efficient method is required that leads
to nice visual results without nearly any artist work.

1.3. General Cloud Rendering Approach

The process of drawing clouds to the screen can be split into two main parts, cloud
formation and rendering.

 - 3 - 

Figure 1.3: The left image shows a landscape at sunset with a clear sky. The right image
shows the same scene with cloud rendering using the technique described in this thesis.
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1.3.1. Cloud Formation/Animation

In the cloud formation and animation step, the (rough) shape of the cloud field in
the sky is computed. This step could either be a pre-processing step (as it is the
case in many games) or it could be dynamic (which is preferable). There are many
different approaches to dynamically generate and animate a cloud field. Some of
them will be discussed in Chapter  2 (related work) and one of them, based on
cellular automaton, is used in a modified version for this thesis to compute the
animation step entirely on the GPU.

Important  for  this  step  (which  will  shortly  be  called  simulation  step  in  the
following chapters) is that the result needs not necessarily be a three-dimensional

–structure  in most literature, a two-dimensional image is generated and then used
as heightmap for the second step. Examples for this are presented in Chapter 2.

1.3.2. Cloud Rendering

The  cloud  rendering  step  is  used  to  draw  the  result  of  the  cloud
formation/animation  (simulation)  step to  the  screen.  Usually,  in  this  step  also
lighting computations are performed to illuminate the clouds. For this thesis, a part
of  the  lighting  computation  (which  computes  shading  for  every  single  cloud
particle) is not clearly within one of these two steps. In practice, it lies between

–them, but theoretically it could be done after each simulation step  then it would
clearly belong to step one. Nevertheless it would also be possible to perform the

–shading computation before rendering the clouds  which is the most accurate (and
also the most expensive) way. In this case, the shading step could be assigned to
the cloud rendering  step.  In practically  every other publication these steps  are
clearly  split  and  the  shading  step  is  part  of  one  of  them  (without  implicitly
mentioning them). As far as I know, the method proposed in this thesis, is the first
which  performs  the  shading  step  in  such  a  flexible  way,  that  accuracy  vs.
performance  can  be  easily  adapted  (for  example  with  a  simple  user-defined
parameter).

Figure 1.4 – shows a diagram with the steps for both  the method which is found in
current publications and also the method presented in this paper. Of course, the
rendering  step  has  to  be  done  for  every  single  frame.  Nevertheless,  it  is  not
necessary to call the simulation step more often than a few times per second, even
for high-speed cloud movement animations it would be enough to perform the step
for example every 1/10 second and then perform an interpolation between the last
two steps for rendering. Since the simulation step is expensive for most methods, it
is useful to perform it only if it is really necessary. This may be the main reason
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why the two-step system is used within practically every publication about real-
time cloud rendering. What is even more expensive (for most implementations) is
the shading step, because it actually requires some sort of raycasting to determine
how much light every particle of the cloud field receives. Since these computations
are mostly implemented in the rendering step of current solutions,  it  decreases
rendering speed dramatically. Therefore, I decided to design the method presented
in this thesis a bit more flexible. The shading step lies now, as already mentioned,
between the two classical steps. Depending on the performance of the GPU, it
could  be  computed  before  each  rendering  step  (which  means,  that  shading  is
computed for  every frame), but it can also be computed immediately after  the
simulation step, which may even be possible every few seconds.

This  design can lead to  a  significant  performance improvement  concerning  two
simple facts: First, in practical scenarios, clouds move relative slowly, which means

–that it is not necessary to compute the simulation step very often  even thirty
seconds  or  more  may  be  enough,  but  it  depends  of  course  on  the  degree  of
modification per step. Second, which is also valid for most practical scenarios, the

–day-night cycle evolves at low speed  and shading recomputation is only necessary
when the sun angle has altered for a few degrees since the last shading computation
step.

A  more  detailed  explanation  will  be  given  in  the  following  chapters,  this
introduction to  the  steps  of  the  algorithm is  just  necessary  to  understand the
problems which exist on current solutions that are discussed in Chapter 2.
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Figure 1.4: Two vs. three steps to draw clouds
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1.4. Quality Criteria

Before it is possible to talk about advantages and disadvantages of previous work,
it  is  necessary to  define  what  is  expected of  a  cloud animation and rendering
system. There are a few quality criteria which are defined for a nearly optimal
cloud renderer and which will be used to discuss previous work in Chapter 2 as well
as the method proposed in this thesis.

1.4.1. Dynamic Simulation

✔ Realistic formation of clouds
✔ Cloud movement

✔ advection by a single wind vector
✔ advection by a more complex flow field

✔ Cloud extinction
✔ Nearly stable user-defined cloud density
✔ Control over cloud shapes; allow animators to define shapes which

should be built during simulation

1.4.2. Dynamic Shading and Lighting

➢ Realistic lighting through scattering
➢ single scattering, using one ray per cloud particle
➢ multiple scattering, using multiple rays per cloud particle

➢ Advection by sun- and skycolor
➢ Local illumination phenomena (for example local lit particles near

thunderbolts)

1.4.3. Performance Issues

➢ Possibility to perform cloud simulation in real-time
➢ use GPU where it is possible and useful

➢ Possibility to perform cloud rendering in real-time
➢ avoid memory transfers between main memory and graphics

adapter.
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1.5. Goals of this Work

Due to the increasing performance of GPUs, outdoor environments for games have
become very popular over the last years. While algorithms for terrain rendering,
water  surfaces,  shadows  for  large  scale  areas  and  vegetation  rendering  are
constantly evolving and even if more and more games make extensive use of day-
night-cycles (as can be seen in GTA San Andreas, Gothic I to III, etc.) there are
still not many options to render beautiful skies with clouds.

The goal of this work was to implement a cloud rendering system which fits well to
existing methods for sky rendering like the method proposed by Preetham et al.[2],
which runs at interactive framerates. Also, the cloud rendering should match the
quality criteria specified above with the limitation that single scattering was used
because multiple scattering is still too expensive to be computed in real time. To
achieve  the  goals,  the  cellular  automaton  method  proposed  by  Nagel  [3] and
improved by Dobashi et al. [4][5] was adapted to be completely computed using the
GPU and a new method to perform single scattering shading was developed.

1.6. Structure of this Document

This thesis is structured as follows: In Chapter 1, a short introduction will be given
which explains why realistic cloud rendering is becoming more and more important.
Then, in Chapter  2, related work, on which this thesis is based, will be shortly
discussed.  Chapter  3 introduces  the  algorithm  proposed  in  this  thesis  before
implementation  details  will  then  be  discussed.  In  Chapter  4,  a  GPU
implementation  for  volumetric  cloud  animation  based  on  Dobashi’s
publications[4][5] will be presented. The proposed cellular automaton method will
be improved by region maps, which are used to specify regions where clouds can
appear. Dobashi already mentioned that ellipsoids could be used to specify such
regions  in  a  short  section,  but  ellipsoids  are  not  really  useful  for  a  hardware
implementation, as discussed in Chapter 4. Chapter 5 shows a method to compute
shading for each particle of the animation result in an efficient way that fits well to
current GPUs. Then, in Chapter 6, a simple method to render the computed and
shaded cloud particles is  presented.  Chapter  7 will  introduce some performance
improvements for particle rendering as well as a few extra features to increase the
visual quality of the scene (like shafts of light, thunderbolts and cloud shadows on
the ground), even if they are not directly part of this thesis. Chapter 8 will discuss
the  results  of  the  proposed  technique  and  it  will  be  compared  with  methods
introduced in Chapter 2. Finally, in Chapter 9, some ideas for improvements and
future work will be shortly discussed.
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2. Related Work

2.1. 3D Graphics Packages

Since real-time computer graphics shifted from CPU-based approaches to graphics
hardware, 3D packages became ever more important as they are the bridge between
the application and the graphics driver. They are necessary to keep  hardware
differences  hidden  from the programmer by providing a standardized application
programming interface (API) that will  work for every GPU and which includes
methods required to program the hardware, for example drawing polygons, enable
alpha blending or  switching  textures.  This  allows developers  to concentrate  on
implementing the algorithms themselves instead of wasting time with porting the
same feature for a wide range of graphics adapters.

Currently,  the  most  popular  graphics  packages  are  OpenGL  and  Microsoft
Direct3D, which is a part of DirectX (a complete library for game developers with
various APIs for graphics, sound, input, etc.).

2.1.1. OpenGL

Unlike Direct3D, OpenGL is platform independent and implementations exist for
most hardware platforms and operating systems. The API is preferable when the
application should be portable or the operating system is not Microsoft Windows.
In contrast  to DirectX, OpenGL is based on extensions which are usually first
implemented  as  vendor  specific  extensions.  Therefore  new  features  are  usually
available first for OpenGL, nevertheless the process of getting vendor extensions
standardized  through  the  Architecture  Review Board  (ARB)  is  very  slow  and
developers often have to implement at least two different paths for newer features
to make sure that they run at least on ATI and NVIDIA hardware. 

2.1.2. Microsoft Direct3D

Direct3D  is  a  part  of  DirectX  and  is  available  for  Microsoft  Windows  only.
Compared to OpenGL, DirectX was not built based on an extension system as it
exists  in  OpenGL.  This  leads  to  the  advantage  that  implementing  features  for
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different hardware is more transparent, the API itself is responsible that a correct
implementation runs on every GPU that fits the minimum system requirements. Of

–course, this comes also with a disadvantage  new features are in most cases first
available  for  OpenGL because  vendors  deliver  their  OpenGL  extensions  before
Microsoft is able to release a DirectX SDK update.

Since most games are released for Microsoft Windows and make use of DirectX, the
demo application for this thesis is also implemented using the Direct3D API.

2.2. Graphics Pipeline

Modern (programmable) graphics hardware allows much more than just rendering
a few triangles to the screen. It can be used for general purpose computations and
makes it possible to perform the complete animation and shading step of cloud
rendering on the GPU with nearly zero CPU overhead, as will  be presented in
Chapter  4. This section will give a short overview of the rendering pipeline and
some details that should be considered for efficient GPU programming.

2.2.1. Overview

Since DirectX was used to implement the demo application related to this thesis,
this  chapter  will  mainly  focus  on  DirectX;  nevertheless  current  OpenGL
implementations do not differ significantly.

As can be seen in figure Figure 2.1, the rendering pipeline consists of a few simple
stages which are executed one after another. First, the user sets current vertex
stream(s) and eventually an index stream if indexed polygons should be rendered.
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Figure 2.1: Direct3D pipeline without the outdated T&L engine and texture combiners.



Related Work

The vertices are then transformed within the vertex shader, which takes exactly
one vertex as input and writes exactly one vertex as output. On last generation
hardware it is possible to create geometry dynamically using the so called geometry
shader, but this feature is not necessary to implement the algorithm proposed in
this thesis.

After vertices are transformed, clipping (and also backface culling) is performed.
The remaining polygons are then rasterized (which occurs between the geometry
stage and the pixel/fragment stage in  Figure 2.1) and the pixel  shader code is
executed for every pixel. If fog is enabled, the pixel will be interpolated towards the
fog  color  based  on  distance,  but  this  is  more  and  more  replaced  by  user
programmed fog using the pixel shader. Last, tests like alphatest, depthtest and
stenciltest are performed to decide if the pixel should be written or not. Finally, if
the  tests  do  not  fail,  the  pixel  will  be  written  (or  possibly  blended)  to  the
framebuffer, which can be a texture as well on modern graphics hardware.

2.2.2. GPU Programming Issues

There are a few points that should be considered when developing software that
uses  the  GPU. Most of  them are  well  known from papers  which are  regularly
released by GPU vendors like NVIDIA [6] and ATI, but I will mention the ones
that are especially important for this thesis. Most of them are valid for NVIDIA as
well as ATI, but since the demo application for the thesis is implemented on an
NVIDIA GeForce 6800 Ultra, I will mainly focus on this vendor.

2.2.2.1. Draw Calls

Every draw call (for example DrawIndexedPrimitive, DrawPrimitive, etc.)
will produce driver overhead that can quickly lead to CPU limitations in an
application. Sim Dietrich[6] from NVIDIA Corporation suggests to keep the
number  of  calls  under  500  per  frame  for  good  performance.  Since  this
includes  all  necessary  passes  to  get  the  final  image,  especially  shadow
mapping passes, multiple passes for lighting, post processing, etc., 500 calls
are not much and can be reached very quickly. Dobashi proposed in his
paper  [4] to render every single cloud particle with a separate draw call
twice, one time for shading computation and one time for rendering. This
leads to millions of calls, which can’t even be performed in real-time by the
fastest CPU. This was one of the main reasons why the proposed method
was not suitable for real-time applications.

On modern hardware it is not a big deal to process a few polygons more
–which may even be not visible  it is nearly always useful to group polygons
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that share the same materials (which means in most cases the same shaders
and shader parameters) together and render them with a single draw call.
Since performance for most games is not vertex shader limited (but very
often CPU bound), grouping  polygons together which can be rendered with
a single draw call is one of the key aspects to achieve good performance.

2.2.2.2. Polygons per Draw Call

Don’t perform draw calls with less than a few hundred polygons if it is
avoidable.  Calls  with  i.e.  only  two  triangles  will  produce  more  driver
overhead than they are worth. For this thesis, such calls are required for
simulation and also for shading steps, but since they are not done very
often (for example only every tenthousandth frame), it is acceptable. The
reasons  are  nearly  identical  to  that  mentioned in  Section  2.2.2.1.  First,
drawing less polygons per call will reduce the number of polygons that can
be drawn since more calls would be necessary (which leads to more CPU
overhead) and second, grouping polygons together if possible is always a
wise decision since only a few applications are limited to vertex processing.

2.2.2.3. Only use Textures with Power-of-Two Dimensions

Most hardware is optimized to use textures with dimensions that are power-
of-two, i.e.  32, 64, 128, 256, etc. Some graphic cards do not even support
textures with other dimensions and creation of such textures may fail. To
support a wide range of hardware, keep in mind that only such textures
should be used. For this thesis, that means especially that only volumes
which can be organized on textures with power-of-two dimensions can (or
rather should) be used. Information how volumes are organized on textures
can be found in the Chapter 4, where a method is represented to perform
the whole simulation step as proposed by Dobashi et al. [4] on the GPU.

2.2.3. General Purpose Computations using the GPU

General purpose computations are algorithms that usually need a high degree of
freedom to perform them on a processing unit and that do mostly not fit very well
to  static  environments  like  the  Direct3D fixed  function  pipeline  (even  if  some
computations can also be performed using the FFP only, nevertheless they may be

–restricted in precision on older hardware  i.e. multiplications or additions using
alpha blending).

Arithmetic algorithms basically consist of three simple components: input values,
the computations itself and one or more output values.
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Figure 2.2 shows how general purpose computations can be performed on the GPU.
Typically,  input  registers  or  textures  are  used  to  supply  input  data  to  the
algorithm. Then, the algorithm itself is implemented as vertex- or pixel shader. In a
typical scenario, a pixel shader is used because it is more flexible and powerful than
vertex shaders on most hardware. The vertex shader itself is often just used to
transform four (or six) vertices for a screen-aligned quad which is rendered to allow
pixel  shader  execution for  each pixel  on the  rendertarget.  Of  course  it  is  also

–possible to use more than a single pass  i.e. the results of the first pass can be
used as input for the following pass. Since modern hardware supports full precision
(32 bit) in every pipeline stage, including all vertex- and pixel shader instructions,
and  nearly  no  restrictions  in  program  flow  (i.e.  branches  and  iterations)  on
hardware that is capable of Shader Model 3.0, the GPU has become a powerful
solver for arithmetic algorithms as well as other types of algorithms that can be
partly executed using parallelism. This is  also the main advantage compared to

– –classical CPUs  graphics cards are, because of the rasterization process  designed
–for as much parallelism as possible. To give an example  the GeForce 8800 GTX

has 128 shader processors which execute vertex- or pixel shader code in parallel for
maximum performance. Since every output pixel is completely independent of other
output pixels this is easily possible. Many computations that need such local results
which are independent from other values may be much faster on the GPU than on
the CPU.

There  are  already  many  publications  available  that  discuss  general  purpose
computations on the GPU  [7] with a wide range of applications, reaching from
global illumination computation over audio and signal processing  [8] to scientific
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Figure 2.2: The left image shows how an arithmetic algorithm is typically structured for
execution on the CPU while the right image shows how it is possible to execute such an

algorithm using the GPU.
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computing [9] and bioinformatics applications [10]. A method which is quite similar
to the volume simulation shader introduced in the next Chapter is Latta’s paper
Building a million particle system  [11]. Textures are used there to store current
particle states as well as to compute new states like positions, velocities, etc., which
leads to massive performance benefits since it is no longer necessary to perform the
complete particle animation on the CPU and then transfer the values back to the
GPU  (which  is  the  most  time  consuming  part).  The  simple  idea  behind  that
method is, that the particle states are stored on textures. To compute new states,
the current states are used as input textures for the shader and a screen-aligned
quad is used for rendering to execute the pixel shader for new state textures (which
should  have  the  same  dimensions  as  the  input  textures)  which  are  set  as
rendertargets.

Another  really  impressive  application  for  general  purpose  computations  on  the
GPU is NVIDIA’s Gelato  [12],  which is  a high-quality renderer that can use a
cluster of NVIDIA GPUs as floating point processor units. The software is  not
based  on  the  classical  triangle  rasterization  which  is  typical  for  hardware-
accelerated rendering,  instead it  uses the same methods as other renderers  like
povray, 3DS MAX, etc.

More very useful information on general computations using the GPU can be found
on the GPGPU [7] website.

2.3. Cellular Automaton

Dobashi  et  al.  [5] proposed in  their  paper  Animation of  Clouds using  Cellular
Automaton a simple, physically based model to perform animation of clouds. The
cloud field was stored in a three-dimensional array (Figure 2.3) where each item
stores three boolean values called  cld (cloud particle),  hum (humidity value) and
act (activation bit).

➢ cldcldcldcld stands, as already mentioned, for cloud particle. If this boolean is set, a
cloud particle exists on the current array position.

➢ humhumhumhum stands for  the humidity on the current position.  According to the
–defined rules, clouds can only be formed where humidity is high enough 

this  simple  fact  is  simulated  using  the  humidity  bit,  which  is  used  to
describe the humidity distribution in the array.

➢ actactactact stands for activation bit. This bit is initially set manually to start cloud
formation on the specified position (of course, only if the humidity value is
also set). Activation bits can be set at any time by the user to start new
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cloud formations on specific array positions.

A few simple transition rules were defined which described how a cloud array at
timestep ti can be transformed to a new cloud array at timestep ti+1.

2.3.1. Growth Simulation

hum(i,j,k,ti+1) = hum(i,j,k,ti) and not act(i,j,k,ti) Equation 2.1
cld(i,j,k,ti+1) = cld(i,j,k,ti) or act(i,j,k,ti)    Equation 2.2
act(i,j,k,ti+1) = not act(i,j,k,ti) and hum(i,j,k,ti) and f(i,j,k) Equation 2.3

f(i,j,k) = act(i+1,j,k,ti) or act(i,j+1,k,ti) or act(i,j,k+1,ti) or Equation 2.4
      act(i-1,j,k,ti) or act(i,j-1,k,ti) or act(i,j,k-1,ti) or

           act(i-2,j,k,ti) or act(i+2,j,k,ti) or act(i,j-2,k,ti) or 

           act(i,j+2,k,ti) or act(i,j,k-2,ti)

These rules work in the following way: humidity is only set in the next timestep if
humidity already exists in the current step and no activation bit is set. The cloud
particle bit is only set if there is already a cloud particle on the position or if the

–activation bit for the position is set  which means, that the transition from vapor
to cloud is ready. Activation bits are a bit more complex, because they are used to
define the general shape of clouds on a physically based model. In this  model,
clouds expand more in higher areas than in lower ones, which is defined by the
fact,  that there is  no  act(i,j,k+2) in the formula that defines  f(i,j,k).  An
activation bit is only set if there is currently no activation bit on the position, if
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Figure 2.3: Three dimensional array, each item consisting of three boolean values.
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humidity exists and if f(i,j,k) evaluates to true, which means that at least one
activation bit must exist in the neighborhood of the current position. This makes
sure, that it looks like clouds are growing.

As can be seen, according to the quality criteria in Section  1.4, there are a few
problems with the defined transition rules. First, whenever a cld bit is set, it can
never disappear. Assuming that a uniform distributed humidity value is used over
the whole array, the clouds would cover the full sky after a few simulation steps
and they will never disappear. Second, humidity regeneration is not included in this

„ “model. Whenever a humidity bit is used , it disappears and will be set to false for
the rest of the simulation. Third, advection by wind is also not defined, which
makes it  very unrealistic.  Besides,  the full  simulation step is  performed on the
CPU, which requires to transfer memory after each simulation step to the graphics
card. Even if this would not be necessary, the CPU is in many computer games the
bottleneck, which makes it not practical to perform such computations there.

Some  of  the  mentioned  problems  were  solved  in  Dobashi’s  paper  A  Simple,
Efficient Method for Realistic Animation of Clouds  [4]. Dobashi et al. improved
Nagel’s method [3] in four points:

➢ Extinction of clouds

➢ Advection by wind

➢ Increased simulation speed

➢ Control of cloud motion

The already known transition rules were used for growth simulation without any
modification. There were just a few rules added for cloud extinction and advection
by wind.

2.3.2. Cloud Extinction

The extinction rules are based on probability values which can be defined for each
item in the three-dimensional array.

cld(i,j,k,ti+1) = cld(i,j,k,ti) and IS(rnd > pext(i,j,k,ti))    Equation 2.5
hum(i,j,k,ti+1) = hum(i,j,k,ti) or IS(rnd < phum(i,j,k,ti))   Equation 2.6
act(i,j,k,ti+1) = act(i,j,k,ti) or IS(rnd < pact(i,j,k,ti))    Equation 2.7

These rules are used to produce a simulation that could theoretically become stable
and so  it  is  possible  to  use  it  for  continuous  cloud  animation.  Existing  cloud
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particles are removed from the simulation if the pext value of the position is greater
than a randomly generated value. This makes it possible to define regions where
extinction of clouds may frequently occur while other regions can be defined where
extinction rarely occurs.

Humidity is only set in step i+1 if humidity is already true in step t or a random
generated value is less than  phum. This avoids the above mentioned problem, that
consumed humidity values are never set again to true.

New activation bits are added to the simulation to allow formation of new clouds
based on the probability value pact.

2.3.3. Advection by Wind

Dobashi [4] introduced a really simple method to simulate advection by wind. The
cloud array is just moved, so the wind always affects the complete volume, local
influences are not possible.
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Figure 2.4: Advection by wind on a single slice of the volume. The left image shows
timestep ti-2, the center image shows ti-1 and the right image shows timestep ti. 

wind direction
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2.3.4. Efficient Cloud Field Simulation using the CPU

As already mentioned, the complete simulation step (including growth simulation,
cloud extinction and advection by wind) is computed by the CPU. Dobashi et al.
[4] proposed a method to accelerate computation and at the same time reduce
memory consumption.  The basic  idea is,  that a 32  bit  CPU could  perform 32
boolean operations in a single step. Since all three components of a cloud array
item (cld, act, hum) are boolean values, they can be evaluated at the same time.
This raises the necessity to use only power-of-two dimensions for the cloud field, to
make sure that not a single byte of the integers is wasted, which is not really a
problem. The method presented in this thesis imposes the same restriction.

2.3.5. Rendering of the Simulation Results

Even if the CPU-based simulation of the cloud field can be done in real time (using
the bitfield manipulation approach), the rendering algorithm proposed by Dobashi
et al. [4] is very slow. Generally, it works in three steps.

2.3.5.1. Smoothing of the Cloud Field

In a first step, it is necessary to smooth the simulation result over space as
–well as over time. This is necessary for two reasons  first, the distribution

of cloud particles is discrete, so there are no density values different from
– –0.0  or  1.0;  second  what  is  even more important   it  is  necessary to

perform some sort of interpolation over time, i.e. over timestep ti and ti+1.

Another  three-dimensional  array of  float  values  is  used,  so the  memory
consumption advantage using single bits to represent cld, hum and act is
lost. In addition, more instructions are necessary to read a single cld value
because of the encapsulation into integers values. So even if the simulation
step may be fast on the CPU, it is very difficult to get the smoothing step
running at high framerates.

Smoothing is  performed by computing  average  values  using  neighboring
cells. Dobashi et al. [4] proposed the following formula to do this:

q i , j ,k , t i=
1
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Equation 2.11: cloud field smoothing
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For  this  equation,  w is  a  weighting  function  ensuring  that  cells  near
(i,j,k,ti) have a higher priority than cells which are further away.

2.3.5.2. Computation of Color for every Cell

Dobashi et al. used billboards to render the clouds. Simply speaking, every
cell  where  the  cloud  density  is  different  from  0.0,  is  assigned  a
precomputed billboard texture. For each billboard, it is necessary to
compute the color which should be used in the final pass.

The  image is  first  rendered  as  seen from the  sun.  The  frame  buffer  is
initialized as 1.0 (for all three components r,g,b). Now, the billboards are
placed  at  the  center  of  each  cell  and  oriented  towards  the  sun.  The
attenuation  ratio  for  each  billboard  (they  are  surrounded  by  so  called
metaballs  in  Dobashi  et  al.  [4])  is  computed  by  first  sorting  them  in
ascending order based on their distance from the sun. Then, each of them is
rendered to the framebuffer with alpha blending enabled. The pixel values
in the buffer  are multiplied  by the attenuation ratios  stored within the
billboard textures. For example, the attenuation ratio between metaball C
and the sun in Figure 2.5 is obtained by multiplying the attenuation ratio
of metaballs A, B and D, because each one of them absorbs some amount of
light emitted by the sun. After rendering A, B and D to the framebuffer,
the pixel value in the framebuffer on the position where the projected center
of metaball C is located is read back to obtain the attenuation ratio. The
color  of  the  metaball  can be  evaluated  by simply  multiplying  the  read
attenuation ratio with the sun color. After all billboards are rendered, the
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Figure 2.5: Each billboard is rendered from the sun position in an
ascending order and the framebuffer is read after each draw call to

determine the attenuation ratio.
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framebuffer holds a lightmap which can be used to project shadows on the
ground or even to render shafts of light.

2.3.5.3. Render Clouds to Screen

Now since the color for every billboard is known, rendering of the clouds is
straightforward. First, all scene objects are rendered. Next, the billboards
are oriented towards the viewer and rendered in back-to-front order using
the previously computed colors with alpha blending enabled.

2.3.6. Quality Analysis

2.3.6.1. Dynamic Simulation

Formation of clouds and extinction are completely solved and seem to be
physically  plausible.  Advection  by  wind  is  implemented,  but  local
turbulences are not considered, though it would be theoretically possible to
do them by manipulating ellipsoids with local wind vectors. A quite similar
approach is  introduced in  Section  4.3.3.  Nevertheless,  Dobashi  et  al.  [4]
proposed no method to  control  the  cloud density and perform plausible
animations without heavy user interaction.

2.3.6.2. Dynamic Shading and Lighting

–For cloud shading, a single-scattering approach is used  which means, that
light only propagates into one direction (along the direction vector of sun
light). In theory, multiple scattering of light between particles should be
considered for clouds, but in practice a simple ambient value works fine
instead. The results are impressive and the shading method proposed in this
thesis  is  basically  a  real-time  implementation  of  Dobashi’s  shading
algorithm.

2.3.6.3. Performance Issues

The simulation step is done completely using the CPU, which may not be
such a big drawback (according to speed) because it can be computed very
efficiently using the proposed bitfield manipulation functions. Nevertheless,
a CPU implementation requires to transfer the simulation step results to
the graphics card, consuming bandwidth and it may even be necessary to
synchronize graphics card and CPU because a buffer within graphics card
memory has to be locked before data can be written to it [13].
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The shading step is implemented very inefficiently and does not fit well to
nowadays  graphics  hardware.  Sim  Dietrich  from  NVIDIA  Corporation
recommends in his  Modern Graphics Engine Design slides  [6] to keep the
number of draw calls under 500 for good frame rates. Since the method
proposed  by  Dobashi  et  al.  requires  to  render  each  billboard  separate,
followed by a transfer of the framebuffer from graphics memory into main
memory to read the attenuation ratio pixel value this cannot be done in
real-time. According to the results section of Dobashi’s paper [4], rendering
of an image (including the shading step) took 10-30 seconds on an (as of
today) outdated graphics card. Because of the high number of necessary
draw calls, it is not much faster on current hardware.

–The rendering step suffers the same problem as the simulation step  the
high number of draw calls. Even if it is not necessary for this step to copy
the framebuffer after each particle is rendered, the number of draw calls (for
a 256x32x256 volume, the worst-case scenario is more than 2 million calls)
will produce so much driver overhead, that it is impossible to render it with
interactive frame rates.

2.4. Cloud Rendering using Impostors

Harris  proposed  in  Real-Time  Cloud  Rendering [14] a  method  for  fast  cloud
rendering using impostors. This method works well for flight simulators and games,
but it has some significant drawbacks. First, animation of clouds is not considered
and  second  (what  is  even  a  bigger  problem),  the  shading  is  done  in  a
precomputation step to allow multiple scattering. The method allows to render
beautiful  clouds  at  very  high  framerates,  by  using  impostors,  which  replace

 - 21 - 

Figure 2.6: Rendered cloud field from Dobashi’s paper[4]
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hundreds or thousands of particles by an approximated image version available for
various viewing angles. However, the restrictions are problematic.

Generally, cloud rendering is performed in two steps, similar as in Dobashi’s paper
[4]. In the first step, shading is computed and in a second step, the shading step
results are used to render the clouds.

2.4.1. Multiple Forward Scattering

The algorithm presented by Dobashi et al.  [4] used, as already mentioned above,
only single scattering for shading computation. According to Max’s paper Optical
Models for Direct Volume Rendering [15], single scattering only leads to a useful
approximation if the albedo or the density is low. For clouds, this is usually not the
case,  which  makes  it  necessary  to  find  efficient  scattering  approximations  to
implement  realistic  shading,  otherwise  the  clouds  (using  single  scattering  and
realistic values for extinction and albedo) will appear very dark on the side facing
away from the sun, because the light is scattered only in one direction and some
amount of light is absorbed whenever a particle is hit.

True multiple scattering is very expensive (since it solves light propagation in every
direction) in terms of computation time and is also not necessary even for most
scientific visualization applications [15].

To  find  a  useful  balance  between  accuracy  and  computation  time,  Harris  [14]
introduced the so-called multiple forward scattering. As shown by Nishita et al. in
their paper Display of Clouds Taking into Account Multiple Anisotropic Scattering
and  Sky  Light  [16],  the  contribution  of  most  of  the  paths  used  for  multiple
scattering is  insignificant.  Scattering illumination is dominated by the first  and
second orders. This is the reason why they simulated only up to the fourth order.
They  also  reduced  the  directions  by  concentrating  on  sub-spaces  of  a  high
contribution. Harris simplified this further and approximated multiple scattering

–only in the direction of the light  which led to the denotation multiple forward
scattering. 

The following equations, which describe the scattering method, are discussed in
more detail in Harris’ paper [14].
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g x , w=∫
4

r x , w , w ' I x , w 'dw '

P Position vector

w Light direction

I(P,w) Sum of direct light from direction w that is not absorbed by other
particles and light scattered to P from other particles.

I0(w) Intensity of light in direction w outside the cloud

τ(t) Extinction coefficient of cloud at depth t

Dp Depth of position P within the cloud regarding to light direction

g(x,w) Light from all directions w’ scattered into direction w at the point x.

r(x,w,w’) Bi-directional scattering distribution function (BSDF)

Even if multiple scattering will not be used for the method presented in this thesis,
the  formulas  for  multiple  forward  scattering  are  shown,  because  it  should  be
possible to modify the shading algorithm introduced in Chapter 5 to perform this
type of scattering in a GPU friendly manner. For now, single scattering only is

–used to increase performance as much as possible, since  as already mentioned in
–the introduction section  the main application of real-time rendering are computer

games, where performance is still more important than visual accuracy. To avoid
very dark clouds, an ambient term will be used instead which allows to avoid this
effect and produce plausible results.

2.4.2. Quality Analysis

2.4.2.1. Dynamic Simulation

Animation of clouds is not considered in Harris’ paper[14] and it would be
really hard to implement because of the pre-processing that is necessary. So,
it works fine for static environments and without day-/night cycle, but it is
not very useful for dynamic worlds where cloud formation, motion and real-
time shading are required.

2.4.2.2. Dynamic Shading and Lighting

Shading is well approximated using multiple forward scattering and it yields
very impressive results, as shown in Figure 2.5. Even if it is not a true
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multiple scattering approach where sampling is done in all directions, the
multiple forward scattering approach works really well  for  clouds and it
could be used to render high-quality images.

2.4.2.3. Performance Issues

The  method  presented  by  Harris  [14] was  only  usable  for  static
environments,  because the scattering computations were performed on the
CPU. Furthermore, simulation of clouds was not considered.
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Figure 2.7: Top view: clouds rendered with Harris’ impostor technique [14] using single
scattering (as can be seen, the side facing away from the sun appears unnaturally dark).
Bottom view: the same scene rendered using multiple forward scattering, which leads to
much more realistic results. Note that the upper cloud layer is just part of a skybox (or a

similar technique) and not produced by the method presented in the paper.
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2.5. Cloud Dynamics Computation using Fluid
Flow Equations

In [17], Harris introduced a method to perform computation of cloud dynamics on
the  graphics  hardware  using  a  model  based  on  fluid  flow  equations,  which  is
physically more accurate than Dobashi’s cellular automaton technique  [4] but at
the same time very time consuming, even for small volumes. Apart from that, the
cellular automaton technique produces realistic looking results and does not need
bounding conditions (which usually further reduce the usable size of the volume).
Finally, the cellular automaton method could also be implemented using boolean
operations  on  latest  graphics  hardware,  which  means  that  32  voxels  could  be
processed at only a few GPU cycles.  Nevertheless, the general idea of encoding
volumetric data into a 2D texture for GPU processing introduced by Harris in that
work is also used for this thesis to implement Dobashi’s cellular automaton method
[4].

Harris also proposed a method for real-time cloud shading. The idea is, to convert
the  volumetric  data  (which  is  obtained  from a simulation step  based  on  fluid
equations) encoded in a 2D texture into a 3D texture for shading computation. The
volume is enclosed in a so-called light volume which is oriented in light direction.
Slices  are  then rendered for  the  light  volume.  Every particle  hit  absorbs  some
amount of light, which is propagated from the slice next to the light source to the
slice farthest away. Figure 2.8 shows the light vector aligned bounding box  used to
enclose the cloud volume (which is already described by Dobashi et al. [4]). Instead
of single particles, Harris renders complete slices by performing texture lookups in
the 3D cloud texture.

This shading method has two serious drawbacks: First, it is necessary to convert
the cloud volume which is stored as a series of slices on a 2D texture, to a 3D
texture. Since most graphics cards do not support 3D textures as render targets, it
is necessary to lock the volume texture and copy the data using the CPU, which
means that a huge amount of data needs to be transferred from system memory to
graphics memory. Second, the method wastes many pixels of the light volume slices
instead of using them for cloud shading, as can be seen in Figure 2.8. The wasted
areas are marked grey. Depending on the light vector, a large light volume may be
necessary to compensate this.
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2.5.1. Quality Analysis

2.5.1.1. Dynamic Simulation

Simulation is performed on graphics hardware using an approach based on
fluid  flow equations.  This  is  physically  more  accurate  than  the  cellular
automaton method proposed by Dobashi et al. [4].

2.5.1.2. Dynamic Shading and Lighting

The method supports dynamically scattering computations. As can be seen
in Figure  2.8, the quality of shading depends highly on the orientation of
the light direction vector.
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Figure 2.8: Harris proposed to enclose the cloud volume into a bounding box as a light
volume that is oriented in light direction to compute shading. Slices are positioned in this
light volume and cloud particle densities are read from the previously converted 3D cloud

volume to compute attenuation.
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2.5.1.3. Performance Issues

Computation  of  the  simulation  step  using  fluid  flow  equations  is  very
expensive. Even for small volumes, the computations take a long time and
need to be split over multiple frames. The shading algorithm suffers the
problem that it it necessary to copy the cloud volume (which is stored on a
2D texture) to a 3D texture for shading computation.

2.6. Perlin Noise based Methods

Most current work about cloud rendering is based on Perlin noise maps, which were
introduced by Ken Perlin [18]. These maps can be generated very fast (even GPU
implementations exists) and plausible results (to the user) can be produced using
them, even if they are not based on a physically model.

2.6.1. Cloud Formation and Animation

Kim Pallister  describes  in  Generating  Procedural  Clouds  in  Real  Time on  3D
Hardware [19] how Perlin noise maps can be used to create a cloud texture which is
then mapped to a curved surface on the sky and rendered with alpha blending
enabled.
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Figure 2.9: Perlin noise maps with different frequency are added to create a
cloud texture [19].
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As can be seen in  Figure 2.9, four Perlin noise maps with different octaves are
combined in an additive way to produce a more plausible cloud map. This allows
only some sort of simple animation. Octave0 specifies the rough shape of the clouds,
and because the general cloud shape changes very slowly, it is only updated every
8n steps. The other octaves with higher frequency are used to add more detail to
the clouds. The higher the frequency, the higher the rate of change, because small
details change very fast while the base shape remains nearly constant over a long
time.

Since cloud textures generated in this way practically always cover the whole sky
(which is mostly an unwanted effect) it is necessary to modify them. Pallister [19]
proposed to clamp against a constant value to create isolated clouds, as can be seen
in Figure 2.10.

Figure  2.10 shows  how  isolated  clouds  can  be  generated  using  Perlin  noise.
Nevertheless, these isolated clouds do not look very natural and it looks like they
suffer from too less detail, which means they look flat.

Dubé presented  in  the  Game  Programming  Gems  5 article  Realistic  Cloud
Rendering on Modern GPUs [20] an improvement to the algorithm proposed by
Pallister [19], which solves the problem that occurs after subtraction.
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Figure 2.10: Map clamped using a constant to create isolated clouds [19].

Figure 2.11: Exponentiation is performed after subtraction to increase quality [20]. The left
image is the map which is computed by adding the four noise maps, the center image

shows the same map after subtraction and the right image shows the center image after
exponentiation.
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As  can be  seen in  Figure  2.11,  exponentiation makes  sure  that  the  final  map
appears more cloud-like. This modification is very simple and can be done directly
within the pixel shader.

2.6.2. Rendering Clouds using the Generated Map

Pallister  [19] used a very simple approach to render the clouds. In fact, he just
enabled alpha blending and projected the generated texture map to a plane or a
curved surface above the viewing point. This method does not allow any cloud
shading and the final image does not look very impressive as can be seen in Figure
2.12.

Even if shading were implemented using this method, it would still  suffer from
visible  filtering  artifacts,  because  texture  resolution  (the  proposed  resolution  is
256x256 pixels) is too low. Experiments lead to the insight that even a resolution of
2048x2048 pixels is not enough to cover the whole sky.

Dubé [20] chose  a  more  expensive  rendering  approach  which  is  performed
completely on the GPU. It is based on casting a ray through the whole cloud for
each screen pixel. For this solution, the heightmap is interpreted as a volume as
shown in Figure 2.13.
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Figure 2.12: Final image from Pallister’s
paper [19].
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Since raycasting is used on  a per-pixel basis on the rendertarget (and not on the
texture itself) the sampling is much better and the final image does not suffer from
filtering artifacts even if the input texture dimensions are only 512x512 pixels. The
raycasting  approach  also  allows  implementing  single  scattering  (even  multiple-
scattering is  possible, but not practical) and leads to great results as shown in
Figure 2.14.

Figure 2.14: Final image from Dubé’s article [20].
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Figure 2.13: The top image shows a single pixel row of the cloud map. The center
image shows the same row interpreted as height values (as is well known from

terrain rendering) and the bottom image shows the same interpretation but from
each value 0.5 is subtracted and then multiplied with 2.0 to get the values into a

[-1.0, +1.0] range where 0.0 represents the cloud layer. 



Related Work

2.6.3. Quality Analysis

2.6.3.1. Dynamic Simulation

Simulation when using noise maps is  primarily achieved by rotating the
texture and changing the degree of cloud cover by modifying the constant
value for subtraction. Especially the second one does not look very realistic
for fast simulation speeds, nevertheless it  looks plausible for slow speed,
even if no physically based model is used.

The shape of the clouds can’t be specified by the artist. Even if a rough
control  may  be  possible,  the  method  is  not  nearly  as  flexible  as  the
simulation step presented by Dobashi et al. [4].

2.6.3.2. Dynamic Shading and Lighting

The  method  presented  by  Pallister  [19] does  not  include  any  shading
computations  at  all,  therefore  this  algorithm  is  impractical  for  today’s
requirements. Dubé [20] solved this problem and implemented a shading
algorithm that uses single scattering with some artistic improvements which
are not physically based (of course this  is  always necessary for  a single
scattering approach to avoid clouds that look too dark). Also note, that the
form of the clouds is restricted as shown in Figure 2.13, because it is always
completely identical above and below the cloud layer.

2.6.3.3. Performance Issues

The simulation step can be  done in  real  time at high framerates,  since
Perlin noise maps can be generated entirely on the GPU. The rendering
step as proposed by Dubé [20] is very slow and will not scale well to current
game environments. Even if the complete work were done on the GPU, the
raycasting approach is still expensive and iterations (which are necessary to
step through the volume) are not really fast on today’s graphics hardware.

Experiments with the proposed algorithm led to the conclusion that the
performance highly depends on screen resolution. On a GeForce 6800 Ultra
graphics card, the rendering algorithm runs at nearly 60 frames per second
on a screen resolution of 640x480. It drops down to 30-40 frames when using
800x600, which is still not enough for todays games. According to the fact,
that most games have to render more than just a few clouds, the proposed
method may not be usable in the next years.
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It will also require hardware that supports at least Shader Model 3.0, which
is  already becoming more and more mainstream,  but until  now,  Shader
Model  2.0 hardware needs to be supported as  well  in most games.  The
method proposed in this thesis will also use Shader Model 3.0 hardware, but
it would be possible to do a Shader Model 2.0 hardware implementation by
splitting the work of the simulation step into several passes.
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3. Algorithm Overview

The proposed algorithm is mainly based on Dobashi’s paper  A Simple, Efficient
Method for  Realistic  Animation of  Clouds  [4]. The technique  described in  this
paper is not suited for interactive environments, so methods will be proposed to
perform nearly all computations on the GPU and as a result allow cloud simulation
and rendering at interactive frame rates.

The technique can be split into three parts, which are: The Simulation step for
computing  volumetric  cloud  data,  the  shading  step  for  computing  shading
information for the previously generated cloud field, and the rendering step, which
draws dynamically generated and shaded clouds to the screen. A short overview
can be seen in Figure 3.1.
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Figure 3.1: The technique proposed in this thesis can be split into three main steps
(simulation step, shading step, rendering step).

Volume Simulation Step

The volume simulation step is based on

Dobashi’s cellular automation algorithm.

While Dobashi used a CPU-based

approach to perform volume computations,

a method to do the same using the GPU

is introduced.

Shading Step

The shading step is used to compute cloud

illumination, including especially self

shadowing. A new method to do this based

on shear-warp volume rendering is

introduced to do this using the GPU.

Rendering Step

Rendering of clouds is done using a splatting-

based approach. A simple, fast and efficient

method for empty space skipping of areas

where no clouds exist is presented.



Algorithm Overview

In the following subsections each of the three steps will be shortly explained and
the new contributions will be explicitly listed. The following steps will explain the
three steps in detail.

3.1. Simulation Step

For cloud volume simulation Dobashi’s cellular automaton algorithm [4][5] is used.
This  algorithm implements  only a few simple equations,  called transition rules,
which  specify  how a  new volume  for  timestep  ti+1 can  be  computed  using  an
existing volume which represents timestep ti as input.

Since  the  computations  depend  only  on  the  previous  timestep,  the  volume
simulation can be easily parallelized and therefore it is well suited for a GPU-based
implementation, which will be presented in Section 4.

The following simulation step features are new:

➢ Volume computation is completely performed on the GPU. Dobashi et al.
[4] used a CPU-based approach. Another method to perform cloud field
computations on the GPU is already proposed by Harris  [17], but a GPU
based method for Dobashi’s cellular automaton does not exist.

➢ An efficient  method  to  control  cloud  formation  and  movement  using  a
region volume is introduced.

➢ Advection by  wind is  improved  using  multiple  vectors  to  control  cloud
motion.

➢ New parameters to allow easy control of average cloud size, density of the
cloud field and lifetime of clouds is presented.

➢ A simple method to roughly reconstruct clouds which have already moved
out of the volume during advection by wind is introduced. This is especially
interesting for fast movements when direction changes happen (for example
as it is the case for holding patterns in flight simulations).

3.2. Shading Step

For cloud shading, a single scattering approach is used. Shading computations for
the complete cloud volume are performed using a new technique, which is called
inverse shear-warp, since it is based on the shear warp volume rendering algorithm
[21]. Volume slices are copied shifted by the light direction vector within the pixel
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shader to propagate attenuation through the volume.

The following shading step features are new:

➢ A  new shading  technique  is  proposed  that  is  based  on  the  shear-warp
rendering method.

➢ Maximum precision for shading computations. Shading map pixels
are not wasted, which is a problem in other approaches. For every
voxel in the volume, a corresponding shading value is computed.

➢ Entirely  on  the  GPU.  CPU  overhead  is  reduced  to  set  shader
parameters and compute the offset to shift slices.

➢ Easy computation split over multiple frames.

3.3. Rendering Step

For cloud rendering, a splatting-based approach is used. Point sprites are chosen as
primitive type since they can be rendered very fast because only one vertex needs
to be transformed per primitive.  To keep the number of draw calls  low, point
sprites are grouped in regular grids (for example storing 32x32 particles). Whether
a particle needs to be rendered or not is decided within the vertex shader, which
means that it is not necessary to dynamically adjust the vertex stream for each
situation; the same stream, which is created in a preprocessing step, can be used to
render the whole cloud field.

The following rendering step features are new:

➢ Only one vertex stream is necessary to render the whole volume. The vertex
shader is used to decide if individual point sprites need to be rendered or
not.

➢ A  fast  and  efficient  method  to  perform  empty  space  skipping.  This
approach allows skipping regions where no clouds exist.
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4. Animating Volumetric Clouds
using the GPU

This is the first chapter that discusses details of the method proposed within this
thesis. As already mentioned in Chapter 1, cloud rendering is always performed in
3 steps. The first of these steps is the simulation step, on which I will focus in this
chapter.

4.1. Cellular Automaton using the Render-to-
Texture Feature

For simulation of cloud formation and animation, the cellular automaton given by
the  equations  introduced by Dobashi  et  al.  [4] will  be  used.  This  approach is
modified to be performed entirely on the GPU.

4.1.1. Organizing Volumetric Data on a 2D Texture

Since  three-dimensional  textures  can’t  be  used  as  render  targets  in  DirectX  9
(which is the target API for  the demo application related to this  thesis),  it is
necessary to perform the three-dimensional volume simulation step on 2D textures.
The solution is quite simple, a 2D texture with four channels (red, green, blue,
alpha) is used to store the whole volume. A similar approach is described in [17].
This texture is split into slices. Since the cellular automaton algorithm only needs
results from the previous step and is fully parallelizable, it is predestined to be
performed on the GPU. The main drawback when using a 2D texture is that it is
only possible to use bilinear filtering instead of trilinear filtering which could be
used  for  volumetric  textures.  However  in  the  case  of  the  cellular  automaton
algorithm, accuracy is important and interpolated (and thereby filtered) values are
not desired.

Figure 4.1 shows a sample configuration for a 2D texture with 2048x1024 pixels
–which stores 32 volume slices  each of them sized 256x256 pixels. This leads to

approximately  2  million  cells  and  consumes  about  8  MB  of  graphics  memory
– –(because four components  each of them 8 bits  are used). Of course it is possible

to choose any other number of slices and texture width/height (as long as the
–hardware supports it  the GeForce 6800 Ultra supports textures with a maximum
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width/height of  4096x4096 pixels).  Keep in mind that  power-of-two dimensions
should be used wherever it is possible. Furthermore, it is not practical to use more 

than 32 slices. The clouds may become unnaturally high and memory consumption
should be considered for such a large texture (which is required two times, one for
timestep ti and one for ti+1).

For the remainder of this thesis, slice 0 is defined to be the slice which has the
smallest distance to the ground and the slice with the highest index (which is slice
31 in Figure 4.1) has the greatest distance, which makes it the highest layer.

4.1.2. Using Three Texture Components to store cld, act
and hum Values

As already mentioned, a texture format with four components is chosen to store
–the volume(s). There are two reasons for this  first, it will be possible to store all

necessary booleans (cld, act, hum) as described in Dobashi’s paper [4] and second,
it is  mostly supported on current hardware to be used as a render target. The
alpha-channel will not be used for the moment.
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Figure 4.1: Sample configuration of a 2D texture used to store 32 slices to form a
volume.



Animating Volumetric Clouds using the GPU

As shown in Figure 4.2, each of the color components represents one of the Boolean
values described in Dobashi’s paper [4]. The red channel is used to store humidity,
the green channel is used to store the cloud bit and the blue channel is used to
store the activation bit.

It is necessary to use eight bits per channel (even if we deal with boolean values),
because most hardware does not support logical operations like AND (&), OR (|) or
shifts, which makes it impossible to process the data in an efficient way. Hardware
which  is  DirectX  10  certified  and  supports  Shader  Model  4.0  allows  such
operations,  which means that a  significant  amount  of  graphics  memory can be
saved by using only one bit per hum, act and cld value. Nevertheless, you should
keep in mind, that during rendering it is necessary to extract the  cld value and
this may slow down the vertex shader. Such an implementation would only work
on DirectX 10 compatible hardware.

Since floating point values are used in the shader to access texture components
(usually bounded by [0.0, 1.0]),  0.0 is  defined as  FALSE and 1.0 is  defined as
TRUE. To avoid filtering problems (even if filtering should be set to point/nearest
neighbor) for texture fetches from this texture values less than 0.5 are interpreted
as FALSE while values greater or equal 0.5 are interpreted as TRUE.

A similar approach was already presented by Lutz Latta in his article Building a
Million  Particle  System  [11],  where  textures  were  used  to  store  the  current
simulation state for particles. Even updates to the states were computed on the
GPU by using the pixel shader.

4.2. Simulation Step Computation on the GPU

Two textures are used for the simulation step, one for timestep ti and one for
timestep ti+1.

These textures are labeled VolumeA and VolumeB. On startup, VolumeA needs to be
–initialized  depending on the type of simulation (the naive approach without much

control or the method presented in Section 4.3.2) it would be sufficient to initialize
all three components of the texture with zero. If the naive approach is used, some
activation bits should be set at random (or user specified) positions, enabling cloud
formation. It will also be necessary to set humidity values. A probability value of
about 0.3 to 0.4 for the humidity bit to be set is recommended for good results.
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Figure 4.3 shows how the simulation step is  performed on the GPU. The two
textures VolumeA and VolumeB are used in ping-pong fashion. In step one VolumeB

is used as render target while VolumeA is used as input for the pixel shader which
performs the simulation step computations. For the second simulation step, the
textures are switched and VolumeB (which currently stores the results of the first
simulation step) is used as input for the shader while VolumeA is set as render
target. For the next simulation step, textures are switched again since VolumeA

now stores the results of simulation step two and VolumeB is no longer needed, so
it can be set again as render target and the result of step four can be written to it.

4.2.1. Using the Pixel Shader for Simulation Step
Computation

As  shown  in  Figure  4.3,  a  screen-aligned  quad  is  rendered  to  perform  the
simulation  step.  The  screen-aligned  quad  renders  a  texture  with  the  specified
dimensions (i.e. 2048x1024, as shown in Figure 4.1) and thereby every single pixel
of the volume is written. The resulting texture of the previous step is used as input
for the pixel shader. Within the pixel shader the whole work is done. The rules
proposed by Dobashi et al. [4] are implemented within there.
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Figure 4.3: Program flow for simulation steps ti, ti+1 and ti+2.
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4.2.2. Cloud Growth Simulation

 //get current states at actual map position
 float4 vLastStep = tex2D(SamplerLastStep, In.TexCoord.xy);

 //compute new humidity value with hum(t+1) := hum(t) and not act(t)
 //note, that the humidity value is written to the r-component
 if((vLastStep.r >= 0.5) && (vLastStep.b < 0.5)) {
   vResult.r = 1.0;
 }
 else {
   vResult.r = 0.0;
 }

Code sample 4.1:Code sample 4.1:Code sample 4.1:Code sample 4.1: Implementation of equation 2.1 - hum(i,j,k,ti+1) = hum(i,j,k,ti) and not
act(i,j,k,ti)

Code  sample  4.1  shows  how the  rules  defined  as  equations  2.1  to  2.3  can  be
implemented with the high level shader language (HLSL) [13] to be computed by
the GPU. As already defined above, the red channel is used to represent humidity.
vlastStep is read from texture and represents the result of the last simulation step
for the current position (note, that this code fragment is performed for every single
pixel on the texture). According to equation 2.1, the humidity bit should only be
set when it is already set (from previous steps) and when the activation bit is not

–set. To avoid filtering problems (filtering could also be disabled  which means that
point/nearest  neighbor  filtering  is  used)  as  well  as  floating  point  precision
problems,  tolerance  values  are  used to  interpret  whether  a  ‘bit’  is  set  or  not.
(vlastStep.r >= 0.5) && (vLastStep.b < 0.5) evaluates only to true if a humidity
bit is already set in the last step and no activation bit existed in this step. If the
condition evaluates to true, 1.0 will be set for the r channel, which means that
humidity  exists;  else  the  red  channel  will  be  set  to  false.  This  equals  exactly
Equation 2.1.

In a  similar way it is possible to implement Equation 2.2. For Equation 2.3, it will
be necessary to read neighbor values from the same slice as well  as from other
slices. Of course this can also be realized with a simple texture lookup. It is only
necessary to compute the correct pixel position. For the reference implementation,
a few boundary conditions were not implemented because they would slow down
the shader and the states which may result because of the missing conditions are
not noticeable.

4.2.3. Cloud Extinction and Humidity Regeneration

For the implementation of Equations 2.5 to 2.7, some random values are required.
Since today’s GPUs are not capable of generating random numbers, a workaround
is necessary.
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For the reference implementation, a precomputed noise texture (Figure 4.4) is used
to read random numbers. This texture uses only a single channel with eight bits,
which means that numbers within [0; 255] can be encoded. Within the pixel shader,
these values are then interpreted as values within [0.0; 1.0].

“ ”To avoid that the same random  numbers are read again and again, some CPU-
generated random numbers are used as offset parameters for x and y and set as
parameters for the simulation step shader. These offsets are added to the current
texture coordinates when reading the noise map to get different random numbers.
Of course the offset values need to be updated before a new simulation step will be
performed.

Note, that the noise map would need to have at least double width and height as
the cloud volume texture for best efficiency. Using these dimensions, it is possible
to divide the input texture coordinates by two (which leads to a maximum value of
0.5) and adding x and y offsets within [0; 0.5] to make sure that a wide range of
random numbers can be used. Since this would require a large amount of graphics
card  memory  (an eight  bit  4096x2048  texture  would  require  8  MB)  it  is  also
possible to use WRAP or MIRROR as texture addressing mode, which allows using
a smaller texture with random values. See the DirectX SDK documentation [13] for
more details on texture addressing modes.

Now that it is possible to access random numbers within the pixel shader, it is very
easy to implement equations 2.5 to 2.7.

 //compute cloud extinction
 vNoise = float2(In.TexCoord.x / 2.0 + fNoiseOffsetExtX, In.TexCoord.y / 2.0 +
fNoiseOffsetExtY);
 fNoiseValue = tex2D(SamplerNoise, vNoise).a;
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Figure 4.4: Precomputed noise map which is used to fake random number generation
on the GPU.
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 if(fNoiseValue <= fExtinctionPropability) {
   vResult.g = 0.0;
 }

Code sample 4.2:Code sample 4.2:Code sample 4.2:Code sample 4.2: Implementation of equation 2.5 - cld(i,j,k,ti+1) = cld(i,j,k,ti)
and IS(rnd > pext(i,j,k,ti))

As shown in code Sample 4.2, where  fNoiseValue is read from the noise texture
using the randomly generated noise offsets, the cloud value will only be set to false
if the noise value (which is our random number) is less or equal than a specified
extinction probability value (which is assumed to be constant for this sample; in
the final shader different values for the cloud field will be used instead).

According to Equations 2.1 to 2.3, which are executed before code sample 4.2, the
cloud bit may be currently set or unset. If it is not set in the last step, Equations
2.1 to 2.3 would lead to the situation, that it is not set now. This would not be a
problem even if the condition in sample 4.2 evaluates to true, because the cloud
value would just be set again to false. So the only thing to care about is what to do
if the cloud bit is currently set to true (1.0). In this case, if the condition evaluates
to true, the cloud value will be set to false and extinction occurs.

In a similar way, equations 2.6 and 2.7 can be implemented. The whole HLSL code
for simulation of the volume can be found in Appendix A, but keep in mind that
so-called region volumes are used to control cloud formation and motion as well as
extinction. To understand the code it is recommended to read Chapter 4.3 first.

4.3. Controlling Cloud Formation and Motion

Until  now,  the  control  of  cloud  formation  (growth  simulation)  and  motion
(advection by wind) is very limited. Advection by wind was not mentioned in the
previous  section,  since  the  proposed  method  will  be  much  more  flexible  than
equations 2.8 to 2.10 as proposed by Dobashi et al. [4]. In the following subsections,
there we will first shortly discuss what problems may occur without motion control
mechanisms,  then  a  real-time  implementation  of  the  approach  presented  by
Dobashi will be described to perform motion control.

4.3.1. Problems without Formation and Motion Control

The simple volume simulation step using only Dobashi’s  transition rules  [4] (as
mentioned in Section 2) has some serious drawbacks.
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It  is  theoretically  possible  to  control  formation  and  extinction  of  clouds  by
adjusting their probability values (which may be constant for the whole field) for
every simulation step. If this is not done, after a few steps the clouds will either
completely disappear or cover the whole sky (assuming that humidity is uniform
over the volume). To prevent this, an analysis of the volume would be necessary
after every simulation step in order to decide how the new probability parameters
should  be  chosen. Analyzing  the  volume  is  expensive  and  would  completely
overcome  the  advantage  of  the  fast  cellular  automaton algorithm.  Even  if  the
volume can be analyzed in an efficient way, it would still be hard to stabilize the
simulation to generate a nearly constant cloud cover.

4.3.2. Controlling Cloud Motion with Ellipsoids

Dobashi et al. proposed in their paper [4] to use ellipsoids to define regions where
clouds may frequently appear and where extinction occurs. In fact, these ellipsoids
are just used to define the above mentioned (see equations 2.5 to 2.7) probability
values pact, phum and pext. Vapor probability and phase transition probability (hum
and act) are assumed to be higher at the centers of ellipsoids than at the edges.
Extinction probability is assumed to be lower (nearly zero) at the center of the
ellipsoids (since extinction does not usually start in the center of a cloud) while the
probability is higher on the edges. This method negates the performance gain which
could be achieved by using bitfield manipulation functions as described by Dobashi
et  al.  It  also  highly  increases  computation  time  for  ellipsoid  and  probability
computations. To overcome these drawbacks, an extension to Dobashi’s idea, called
region volume, will be presented in the next section, which allows using ellipsoids
for motion control with marginal extra effort.

4.3.3. Using Region-Volumes to Control Formation and
Motion

The main idea behind region volumes is that ellipsoids should be encoded in a 2D
texture the same way as it is the case for the volume map. This allows performing
probability lookups in a simple and efficient manner. In the following subsections,
the theory of region volumes and the integration into the simulation shader will be
discussed.

4.3.3.1. Introduction to Region-Volumes

For the purpose of this thesis, a region volume is defined as a 2D texture
that is organized in the same manner as the cloud volume maps (see figure
4.1).  This  map  is  used  to  store  probability  distributions  for  a  series  of
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ellipsoids as volume slices. To do this, a texture with at least one channel
with eight bit precision is used, and probability values are encoded in the
range 0.0 (on the surface of the ellipsoids and also outside of them) and 1.0
(in the center of the ellipsoids). This probability distribution is constant for
each ellipsoid within the ellipsoid map. The values  are then downscaled
using different scalars to get probability values for humidity regeneration
and phase transition. For extinction, an inverted and downscaled version of
the values stored in the region volume is used. This ensures, that extinction
occurs mainly on the surface of clouds and not in their center, which would
look unnatural.

4.3.3.2. Encoding Ellipsoids on 2D textures

Before it is possible to generate a region volume, it is necessary to compute
ellipsoid probability values and encode them into 2D textures as slices (as
can be seen in Figure  4.5 and Figure  4.6), since it would be much more
efficient to do this once at application startup than for every simulation
step within the shader. In a preprocessing step, a few textures of different
size  that  encode  ellipsoid  probability  distribution  are  computed.  The
number of necessary textures depends mainly on the variety of clouds, but
since  memory  requirements  are  relatively  low  for  those  textures  (for
example  64KB  for  a  big  ellipsoid  with  dimensions  of  64x32x32),  it  is
possible to create a high number of textures.

Probability values are, as mentioned above, always within [0.0, 1.0]. On the
surface and outside of the ellipsoid, the probability value is 0.0, while it is
1.0 in the center of the ellipsoid. The surface points of the ellipsoids can be
computed with the well known ellipsoid formula, as can be seen in equation
4.1. For pixels within the ellipsoid, a linear interpolation between the center

and the surface (in direction from center to the current point) is performed.

An example of a texture, which encodes the probability distribution for a
single ellipsoid can be seen in Figure 4.5.

Equation 4.1: Ellipsoid equation

For simplicity, the number of slices for these textures equals always the
number of slices which are used for the cloud volume, even if the ellipsoid’s
height is smaller. Of course, it is also possible to encode all slices side by
side, as long as the maximum texture width that is supported by the target
hardware  is  not  exceeded.  This  would  slightly  simplify  addressing  and
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therefore improve performance.

Since not every GPU supports non-power-of-two texture dimensions (which
are dimensions not within 2x  for values of x larger or equal to zero), and
other GPUs that support non-power-of-two texture dimensions may suffer
under performance problems if such textures are used, it is recommended to
use only textures with power-of-two dimensions, even if space is wasted. For
example, an ellipsoid that has a width of 26, a depth of 18 and a height of
20 is encoded on 32 slices (which equals for this example the height of the
cloud volume) where every slice has dimensions of 32x32 (since 26x18 is
extended to the next existing power-of-two dimension).

Figure 4.6 shows a 3D sketch that explains how ellipsoids are encoded into
volume slices. Every slice stores probability values which are then used to
render a region volume.
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Figure 4.5: 2D texture used to encode probability distribution for a single
ellipsoid using 32 slices. Black represents a probability value of 1.0, white

represents a probability of 0.0.
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4.3.3.3. Building a Region Volume

To  create  a  region  volume,  it  is  necessary  to  define  position,  size  and
orientation  of  each  ellipsoid  to  be  placed  inside  the  volume.  These
parameters can be stored in a list structure that is updated before the next
simulation  step  is  computed.  For  example,  the  positions  of  the  defined
ellipsoids are slightly modified to simulate advection by wind. In the next
subsection, a few extra attributes will  be introduced, but the mentioned
main attributes position, orientation and size (or ellipsoid texture index) are
indispensable for region volume generation. For initialization, it is possible
to simply use random position,  orientation and size attributes,  but it is
recommended to avoid placing all ellipsoids at the same time, since this
would lead to unnatural results.

After  the  list  structure  that  stores  ellipsoid  information  is
initialized/updated,  it  is  used  to  render  the  ellipsoids  into  the  region
volume. This is done by rendering one slice of the volume after another. For
each slice, the complete list structure storing ellipsoid information will be
iterated and corresponding ellipsoid slices will be rendered to the current

“ ”region  volume  slice  using  alpha  blending  with  a  maximum  blending
function.

After all iterations have completed, the region volume stores all necessary
ellipsoid probability distribution values and can then be used to control the
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Figure 4.6: 3D sketch that shows how ellipsoids are encoded in volume slices.
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cloud volume simulation step.

Figure  4.7 shows  a  sketch  of  a  region  volume  that  stores  probability
distribution values for a number of ellipsoids.

Depending on the number of ellipsoids that will be rendered into the region
volume,  this  step  can  be  expensive  and  it  is  useful  to  use  hardware
instancing for drawing instead of a separate draw call for each ellipsoid
slice. Of course, it is also possible to split the necessary work for region
volume  generation  over  multiple  frames  by  rendering  only  one  region
volume  slice  per  frame.  Since  region  volume  updates  are  usually  only
necessary  every  few  seconds,  this  optimization  is  very  useful  to  avoid
inhomogeneous rendering times for frames because there are for example 32
frames  (for  32  region  volume slices)  used to  perform the  computations,
where rendering time for each frame becomes marginally higher  instead of
a single frame where the rendering time differs significant from the other
frames.

4.3.3.4. Definition of Necessary Parameters

First, to get a stable simulation with a nearly constant user-defined cloud
cover,  it  is  necessary to define  some parameters  which will  be used for
region volume generation and which can be adjusted by the user in an
intuitive and easy way.
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Figure 4.7: Region volume sketch where a few ellipsoids are encoded into the
slices.
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Cloud  densityCloud  densityCloud  densityCloud  density specifies  how  many  ellipsoids  should  be  used  for  region
volume rendering; note that some of them will not be within the visible
area; the reason for this will be explained during description of the region
boundings parameter.

Density adaptionDensity adaptionDensity adaptionDensity adaption per stepper stepper stepper step specifies how many ellipsoids can be removed
from or added to the simulation in a single step; this allows controlling how
fast the cloud cover should change without increasing the simulation speed
(which would affect i.e. also the influence by wind).

Average cloud sizeAverage cloud sizeAverage cloud sizeAverage cloud size is used to specify the default size of region sprites; this
allows generating different types of clouds.

Cloud size varianceCloud size varianceCloud size varianceCloud size variance is  used to define the maximum aberration from the
average cloud size parameter.

Average  lifetimeAverage  lifetimeAverage  lifetimeAverage  lifetime specifies how long an ellipsoid should exist  before it  is
removed from the simulation.  To avoid unnatural  cloud extinction, it  is
recommended to reduce the size of an ellipsoid shortly before the lifetime
ends. This ensures that extinction occurs correctly and the corresponding
cloud  mostly  disappears   before  the  ellipsoid  is  removed  from  the
simulation.

Lifetime  varianceLifetime  varianceLifetime  varianceLifetime  variance allows  to  set  a  variance  for  the  average  lifetime
parameter.

Region boundingsRegion boundingsRegion boundingsRegion boundings are used to define the area where ellipsoids can be placed.
Whenever an ellipsoid is out of this area, it will be removed from the list.
The area should be generally larger than the cloud volume. This makes sure
that clouds can slowly drift into the visible area and also allows the user to
perform  fast  movement  without  influencing  simulation  stability.  This
method furthermore has the advantage that the user could return to clouds
which drifted already out of the volume. This may be especially interesting
for flight simulations where relatively fast movement and frequent direction
changes occur.

Figure 4.8 shows how the region boundings should be used to make sure
that enough ellipsoids are outside the volume which can then move into the
volume when it is necessary, i.e. if fast camera movements or high wind
speeds are used. Ellipsoids which move outside the region boundings are
removed from the simulation and (if necessary) a new ellipsoid is created on
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a random position inside the region boundings instead.

Wind vectorWind vectorWind vectorWind vector is used to specify the direction of ellipsoid movement as well
as the speed of  movement (by using the vector’s  length). Note that a
small variance should be included to make sure that not every ellipsoid
moves with the same speed in the same direction because this would not
look very realistic. Optionally, it would be possible to use multiple wind
vectors to create a more realistic flow simulation of the volumetric data,
as can be seen in Figure 4.9. Such vectors could easily be generated in an
algorithmic way or it would even be possible to use real-world data which
can be read from various sites on the internet. Nevertheless, this is outside
the scope of  this thesis  and should just be mentioned to highlight the
potential of the method.
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Figure 4.8: Region boundings defined by a regionsize parameter.
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4.3.3.5. A Simple Method to Achieve a Stable Simulation

To get a stable simulation it is necessary to keep the amount and average
size of ellipsoids nearly constant. To achieve this, a few simple rules are
used for region volume rendering:

1. If  there are fewer ellipsoids  active than specified using the cloud
density parameter,  add new randomly generated ellipsoids  to the
ellipsoid  list  (which  is  just  a  structure  to  store  an  age/lifetime
component, two components for position and two components for
scaling  in  x  and  y  direction.  It  may also  be  useful  to  store  an
orientation attribute).  Never  add more ellipsoids  in a  single step
than defined with the density adaption per step parameter.

2. If  there  are  more  ellipsoids  active  than specified  with  the  cloud
density parameter, remove randomly selected ellipsoids from the list
or choose the ellipsoids to delete depending on their current position
or their age.

3. For every simulation step, decrease the lifetime of all ellipsoids by
one. Whenever the lifetime is zero, remove the ellipsoid from the
list.

4. For every simulation step, add the wind vector to each ellipsoid’s
position;  also  add  a  small  random  offset  to  improve  animation
quality, since it does not look very impressive if all ellipsoids move
exactly  with  the  same speed along  the  same  direction  (which is
especially  a  problem  for  environments  where  only  a  single  wind
vector is used instead of an array of vectors).
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Figure 4.9: Two-dimensional array consisting of 8x8 elements which is used to
store wind direction vectors. Note that the vectors differ also in length, which

is used to model different speed of wind for local areas.
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5. If any ellipsoid is out of the the defined bounding rectangle, remove
it from the list since it can be assumed that it is so far away, that
it’s  lifetime would expire before it  can get back into the volume
area. This idea could also be used to automatically remove ellipsoids
which are inside the region boundings, but have only less lifetime
left  and it  would not  be possible  for  them to get back into the
volume area, even under optimal conditions.

Figure 4.10 to Figure 4.12, which are shown at the end of this chapter to
demonstrate  how  the  described  parameters  can  be  used  to  control  the
appearance of clouds, are generated with the reference implementation of
the  proposed method.  They show 32 volume slices  which are additively
blended, viewed from the top, which leads to a rough overview of the could
field. In Chapter 7, a method for performance improvement based on such
additivly-blended maps will be introduced. The map can also be used to
render shafts of light, as will be shown in chapter 7 too.
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Figure 4.10: 32 additivly blended volume slices viewed from the top. A relatively high
number (about 500) of small ellipsoids were used for rendering.
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4.4. Cloud Field Smoothing

As already described by Dobashi et al. [4], it is necessary to smooth the generated
volume to produce a continuous density distribution, which is much more realistic
than binary values. Equation 2.11 is  slightly modified to perform cloud volume
smoothing in real time using the GPU. To do this, it is  necessary to copy the
volume  to  another  texture  and  since  most  graphics  cards  only  support  vertex
texture fetches from floating point textures (which are necessary for rendering the
clouds), such a texture is used as rendertarget. The dimensions are  the same as for
the volume textures.
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Figure 4.11: 32 additivly blended volume slices viewed from the top. Medium sized
ellipsoids were used for rendering; their number was slightly decreased to avoid too

high cloud cover.

Figure 4.12: 32 additive blended volume slices viewed from the top. Very large
ellipsoids were used for rendering; the number was significant reduced to avoid too

high cloud cover.



Animating Volumetric Clouds using the GPU

Smoothing is performed using a simple pixel shader that computes an average value
using for each voxel all neighbor voxels. Since this requires accessing successor and
predecessor slices, the most simple solution is to copy and smooth one slice of the
texture after another. Predecessor and successor slice bounding vectors are supplied
to the shader as constant parameters to keep addressing as simple as possible.

Unlike described by Dobashi [4], smoothing is only computed over space, not over
time, which means that no previous simulation step results are involved. This is
necessary to keep memory consumption low and performance as high as possible.
Since an interpolation between two volume textures is performed during rendering,
smoothing over time is implicitly done.
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5.1. Types of light scattering

Clouds are usually lit by the sun as well as by scattered light from the atmosphere.
Shading computations should ideally be performed for every single cloud particle in
the volume. For this task, it is necessary to take attenuation due to light traveling
through the volume into account. According to Nelson Max’s paper  [15],  single
scattering only leads to a useful approximation if the albedo or the density is low.
Since this is usually not valid for clouds, they may be unnaturally dark on some
positions when single scattering (which is also called forward scattering) is used.

There are two ways to solve this problem. First, it is possible to simply introduce
an ambient value, which prevents clouds from getting too dark. Even if it is not
physically correct, the results are usable. This is also the fastest method to avoid
the problem. Second, since true  multiple scattering  is computationally expensive
and even not necessary for most scientific visualization applications, it is usually
sufficient to concentrate on directions near the light vector. Harris  [14] proposed
such  a  scattering  computation  method,  called  multiple  forward  scattering,  to
achieve this. This method is also used in [17]. The method proposed in this paper
allows  using  both  methods  with  a  higher  accuracy  than  is  achieved  with  the
technique  introduced  by  Harris  [14].  For  the  reference  implementation,  single
scattering with an ambient value was used for performance reasons and the results
are admissible.

5.2. Cloud Shading on the GPU using an Inverse
Shear-Warp Approach

The technique for computation of attenuation for every cloud particle is based on
the method proposed by Dobashi et al. [4]. Instead of billboards, the volume slices
themselves are used and the expensive frame buffer read back, which requires to
copy the frame buffer to system memory for shading of each single particle, is not
necessary for the proposed algorithm.

To perform cloud shading computations, a set of separate shading textures (which
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are also 2D textures where slices of the volume are encoded) is used. The textures
can differ in dimensions in relation to the cloud volume textures. If they share the
same  dimensions,  shading  information  for  every  single  cloud  particle  can  be
encoded. For performance improvements, it would also be possible to reduce the
dimensions to half or a quarter of the cloud volume. Harris  [17] also proposed to
use  light  volume  dimensions  with  half  the  resolution  of  the  cloud  volume.
Compared to the method proposed by Harris, where accuracy depends on the light
direction vector and which may waste a relatively high number of shading map
pixels (see also Section 2), the proposed shear-warp based approach is much more
efficient  and  uses  all  pixels  of  the  map  to  store  shading  information  for
corresponding cloud particles.

The method presented in this thesis works in a similar way like the well-known
shear-warp volume rendering  [21]. To my knowledge, it has never been used for
shading computations in real-time environments before.

There are at least three special cases (depending on the light direction vector) that
have to be considered. For light vectors in a range of [0, 45] degrees (where zero
corresponds to a direction vector of  <0.0, -1.0, 0.0>, the light comes mostly from
above the volume and therefore, shading is processed based on volume slices in y-
direction (where the y-axis represents height in a left-handed coordinate system).

Case one is shown in Figure  5.1. This slice orientation and iteration is used for
light direction vectors that differ less than or equal to 45 degrees from the vector
marked red (which is defined as <0.0, -1.0, 0.0>). 
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Figure 5.1: Case one for slice iteration during cloud shading. This case is used if
the light direction vector differs not more than 45 degrees from the red marked

direction vector.
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As can be seen in Figure  5.1, shading is computed in a top-to-bottom order by
starting at the slice which is farthest away from the ground iterating down to the
slice that is nearest to the ground.

Shading is computed in a ping-pong rendering approach, where two textures are
alternately used as render target and input texture to the pixel shader. These two
2D textures are organized in the same way as the cloud volume texture, which
means they are organized in slices. The textures need only a single channel and are
used as render target. Most hardware does not support rendertargets with an 8bit
alpha component only (A8), so it is either necessary to use an (A8)R8G8B8 texture
format  or  (which is  recommended for  optimal  quality)  a  32  bit  floating  point
format instead. Nevertheless, even though hardware like NVIDIA’s GeForce 6000
series supports 32 bit floating point textures as render targets, bilinear filtering for
these  textures  is  not  available.  If  older  hardware  needs  to  be  supported,  an
(A8)R8G8B8 target, where only one component is used, would be preferred. The
GeForce 8000 series allows bilinear filtering for FP32 (floating point texture format
with 32 bit precision for a single component) and therefore it is today possible to
perform shading computations with high precision entirely on the GPU.

Computation of the attenuation ratio for each voxel in the volume is performed as
follows:

➢ The slice (area on one of the two ping-pong rendering textures) which is
farthest away from ground is initialized with 1.0 (on ping-pong texture A),
since  there  can  be  no  occluder  in  front  of  the  first  slice  and  therefore
particles in this height are fully lit. Because slice 0 was assumed to be the
slice with the smallest distance to the ground in Chapter 4, this assumption
is kept for the shading computation, which means that the slice initialized
as 1.0 has the highest index.

➢ Switch ping-pong textures. Set the texture that was used as render target
before now as input texture for the shader; set the other texture as render
target.

➢ Based on the light direction vector, offsets for shifting the slices during
iteration, are computed. For a height difference of one between the slices
(which should usually be the case, since the voxels are aligned in a regular
grid structure), the y-component of the light vector needs to be one to get
correct offsets. To achieve this, all three components x, y and z are divided
by the unsigned y-component. Now, x and z components store the offsets
for shifting the slice in voxel space. Since the volume is stored on a texture
and texture coordinates  for  the quad which is  used to render slices  are
within  [0,1]  for  both dimensions,  the  offsets  need to  be  divided by the
texture dimensions to transform them to texture space.
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➢ For each slice k from n-2 (the top slice is already initialized) down to 0:

➢ set  viewport parameters  to make sure that only the part of  the
rendertarget where slice k is located is written.

➢ compute bounding vectors  <xmin,  ymin> and  <xmax,  ymax> in  texture
space  for  slice  k+1  (which  is  the  predecessor  slice).  Supply  these
bounding vectors to the shader as constant parameters and also supply
the  computed  offset  vector  for  slice  shifting.  One  of  the  ping-pong-
textures  (the  one  that  stores  the  already computed  slice  k+1)  is  also
supplied to the shader, as well as the volume texture itself.

➢ Render slice k into the texture on the correct position.

➢ the pixel  shader  copies  the attenuation values  from slice  k+1
(which are stored on the supplied ping-pong texture) shifted by
the computed offsets to the current slice. New attenuation that
occurs from volume slice k+1 is also considered and shifted in
exactly the same way than the previous shading slice. This leads
to a propagation of attenuation ratio through the volume, as can
be seen in Figure 5.2.

➢ switch ping-pong textures again.

➢ Each of the two ping-pong textures now store n/2 volume slices. To get the final
shading map, the two textures need to be combined. This can either be done using
alpha blending (if supported on the hardware for floating point textures) or using
a simple pixel shader, which nevertheless has the drawback that a third texture is
necessary  (which  is  used  as  rendertarget)  while  the  ping-pong  textures  are
supplied to the shader as constant parameters.

The two other special cases are necessary to avoid that the offset to shift slices
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Figure 5.2: Profile of volume slices and corresponding shading slices. The shading
information is propagated down in direction of the light vector. Every cloud particle
hit absorbs some amount of light and therefore darkens the shading map on the light

direction path on the successor slices.
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becomes too large. To do this, slices are simply oriented on a different axis, as it is
also  necessary  for  the  shear-warp  volume  rendering  algorithm.  Orientation  for
different light vectors are shown in Figure  5.3 and Figure  5.4. As can be seen in
these figures, it is possible to use a slice orientation always for two sides. It is just
necessary to flip the iteration order from slice 1 (while slice 0 is initialized with 1.0)
to slice n-1.

The three  special  cases  shown in  Figures  5.1,  5.3 and  5.4 together cover  light
direction vectors for the whole hemisphere. Popping artifacts which can occur when
switching from one slice orientation to another are marginal and can’t noticed by
the user when interpolation is used.

To simplify texel addressing for cases two and three, it is recommended to generate
cloud volume maps that organize slices in the same way as the shading map slices
are  organized.  This  would  lead  to  extra  overhead  and  increase  also  memory
consumption for the additional (and redundant) volume maps. On the other hand,
it can increase performance during cloud shading, which may be done more often
than volume simulation steps. Furthermore, the quality will be better since bilinear
filtering is only possible (or useful) if the slice organization on the shading map
corresponds to the slice orientation on the volume map. The two copied volume
maps  can  be  created  in  a  single  rendering  pass  using  two  render  targets
simultaneously. The reference implementation usees this method.
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Figure 5.3: Case two for slice iteration during cloud shading. This case is used if the
light direction vector differs not more than 45 degrees from the marked direction

vectors. Depending on which one of the two red vectors are used, the iteration order
for slice rendering has to be switched.
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Depending  on  the  light  direction  vector  (which  is  used  to  decide  which  slice
orientation is useful), it may be necessary to perform many draw calls (i.e. 256 or
even 512). Even if the shading algorithm itself is very fast, too many calls would
slow down the simulation because the application may become CPU limited, as
explained in Section  2.2. To avoid this, and since shading computations are not
necessary for every frame, it is recommended to split the work over several frames.
I.e.  rendering  of  one  shading  slice  per  frame  will  practically  not  influence  the
framerate.
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Figure 5.4: Case three for slice iteration during cloud shading. This case is used if the
light direction vector differs not more than 45 degrees from the marked direction

vectors. Depending on which one of the two red vectors are used, the iteration order for
slice rendering has to be switched.



6. Cloud Rendering using Point-
Sprites

“ ”Modern  GPUs  support  a  primitive  type  called  point  sprite ,  which  has  some
serious advantages compared to classical  billboard approaches which are mostly
rendered using two screen-aligned textured triangles (forming a quad or at least a
rectangle).

6.1. Advantages of Point Sprites Compared to
Classical Billboards

Usually, as already mentioned, billboards consists of at least two triangles, which
would lead to 6 vertices that have to be transformed for rendering. For example
one million particles, would lead to 6 million vertices which have to be transformed
by the vertex shader in a way that makes sure that the billboard is always oriented
towards the viewer. Since we need to group billboards for rendering (remember
Section 3; the number of draw calls needs to be as small as possible) this leads to a
relatively expensive shader which can end up as a bottleneck.

– –A GeForce 6800 Ultra is  able to  according to NVIDIA  process up to 600
million vertices per second, which would theoretically lead to 100 million billboards
when non-indexed data is used, so one million particles should be processed about a
hundred times per second. In practice, on a GeForce 6800 Ultra, we have found
that rendering only about 100.000 particles that way would make the application
vertex transform limited and the framerate would fall to 10-20 frames per second.

To reduce the number of vertices which need to be transformed, indexed polygons
can  be  rendered.  Instead  of  six  vertices  per  triangle,  four  vertices  would  be
sufficient, which reduces the number of vertex transforms by about 33%.

Nevertheless,  the  necessary  computations  could  also  be  achieved  with  a  single
transformation per cloud particle, which is the optimal scenario. To achieve this,
point sprites were introduced, which are (unlike other geometry) always oriented
towards the viewer. This makes it possible to transform only a single vertex (the
center  position) while  the rest  is  performed in  screen space  coordinates,  which
means that the size in pixels need to be computed in the vertex shader based on 
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the distance to the viewer.

Figure 6.1 shows an overview of the above mentioned methods.

Of course it is also possible to put textures on point sprites and to use them in
combination with pixel  shaders,  both of which is  necessary for  rendering cloud
particles with the proposed method. Because they are already supported on most
(consumer)  graphics  hardware  for  the  last  years  and  they  do  not  have  any
disadvantages (with respect to this thesis), they are used to render cloud particles
to the screen.

Nevertheless, note that there may be at least a theoretical problem since the size of
point sprites is often limited. The GeForce 6800 i.e. supports point sizes of up to
8192, which is already more than sufficient for cloud particle rendering (since cloud
particles are usually relatively small as they are seen from ground and even if we
were directly in front of them, screen resolutions of that size are not practical on
most systems today).

6.2. How Clouds are Rendered

Cloud particles  are rendered using a splatting  [22] based approach.  As already
mentioned in Chapter 3, it is necessary to keep the number of draw calls as small
as possible. To achieve this, cloud particles will be grouped into a grid-structure of
i.e. 32x32 particles which represent a part of the cloud volume.

Figure 6.2 shows how cloud particles are grouped together to dramatically reduce

 - 62 - 

Figure 6.1: The left quad is generated using 6 vertices, where v1/v4 and v2/v6 share the
same coordinates. The center quad is generated with only four vertices using an index
buffer with groups of three indices that specify which vertices should be used to form
triangles. The right quad is drawn with a single vertex (which is optimal) using point

sprites. The size of the sprite is specified as component of the vertex data stream.
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the number of draw calls. I.e. the worst-case scenario for a volume with dimensions
of 256x256x32 will be over 2 million calls. 16x16 groups will reduce the number of
calls by a factor of 256; 32x32 groups will reduce the number of calls by a factor of 

–1024  which leads to a maximum of 2048 calls for the above-mentioned volume.
This can be further dramatically reduced by techniques described in Chapter 7.

–Nevertheless,  grouping introduces  a  new problem  when particles  are  grouped
together they can’t be sorted in a correct way (i.e. back to front) since it is not
possible (because of parallelism) to instruct the GPU in which order the polygons
in the vertex stream should be rendered. This can only be avoided by using a
separate draw call for each particle, otherwise errors will occur.

The trick is to keep the errors small enough to avoid that they are noticeable for
the viewer. The way to do this is by adjusting the grid size until the error becomes
acceptable (according to the visual impression).
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Figure 6.2: Grid of 16x16 textured point sprites which are aligned on a
common plane. The right image shows the 64x64 pixel texture that is used to
render the cloud particles. Note, that it is necessary to choose distance and

size of the particles to let them overlap (which is not shown in this image), if
this is not the case, the cloud field will have empty spaces which look very

unnatural.

Figure 6.3: Segment of 32x32 point sprites (which represents 32x32 cells of the
volume.
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As can be seen in Figure 6.3, there is always a fixed number of point sprites used
to represent a fixed segment of the volume. This has the advantage that only one
vertex buffer is necessary and this one is re-rendered on different positions as often
as it is necessary. Since the cloud particle value is not set for every single cell, it is
necessary to decide within the vertex shader if the current point sprite should be
drawn or not.  To do this,  a feature called  vertex texture lookup is  used. This
feature,  which  was  introduced  with  Shader  Model  3.0  (at  least  on  NVIDIA
hardware), allows performing texture lookups within the vertex shader. Note that
on some hardware restrictions may exist. I.e. on the GeForce 6800 Ultra it is only
possible  to  use  floating  point  textures,  values  from  RGBA  textures  can’t  be
fetched.  To implement  the  algorithm on hardware  which has  only support  for
floating point textures it would be necessary to first write the cloud values to a
floating point render target in a separate pass, which is in fact not a big problem,
so it should just be mentioned here shortly.

The idea behind the method is very simple: every point sprite is read from the
vertex stream and processed within the vertex shader. Shader parameters are used
to specify which slide of the volume is currently processed and which offsets should
be used to identify the correct segment of point sprites. The point sprite vertex
stream itself  stores  position components  for  every sprite,  which reaches  i.e.  for
32x32  sprites  from  <0.0,  0.0,  0.0> to  <31.0,  0.0,  31.0>.  Using  this
information it is possible to fetch the correct value from the volume texture to
check if cld is  TRUE. If this is the case, the point sprite’s position component is
transformed to post-perspective space by multiplying it with a WORLD * VIEW *
PROJECTION matrix. Based on the position from the user, the size of the point
sprite (which is also a vertex shader output component) is computed as well. If the
result of the texture lookup indicates, that cld is  FALSE, the point sprite can be
thrown away and does not need to be further processed. As already mentioned in
Chapter 3, the vertex shader takes exactly one vertex as input and writes exactly

“ ”one vertex as output,  so it  is  not possible  to discard  vertices  or to add new
geometry (except on hardware that supports so called geometry shaders, which can
currently only be used in the new GeForce 8000 series and are relatively slow). To
remove point sprites which should not be rendered, a simple trick is used. In fact, it
is sufficient to output a position vector that is out of the view volume, for most
purposes in Direct3D a negative z-component can be used. (Note that this is not
always  true,  it  depends  on  your  projection  transformation  as  well  as  on  the
viewport’s MinZ and MaxZ components that are set when initializing Direct3D).
Due to optimizations, the graphics card will automatically perform clipping and
therefore stop a processing point sprite which is definitely outside the view volume.
Figure 6.4 shows the idea of rendering clouds with point sprites.
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6.3. Smooth Animation by Performing Volume
Interpolation

According to the nature of the simulation step as described by Dobashi et al.  [4],
we can compute results only for discrete timesteps ti, ti+1, ti+2, etc. Computation for
i.e.  timestep  ti+1.7 is  not  possible.  This  introduces  a  new  problem,  because
modifications between two simulation steps can be highly noticeable.
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Figure 6.4: Each vertex in the stream represents a single point sprite. For each point
sprite, the shader code is executed. A texture fetch is performed on the correct

position within the volume to check if the sprite should be drawn. If no sprite is
required on the position, it is ’discarded’ by writing an output position outside the

view volume.

Figure 6.5: The four images shows the simulation step results starting at step 70 (such a
high step is chosen to stabilize it, so that the cloud formation starting from the empty

volume has nearly no influence). As can be  seen, even in the next step there are visible
changes which would lead to some kind of popping artifacts without interpolation. Step 80

already looks completely different to step 70.



Cloud Rendering using Point-Sprites

This makes it necessary to not only use the latest simulation step texture (step ti)
–for  rendering  the clouds   at  least  the  texture  of  step ti-1 is  also necessary to

perform an interpolation for  every single  cld value.  Due to  the fact  that it  is
required to store the previous timestep to perform the volume simulation (because
it is needed as input texture for the shader), both textures are available anyway
and can be used to perform the rendering step. In the reference implementation, a
linear interpolation is used and it looks visually acceptable.
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7.1. Splitting Cloud Volume Computation and
Shading over Multiple Frames

As already mentioned in Section 4 and Section 5, the proposed algorithm can easily
be adapted for splitting the necessary computations for the volume simulation step
as well as the shading step for computation over multiple frames.

Figure  7.1 shows two different configurations.  The left one is  quite simple and
straightforward. Whenever it is necessary, a new simulation step and a new shading
map are computed within a single frame. When the computation finished, volume
A and B are switched and interpolation is performed again over several frames
before a new simulation step (and shading step) is required. However, in the frame
where  the  volume  map  and  shading  is  recomputed,  a  noticeable  drop  in
performance occurs.
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Figure 7.1: The left diagram shows a configuration where the complete volume simulation
step as well as the shading step are computed in a single frame. The right diagram shows a
configuration where a third texture set is used to split computations over multiple frames.
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The right diagram shows a more sophisticated configuration for which a third set of
textures (a cloud volume texture and a shading texture) are required. While the
interpolation between volume A and volume B during cloud rendering is performed
just  like  for  the  simple  configuration  on  the  left  side  of  Figure  7.1,  for  each
rendered frame, a single slice of the cloud volume texture C is computed. If all
slices are updated, a single shading slice will be computed for each frame until the
shading map is complete.  Now, texture set  A becomes the inactive one,  which
means that it  is  used for  computation of the  next timestep including the new
shading map,  while  the  interpolation for  cloud rendering  is  performed between
texture set B and C.

Splitting work over multiple frames has serious advantages compared to the naive
approach of doing all the work in a single frame. First, on older graphics hardware,
the simulation and shading steps could be expensive as framerate would drop to 15-
30 frames or less, which will be noticeable for the viewer. Second, splitting the work
allows better precision and even larger volumes can be used because the extra costs
per frame are marginal and not noticeable.

If updates are required only every few seconds or even minutes, the work could be
further split into subspaces of the slices, which allows processing i.e. only a quarter
of a slices each frame. 

7.2. Improvements for efficient cloud rendering

Since the presented cloud rendering method implies that a huge amount of point
sprites need to be drawn (i.e. for a volume with dimensions of 256x32x256 it may
be  necessary  to  draw  more  than  2  million  sprites),  the  biggest  potential  for
improvement lies in reducing the number of necessary sprites without increasing
the number of draw calls, while not increasing the overhead that may be necessary
for the implementation of improvement approaches. In the following Sections 7.2.1
and 7.2.2, two methods to reduce the number of segments which need to be drawn
are discussed.

7.2.1. Remove groups outside the viewing frustum

A trivial method to reduce the number of sprite groups is the well-known viewing
frustum detection test, that can be used to test i.e.  if a box, specified by two
vectors, is inside, partly inside or outside the viewing volume.
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Figure 7.2 shows how this test can be applied to remove segment groups which are
outside the frustum.

Segments are classified to be either outside the frustum, which means that they can
be ignored since they are not visible, or (partially) inside the frustum.

The test  could theoretically be performed for  each point sprite group,  but this
would result in a relatively high CPU overhead and it would not be very efficient,
because if a point sprite group is within the frustum, the probability that the group
above/below is also within the frustum is high. This observation allows performing
frustum tests for multiple groups at once by enclosing them in a common bounding
box. For the reference implementation, all 32 slices are grouped together In such a
common bounding box.

7.2.2. A fast method for empty space skipping

Given that for most situations the clouds will not cover the whole sky, there is
great potential for performance improvements in reducing the number of necessary
draw calls by efficient detection of areas where cld is set to 0.0 in the cloud volume.
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Figure 7.2: Viewing frustum detection test. Segments are classified to be inside,
partially inside or outside of the frustum.



Improvements

In this subsection, a simple and efficient method to identify areas where no clouds
exist is proposed.

As a first step, it is necessary to generate a density map from the cloud volume. To
build such a map, all slices of the volume will be added together to create a top-
view 2D image of the volume, as can be seen in Figure 7.3.

For the rest of this subsection, it is assumed that the size of the point sprite group
is 32x32 (of course, any other size can be used instead). The density map shown in
Figure 7.3 with dimensions of 256x256 is split into 64 segments, which results in a
segment size of 32x32, corresponding to the size of the point sprite group (as can be
seen in Figure 7.4).
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Figure 7.3: Density-map generated by adding all slices of the volume together.

Figure 7.4: Density-map split into 64 segments.



Improvements

Because the segment size corresponds to the point sprite group dimensions, for
every segment on this map that is empty (which means that not a single pixel
within this segment is greater than zero), the point sprite groups for all volume
slices in this area don’t need to be rendered (Figure 7.5).

Proving if an area is empty can be easily done by downscaling the density map
using a maximum function until its size corresponds to the grid structure. That
means the dimensions of the map are divided by two, which leads to the fact that 4
pixel on the original map are represented by a single pixel on the downscaled map.
Because a maximum function is used, the highest value from the four pixels in the
original  map  is  selected.  This  downscaling  operation  is  repeated  until  the
dimensions correspond to the dimensions of the grid structure, which are 8x8 pixels
for Figure 7.4.

The downsampled version stores the maximum density for each segment in a single
pixel and segments where the corresponding pixel is zero can be discarded. Since
the downsampled version is usually very small (i.e. 8x8 or 16x16 pixels), it can be
copied to the system memory without performance loss, where it is used to draw
only point sprite groups that are necessary.

Smaller point sprite groups result in a larger downsampled density map, which will
allow a more precise discarding of empty regions. Nevertheless, this implies also
that more draw calls may be necessary (even if more regions can be removed),
which can decrease performance significantly.

The proposed method can be further improved by not only using the xz-plane to
decide if  point sprite groups can be discarded.  Because many generated clouds
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Figure 7.5: Density-map split into 64 segments where segments that are empty are
marked.
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(especially if they are just forming up) are not so big that all slices (viewed from
the top of the volume) are touched by them, there are still point sprite groups left
that could be removed. To do this, more than a single density map for testing is
used, which means that the slices of the volume are grouped to compute density
maps  for  different  heights  (i.e.  density  map 1  is  built  by  adding slice  0  to  3
together,  density  map 2  consists  of  slices  4  to  7,  etc.).  These  maps  are  then
downsampled as described above and used to decide if a region could be discarded.

Of course there is some extra overhead when using multiple density maps, since
each of them needs to be downscaled and transfered to system memory separately.
Since this has to be done only once for each simulation step, it is a simple and
efficient method to decrease the number of necessary point sprites.

Note that if interpolation between volume simulation timestep ti-1 and ti is used, it
is also necessary to use two density maps. To decide if a segment needs to be
drawn, the larger value of both downscaled density maps is  used. Only if both
values are zero, the area can be skipped.

7.3. Visual Quality Improvements Using Effects
Based on Clouds

Even  if  this  lies  not  within  the  scope  of  this  thesis,  the  two  visual  quality
improvement features proposed by Dobashi et al.  [4] will be shortly discussed to
describe how it is possible to implement them for interactive environments.

7.3.1. Ground Shadows

Clouds  can  usually  cast  shadows  on the  ground.  To map cloud shadows  to  a
ground mesh (which could be a plane or even a complex terrain) it is necessary to
generate a shadow map [23] first. Since accuracy for ground shadows is not very
important and the user would not notice small discrepancies, an inverted version of
the density map introduced in Subsection 7.2.2 can be used as shadow map.

This map is then projected onto the ground depending on the light direction vector
as shown in Figure 7.6.
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7.3.2. Shafts of Light

Shafts of Light can be adapted for real-time environments following the same idea
Dobashi  [4] described.  Shells  of  different size which are textured using the the
density map (which is introduced in Subsection  7.2.2)  in a projective way, are
rendered  using  alpha  blending.  Just  one  simplification  is  used  compared  to
Dobashi’s  method.  Instead of  solving  a  computationally  expensive  integral,  the

“ ”effect is simply limited to areas near the sun  by computing the 2D position of the
sun on the cloud layer and then using this position to decrease the effect for long
distances from this point.
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Figure 7.6: Density map is projected to ground using the light direction vector.
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8. Results

In this section, performance using the optimization methods from Section 7 will be
examined and compared with methods described in Section 2.

The graphics hardware used for these performance tests is an NVIDIA GeForce
8700M  GT with  512  MB GDDR3  RAM.  This  hardware  has  32  shader  units,
compared to 128 units of the GeForce 8800 GPU of desktop systems, which means
that it is significantly slower.

Unless  stated  otherwise,  the  test  scene  is  rendered  at  a  screen  resolution  of
1024x768 pixels. The dimensions of the cloud volume are 256x32x256, which means
that more than two million voxels are processed.

Since the proposed technique consists of three (nearly) independent steps,  their
results will also be discussed separately as far as it is possible.

8.1. Simulation Step

8.1.1. Computation within a Single Frame

For this section, the update of the region volume will be assigned to the simulation
step,  since  it  is  usually  called  immediately  before  the  volume  simulation  step
update routine.

Also, it will  be considered that the method which smooths the simulation step
results also belong to the simulation step (because it is usually called after the
volume simulation step update routine).

Since it is necessary to perform a density map computation (Section 7) for empty
space skipping, this step will also be analyzed within this section because density
maps are usually generated after the volume smoothing step.
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StepStepStepStep Time in millisecondsTime in millisecondsTime in millisecondsTime in milliseconds Updates per secondUpdates per secondUpdates per secondUpdates per second

Region volume update 5.263 190

Simulation step update 12.5 80

Volume smoothing 6.024 166

Density map computation 0.588 1700

Table 8.1: Update rates for all parts of the simulation step.

Table 8.1 shows possible update rates per second for each part of the simulation
step. All steps together can be computed about 45 times per second on a GeForce
8700M GT.

With his method based on fluid flow equations, Harris [17] has achieved about 27
simulation  steps  per  second  on an  NVIDIA GeForce  FX Ultra.  This  does  not
include copying of the volume data (which is stored on a 2D texture) to a 3D
texture, which is also expensive due to the fact that a huge amount of memory
needs to be transferred between graphics memory and system memory.

To perform a fair test, only the region volume update and the simulation step
update will be considered. These two steps can be processed about 66 times per
second on the above-mentioned hardware. Since Harris [17] tested his technique on
a NVIDIA GeForce FX Ultra, an older graphics adapter is also used to compare
performance. On an NVIDIA GeForce 6800 Ultra, the two steps in our algorithm
can be processed 50 times per second using also a volume resolution of 256x32x256.
Harris achieved with his method based on fluid flow equations about 27 simulation
steps per second. Even if we assume the 6800 Ultra is two times faster than the FX
Ultra, the method proposed by Harris would not allow more than 54 steps per
second on a GeForce 6800 Ultra using a cloud volume that is 64 times smaller than

–the one used in the test environment  therefore, our method can be considered
about one order of magnitude more efficient.

Dobashi’s bitfield manipulation approach, including the smoothing step, can’t be
performed at interactive framerates using a test-application running on a Pentium
IV CPU with a clock of 2.4 GHz.

8.1.2. Computation over Multiple Frames

Since the  method is  well  suited to  be  processed over multiple  frames  (because
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updates are not necessary for each frame), splitting the workload leads to high
performance  improvements  because  the  above-mentioned  steps  are  mainly
processed within the pixel shader and therefore they are fillrate intensive.

In a test scenario (using the same environment as described above), splitting in a
way that only a single slice (of 32 slices) is processed per frame, the simulation did
not affect framerate of the application. The only drawback is, that changes in the
cloud field are limited in speed since the simulation is  distributed over several
frames. Assuming the application runs at 60 frames per second and only one slice is
processed each frame,  this  means  that 128  frames are  necessary (32 for  region
volume slice update, 32 for volume simulation update, 32 for smoothing and 32 for
densitymap computation) before results of a simulation step are available. Running
at 60 frames per second therefore means that simulation step updates occur only
every 2.13 seconds, which will be enough for most purposes but can also be too
slow for fast simulations. If faster simulations are necessary, it is also possible to
process more than a single slice (i.e. 4 slices) per frame.

8.2. Shading Step

The proposed shading technique is able to compute attenuation for every single
voxel about 8.696ms (also tested on a GeForce 8700M GT). Performance can be
significantly increased by reducing resolution of the shading map. For example,
using only the half resolution of the cloud volume map (which corresponds to a
shading volume with dimensions of 128x16x128), shading computations could be
performed about 460 times per second. Again, the computations can be distributed over
several frames to avoid fillrate limitations of the application.

8.3. Rendering Step

Rendering performance depends mainly on the cloud cover while performance of
the simulation and shading steps are independent of how many cloud particles are
set. For this section, three different cases will be considered. For case one, a low
cloud  cover  (approximately  15-20%)  is  used.  For  case  two,  a  cloud  cover  of
approximately 40% is used and for case three, a very dense cloud cover (over 70%)
is used.

Without the improvements discussed in Section  7, rendering of the cloud field is
relatively slow, as can be seen in Table 8.2. to Table 8.4.
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Performance measurements without improvementsPerformance measurements without improvementsPerformance measurements without improvementsPerformance measurements without improvements

Low cloud coverLow cloud coverLow cloud coverLow cloud cover Medium cloud coverMedium cloud coverMedium cloud coverMedium cloud cover High cloud coverHigh cloud coverHigh cloud coverHigh cloud cover

33 fps 25 fps 11 fps

Table 8.2: Performance comparison without improvements of Section 7 enabled.

Performance measurements using VFD testPerformance measurements using VFD testPerformance measurements using VFD testPerformance measurements using VFD test

Low cloud coverLow cloud coverLow cloud coverLow cloud cover Medium cloud coverMedium cloud coverMedium cloud coverMedium cloud cover High cloud coverHigh cloud coverHigh cloud coverHigh cloud cover

95 fps 51 fps 21 fps

Table 8.3: Performance comparison using the viewing frustum test described in Section 7.

Performance measurements using VFD/ESS testPerformance measurements using VFD/ESS testPerformance measurements using VFD/ESS testPerformance measurements using VFD/ESS test

Low cloud coverLow cloud coverLow cloud coverLow cloud cover Medium cloud coverMedium cloud coverMedium cloud coverMedium cloud cover High cloud coverHigh cloud coverHigh cloud coverHigh cloud cover

118 fps 55 fps 33 fps

Table 8.4: Performance comparison using the viewing frustum test and the empty space

skipping test described in Section 7.

As can be seen in Tables 8.2 to 8.4, the performance highly depends on the cloud
density. Using no improvements, the rendering process is very slow and does not
run at interactive framerates for a highly covered sky. A simple viewing-frustum
test  already improves  performance significantly.  Using empty space  skipping as
described in Section 7 further improves performance and therefore allows rendering
at higher framerates.

All values are measured under identical conditions using the same scene setup.

Because  simulation-  and  shading  steps  can  be  easily  split  to  be  computed  on
multiple frames, they are practically not affecting the framerate and therefore fit
well  into  most  environments,  as  long  as  they  are  not  already  fillrate  limited.
Rendering is currently the bottleneck of the described technique.

Even if high interactive framerates can be achieved, there is still much space for
improvements. Currently, Shader Model 3.0 is necessary for cloud rendering since
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vertex texture fetches (which are used to decide if a point sprite of the group needs
to be drawn) are not supported on older hardware.  In Section  9, a method to
improve cloud rendering using Shader Model 4 is discussed in short, which would
allow reducing the number of vertices to process significantly.
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9. Conclusions and Future Work

In this thesis, we have presented a technique to perform realistic cloud simulation,
shading and rendering which improves on previous methods by allowing real-time
rendering and dynamic shading computations.

The proposed technique is based on Dobashi’s paper  A Simple, Efficient Method
for Realistic Animation of Clouds, in which a very flexible approach for dynamic
cloud  simulation  is  proposed,  but  which  is  also  restricted  to  non-interactive
environments. 

Since previous methods are restricted in simulation options (formation of clouds,
motion, extinction), dynamic shading or rendering, the main goal of this thesis,
which was defined in Section 1, was to develop a cloud rendering system that fits
well to existing methods for sky rendering, allows dynamic cloud simulation, real-
time shading of clouds and rendering of the results at interactive framerates.

To determine if the approach is successful, the list of quality criteria, which was
introduced in Section 1 to analyze the quality of previous work is revisited.

9.1. Quality Review of the Proposed Technique

9.1.1. Dynamic Simulation

✔ Realistic formation of clouds
✔ Cloud movement

✔ advection by a single wind vector
✔ advection by a more complex flow field

✔ Cloud extinction
✔ Nearly stable user-defined cloud cover
✔ Control over cloud shapes; allow animators to define shapes which

should be built during simulation
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9.1.2. Dynamic Shading and Lighting

✔ Realistic lighting through scattering
✔ single scattering, using one ray per cloud particle in

combination with an ambient term instead of multiple
scattering, which is computationally more expensive.

✔ Advection by sun- and sky color

9.1.3. Performance Issues

✔ Possibility to perform cloud simulation in real time
✔ use GPU for nearly everything

✔ Possibility to perform cloud rendering in real time using point sprite
groups and optimizations as empty space skipping.

✔ avoid memory transfers between main memory and graphics
adapter; the only necessary transfer of resources from graphics
memory to main memory is the downsampled density map for
empty space skipping during rendering, but this map is mostly
limited to sizes of 8x8 or 16x16 pixels and does therefore not
influence performance.

The list together with the quantitative analysis in the previous section proves that
all main goals of the thesis have been reached. 

This method is easy to use and grants a high degree of artistic control while it
remains easy to generate a realistic-looking cloud volume randomly without any
artist influence. Parameters such as cloud density, average cloud size, wind speed
and direction can be easily integrated into the region volume computations (Section
4) and be used to give the user maximum control over the cloud field, which allows
for  example  changes  in  the weather  pattern.  This  makes  the proposed method
suitable for most applications, reaching from games and flight simulators to virtual
environments.

9.2. Future Improvements

There is still room left for improvements. For latest graphics hardware, it would be
possible  to  reduce  the  memory  consumption  and  increase  performance  of  the
simulation step significantly by implementing the bitfield manipulation functions
(as described by Dobashi et al.  [4]) within the shader for execution on the GPU.
This would improve performance significantly, since 32 voxels could be processed
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(using 32 bit integer textures) simultaneously by simply storing each voxel within a
single bit and perform computations using boolean operations.

It may be possible to further improve the cloud rendering step by using geometry
shaders, which are part  of Shader Model 4.0. Using these shaders,  it would be
possible to generate the necessary point sprites on the fly instead of having to use
a vertex stream that holds for example 32x32 point sprites and where sprites need
to be discarded within the vertex shader if no particle exists on the corresponding
volume position.

Further  improvements  concerning  visual  quality  are  still  open.  For  example,
support  for  local  light  sources  could  be  integrated  to  illuminate  clouds  by
thunderbolts  or  even  aircrafts.  Especially  methods  to  perform  a  fast  multiple

àscattering approximation need to be developed. L szlo Szirmay-Kalos proposed in
Real-Time Multiple Scattering in Participating Media with Illumination Networks
[24] a very interesting approach for multiple scattering computation at interactive
framerates for static clouds. Maybe an adaption of this method for dynamically
generated clouds can be found in the future.
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–Appendix A  Implementation

Most of the necessary computations are performed within vertex- and pixel shaders
and therefore, this section will focus mainly on the shader code, since the program
code itself is mainly restricted to set shader constant parameters and performing
draw calls.

Cloud Simulation

The vertex shader only transforms vertices of a simple quad that is used to render
to a texture. Only the interesting pixel shader parts will be listed.

float4 SimulationStepPS( VS_OUTPUT In) : COLOR0

{ 

    float4 vResult;

    //get current states at actual map position

    float4 vLastStep = tex2D(SamplerLastStep, In.TexCoord.xy);

    //compute new humidity value with hum(t+1) := hum(t) and not act(t)

    //note, that the humidity value is written to the r-component

    if((vLastStep.r >= 0.5) && (vLastStep.b < 0.5)) {

      vResult.r = 1.0;

    }

    else {

      vResult.r = 0.0;

    }

    //compute new cloud value with cld(t+1) = cld(t) or act(t)

    //note that the cld value is written to the g-component

    if((vLastStep.g >= 0.5) || (vLastStep.b >= 0.5)) {

      vResult.g = 1.0;

    }

    else {

      vResult.g = 0.0;

    }

    //compute new activation value with act(t+1) = not act(t) and hum(t) and f_act

    //where f_act is definied in the original publication by Dobashi et al (A

    //Simple, Efficient Method for Realistic Animation of Clouds).

    //first, compute the actual segment number
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    float2 vActSegment;

    float fActSegmentIndex;

    float fTempSegmentIndex;

    float2 vTemp;

    float2 vTemp2;

    vTemp.x = In.TexCoord.x * 2047.0;

    vTemp.y = In.TexCoord.y * 1023.0;

    vTemp2.x = In.TexCoord.x / fSegmentWidth;

    vTemp2.y = In.TexCoord.y / fSegmentHeight;

    vActSegment.x = round(vTemp2.x);

    vActSegment.y = round(vTemp2.y);

    if((vActSegment.x - vTemp2.x) > 0.0) vActSegment.x = vActSegment.x - 1.0;

    if((vActSegment.y - vTemp2.y) > 0.0) vActSegment.y = vActSegment.y - 1.0;

    fActSegmentIndex = round(vActSegment.x + (vActSegment.y * 8.0));

    //compute local uv-offset

    float2 vLocalUV;

    vLocalUV.x = In.TexCoord.x - (vActSegment.x / 2048.0 * 256.0);

    vLocalUV.y = In.TexCoord.y - (vActSegment.y / 1024.0 * 256.0);

    float fAct;

    float fAct1 = tex2D(SamplerLastStep, float2(In.TexCoord.x +

                                                fOffsetX1, In.TexCoord.y)).b;

    float fAct2 = tex2D(SamplerLastStep, float2(In.TexCoord.x, In.TexCoord.y +

                                                fOffsetZ1)).b;

    float fAct3 = tex2D(SamplerLastStep, float2(In.TexCoord.x - fOffsetX1, 

                                                In.TexCoord.y)).b;

    float fAct4 = tex2D(SamplerLastStep, float2(In.TexCoord.x, In.TexCoord.y - 

                                                fOffsetZ1)).b;

    float fAct5 = tex2D(SamplerLastStep, float2(In.TexCoord.x - fOffsetX2, 

                                                In.TexCoord.y)).b;

    float fAct6 = tex2D(SamplerLastStep, float2(In.TexCoord.x + fOffsetX2, 

                                         In.TexCoord.y)).b;

    float fAct7 = tex2D(SamplerLastStep, float2(In.TexCoord.x, In.TexCoord.y - 

                                         fOffsetZ2)).b;

    float fAct8 = tex2D(SamplerLastStep, float2(In.TexCoord.x, In.TexCoord.y + 

                                         fOffsetZ2)).b;

    float fAct9 = CheckOtherSegment(fActSegmentIndex - 1.0, vLocalUV);

    float fAct10 = CheckOtherSegment(fActSegmentIndex - 2.0, vLocalUV);

    float fAct11 = CheckOtherSegment(fActSegmentIndex + 1.0, vLocalUV);

    if((fAct1 >= 0.5) || (fAct2 >= 0.5) || (fAct3 >= 0.5) || (fAct4 >= 0.5) || 

       (fAct5 >= 0.5) || (fAct6 >= 0.5) || (fAct7 >= 0.5) || (fAct8 >= 0.5) || 

       (fAct9 >= 0.5) || (fAct10 >= 0.5) || (fAct11 >= 0.5)) {
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      fAct = 1.0;

    }

    else {

      fAct = 0.0;

    }

    if((vLastStep.b < 0.5) && (vLastStep.r >= 0.5) && (fAct >= 0.5)) {

      vResult.b = 1.0;

    }

    else {

      vResult.b = 0.0;

    }

        

    float2 vNoise;

    float fNoiseValue;

    //get density scale value for slice

    float fSliceDensity = tex1D(SamplerSliceDensity, fActSegmentIndex / 31.0).r;

    //fetch values from regionmask textures

    float fRegionMaskHumAct = tex2D(SamplerRegionVolume,

                                    float2(In.TexCoord.x, In.TexCoord.y)).r;

    float fRegionMaskExt = 1.0 - fRegionMaskHumAct;

    //compute cloud extinction

    vNoise = float2(In.TexCoord.x / 2.0 + fNoiseOffsetExtX, In.TexCoord.y / 2.0 + 

                    fNoiseOffsetExtY);

    fNoiseValue = tex2D(SamplerNoise, vNoise).r;

    if(fNoiseValue <= (fRegionMaskExt * 0.1)) {

      vResult.g = 0.0;

    }

    //compute humidity regeneration

    vNoise = float2(In.TexCoord.x / 2.0 + fNoiseOffsetHumX, In.TexCoord.y / 2.0 +

                    fNoiseOffsetHumY);

    fNoiseValue = tex2D(SamplerNoise, vNoise).r;

    if(fNoiseValue < (fRegionMaskHumAct * 0.1)) {

      vResult.r = 1.0;

    }

    //compute activation values

    vNoise = float2(In.TexCoord.x / 2.0 + fNoiseOffsetActX, In.TexCoord.y / 2.0 + 

                    fNoiseOffsetActY);

    fNoiseValue = tex2D(SamplerNoise, vNoise).r;

    if(fNoiseValue < (fRegionMaskHumAct * 0.001)) {

      vResult.b = 1.0;
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    }

    //remove cloud particles outside of the defined ellipsoids

if(fRegionMaskHumAct <= 0.001) {

  vResult.g = 0.0;

}

    

    //alpha channel is not used, so set it simply to zero. maybe it could be used

    //to store cloud regions in future versions.

    vResult.a = 0.0;

    return vResult;

}

Cloud Shading (for XZ slice orientation)

float4 VolumeShadingPS( VS_OUTPUT In) : COLOR0

{

  float2 vVolumePos;

  float2 vShadingPos;

  

  vVolumePos.x = In.TexCoord.x * fPartX + fVolBoundingMinX + fLightOffsetX;

  vVolumePos.y = In.TexCoord.y * fPartY + fVolBoundingMinY + fLightOffsetY;

  vShadingPos.x = In.TexCoord.x * fPartX + fVolBoundingMinX+fLightOffsetXShading;

  vShadingPos.y = In.TexCoord.y * fPartY + fVolBoundingMinY+fLightOffsetYShading;

  float fVolumeValue;

  float fVolumeNeighbour1;

  float fVolumeNeighbour2;

  float fVolumeNeighbour3;

  float fVolumeNeighbour4;

  if((vVolumePos.x >= fVolBoundingMinX) && (vVolumePos.x <= fVolBoundingMaxX) && 

     (vVolumePos.y >= fVolBoundingMinY) && (vVolumePos.y <= fVolBoundingMaxY)) {

    fVolumeValue = tex2D(SamplerVolume, vVolumePos).g;

  }

  else {

    //out of boudings - so there is no cloud particle on this position

    fVolumeValue = 0.0;

  }

  //left neighbour

  if(((vVolumePos.x - fPixelWidth) >= fVolBoundingMinX) && ((vVolumePos.x - 

     fPixelWidth) <= fVolBoundingMaxX) && (vVolumePos.y >= fVolBoundingMinY) && 

     (vVolumePos.y <= fVolBoundingMaxY)) {

    fVolumeNeighbour1 = tex2D(SamplerVolume, float2(vVolumePos.x - fPixelWidth, 

                              vVolumePos.y)).g;
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  }

  else {

    //out of boundings - so there is no cloud particle on this position

    fVolumeNeighbour1 = 0.0;

  }

  //right neighbor

  if(((vVolumePos.x + fPixelWidth) >= fVolBoundingMinX) && ((vVolumePos.x - 

     fPixelWidth)<= fVolBoundingMaxX) && (vVolumePos.y >= fVolBoundingMinY) && 

     (vVolumePos.y <= fVolBoundingMaxY)) {

    fVolumeNeighbour2 = tex2D(SamplerVolume, float2(vVolumePos.x + fPixelWidth, 

                              vVolumePos.y)).g;

  }

  else {

    //out of boundings - so there is no cloud particle on this position

    fVolumeNeighbour2 = 0.0;

  }

  //top neighbor

  if((vVolumePos.x >= fVolBoundingMinX) && (vVolumePos.x <= fVolBoundingMaxX) && 

     ((vVolumePos.y - fPixelHeight) >= fVolBoundingMinY) && ((vVolumePos.y - 

     fPixelHeight) <= fVolBoundingMaxY)) {

    fVolumeNeighbour3 = tex2D(SamplerVolume, float2(vVolumePos.x, vVolumePos.y - 

                              fPixelHeight)).g;

  }

  else {

    //out of boundings - so there is no cloud particle on this position

    fVolumeNeighbour3 = 0.0;

  }

  //bottom neighbor

  if((vVolumePos.x >= fVolBoundingMinX) && (vVolumePos.x <= fVolBoundingMaxX) && 

     ((vVolumePos.y + fPixelHeight) >= fVolBoundingMinY) && ((vVolumePos.y + 

     fPixelHeight) <= fVolBoundingMaxY)) {

    fVolumeNeighbour4 = tex2D(SamplerVolume, float2(vVolumePos.x, vVolumePos.y + 

                              fPixelHeight)).g;

  }

  else {

    //out of boundings - so there is no cloud particle on this position

    fVolumeNeighbour4 = 0.0;

  }

  float fSmoothedVolumeValue = (fVolumeValue + fVolumeNeighbour1 + 

        fVolumeNeighbour2 + fVolumeNeighbour3 + fVolumeNeighbour4) / 5.0;

  //compute attenuation for the current position on the volume slice  

  float fAttenuation = 1.0 - (1.0 - fAttenuationRatio) * fSmoothedVolumeValue; 

  //get result of previous shading step

  float fPreviousValue;
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  if((vShadingPos.x >= (fVolBoundingMinX + fPixelWidth)) && (vShadingPos.x <= 

     (fVolBoundingMaxX - fPixelWidth)) && (vShadingPos.y >= (fVolBoundingMinY + 

     fPixelHeight)) && (vShadingPos.y <= (fVolBoundingMaxY - fPixelHeight))) {

    fPreviousValue = tex2D(SamplerShading, vShadingPos).r;

  }

  else {

    fPreviousValue = 1.0;

  }

  //decrease brightness when a particle absorbed some amount of light

  float fFinalValue = fPreviousValue * fAttenuation;

  

  return float4(fFinalValue, fFinalValue, fFinalValue, 0.0);

}

Cloud Rendering

VS_OUTPUT BillboardAreaVS(VS_INPUT IN)

{

    VS_OUTPUT OUT;

    float fParticle = tex2Dlod(SamplerVolume, float4(fVolumeOffsetX + 

                              IN.Position.x * 0.25 * fPixelWidth, fVolumeOffsetZ +

                              IN.Position.z * 0.25 * fPixelHeight, 0.0, 1.0)).r;

    if(fParticle > 0.3) {

      float4 vCameraSpacePos = mul(float4(IN.Position.xyz + vPosition.xyz, 1.0), 

                                   mtView);

      float fDistance = distance(float3(0.0, 0.0, 1.0), vCameraSpacePos.xyz);

      OUT.Position = mul(float4(IN.Position.xyz + vPosition.xyz, 1.0), 

                         mtWorldViewProj);

      OUT.TexCoord = IN.TexCoord;

      OUT.Size = ((9500 * fParticle) / fDistance) * fParticle;

      OUT.Color = vSunCol * tex2Dlod(SamplerShading, float4(fVolumeOffsetX + 

                                     IN.Position.x * fDistanceScale * fPixelWidth,

                                     fVolumeOffsetZ + IN.Position.z * 

                                     fDistanceScale * fPixelHeight, 0.0, 1.0)).r;

      OUT.ParticleDensity = float4(fParticle, 0.0, 0.0, 0.0);

    }

    else {
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      OUT.Position = float4(0.0, 0.0, -1.0, 0.0);

      OUT.TexCoord = IN.TexCoord;

      OUT.Size = 1.0;

      OUT.Color = float4(0.0, 0.0, 0.0, 0.0);

      OUT.ParticleDensity = float4(0.0, 0.0, 0.0, 0.0);

    }

    return OUT;

}
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Cloudy sky at afternoon. The viewer is positioned at high altitude. 

Viewer looks into the sky at sunset
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Clouds at sunset viewed from the ground.

Experimental cloud image; rendered using a cloud shading color that differs significant from

the sky color to show the flexibility of the proposed method.
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Dense clouds shown from a leaning perspective as they could be seen from an aircraft at low

altitude.

Another screenshot that shows clouds at sunset.
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Screenshot taken on the same scene setup as for the previous shot, but using another

perspective.

Viewer is positioned above the cloud field at sunset.
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Clouds at sunset using a shading color that differs slightly from sun color.

The same scene setup that was used for the previous screenshot is used to render clouds

from high altitude.
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Another cloud sunset image using a slightly different shading color.

Nearly full covered sky rendered with activated shafts-of-light.
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Cloud covered sky rendered without shafts-of-light.

The same scene with activated shafts-of-light.
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Clouds at sunset rendered without shafts-of-light.

The same scene rendered with activated shafts-of-light.
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Clouds rendered without shafts-of-light.

The same scene rendered with activated shafts-of-light.
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Dense clouds rendered using a low ambient value (0.1).

The same scene rendered using a higher ambient value (0.25).
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The viewer is placed above the clouds looking to the ground. The images show different

simulation steps during cloud formation.
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