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Abstract

Within computer graphics, the field of physically based rendering is

concerned with those methods of image synthesis which yield results that

do not only look real, but are also radiometrically correct renditions of

nature, i.e. which are accurate predictions of what a real scene would look

like under given lighting conditions.

In order to guarantee the correctness of the results, three stages of such a

rendering system have to be verified with particular care: the light reflection

models, the light transport simulation, and the perceptually based calcula-

tions used at display time.

In this thesis, the focus lies on the second step in this chain. Various

approaches for verifying the implementation of a physically based rendering

system have been proposed so far. However, the problem of proving that the

results are correct is not fully solved yet, and no standardized methodology

is available.

Using a photograph for verifying the results of a rendering system seems

obvious but an image produced by a common digital camera cannot be used

for this purpose directly. The sensor of a digital camera usually sees colors

differently than a human observer. Several techniques have been developed

to compensate for this problem. Our goal was to find and compare as many

meaningful ways of using a digital camera for verifying a physically based

rendering system as possible, in order to provide a practicable method for

any development environment. Some of the analyzed methods were taken

from the field of color management. Another method, that is based on a

novel approach, was developed throughout this thesis. We did an exhaustive

comparison of the usability and practicability of all the methods, focusing

on required equipment and cost. We found that in general more elaborate

methods give better results than low-end methods.

As some of the methods are based on XYZ color space, we considered

using this space as internal color space of our rendering system, rather than

doing full spectral rendering. However, we found a severe problem in using

XYZ space to determine the result of interactions of light and matter, as

XYZ space is not closed to component-wise multiplication of XYZ triplets.

Thus, based on this analysis we recommend full spectral rendering.

This thesis also contains a comprehensive overview of related work in

the field of verification of physically based rendering systems.
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Kurzfassung

Physically Based Rendering, ein Teilgebiet der Computergraphik, be-

schäftigt sich mit jenen Methoden der Bildsynthese, deren Ziel es ist, Bilder

zu berechnen, die nicht nur real aussehen, sondern auch eine radiometrisch

korrekte Wiedergabe der Natur darstellen. Bilder dieser Art entsprechen ei-

ner exakten Vorhersage über das Aussehen einer Szene unter definierten

Lichtverhältnissen.

Folgende drei Stufen des Renderingverfahrens müssen verifiziert wer-

den, um die Korrektheit des Ergebnisses garantieren zu können: die Ober-

flächenmodelle, die Simulation der Lichtausbreitung in der Szene und die

Darstellung am Bildschirm, deren Konzepte der Wahrnehmungsfähigkeit

des Menschen nachempfunden sind.

Der Fokus dieser Dissertation liegt auf der zweiten der drei Stufen. In

den letzten Jahrzehnten wurden viele verschiedene Ansätze präsentiert, die

sich mit der Verifikation der Implementierung eines physikalisch basierten

Renderingsystems befassen. Die Problemstellung ist allerdings noch nicht

völlig gelöst. Es ist auch noch keine standardisierte Methode vorhanden.

Es erscheint naheliegend, zur Verifikation eines Renderingsystems ein

Photo einer Szene heranzuziehen. Ein Photo einer handelsüblichen Digital-

kamera kann allerdings nicht direkt zu diesem Zweck verwendet werden, da

die Sensoren einer solchen Kamera Farben im allgemeinen anders wahrneh-

men als ein Mensch. Es wurden veschiedenste Strategien entwickelt, um die-

se Abweichung zu kompensieren. Ziel dieser Dissertation ist es, möglichst

viele aussagekräftige Methoden, die es erlauben, eine handelsübliche Di-

gitalkamera zur Verifikation eines physikalisch basierten Renderingsystems

zu benutzen, zu finden und zu vergleichen. Der Schwerpunkt wurde dabei

auf die praktische Anwendbarkeit in unterschiedlichen Entwicklungsumge-

bungen gelegt. Einige der besprochenen Methoden stammen aus dem Gebiet

des Color Management. Im Rahmen dieser Dissertation wurde eine weitere

Methode entwickelt, die auf einem neuartigen Ansatz basiert. Die prakti-

sche Anwendbarkeit all dieser Methoden wurde verglichen, wobei besonde-

res Augenmerk auf benötigte Geräte und anfallende Kosten gelegt wurde. Es

hat sich herausgestellt, daß die aufwendigeren Verfahren bessere Ergebnisse

liefern als einfachere Methoden.

Da einige dieser Methoden auf der Verwendung des XYZ Farbraums

basieren, liegt es nahe, diesen als internen Farbraum des Renderers zu ver-

wenden, anstatt auf das aufwendigere Spektralrendering zurückzugreifen.
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Im Zuge dieser Dissertation sind wir jedoch auf ein Problem bei der Berech-

nung der Interaktion von Licht mit einer Oberfläche gestoßen. Der XYZ

Farbraum ist bezüglich der komponentenweisen Multiplikation nicht abge-

schlossen, es kann daher zu ungültigen Werten kommen. Wir empfehlen

deshalb die Verwendung von Spektren für die internen Berechnungen eines

Renderingsystems.

Diese Dissertation beinhaltet außerdem einen ausführlichen Überblick

über den Stand der Forschung auf dem Gebiet der Verifikation von physika-

lisch basierten Renderingsystemen.
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1 Introduction

In recent years, a lot of work has been published in the field of photorealistic
computer graphics concerning more accurate rendering algorithms, more detailed
descriptions of surfaces, more realistic tone mapping algorithms and many other
improvements for the process of rendering photorealistic images. Unfortunately,
there have been comparatively few attempts on verifying all these algorithms in
practice. In the field of photorealistic rendering, it should be common practice to
compare a rendered image to measurements obtained from a real-world scene.
This is currently the only practicable way to prove the correctness of the im-
plementation of a true global illumination algorithm. However, most rendering
algorithms are just verified by visual inspection of their results.

The process of verifying a photorealistic renderer can be divided into three
steps [GTS+97]. First, one has to prove the correctness of the light reflection
models through comparisons with measured physical experiments. One way to do
this is to use a gonioreflectometer to measure the full bidirectional reflectance dis-
tribution functions (BRDFs) of all surfaces. The second step is to verify the light
transport simulation, or – in other words – the actual rendering algorithm. This
can be done by comparing the rendered image to a measurement of a real scene,
or through analytic approaches. The final step in image synthesis generates an im-
age from radiometric data provided by the rendering algorithm; it has to take the
properties of the output device and the actual viewing conditions into account. In
this stage psychophysical models are used to achieve convincing results, therefore
perceptual experiments are used to evaluate how believable such an image is.

This thesis will focus on the second step: the verification of rendering al-
gorithms. Although this step is crucial in photorealistic image synthesis, com-
paratively little work has been published about this topic so far. The problem is
far from being solved, though. Most of the available rendering systems are not
verified.

1.1 Motivation

The goal of photorealistic rendering is to generate images that look like photo-
graphs of a real scene. To verify such a rendering system, the obvious way is
to compare a photograph to a synthetic image of the same scene. This thesis fo-
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cuses on how a digital camera can be used in this sense and – probably even more
important – what subproblems cannot be solved and therefore have to be treated
differently.

1.2 Believable vs. Correct

Photorealistic image synthesis has made outstanding progress in the last decades.
While the pioneers of this field tried to achieve realism with comparatively simple
algorithms like raytracing and radiosity, a lot of sophisticated algorithms – such
as path or photon tracing, as well as numerous hybrid techniques – have been
developed since then.

Nowadays it is possible to render images that can hardly be distinguished from
photographs. Consider for instance the Alias website “Is it Fake or Foto” [Ali06b].
There you can attempt to guess the origin of ten images depicting various scenes,
some of them real and some of them rendered with Maya [Ali06a]. If you know
what you have to look for, it is indeed possible to choose the right answers, but at
first sight the renderings look believably real.

The results are convincing, but we cannot assume that the rendering algorithm
is implemented correctly as far as physical accuracy is concerned. However, for
many applications this is good enough. For movies, computer games and related
areas it is essential that the images look appealing and – above all – believable. It is
not necessary and sometimes even counterproductive that an image is a physically
correct representation of the light transport in a scene.

However, for physically based rendering (as the field has become to be known),
this is absolutely crucial. Its applications are much more restricted than the largely
artistic realm of ordinary, “just believable” rendering techniques; the effort in-
volved is far greater – e.g. because one has to use measured surface reflectance
data or complicated analytical models for the scene description – and the cre-
ativity of the user is severely restricted by the constraints of physical correctness
(e.g. the inability to fine-tune the lighting in the scene for artistic reasons on a
per-object basis as it is common practice with current commercial systems).
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1.3 Applications of Physically Based Rendering

Even though it is not to be expected that physically based rendering will ever
replace the existing artistic image synthesis tools for the abovementioned reas-
ons (although methods from this field will probably continue to make inroads as
optional enhancements, such as selective raytracing of reflective objects), it still
commands a small but highly viable niche market for all those who need accurate
imagery of virtual scenes.

1.3.1 Virtual Prototyping

Many appearance-sensitive branches of industry, for example the car industry,
have to build expensive prototypes of their products before they actually go into
serial production. In the last years, a lot of effort was put into reducing the costs
by using computer generated images of the products. But this can only be done
if the rendering software is proven to accurately simulate the light propagation
within a scene.

The “RealReflect” project [Rea06] was initiated in order to investigate and
improve the process of measuring surface reflectance properties and generating
high quality renderings out of the data. However, these renderings are of reduced
value if it cannot be proven that the implementation of the rendering algorithm is
accurate.

1.3.2 Architecture and Lighting Design

Architects and lighting designers are interested in a reliable simulation of the light-
ing conditions of a building. The more precise this lighting simulation is, the more
accurate is the output of the design process. Beside artificial light, many natural
lighting situations have to be considered, like for example direct sunlight effects,
ambient skylight effects, different time conditions, and different weather condi-
tions. This kind of calculations requires a validated physically based rendering
system.

1.3.3 Medical Reconstruction

In single photon emission computed tomography (SPECT), a gamma camera is
rotated around the patient to acquire images from multiple angles. Various recon-
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struction algorithms have been developed to implement the process of reconstruct-
ing a 3-dimensional object from these images. Bergner et al. [BDCM05] used a
physically based rendering toolkit to simplify the programming of tomography
algorithms in order to speed up the development and testing processes of novel
algorithms. As the quality of the diagnosis relies heavily on the accuracy of the
reconstruction algorithm, the correctness of the rendering toolkit again has to be
guaranteed.

1.3.4 Safety Checks

Physically based rendering is also useful when it comes to safety relevant applica-
tions. In car industry, for example, the design of a car interior has to fulfill certain
safety relevant issues. One of these issues is e.g. that the reflections in the wind-
shield are to be minimized in a way that they do not distract the driver. Under
daylight conditions these reflections are mainly caused by glossy materials in the
upper part of a cockpit mirroring in the windshield. Under night light conditions,
ambient light sources or illuminated switches can cause a similar effect. A real-
istic rendering of the car interior helps the designer to select suitable materials and
to position the light sources in an appropriate way.

1.4 Thesis Contribution

The main contribution of this thesis is to find as many meaningful ways of us-
ing a digital camera for verifying a physically based rendering system as possible
in order to provide a practicable method for any development environment. The
methods were taken from the field of color management. Additionally another
method was developed as part of this thesis. We compared the usability and prac-
ticability of all the methods, focusing on required equipment and cost. We also
investigated the factor of improvement that methods requiring expensive equip-
ment bring. Using a photograph for verifying the results of a rendering system
seems obvious and some developers may have started to use it already, but as far
as we know no exhaustive analysis apart from our work has been published, yet.

In our rendering system, we use spectral values for internal calculations. Some
of the verification methods are based on XYZ color space though, which raises the
question why we do not use XYZ as internal color space from the first. The reason
is that we found a severe problem that can occur when interactions of light and
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matter are calculated in XYZ space. The details of this work are explained in
[UW06].

Verification in general is quite often neglected in the development process.
We composed an extensive state of the art report on the topic of “Verification of
Physically Based Rendering Algorithms” (see [UWP05] and [UWP06]) in order
to call attention to the importance of this field.

1.5 Thesis Outline

This thesis is organized as follows: Chapter 2 presents an overview on verific-
ation techniques, from the well-known Cornell Box to recent developments. A
short introduction to the field of colorimetry is given in chapter 3. Chapters 4
and 5 describe the internal functionalities of a digital camera and a physically
based rendering system as far as they are used in this thesis, respectively. The
procedure of data acquisition and processing is outlined in chapter 6. Chapter 7
is dedicated to the main topic of this thesis – various approaches of using a di-
gital camera for verifying a physically based rendering system. The question of
why we rely on spectral rendering instead of using XYZ space as internal color
space is answered in chapter 8. Conclusions are drawn in chapter 9 along with
a discussion of future work. Appendix A explains photometric and radiometric
quantities that are used throughout the thesis, whereas appendix B describes vari-
ous types of measurement devices. Several instruments that were used for data
acquisition are illustrated in appendix C. Appendix D gives a number of websites
that contain publicly available validation data. Detailed results of the tests made
in conjunction with this thesis are listed in appendix E.
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2 Related Work

2.1 Visual Comparisons

A practicable way of verifying a renderer is to compare the results of the rendering
process to a real scene. The very first approach in this direction was done in 1975
by Phong [Pho75]. He compared a phong-shaded sphere to a photograph of a
real sphere. The two images differ apparently but he did not discuss this fact
any further. As the Phong model is not a physically based global illumination
algorithm, we will not go into detail. Two more representative approaches are
discussed in the following sections.

2.1.1 The Original Cornell Box

Figure 1: A schematic of the first Cornell Box setup [GTGB84].

The first approach in this direction was done in 1984 by Goral et al. [GTGB84].
They showed that the radiosity algorithm behaves similar to light propagation in a
real setup of the scene. One reason for choosing this method was that the rendering
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Figure 2: A photograph of the real cube [GTGB84].

equation had not been defined in the form known today [Kaj86].
The setup – also known as the Cornell Box – consisted of a cube made out of

fiber board panels, colored with flat latex paints to minimize specular reflections.
The panels were painted with different colors to evoke the effect of color-bleeding.
The cube had just five sides to be able to take photographs of the scene and to
illuminate the inside with diffuse white light. A schematic of the setup can be
seen in figure 1. In order to simulate a diffuse and uniform area light source
at the front side of the cube, the point light sources did not face the cube but a
diffuse white surface. In front of the cube, there was another white surface that
contained a small hole for the camera. Due to the multiple reflections, the lighting
can therefore be considered diffuse.

Due to the lack of color measurement devices, no quantitative but only visual
comparisons could be made. Hence, the result of the comparison is very superfi-
cial. It can only be said that the color-bleeding that is visible on a photograph of
the cube (see figure 2) is also present on a rendered image of the scene (see fig-
ure 3). So, the structure of the light distribution can be verified but not the colors.
They do not correspond to each other, e.g. the white surfaces of the photograph
look much redder than the ones of the simulation. This is probably caused by
using light bulbs that emit reddish light.
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Figure 3: Radiosity with linear interpolation [GTGB84].

2.1.2 Recent developments

In 2000, McNamara et al. [MCTG00] again picked up the idea of visual compar-
isons. In their paper they present a way to quantify these subjective impressions.
Like in the previous attempt, they also built a five sided box as a test environment.
The interior of the box was painted with diffuse white paint, whereas the objects
that were put inside the box were painted with different kinds of gray. The spectral
reflectances of the paints were measured and converted to RGB values. Beside the
box a computer monitor was placed to present simulated images of the scene. In
addition, a mirror was used to facilitate alternation between the two settings.

Ten different types of images were selected to be compared to the real scene:

• A photograph (see figure 4(a)),

• three images rendered with Radiance [War94] at different quality levels (see
figure 4(b), (c) and (d)),

• a brightened high quality Radiance image (see figure 4(e)),

• two Radiance simulations with controlled errors – one with estimated RGB
values for the materials and one with estimated RGB values for the light
source (see figure 4(f) and (g)),

• a tone-mapped Radiance image (see figure 4 (h)) and

• two images generated with RenderPark [Ren06], one using raytracing, the
other using the radiosity algorithm (see figure 4(i) and (j)).
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(a) Photo (b) Default (c) 2 Bounces (d) 8 Bounces

(e) Bright (f) Est. Materials (g) Tonemapped (h) Est. Source

(i) Raytraced (j) Radiosity

Figure 4: Different types of images that were used in the experiment [MCTG00].
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Eighteen observers were asked to match the gray levels of the presented setting
to a predefined set of samples, i.e. to judge the lightness of the objects. For this
purpose, they have been trained to do this by recalling the different gray levels
from memory before the actual experiment. The 11 different settings – the 10
images and the real scene – were presented in random order. Afterwards, the
gray levels chosen by each participant in an image were compared with the values
chosen in the real scene. The closer these values were, the closer the image was
considered to be to the real scene.

In summary, the results of this study showed that high quality Radiance images
(see figure 4(d) and (e)), the tone-mapped image (see figure 4(g)) and even one
of the defective images (see figure 4(h)) were good representations of the actual
scene. Though, the low quality Radiance simulations (see figure 4(b) and (c)), the
estimated materials image (see figure 4(f)), the raytraced image (see figure 4(i))
and the radiosity image (see figure 4(j)) differ considerably from the real setting.

2.2 Experimental Measurements

2.2.1 Improved Cornell Box

One year after the first experiments in Cornell (see section 2.1.1), the radiosity al-
gorithm was improved by projecting onto an imaginary cube instead of a sphere.
This hemi-cube radiosity [CG85] was again verified using the Cornell Box ap-
proach. Now, radiometric measurements of the cube were taken and compared
with the results of the algorithm.

In the context of the development of the hemi-cube radiosity algorithm, the
importance of verifying the implementation of a rendering algorithm was recog-
nized. In 1986, Meyer et al. [MRC+86] investigated the procedure of experi-
mental evaluation of rendering systems in detail. The following quotation em-
phasizes the necessity of experimental verification:

“If a scientific basis for the generation of images is to be established,
it is necessary to conduct experimental verification on both the com-
ponent steps and the final simulation.” [MRC+86]

The assembly of the Cornell Box had slightly changed since the first experi-
ments had been made. The light bulbs and the diffuse white surfaces were replaced
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by a light source on top of the cube. A small rectangular opening was cut into the
top panel and covered with a piece of opal glass to provide diffuse light. An in-
candescent flood light was mounted 15 inches above on top of a metal cone whose
interior was painted white. In order to avoid interreflections with the surrounding,
the box was placed on a black table and the walls were covered with black fabric.
Moreover, the panels of the box could be exchanged by other panels with different
colors.

In order to render an image that can be compared to the real world scene, the
properties of the light source and the surfaces have to be measured. The spectral
energy distribution of the light that shone through the opal glass was acquired by
a method described by Imhoff [Imh83]. Moreover, the intensity and the direction
of the light were needed for the calculations. They were measured by using a pho-
tometer (see appendix B.2) combined with an infrared filter. The inaccuracies of
the device have been adjusted by a correction factor. Another piece of equipment
– a spectrophotometer – was employed to measure the spectral reflectances of the
surfaces that were painted in different colors.

For radiometric comparisons, a device is needed that accurately simulates the
behavior of the human eye, like the ability to capture multiple samples at each
wavelength band of light. Since such a device was not available, Meyer et al.
obtained a radiometer (see appendix B.1) instead. This device was able to measure
over the range of the radiometric spectrum but provided just a single reading,
which is not enough to represent a whole scene. Therefore, 25 evenly distributed
measurements were taken (see figure 5). The sample points were chosen that way
to avoid shadows and to maximize the amount of light that hits the probe.

Three different test scenes were created to analyze the verification procedure.
Two of them consisted of an empty cube – the first had only white panels, the
second contained one blue panel. The third test scene was a white cube with a
white box inside it. Figure 6 shows the results of the third test scene. The cube
is tilted in a way that the front panel is on top and the top panel is facing the left
side. The irradiation H is shown on the vertical axis. The red lines show the
result calculated by the radiosity algorithm whereas the blue lines represent the
actual measurements. The correspondence between the values of the computer
generated image and the real scene is clearly visible. They have a root mean
square difference of about four percent.

It has to be mentioned that the described method only works with diffuse envir-
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Figure 5: The positions of the 25 radiometric measurements [MRC+86].

Figure 6: Results of the test scene with white panels and a white box inside
it [MRC+86].
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Figure 7: Points A to F were selected for measurements [TTOO90].

onments. None of the devices is able to measure specular or anisotropic surfaces.
Moreover, 25 measurements are not representative for more complex scenes. But
using more samples makes the procedure even more time-consuming.

2.2.2 Color Measurements

In 1990, Tagaki et al. [TTOO90] wanted to verify the results of a global illumin-
ation algorithm they developed to render realistic previews of car models. They
reduced the comparisons to a few relevant feature points. A car was analyzed un-
der different weather conditions and the most critical sections were selected (see
figure 7).

A Minolta CS-100 incident color meter (see appendix B.5) was used to meas-
ure the chromaticity and the luminance of these points. According to Tagaki et al.,
the measured and the calculated values were almost equal. Unfortunately, the veri-
fication process is not described in detail. Therefore it is not clear how the meas-
urements were acquired and why just six samples were taken. Figure 8 shows a
photograph and a rendering of one of the car models. It can easily be seen that
those images are not equal. A difference image (see figure 9) reveals that they are
not geometrically equal and that there are big differences in color values on some
parts of the car, in the shadows and in the background. Figure 10 points out the
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Figure 8: Top: A photograph of a car. Bottom: A rendered image of this
car [TTOO90].

color differences even more.

2.2.3 Scanning the Cornell Box

Because of the disadvantages mentioned in section 2.2.1, the Cornell Box setup
was further enhanced. The radiometer was replaced by a scanner to verify a global
illumination algorithm based on spherical harmonics [SAWG91] in 1991. Three
colored filters were used to retrieve information about the spectral distribution
of the light. The filters transmitted a wide range of wavelengths, whereas the
algorithm calculated values for three specific monochromatic channels. Thus,
only visual comparisons of the structure of the illumination were possible – similar
to the very first approach (see section 2.1).
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Figure 9: A difference image of photograph and rendered image (see figure 8).

Figure 10: A comparison of a small section of the front part of the car (see fig-
ure 8).
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Figure 11: The sample points do not lie near edges [KP96].

2.2.4 Model of an Office Room

Karner and Prantl [KP96] developed a method to verify complex scenes. They
created a model of an office room including material characteristics and used the
Radiance software package for rendering. Several different approaches for com-
paring a rendering of this model to measurements of the real scene were made. A
photometer (Minolta Spotmeter F, see appendix B.2) was used to obtain lumin-
ance values at selected points of the scene. No color measurements were taken.

The first approach consisted in just comparing the measured values to the cal-
culated results. In order to avoid problems that arose from misalignment of the
two scenes, the positions of the samples were chosen in a way that they did not lie
near edges (see figure 11). For testing purposes, the model was rendered from two
different viewpoints and in high and low quality. Figure 12 shows a high quality
rendering, a low quality rendering and a photograph of the scene. The root mean
square error lay within a margin of 18.2% to 21.8% while the average relative
error lay between 44% and 59%. The low quality renderings achieved similar res-
ults as the ones that were rendered in high quality although they obviously should
perform worse. The authors’ explanation for this is that the eye is more sensit-
ive to changes than to absolute values. From this follows that the combination
of point to point comparisons and the root mean square error is not sufficient for
quantitatively verifying a rendering system.
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Figure 12: From top to bottom: a high quality rendering, a low quality rendering,
and a photograph of the office scene [KP96].
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In the second approach, the authors compared whole surface patches instead
of points. They did not increase the number of measurements but took a photo-
graph of the scene and scanned it for further processing. Hence the luminance
values are known for some of the pixels of the photograph, the other values could
be calculated by using a curve fitting function. The root mean square error was
now between 16.4% and 18.5% and the average relative error was between 44%
and 71%. Most of the errors occurred because of a misalignment of the images.
Moreover it should be mentioned, that for one of the scenes the root mean square
error for the low quality rendering was again lower than for the one with high
quality.

In order to cope with the problem of misalignment, the edges were excluded
from the evaluation for testing purposes. This reduced the root mean square error
to a value between 12.9% and 17.8% and the average relative error to a value
between 32% and 52%. However, the margin of error was still very high. One
reason for this was that the specifications of the light sources differed by up to
30% from the true value. Furthermore, the devices used to measure the material
characteristics introduced an error in the range of 5% to 10%.

2.2.5 Charge-coupled Device (CCD)

In 1997, the Cornell Box approach was again used for verification purposes. Now
a CCD camera was used for direct colorimetric comparisons of synthetic and real
images. This was the first attempt where values for the whole image and not just
a few samples were captured. Pattanaik et al. [PFTG97] describe the procedure
of calibrating a CCD camera to reduce the error that is introduced by different
forms of noise and the extraction of color values out of a monochromatic CCD.
Seven narrow band filters were used to distinguish between the different ranges
of wavelengths. Then, the CIE tristimulus values (X ,Y ,Z) were computed for
each CCD element and for each pixel of the computer generated image. Fig-
ure 13(a) shows the results of those calculations. A difference in color values is
clearly visible. The measured image is redder in the upper left corner whereas the
computed image appears greener on the right side. A scaled difference image of
the luminance values Y can be seen in figure 13(b). It can be seen that the largest
errors occur at the edges of the objects and on the light source.
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(a)

(b)

Figure 13: (a) Left side: measured image. Right side: computed image; (b) scaled
difference image of the luminance values of the images shown in (a) [PFTG97].
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2.2.6 Evaluation of Four Daylighting Software Programs

In order to help architects and lighting designers in choosing the most accurate
daylighting software, Ubbelohde and Humann [UH98] did a comparative evalu-
ation of four daylighting programs: Lumen Micro [Lum06], SuperLite [Sup06],
Radiance [War94] and Lightscape [Lig06]. The comparisons were based on a
model of an existing building in San Francisco. A CAD program was used to
generate a standard DXF file of the architectural drawings. A LiCor 210S photo-
sensor was used to take measurements in one of the offices of the building. The
authors tried to find real skies as close to CIE standard skies as possible. In each
program, overcast sky and clear sky conditions were specified for the times and
dates of the real building metering.

The results of all four programs differed significantly from the on-site meas-
urements, especially for Lumen Micro and SuperLite. The predictions were 10 to
20 times too high. The authors concluded that this is because the original DXF
file could not be used with these programs and for that reason the geometry had
to be simplified. Radiance and Lightscape yielded much better results. An exact
match would be unlikely because of the difficulty (or impossibility) to find real
sky conditions that exactly correspond to CIE standard skies.

2.2.7 Validation of Daylight Simulations using Radiance

In 1999, Mardaljevic [Mar99] finished his PhD on the validation of daylight sim-
ulation using the Radiance rendering system. In the course of his work he invest-
igated whether Radiance yielded reliable results for daylight modeling of archi-
tectural scenes. The measurements required were accomplished within the scope
of the International Daylight Measurement Programme (IDMP) organized by the
CIE. These particular measurements were taken from July 1992 to July 1993. On
the one hand, the sky was scanned by mounting a sky monitoring apparatus on top
of a building. During daylight hours, 150 readings were made every 15 minutes.
On the other hand, the illuminance inside two rooms of the same building was
measured using photocells at the same time. Six photocells were positioned 0.7m
above floor level along the center line of each room (see figure 14). The second
room was used to test the effect of several different innovative glazings. The
simulation was based on the recordings of the scan of the sky. The result of the
simulation could therefore directly be compared to the values that were measured
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Figure 14: Six photocells were positioned along the center line of each
room [Mar99].

inside the building.
In order to achieve a wide range of different sky conditions, 754 representative

sky measurements were selected for further processing. The internal illuminances
at the six photocells were calculated using Radiance for all of the 754 skylight
configurations. Figure 15 shows one scatter plot for each photocell, each contain-
ing a comparison of the predicted and the measured illuminances. It can be seen
that most of the dots lie on or near the diagonal, i.e. the measured and the calcu-
lated values are equal or nearly equal. Though, for high illuminances the accuracy
decreases noticeably. Especially the first photocell, placed in front of the window,
yielded a high number of over and under predictions. So, for bright clear sky con-
ditions the prediction is less reliable than for overcast skies. Still, 63.8% of the
internal illuminance predictions were within a margin of ±10% of the measured
values.

An exhaustive analysis was done in order to find out whether the errors were
related to measuring errors or misalignments in the model representation, or whe-
ther Radiance yielded inaccurate predictions. Although it was not possible to find
a single cause of error, it could be shown that most likely multiple inaccuracies
in the model representation were responsible for the errors rather than the Radi-
ance program itself. Geometric misalignments as well as meteorologic phenom-
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Figure 15: Six scatterplots that compare the predicted and the measured illumin-
ances for each photocell [Mar99].

ena such as small bright clouds, fast moving patchy clouds, rain, snow or heavy
showers could have biased the model. Radiance was therefore capable of reli-
ably predicting the illuminance inside a building for a wide range of sky types –
especially overcast skies – but results that were generated when the circumsolar
region was visible from the point of calculation were considered to be potentially
inaccurate.

The PhD of Mardaljevic also contains an evaluation of existing skylight mod-
els (e.g. the CIE models and the Perez model [PSM93]) and a description of how
Radiance can be used to predict the daylight factor, which describes the ratio
of the internal illuminance at a point to the global horizontal illuminance under
overcast sky conditions and which is commonly used by architects and design
consultants to evaluate the lighting situation inside a building.

2.2.8 Model of the Atrium at the University of Aizu

Two years later, Drago and Myszkowski [DM01] used a photometer (more pre-
cisely a luxmeter, see photometer in appendix B.2) to acquire data about a real
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Figure 16: The left image shows a rendering of the atrium at the university of
Aizu, while the right image shows a photograph of the real scene [DM01].

scene. Their goal was to provide a complete set of data which characterized
a non-trivial existing environment for the test of physically based rendering en-
gines. Unlike the Cornell Box scenes, which are of low complexity in terms of
geometry and lighting, they wanted to build a scene that can be used to test the
overall functionality of a rendering system. For this purpose, they created a model
of the atrium at the university of Aizu based on the blueprints and on the actual
scene. More than 80% of the surfaces in the atrium consisted of six materials,
whose BRDFs were measured and included in the model. The reflectance proper-
ties of the remaining surfaces were estimated. For the luminaires, the goniometric
diagrams were received from the manufacturer and corrected by a maintenance
factor accounting for depreciation and aging. Figure 16 shows a rendering and a
photograph of the atrium. The model is publicly available on the atrium webpage
(see appendix D).

For the comparison, 84 sample points were chosen on the floor of the at-
rium (see figure 17). The illuminance values were obtained with the luxmeter
and then compared to the output of a rendering engine that used the DEPT tech-
nique [VMKK00]. The calculated values and the measurements matched quite
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Figure 17: Illuminance values measured with a luxmeter at sampled points on the
floor of the atrium [DM01].

well. For a high quality rendering, the average simulation error was 10.5%.
Moreover, Drago and Myszkowski did a visual comparison of a rendered im-

age, a photograph, the real scene and a tuned rendering, i.e. the Lambertian and
mirror reflection coefficients were intuitively tuned by a skilled artist to get the
best match of image appearance in respect to the real scene. They asked 25 sub-
jects to rate how similar the images were in respect to the real atrium scene. In
all cases, the photograph got the highest score. The tuned image was found to
be more realistic than the rendered image in terms of overall lighting and tone,
which is not surprising because it was post-processed. This might be part of the
explanation why industry prefers tweaking rendering parameters instead of doing
physically based renderings. But it has to be mentioned that the artistic approach
cannot be used if the scene does not exist in reality, i.e. when predictions of a
scene have to be generated.

2.2.9 Component Case Studies

Recently, Schregle and Wienold [SW04] presented another approach for using
luxmeters to verify a photorealistic rendering system, which is also the topic of
Schregle’s PhD thesis. Unlike Drago and Myszkowski, they focused on a setup
that can be used to test each effect of global illumination separately. Therefore,
they built a box similar to the Cornell box (see figure 18(a)).

On the top, the bottom, and the sides of the box, belts were mounted in or-
der to guide the sensors. The belts were covered with the interior material of
the box. They were driven in parallel by a shaft, which was operated manually.
Figure 18(b) shows a schematic of the sensor guidance mechanism.

Moreover, there were four additional sensors mounted on the front face of the
box to measure the direct illuminance from the light source. So, the authors were
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(a) (b)

Figure 18: (a) The validation test box; (b) a schematic of the sensor guidance
mechanism [SW04].

able to correct the specifications of the manufacturer by a maintenance factor. The
inside of the box was covered with heavy molleton, which was nearly lambertian.
Nevertheless, the discrepancy between the heavy molleton and a perfectly diffuse
lambertian surface was significant. Therefore, an extensive BRDF measurement
of the molleton was inevitable. In order to be able to validate caustics as well,
a so-called sandblasted aluminium light shelf was attached at the open side of
the box. The BRDFs of the molleton and the aluminium were obtained using a
goniophotometer (see appendix B.7).

Schregle and Wienold did two different kinds of case studies. First, compon-

ent case studies were done, where individual components of the rendering sys-
tem were tested. After this, compound case studies were performed which were
combinations of different component case studies. Lighting simulations were per-
formed using photon maps and the Radiance engine to be able to compare forward
and backward raytracing methods.

Four different case studies are presented in this paper: diffuse patch reflec-
tion, light shelf caustics, diffuse interreflection, and a combination of light shelf
caustics and diffuse interreflection. For the first test case, two patches of light gray
molleton where placed between the floor sensor tracks. The resulting illuminance
was measured on the ceiling. To validate the accuracy of their measurements,
Schregle and Wienold analytically calculated the theoretical result of the diffuse
reflection. A schematic of the inside of the box can be seen in figure 19a.

A comparison of the measured values and the results of the Radiance and
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Figure 19: (a) A schematic of the diffuse patch reflection test case; (b) Compar-
ison of the measured illuminance with the results of the photon map and Radi-
ance [SW04].

photon map calculations is shown in figure 19b. The vertical bars in the measured
data indicate the sensor tolerance. It can be seen that the curves fit quite well. The
average deviation for Radiance is 3%, while it is 2% for the photon map.

For the case study involving caustics, the aluminium light shelf was moun-
ted on the outside of the window in order to create a caustic directed toward the
ceiling. The accurate simulation of this effect was possible with both rendering
algorithms, though the calculations of Radiance were slightly more noisy than the
ones of the photon map algorithm. This is also reflected in the average deviations,
which are 7% for Radiance and only 2% for the photon map.

The third case study that is described in the paper is a generalization of the
diffuse patch reflection case and therefore a compound case study. The whole
interior of the box was covered with light gray molleton. The BRDF data had to
be corrected because the molleton parts were from different consignments. After
this adjustment, the average deviations were 1% for Radiance and 2% for photon
map.

Similar results were achieved for the fourth test case, a combination of the
light shelf caustic and the diffuse interreflection. Due to the correction of the
BRDF data, deviations averaged 1% and 2%, for Radiance and the photon map
respectively.

Both algorithms performed well and the relative deviations were consistently
within the estimated error margins. Nonetheless, this setup can only be used for
point samples but not for other purposes as for instance for verifying the exact
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shape of the caustic.

2.3 Analytical Tests

Arbitrary images that were created by using a stochastic global illumination al-
gorithm are often just verified by the programmer because the result includes ran-
dom variables and can therefore not easily be compared with a reference solution.
This leads to the fact that sometimes errors in the implementation are explained
by random noise or other artifacts and are not further investigated. In order to
avoid this kind of misinterpretation, another way of testing the correctness of the
implementation of global illumination algorithms is to create scenes where the
solution can be determined analytically.

2.3.1 Scenes With a Constant Solution

In 2001, Szirmay-Kalos et al. [SKKA01] extended previous attempts in order to be
able to test Monte Carlo global illumination algorithms and to use arbitrary BRDF
models and light sources. Two different types of test scenes were described in this
paper: scenes with constant radiance and scenes that represent the internal surface
of a sphere. Scenes with constant radiance could contain arbitrary geometry with
the restriction that it had to be a closed environment. As the radiance was constant
everywhere and in every direction, the incoming radiance was also constant. To
be able to use non-diffuse rendering algorithms, two approaches were presented.
First, the BRDFs were given and the light source that was needed to provide con-
stant radiance had to be calculated. In the second approach, the light sources were
left unchanged and the BRDFs were determined in a way that the radiance was
again constant.

In scenes that represent the internal surface of a sphere, the material models
and the light sources could be defined more generally. Again Szirmay-Kalos et al.
presented two different versions of this test scene. In one case, all the surfaces
and light sources were supposed to be diffuse, in the other case, the surfaces were
perfect mirrors.

In all cases, the fully converged solution was completely white. This allows
the programmer to verify the basic implementation of the global illumination al-
gorithm, because the correct solution of the calculation is already known. If the
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result of the rendering process contains areas that are not white, the programmer
can be sure that the implementation is not correct.

2.3.2 A Representative Set of Test Cases

Another attempt on defining a set of representative test cases with analytical solu-
tions was done by Maamari and Fontoynont [MF03] in 2003. They created six
test cases where the solution is known and therefore can be compared to the res-
ults of a simulation. The tests were done with a radiosity solution only, but the
authors state that the set of test cases will be expanded by scenes that include
specular surfaces as well. This work is part of the main objectives of the CIE
Technical Committee 3.33 [CIE06a], that concentrates on “Test Cases to Assess
the Accuracy of Lighting Computer Programs”.

The first test case consists of a square room with either an opening at the roof
or at one of the walls. The interior surfaces are black, i.e. they have a reflectance
of 0%. A skylight model for cloudy sky and a sun at 90◦ elevation is used as light
source. The total direct luminous flux arriving at the opening surface has to be
equal to the flux reaching the interior surfaces. The radiosity algorithm produced
a systematic error of about -16% for the roof opening and +13% for the wall
openings.

To simulate windows, a second test case was defined where a perfectly spec-
ular glass material is positioned at the top of the opening. Several simulations
were done where the incident angle of the light varied from 0◦ to 90◦ in 10◦ steps.
However, the software that was used did not take into account the transmittance
variation of incoming light with incidence angle. Therefore the internal illumin-
ances were over-estimated.

In order to describe the intensity distribution of luminaires, the most com-
monly used file formats are the IESNA format and the Eulumdat format. To test
the quality of the interpolation of the intensity, a third test case was created that
consists of a horizontal surface with a point light source at 3m height from the
surface center. It could be shown that the radiosity algorithm solved this test case
correctly because the error was below 0.2% compared with the analytical solution.

The shape factor formulae, which are used to define the fraction of luminous
flux leaving a perfectly diffuse surface that reaches an elementary surface, were
verified in the fourth test case. The geometry is again a square room as in the first
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two test cases, but instead of the opening there is a diffuse area light source at the
center of the ceiling. Again, the error was very low (below 1.3%) and it could be
proved that the software used was able to calculate this effect correctly.

The fifth test case dealt with the reflectance of the room surfaces. The surfaces
of a square room are defined as uniform diffusers. A point light source at the
center of the ceiling is used for illumination. The errors were within a negligible
margin except for the 0 and 0.9 to 1 reflectance values. The authors assumed that
these errors came from an epsilon value being affected at these extreme values,
but also point out that these values rarely exist in reality.

The last test case was specified to verify the calculation of the daylight factor,
which is commonly used to evaluate daylighting inside buildings. The geometry is
the same as in the fourth test case. For the analytical solution, a module developed
and validated by Dumortier and Van Roy [Sod06] at the LASH laboratory of the
ENTPE–France was used. Unfortunately, in this case the software yielded errors
of over 13%.

The work of Maamari and Fontoynont shows that defining a set of test cases
where the solution can be derived analytically is a promising approach to validate
global illumination rendering engines. Having a reliable benchmark would help
to classify existing software.

2.4 Combined Approaches

2.4.1 Comparison of several Rendering Systems

In 1996, Khodulev and Kopylov [KK96] did a comparison of three physically
based rendering systems: Lightscape Visualization System (LVS [Lig06], since at
that time Lightscape had been taken over by Autodesk), Specter System [Int06]
and Radiance [War94]. Amongst other criteria they investigated the physical ac-
curacy of the global illumination simulation. They combined different approaches
to verification – analytical tests (see section 2.3) and visual comparisons (see sec-
tion 2.1) – to benefit from the advantages of each approach.

Three different types of test scenes were used. Firstly, they defined a test case
where the result could be calculated analytically. It consisted of a diffuse white
cube with a point light source in its center. Six sample points on the inside of the
cube were chosen for comparisons. In this way, the absolute simulation accuracy
of each system could be estimated.
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Secondly, one of the LVS example scenes was rendered with each of the sys-
tems, and the results were compared to each other at three sample points. Kho-
dulev and Kopylov found out that two of the systems (Specter and Radiance)
yielded quite similar results whereas the result of the third system (LVS) was
significantly different from the two others. They deduced that the first two sys-
tems were more accurate than the third one. As no reference measurements or
analytical results of this scene were available, the validity of this comparison is
questionable.

Thirdly, they did a visual comparison of various complex test scenes. Al-
though visual comparisons are not very accurate, some basic knowledge can nev-
ertheless be gathered. For example, the specular reflections in the test images were
considerably different. Furthermore, it could be seen whether a system had prob-
lems with e.g. very thin triangles or special surfaces. With visual comparisons it
is possible to discover noticable weaknesses of the systems, but not to determine
the physical accuracy of the resulting images.

The result of this comparison was that concerning physical accuracy Radiance
performed best, followed by Specter and LVS. The use of different verification
methods enhanced the quality of this study. The physical accuracy of the systems
was evaluated using analytical tests while more general problems were detected
by visually comparing the calculated images.

2.4.2 A Multistage Validation Procedure

Myszkowski and Kunii [MK00] defined a multistage validation procedure in order
to validate an enhanced radiosity algorithm. It consisted of three stages: analytical
tests, comparison with measurements results and visual comparisons.

The authors used two different test scenes for analytical comparisons: the
interior of a diffuse empty cube and the interior of a diffuse empty sphere with one
or two orthogonal mirrors inside. The total lighting in a scene can be divided into
the direct and the indirect illumination. For direct illumination, the theoretically
derived result and the simulation matched exactly. For indirect illumination, the
simulated results diverged slightly from the correct solution. This is because the
energy transfer for the chosen sample points is either over- or underestimated due
to approximations introduced into the form factor estimates. An additional source
of error was the triangulation of the sphere, which led to differences between the
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segments of the sphere and its actual radius.
For experimental measurements, the authors again created two different test

scenes. Each of the scenes consisted of an empty room with four light sources
mounted on stands and directed toward the ceiling. The only difference was the
height of the rooms. Unfortunately, the authors do not describe the measurement
procedure in detail, as for example what kind of measurement device they used.

Since what really matters in practice is how a rendering is perceived by a
human observer, the synthetic images were also compared to photographs of a
real scene. Therefore, the authors did a case study where they chose an atrium
of the University of Aizu as reference scene. In section 2.2.8 this case study is
described in more detail.

By combining three validation approaches and doing such exhaustive compar-
isons, the authors wanted to compensate for the disadvantages of each approach.
Furthermore they wanted to make the global illumination community aware of the
fact that there is no standardized approach available, although so many different
light transport simulation algorithms have been developed in the last decades. As
their method of combining different approaches covers diverse aspects of valid-
ation it could serve as a basis for the development of a standardized validation
method.
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3 Colorimetry

Colorimetry [WS82, Sto03, GM02, GJB80, Gre99, Gla95, Sha04, JMF94] is the
science of measuring, describing, and evaluating colors. It is based on empirical
studies of humans matching colors. This chapter gives a short overview of how
color can be specified and how color distances can be measured.

3.1 Color Spaces

3.1.1 CIE XYZ Color Space

In 1931, the Commission Internationale de l’Eclairage (CIE) standardized a set of
color-matching functions that can be used to convert spectral data to CIE XYZ
color space [WS82]. These color-matching functions are the result of color-
matching experiments. Three primary lights, which can vary in intensity, are
chosen. The observers then adjust these primary colors to create colors that match
a set of monochromatic colors of the spectrum. The CIE defined a transformation
to such kind of color-matching functions to make them more convenient to use.
These transformed functions are known as the CIE color-matching functions or
the CIE standard observer. The CIE tristimulus values X, Y, and Z are calculated
by multiplying the stimulus times the color-matching functions and integrating
the result, as shown in the following formulae:

X = k

λb∑
λ=λa

β(λ)S(λ)x̄(λ)∆λ

Y = k

λb∑
λ=λa

β(λ)S(λ)ȳ(λ)∆λ

Z = k

λb∑
λ=λa

β(λ)S(λ)z̄(λ)∆λ

where λ is the wavelength, β is the reflectance spectrum, S is the spectrum of
the light source and x̄(λ), ȳ(λ) and z̄(λ) are the color matching functions. The
constant k is equal to 638lmW−1 if tristimulus values are to be provided in units
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of luminance [GJB80].
In XYZ color space, two colors with different coordinates have different ap-

pearance. Though, equal distances in XYZ space do not represent equal shifts in
color appearance, i.e. XYZ space is not perceptually uniform.

In order to be able to define a color independently from its brightness, the tris-
timulus values can be translated into a projection on a two-dimensional plane. The
xy coordinates on this plane are called chromaticity coordinates and are calculated
by:

x =
X

X + Y + Z

y =
Y

X + Y + Z

z =
Z

X + Y + Z

where x + y + z = 1. A color can therefore be uniquely specified by giving the
xy chromaticity coordinates together with the tristimulus value Y . A plot of the
chromaticity coordinates of all tristimulus values can be seen in figure 20.

3.1.2 CIE L∗a∗b∗ Color Space

CIE L∗a∗b∗ values [WS82] are a non-linear transformation of the CIE tristimulus
values that create an approximately perceptually uniform color space. This simpli-
fies the computation of color differences. The * after each letter is added in order
to distinguish it from the Hunter Lab color space. L∗ stands for the lightness of
a color, whereas a∗ corresponds to the redness and greenness and b∗ corresponds
to the yellowness and blueness of a color. The transformation is described by the
following formulae:
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Figure 20: The CIE 1931 chromaticity diagram showing the wavelengths of light
and the xy coordinates [cie06b].
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where Xn, Yn and Zn are the tristimulus values of the reference white. For small
values of V

Vn
, V ∈ {X, Y, Z}, the normal formulae are replaced by the following

modified formulae:
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3.1.3 CIE L∗u∗v∗ Color Space

CIE L∗u∗v∗ color space is similar to the L∗a∗b∗ color space as it is also a non-
linear transformation of the CIE XYZ color space and approximately perceptually
uniform. They have the same lightness axis L∗, but the other two components are
computed differently, as can be seen in the following formulae:
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L∗ = 116

(
Y

Yn

) 1
3

− 16

u∗ = 13L∗ (u′ − u′n)

v∗ = 13L∗ (v′ − v′n)

where Xn, Yn and Zn are the values of the reference white and u′, u′n, v′ and v′n

are calculated from:

u′ =
4X

X + 15Y + 3Z

u′n =
4Xn

Xn + 15Yn + 3Zn

v′ =
9Y

X + 15Y + 3Z

v′n =
9Yn

Xn + 15Yn + 3Zn

.

If Y
Yn

is less than 0.008856 the following formula is used to calculate L∗
m:

L∗
m = 903.3

(
Y

Yn

)
for

Y

Yn

≤ 0.008856.

At the time the CIE was evaluating color difference spaces both L∗a∗b∗ and L∗u∗v∗

color spaces were proposed. As they were equally valid the CIE decided to form-
alize them both. L∗a∗b∗ color space is more commonly used for surface colors
like paints, textiles and prints, whereas L∗u∗v∗ is normally used for self-luminous
color displays.
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(a) (b)

Figure 21: Chromaticity diagrams showing the primaries and the white point of
(a) sRGB [srg06] and (b) Adobe RGB [ado06].

3.1.4 RGB Color Spaces

RGB color spaces are commonly used in computer graphics and digital photo-
graphy. They form subspaces of the CIE XYZ color space and therefore do not
contain all visible colors. RGB spaces are specified by defining a white point and
three primary colors. RGB values itself do not identify absolute colors unless they
are assigned to a certain RGB color space.

Common RGB color spaces that have been standardized are sRGB and Adobe
RGB. The location of the primaries and the white point of these RGB color spaces
are shown in figure 21. It can be seen that Adobe RGB has a significantly larger
gamut than sRGB, improving primarily in cyan-greens. The CIE xy chromaticity
coordinates for sRGB are (0.64, 0.33) for red, (0.30, 0.60) for green and (0.15,
0.06) for blue. The red and green vertices for Adobe RGB are very similar, but
the values of the green vertex differ significantly. Red is at (0.64, 0.34), green is
at (0.21, 0.71) and blue is at (0.15, 0.06) [GM02]. The Adobe RGB color space
nonetheless encompasses only roughly 50% of all visible colors.
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3.2 Color Difference Formulae

If a color space is approximately perceptually uniform, color differences can be
specified as Euclidian distances in this space. The color difference between two
colors in L∗a∗b∗ color space is thus defined as follows:

∆E∗
ab =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2

L∗a∗b∗ differences [WS82] are noted as ∆E∗
ab. A difference of 1 is called a “just

noticeable difference” (JND). Depending on the application, values of ∆E∗
ab = 4

to ∆E∗
ab = 8 are acceptable [Sha04].

Color difference in L∗u∗v∗ color space is defined similarly to ∆E∗
ab:

∆E∗
uv =

√
(∆L∗)2 + (∆u∗)2 + (∆v∗)2

In color imaging, L∗a∗b∗ difference is commonly used, therefore we will fo-
cus on this metric. Several other color difference metrics have been proposed
in the last years. They try to better adjust to the still remaining non-uniformity
of L∗a∗b∗ color space by e.g. introducing different weightings for lightness and
chroma. Since in the literature that is related to this thesis mainly ∆E∗

ab is used
for comparisons, though, we will use this metric for reasons of compatibility and
comparability.
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4 Digital Cameras

Pattanaik et al. [PFTG97] (see section 2.2.5) showed that it is possible to de-
rive colorimetric values of an unknown target by taking multiple measurements
through narrow band filters. But obtaining a scientific grade CCD sensor and the
corresponding band filters is very costly, what we think is the reason why this
method is not used very often. So, our goal was to find a cheaper solution that
yields comparable results within a quantified error range. Thus, we started to
investigate whether a prosumer-grade digital camera can be used for this purpose.

Comparing a rendering to a photograph seems to be a simple task, because
both contain RGB values – a difference image can easily be created. But the
problem with this approach is that it is far from being an accurate comparison. Too
many sources of error are affecting the result. On the one hand, a lot of processing
is done by the camera, like demosaicing and white balance. On the other hand,
we want to verify a spectral rendering system, i.e. our rendering system is able to
handle more than three (RGB) sample points of the electromagnetic spectrum. So,
a lot of information gets lost if the spectral values are resampled to RGB space.

If we want to use a prosumer-grade digital camera as a device to verify a
physically based renderer, we have to refrain from seeing the camera as a device to
make nice images of a scene, but we have to start using it as a color measurement
device. This cannot be done by just using the final image a camera provides,
because the camera software does a lot of post-processing to the original CCD
data, like demosaicing and several image enhancement algorithms. In the next
section, we will discuss the various forms of output one can get from a digital
camera.

4.1 Various Forms of Output

Inside a digital camera, a light-sensitive CCD image sensor is used to capture
the light that passes through the lens. In order to be able to create color images,
several color filters are put in front of the CCD. The most common technique
is to use a Bayer pattern, which consists of red, green and blue filters that are
arranged on a grid (see figure 22). Twice as many green elements as red or blue
are used to mimic the human eye’s greater resolving power with green light. For a
4 Megapixel camera e.g., this means that we get 2 Million sensor values for green

39



Figure 22: A Bayer filter mosaic is a color filter array for arranging RGB color
filters on a square grid of photosensors [bay06].

and 1 Million for both red and blue filters. To recalculate a full 4 Megapixel RGB
image a color interpolation called demosaicing has to be done. This algorithm
estimates the missing RGB values by using information from the surrounding
pixels. After this step, various image enhancement techniques like white balance,
sharpening, contrast and brightness adjustments, noise reduction etc. are applied
to the interpolated sensor data. The final image is usually either saved in JPEG or
TIFF file format – JPEG format is more common because of the smaller file size
due to compression. Figure 24 illustrates the individual steps of image processing
done by camera software.

Most prosumer-grade cameras provide two forms of output data: the RAW
image data [SG06] and the final image (see figure 23). The RAW image data con-
tains the actual values of each CCD sensor element. The final image contains the
enhanced data and is usually converted to 8-bit and compressed with lossy com-
pression algorithms. If we want to use the final image for verification purposes
we have to have that in mind.

Most camera manufacturers have created their very own raw file format – the

40



Figure 23: The RAW image data is converted to the final RGB value.

Figure 24: The individual steps of color processing done by common digital cam-
eras [raw06b].
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specifications of these formats are usually not publicly available. However, some
RAW converters, e.g. dcraw [raw06a], also provide raw CCD data as output.

The errors that are introduced by the camera software can be avoided by us-
ing the raw CCD data. Unfortunately, this data cannot be compared to a rendered
RGB image directly. It just contains information about how much light passed
the filter but there is no information about how this relates to an XYZ or sRGB
value. The reason for this is that most digital camera spectral sensitivities are
not linear transformations of average human visual systems’s spectral sensitivit-
ies. Therefore, the camera and a standardized human observer do not “see” color
identically. Thus, a camera may generate two different sets of RGB values at two
color samples, while to a human observer they look the same. This is the most
severe problem we have to deal with when using a prosumer-grade digital camera
for color measurements. Because of the different spectral sensitivities it is not
possible to get an exact match between colors seen by a camera and a human ob-
server. This thesis will discuss how a prosumer-grade camera can nevertheless be
used for verification purposes.
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5 Physically Based Rendering Systems

Our goal is to verify the result of the light transport simulation of a physically
based rendering system. Therefore we take a closer look at the type of data we
have after this step. We get a spectral value for each of the pixels in the image.
This is represented for one pixel in the first row of the graph shown in figure 25.
The next step in the rendering pipeline is to multiply the spectrum by the color
matching functions to gain XYZ values. Gamut mapping and tone mapping are
done in XYZ color space to shift the color value into an appropriate RGB sub-
space (e.g. sRGB or AdobeRGB, see section 3.1.4). After that, we multiply by a
transformation matrix to gain RGB values. With each step we lose information.
Therefore, we want to do our comparisons as early in the pipeline as possible.
Apart from that there is another important fact that has a major influence on the
decision: whether we want to

• take the human observer into account, i.e. make a qualitative statement on
how different an image looks like compared to a real scene (i.e. with tone
mapping step) or whether we want to

• purely verify the calculations (i.e. without tone mapping step).

Figure 25: Rendering steps after the completion of the light transport simulation.
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Figure 26: We can define a mapping from spectral values to RGB values.

In the first case, we use XYZ values because they take the human observer
into account. To get the actual difference between image and real scene we con-
vert both the rendering result and the photograph first to XYZ color space and then
to L∗a∗b∗ color space and calculate the color difference ∆E∗

ab for each pixel. If
∆E∗

ab is within a certain error range we can consider two colors as visually equal.
However, doing those conversions brings up a severe problem: the different spec-
tral sensitivities of a human observer (XYZ space) and a (non-colorimetric, i.e.
common) digital camera. For the rendering, the original spectrum is multiplied
with the spectra of the color matching functions. For the photograph, the original
spectrum is multiplied with the spectra of the CCD sensors, which are different
from the spectra of the color matching functions. Two different original spectra
may cause the same XYZ value but different RGB values. Therefore, two colors
that are a metameric pair to a human observer will in general look different to
a digital camera. Thus, in this case a certain amount of error is introduced by
converting to XYZ space.

In the second case, we do not convert to XYZ space but to the camera’s RAW
RGB space directly. Therefore, we have to define a mapping from spectral values
to the RAW RGB values of the camera (see figure 26). For details on the mapping
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see section 7.4. By avoiding XYZ space we also avoid the error that is introduced
by converting to XYZ space. In case of a difference, we cannot quantify the actual
∆E∗

ab color difference between both values, though.
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6 Data Acquisition and Processing

The following sections give a detailed description of the procedure of data acquis-
ition – both images and spectral data – and various post-processing steps. Not
all mentioned steps are necessary for each method described in section 7, but we
want to give a complete overview of data acquisition.

6.1 Photographs

6.1.1 Position and Orientation of the Camera

Each of the characterization methods described in section 7 is based on using a
photograph of a color chart (or a similar selection of colored patches) as a ref-
erence image to deduce information about the behavior of the digital camera. To
optimize the quality of the image, some constraints have to be set. We use a Canon
EOS 20D SLR camera with a Canon Zoom Lens EF 17-40mm lens. The camera
mode was set to manual to be able to control parameters like aperture or exposure.
Apart from that, we chose the settings shown in table 1. As color chart we use a
GretagMacbeth ColorChecker SG (see appendix C.3).

Parameter Setting Comment
Quality RAW + large fine (3504

x 2336 pixels)
ISO 100 Noise reduction
White balance Custom
Color space Adobe RGB Larger than sRGB
Processing Parameters Parameter 2 All parameters are set to 0
Metering mode Evaluative metering
Drive mode Self-timer operation
AF point Automatic selection To avoid camera shake

Table 1: Camera settings that were chosen for taking the photographs.

We took the photographs inside a light cabinet (see appendix C.1 for a descrip-
tion) to get a controllable and uniform illumination of the color chart. Lighting
conditions were adjusted to be adequate for our purpose (see section 6.2). In or-
der to specify the position of the camera and the color chart, we use the lower
left corner of the front side of the light cabinet as reference point, i.e. as ori-
gin of our coordinate system. We took the sensor plane marking as reference
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Figure 27: The sensor plane marking on the camera was used as camera reference
point.

point on the camera (see figure 27). Based on the results of the tests we made
with the light cabinet (see section 6.2), we chose the values seen in figure 28 for
camera and chart positions. The size of the GretagMacbeth ColorChecker SG is
21.59× 27.94cm. The camera is aiming at the center of the color chart.

A color chart should usually be measured under either a (45/0)-condition or
(0/45)-condition [WS82], i.e. either illuminated at an angle of 45± 5◦ and viewed
at 0 ± 5◦ or vice versa with respect to the center of the color chart. In our setup,
we are using a (0/45)-condition. We observed that the glossy reflection is still
very high at 45◦, though. Therefore we are using an angle of 48◦ – which is still
within ±5◦ – because the glossy reflection decreases noticeably with increasing
angle (see figure 29).

6.1.2 Representative RGB Values

Figure 30 (a) shows a photograph of the ColorCheckerSG after correcting for dis-
tortion. As some of the methods described in section 7 are based on comparing the
RGB values of the patches to measured values manually, we have to extract RGB
values for all of the patches out of this photograph. Taking the RGB value of only
one random pixel of a patch is too imprecise, as we could accidently pick a dead
pixel (a defective pixel that remains unlit), a hot pixel (a pixel that stays on a solid
color, also known as stuck pixel) or a non-representative pixel (e.g. the maximum
value of all pixels in this patch). The first two cases are well known problems in
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Figure 28: The position of the camera and the color chart with the lower left corner
of the front side of the light cabinet as reference point.

Figure 29: The angle of the camera was set to 48◦.

48



(a) (b)

Figure 30: (a) ColorCheckerSG after correcting for distortion; (b) the subareas of
the patches that were used for averaging (blue squares).

digital photography and can be solved easily. Software for identifying such pixels
is available as freeware (e.g. Dead/Hot Pixel Test [dea06]). Pixels that are labeled
as dead or hot pixels are excluded from further calculations. With the third case
we have to deal separately, though. We analyzed the deviation of pixel values of
several patches, in order to find a method for picking the most representative pixel
value. As we cannot pick only one pixel of a patch, we have to take a region of
pixels into account. The areas we chose for selecting a representative pixel value
can be seen in figure 30 (b). The size of the area depends on the size of the image.
For the image seen in figure 30 each area covers 990 (33x30) pixel. We excluded
the border of each patch to avoid inaccuracies due to noise and interpolation at the
edges.

Figure 31 shows histograms of exemplary distributions of pixel values of one
channel of a patch. In the first histogram (see figure 31(a)) the values are hardly
effected by noise and it is therefore obvious that 229 is a representative value
for this kind of distribution. The median (229) and the mean value (228.95) are
very close in this case. For the distribution seen in figure 31(b) the representative
value is more ambiguous. A considerable amount of pixels has the value 216,
which indicates that the value we are searching for lies in between 215 and 216.
The median of 215 and the mean value of 215.28 differ noticeably. Here, the
mean value seems to better represent the relevance of the particular pixel values.
Figure 31(c) shows a distribution were this is not the case, though. We can see
that there is a huge amount of noise present and that there are even some severe
outliers. These outliers were caused by a light dust particle on a dark patch. The
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(a) (b)

(c)

Figure 31: Histogram of several exemplary distributions of pixel values in a patch.

mean value (8.11) is considerably influenced by these outliers. In this case, the
median (8) has to be favored. This shows us that neither the median nor the mean
value yields reliable results in every possible case. Therefore we have to adjust
the selection process to better account for the kind of data we have to deal with.

The mean value yields good results as long as it is not affected by outliers.
In order to eliminate the influence of outliers, we use the following strategy to
select pixel values. First, we calculate the median of all pixel values. Then, we
determine the mean value of all pixel values, that lie within an interval of ±5

of the median, assuming that the average noise of a channel is not greater than
±5 of the ideal value. For the three distributions that we presented, the result of
this method is (a) 228.95, (b) 215.28 and (c) 7.91, respectively. For (a) and (b)
the result has not changed because there were no outliers present in these cases
but for the third case (c) we can see a difference. The value is lower than the
mean value and the median which indicates that they were biased by the outliers.
Applying this method to all three channels of all patches will therefore give us
representative RGB values for each patch.

We use the publicly available lcms library [lcm06] for color conversion to
L∗a∗b∗ color space. The ICC profile for Adobe RGB color space conversions is
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available on MAC systems. We chose D50 as light source because it is commonly
used in color management software.

6.1.3 Image Averaging

In order to further enhance the quality of our photographs we use image averaging
to reduce random noise. Therefore, we take multiple images at the exact same
settings and then average the pixel values. Random fluctuations above and below
actual image data will gradually even out as we average more and more images.
The magnitude of noise fluctuation drops by the square root of the number of
images averaged. This is based on the law of large numbers [Wei99], that implies
that the average of a large number of independent measurements of a random
quantity tends toward the theoretical average of that quantity.

We took 25 images of a color chart in order to investigate the amount of benefit
we get from averaging more or less images and compared the following 6 test
cases:

1. no averaging at all, i.e. the first image only

2. averaging the first 2 images

3. averaging the first 4 images

4. averaging the first 8 images

5. averaging the first 16 images

6. averaging all 25 images

We implemented a 3D viewer for TIFF images in order to be able to visually
inspect our photographs. The red, green and blue channels of an image can be
viewed as height field. Figure 32 shows the red, green and blue channel of a
photograph of a color chart. In the front one can see the low values of a black
patch for all three channels. A closeup view of the red channel (see figure 33(a))
shows that there is no systematic error present in the data but that the variance
is caused by noise. After averging 25 images (see figure 33(b)), the area appears
smoother than without any averaging.

Figure 34 shows three plots that emphasize this observation. We calculated
the standard deviation for the pixel values of the subareas we use for finding the
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(a) (b)

(c)

Figure 32: (a) Red, (b) green and (c) blue channel of a photograph of the color
chart (without image averaging).

(a) (b)

Figure 33: A closeup view of the red channel of (a) a single image and (b) an
averaged image.
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(a) (b)

(c)

Figure 34: Standard deviations of all 140 patches for taking only one photograph
and averaging either 2, 4, 8, 16 or 25 photographs. The results for the (a) red, (b)
green and (c) blue channel are shown separately.

representative pixel value. We did these for all 6 test cases and treated the R, G,
and B channel separately. A higher standard deviation indicates that there is more
noise in the image than in one with a lower standard deviation. We can clearly see
that the standard deviation tends to decrease with an increasing number of images
averaged.

As one can see in table 2, the median and the mean values of the standard de-
viations for each test case is decreasing as expected, showing that there is random
noise present in a photograph that can be reduced by averaging multiple images.
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1 2 4 8 16 25
R Median 1.08 0.85 0.70 0.62 0.56 0.55
G Median 0.95 0.77 0.66 0.59 0.55 0.54
B Median 1.18 0.92 0.75 0.65 0.59 0.56

R Mean Value 1.21 0.97 0.78 0.68 0.61 0.58
G Mean Value 0.97 0.81 0.68 0.62 0.58 0.57
B Mean Value 1.19 0.95 0.78 0.68 0.62 0.59

Table 2: Median and mean values of standard deviations of all 140 patches for all
six test cases, for R, G, and B channel, respectively.

6.1.4 RAW image

The Canon EOS 20D offers RAW image support. In addition to the further pro-
cessed JPEG image, it also provides a file of type CR2, a manufacturer specific
format. In order to obtain the raw RGB values we use the publicly available soft-
ware dcraw [raw06a].

6.2 Light Cabinet

For an accurate mapping of RGB values to another color space (see section 7), it is
crucial that the illumination of the color chart is as evenly distributed as possible
while taking the photograph. For example, on a GretagMacbeth ColorChecker
SG, several equally white patches are placed in the border region. If the light
intensity on one side differs from the light intensity of the other side, this will
result in different RGB values for the same kind of white patch. Therefore, we
have to ensure that the difference in illumination distribution is minimized.

In order to find the optimal position for placing the color chart, we measured
the light distrubution inside the light cabinet (see appendix C.1). We defined 80
measurement spots on the bottom of the cabinet (see figure 35). They were only
placed in the left part of the cabinet because we expect the cabinet to be symmet-
ric. As the photographs would be taken at the front side of the cabinet, we meas-
ured the luminance that was reflected from the spots to the upper part of the front
side. For example, the measurement device was placed in the upper left corner of
the front side when the leftmost column was measured. For the second column,
the device was moved a bit to the right until it was aligned with this column. The
rest of the front side was covered with cardboard to avoid external light. A Kon-
ica Minolta LS-110 luminance meter (see appendix C.2) was used for taking the
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Figure 35: Eighty measurement spots were definied on the bottom of the light
cabinet.

measurements. We tested three lightsources: D65, 840 and CWF. Lightsource 840
is also known as TL84 or CIE Illuminant F11; lightsource CWF is also known as
CIE Illuminant F2. All lightsources were tested at several dimmer settings.

For each set of measurement points we subtracted the smallest value from all
of the samples to get the absolute difference in luminance distribution. Figure 36
shows a Mathematica [mat06] plot of the results of D65 at 100% and a photograph
of the light cabinet made at approximately the same view point as the plot. Dif-
ferent colors denote different height values. The color is selected according to the
height of the center of a square and runs through red, yellow, green, cyan, blue,
magenta and back to red. It can be seen that for these settings the brightest area
is in the middle of the front part of the light cabinet. The maximum difference in
luminance over the whole area is 146.70 cd/m2, which is the difference between
the minimum luminance of 173.20 cd/m2 and the maximum luminance of 319.90
cd/m2.

Figure 37 shows the luminance difference distribution of D65 for dimmer set-
tings 100%, 50%, 25% and 15%. We can see that the absolute difference in lu-
minance decreases noticeably with decreasing light intensity. Figure 38 shows
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(a)

(b)

Figure 36: (a) Luminance difference distribution of D65 at 100%, (b) a photo-
graph of the light cabinet made at approximately the same view point as the plot
of the luminance difference distribution.
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(a) (b)

(c) (d)

Figure 37: (a) Luminance difference distribution of D65 at 100%, (b) 50%, (c)
25% and (d) 15% with equal scaling on the luminance axes.

the same values, but the luminance axes of each plot are scaled to the maximum
luminance value of the particular plot (for example, the maximum difference in
luminance for 15% is 19.75 cd/m2). This indicates that the shape of luminance
difference distribution for different dimmer settings is quite similar with respect
to the maximum luminance of a setting.

We then wanted to find out, whether the amount of decrease in luminance is
directly proportional to the dimmer setting. Therefore, we multiplied all values of
a lower dimmer setting by the reciprocal factor that was used as dimmer setting,
e.g. we multiplied by 2 for dimmer setting equal to 50%. Figure 39 (a) shows the
result of this multiplication, while (b) shows the difference to the values measured
at 100% light intensity. The maximum absolute error is 17.92. Figures 40 and
41 show corresponding plots for 25% and 15%. The maximum absolute error
is 24.58 for 25% and 25.07 for 15%, respectively. The values of 25% and 15%
indicate that there is a difference in luminance distribution for different dimmer
settings, that is not only related to the dimming factor.
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(a) (b)

(c) (d)

Figure 38: (a) Luminance difference distribution of D65 at 100%, (b) 50%, (c)
25% and (d) 15%, but unlike the plots in figure 37 the luminance axes of each plot
are scaled to the maximum luminance value of the particular plot.

(a) (b)

Figure 39: (a) Luminance difference distribution of D65 at 50%, scaled by a factor
of 2, (b) the difference of 100% light intensity (figure 38(a)) and of the values
shown in (a).

58



(a) (b)

Figure 40: (a) Luminance difference distribution of D65 at 25%, scaled by a factor
of 4, (b) the difference of 100% light intensity (figure 38(a)) and of the values
shown in (a).

(a) (b)

Figure 41: (a) Luminance difference distribution of D65 at 15%, scaled by a factor
of 100/15, (b) the difference of 100% light intensity (figure 38(a)) and of the
values shown in (a).
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Table 3: Standard deviation of all 80 submatrices for D65 and dimmer setting
100%.

In order to find the optimal position for placing the color chart, we were
searching for a subarea of the size of a color chart, where the standard deviation
of the difference in luminance distribution is minimal. The GretagMacbeth Color
Checker SG has 4x5 white patches in the boarder area. As we chose our meas-
urement points according to the distance between two of those white patches, we
have to find the 4x5 submatrix in our 8x20 matrix of measurements, that has the
smallest standard deviation. The number of possible candidates is 80, as we have
5 submatrices in vertical direction and 16 submatrices in horizontal direction. We
simply calculate the standard deviation for all possible submatrices and choose
the one with the smallest result. Tables 3, 4, 5 and 6 show the results of these
calculations; the smallest results are emphasized. For the submatrices with the
most even luminance difference distribution the standard deviations are 6.28 for
dimmer setting 100%, 1.61 for 50%, 1.12 for 25% and 0.96 for 15%. Figure 42
shows Mathematica plots of the same results. These results clearly show that for
D65 the best position for the color chart is in the middle part of the front region.

Our results for lightsource 840 at dimmer settings 100% and 50% are shown
in figure 43 (a) and (b). Again we scaled the values of 50% by 2 (see figure 43
(c)) and visualized the difference to the values of 100% (d). Figure 44 shows
the according plots for lightsource CWF. Standard deviation for dimmer settings
100% and 50% are shown in figures 45 (840) and 46 (CWF). The maximum values
are 40.39 cd/m2 (840) and 40.30 cd/m2 (CWF), which is considerably higher
than 26.16 cd/m2 for D65. The lowest values for 840 are also in the middle part
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Table 4: Standard deviation of all 80 submatrices for D65 and dimmer setting
50%.
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Table 5: Standard deviation of all 80 submatrices for D65 and dimmer setting
25%.
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Table 6: Standard deviation of all 80 submatrices for D65 and dimmer setting
15%.
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(a) (b)

(c) (d)

Figure 42: Standard deviation of all 80 submatrices for dimmer settings (a) 100%,
(b) 50%, (c) 25% and (d) 15% and lightsource D65.

62



(a) (b)

(c) (d)

Figure 43: (a) Luminance difference distribution of 840 at 100% and (b) 50%; (c)
luminance difference distribution of 840 at 50%, scaled by a factor of 2, (d) the
difference of the values shown in (a) and (c).

of the front region (like for D65), whereas for CWF they lie in the center of the
light cabinet.

We did not test all dimmer settings for lightsources 840 and CWF, because
we were mainly interested in the type of luminance difference distribution. If it
would have been significantly better than for D65, we might have considered to
use one of these lightsources, but there is a more severe reason why we chose D65.
CIE recommends D65 as illuminant for color matching appraisal. It is specified
for applications where there is a need to maintain color consistency and quality.
Lightsources 840 and CWF are known as European and American “point of sale”
illuminant with good to moderate color rendering but they are not explicitly re-
commended for color measurements. A closer look on the lightsource spectra (see
figure 47) shows that the spectrum of D65 is much more evenly distributed than
those of 840 and CWF.

We tested three additional positions of the color chart where we thought that
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(a) (b)

(c) (d)

Figure 44: (a) Luminance difference distribution of CWF at 100% and (b) 50%;
(c) luminance difference distribution of CWF at 50%, scaled by a factor of 2, (d)
the difference of the values shown in (a) and (c).

(a) (b)

Figure 45: Standard deviation of all 80 submatrices for dimmer settings (a) 100%
and (b) 50% and lightsource 840.
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(a) (b)

Figure 46: Standard deviation of all 80 submatrices for dimmer settings (a) 100%
and (b) 50% and lightsource CWF.

(a) (b)

(c)

Figure 47: Lightsource spectra of illuminants (a) D65, (b) 840 and (c) CWF.
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(a) (b)

Figure 48: (a) The measurement points at 45◦; (b) absolute difference in lumin-
ance for the 20 measurement points, accordingly.

the luminance difference distribution might be more even:

• we rotated it by 45◦,

• we placed it at a height of 24.5cm and

• we put it inside a black box.

Figures 48, 49 and 50 show (a) a photo of the measurement setup and (b)
the relative error in luminance, respectively. During the measurement process
the light cabinet again was covered with cardboard. The standard deviations are
26.97, 27.93 and 7.39, respectively. All three tests did not bring the desired im-
provement, as even the setup including the black box has a higher standard devi-
ation than the plain light cabinet at 100% (standard deviation: 6.28).

In order to decide which dimmer setting to use, we took one photograph each
at dimmer settings 100%, 50%, 25% and 15%. The camera settings used are
shown in table 7. As the exposure time was twice as long when the light intensity
was halved, the images theoretically should be equal, or at least very similar. We
used two methods to judge the quality of the images:

• We opened the images in GretagMacbeth ProfileMaker “Camera” Tab, be-
cause in one of our methods (see section 7.2) we use this software. Profile-
Maker checks, if the image can be used for generating an ICC profile (e.g.
it analyzes the luminance difference distribution on the ColorChecker). We
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(a) (b)

Figure 49: (a) The measurement points placed at a height of 24.5cm; (b) absolute
difference in luminance for the 20 measurement points, accordingly.

(a) (b)

Figure 50: (a) The measurement points put inside a black box; (b) absolute differ-
ence in luminance for the 20 measurement points, accordingly.
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100% 50% 25% 15%
Aperture 4.0 4.0 4.0 4.0

Exposure time 1/30 1/15 1/8 1/4

Table 7: Camera settings at 100%, 50%, 25% and 15%.

100% 50% 25% 15%
R 14.06 14.53 15.57 19.35
G 13.61 14.56 14.86 17.79
B 14.16 14.77 15.62 18.62

Table 8: Interval length of R, G and B values of dark border patches at 100%,
50%, 25% and 15%.

assume, that if an image passes this test, it can be considered suitable for
characterization purposes.

• We did an analysis of the pixel values themselves.

ProfileMaker rated the image at 100% as being of good enough quality but
for the other images it displayed the following error message: “The dark border
patches are not even illuminated across the chart.” The white and dark patches that
lie on the border of the GretagMacbeth ColorChecker SG as well as the gray ramps
in the middle are used by ProfileMaker to judge the quality of the photograph in
respect to usage for ICC profile generation. As the error message is evoked by the
dark border patches, we further analyzed those values. Table 8 shows the interval
length (i.e. the difference of the maximum and the minimum value) of R, G and B
channel for all 14 dark border patches. We can clearly see that the interval length
increases with decreasing light intensity caused by noise due to longer exposure
times.

As concluding result of our light cabinet measurements we can say that for our
purpose the best position for the color chart is the middle part of the front region
of the light cabinet without further adjustments. The optimal setting for the light
source is D65 with dimmer set to 100%.

6.3 Spectral Measurements

We use a Gretag Macbeth Color Checker SG (see appendix C.3), as it is especially
designed for creating ICC profiles for digital cameras. We measured the spectrum
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of each patch using a spectrophotometer – a Gretag Macbeth Spectrolino (see ap-
pendix C.4). The measurement range is from 380nm to 730nm by steps of 10nm.
Comparable devices cost about 770,- to 1300,- Euros, depending on the software
included and additional functionality. Though, we assume that a similar device is
available at each facility that develops a physically based rendering engine, as it
is necessary to obtain the spectra of surfaces and light sources that are required as
input data to the rendering process. To speed up the process of measuring a chart,
we obtained a GretagMacbeth SpectroScan T (see appendix C.5) for automatic
measurements. Each spectrum was converted to XYZ space and then to L∗a∗b∗

color space, using D50 as light source.
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7 Various Approaches of Using a Digital Camera for
Verification Purposes

7.1 Using the Camera’s Color Space

Prosumer-grade cameras – like the Canon Eos 20D – usually offer the possibil-
ity of specifying the color space of the RGB values of the output image. As the
camera manufacturer knows all the details of the used components, the color re-
production should be quite accurate. In order to find out the grade of correctness
of the reproduction, we took an image of a color chart and compared the color
values of the photograph to the actual color values of the chart.

We first obtained the color values of the color chart (see section 6.3). Then, we
took a photograph of the color chart as described in section 6.1. The comparison
was performed in L∗a∗b∗ color space. Therefore, the colors of both the color chart
and the image were converted to L∗a∗b∗ color space.

We can now choose between several possible forms of output of our digital
camera, as section 4.1 explains in more detail. We cannot use RAW data for
this approach though, because it is not converted to a color space, yet. We will
therefore investigate the following test cases:

1. an 8-bit TIFF image generated by converting the RAW image to 8-bit TIFF
using a RAW converter,

2. a JPEG image as provided by the camera and

3. a 16-bit TIFF image, also generated with a RAW converter.

The Canon Eos 20D has a 12-bit CCD sensor. Hence, converting to 8-bit
means a loss of information. We include the 8-bit case to simulate cameras that
only provide 8-bit data. The JPEG image contains all the image enhancement that
is automatically done by the camera. It is therefore probably the most inaccurate
image, but we include it for comparison and as an example for cameras that do not
provide RAW format. The first and the third test case only differ in the number of
bits of the TIFF image.

For each test case, we averaged the RGB values of each patch as described
in section 6.1. This gives us 140 RGB values per test case. As the camera’s
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Figure 51: L∗a∗b∗ differences for the three test cases (8 bit, jpg and 16 bit images)
for all 140 color patches.

8 bit jpg 16 bit
Min 2.77 2.28 1.85
Max 29.21 29.26 29.39

Median 12.32 12.32 12.34
Mean 13.30 13.31 13.33
Stdev 5.87 5.94 5.91

Table 9: Minimum and maximum, median, mean values, and standard deviations
of L∗a∗b∗ difference values for using the camera’s color space.

color space was set to Adobe RGB, we use the appropriate ICC profile for con-
verting RGB values to L∗a∗b∗ values. Color space conversions are done using
lcms library [lcm06]. Now, we calculate the L∗a∗b∗ difference between the val-
ues measured with the spectrophotometer and the values calculated from each of
the photographs. As figure 51 shows, the results are very similar for the three
test cases. Minimum and maximum, median and mean values, and the standard
deviations are shown in table 9. The values of all 140 patches can be found in
appendix E.1. The distribution of the L∗a∗b∗ differences is plotted in form of a
histogram in figure 52 for all three test cases. We can see that most L∗a∗b∗ differ-
ences lie between 5 and 19 ∆E∗

ab.
In order to find out which of the colors tend to cause high L∗a∗b∗ differences,
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(a) (b)

(c)

Figure 52: Histograms of L∗a∗b∗ differences for using the camera’s color space
for test cases (a) 8bit, (b) jpg and (c) 16bit.

we made a density plot of all values of test case one, ordered in the same way as
on the color chart (see figure 53). We can see that L∗a∗b∗ differences are generally
low for dark patches and greenish patches like the ones in the bottom right corner.
Purple, red, and light blue patches seem to be a problem for color measurement.

As we found a tendency of certain colors to be reproduced less accurate than
others, we wanted to investigate, whether we can confirm this assumption. We
therefore compared measured L∗, a∗, and b∗ values to the ones we calculated by
using the Adobe RGB ICC profile. Figure 54 shows the according plots. As L∗

being the lightness of a color we can say that for high L∗ values there is a tendency
to underestimation. For a∗ values, that correspond to the redness and greenness of
a color we can see no clear color shift, but there is a clear overestimation for b∗,
corresponding to the yellowness and blueness of a color.

To conclude, we can say that the mean and maximum values of all test cases
are quite high and can therefore not be considered as accurate measurements.
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(a) (b)

Figure 53: (a) Density plot of the L∗a∗b∗ differences for using the camera’s color
space for test case 1 (8bit). Dark areas mean low L∗a∗b∗ differences, while bright
areas mean high L∗a∗b∗ differences; (b) a photograph of the test chart.

7.2 Using an ICC Profile

Instead of using the built-in color management we now generated an ICC profile
for our camera. We assumed that the built-in software is based on the average of
fluctuations due to the manufacturing process. Therefore, we supposed that actu-
ally measuring the behavior of our camera would give more accurate results. ICC
profiles for digital cameras can be generated without the use of a spectrophoto-
meter, as long as the software supports the test target that is used. Publicly avail-
able profiling software often performs worse than commercial software [FS02].
We used Gretag Macbeth Profile Maker 5.0.5 (around 2000,- Euros).

We created three ICC profiles for our camera based on the three test cases de-
scribed in section 7.1. For each test case, we used the profile together with the
lcms library to convert the average RGB values of the patches to L∗a∗b∗ color
space. The histograms of the three test cases (see figure 55) show, that the res-
ult is considerably better than with only using the camera’s color space, as the
maximum values are much lower when an ICC profile is used. Median and mean
values – that can be found in table 10, together with the maximum and minimum
values and the standard deviations – are only slightly lower, though. Detailed
results for all 140 patches are listed in appendix E.2.

The density plot (see figure 56) for test case 1 shows that dark patches cause
fewer problems than bright patches. There is no clear tendency to a color as in the
previous approach, though. The scatter plots for L∗, a∗, and b∗ (see figure 57(c))
show that the tendency to underestimation of L∗ and to a shift of color for b∗ is
also present in this approach.
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(a) (b)

(c)

Figure 54: Scatter plots of (a) L∗, (b) a∗, and (c) b∗ values for using the cam-
era’s color space for test case 1 (8bit), comparing measured values to reproduced
values.

8 bit jpg 16 bit
Min 4.05 3.82 3.65
Max 20.96 20.95 20.69

Median 11.24 11.30 11.21
Mean 12.25 12.23 12.20
Stdev 4.33 4.35 4.33

Table 10: Minimum and maximum, median, mean values and standard deviations
of L∗a∗b∗ difference values for using an ICC profile.
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(a) (b)

(c)

Figure 55: Histograms of L∗a∗b∗ differences for using an ICC profile for test cases
(a) 8bit, (b) jpg and (c) 16bit.

(a) (b)

Figure 56: (a) Density plot of the L∗a∗b∗ differences for using an ICC profile for
test case 1 (8bit). Dark areas mean low L∗a∗b∗ differences, while bright areas
mean high L∗a∗b∗ differences; (b) a photograph of the test chart.
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(a) (b)

(c)

Figure 57: Scatter plots of (a) L∗, (b) a∗, and (c) b∗ values for using an ICC profile
for test case 1 (8bit), comparing measured values to reproduced values.
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Using an ICC profile obviously improves the quality of camera characteriz-
ation compared to relying on the camera’s color space only. Although the mean
∆E∗

ab value is only slightly lower, the maximum value could be reduced by around
10∆E∗

ab.

7.3 Implementing an Adapted Mapping

In order to be able to convert the RGB values of a photograph to XYZ space one
has to find a transformation that provides a best agreement between these RGB
values and the measured XYZ values. ICC profiles internally use either look-up-
tables or matrices to implement this transformation. We implemented a mapping
by ourselves for two reasons: first, this mapping possibly yields better results be-
cause we can better address particular properties of our data and secondly, because
we also wanted to provide an approach that does not rely on expensive profiling
software, but gives more accurate results than using the camera’s color space.

Izadan and Nobbs [Iza06] did a comparison between iteration and regression
methods using either XYZ or L∗a∗b∗ color space. Basically, all methods yield
comparable results. They conclude that regression method with L∗a∗b∗ approach
will lead to the best results.

We based our calculations on polynomial regression with least squares fitting
described by Hong et al. [HLR00], who have shown that a higher order polynomial
is able to produce satisfactory characterization accuracy.

Let R ∈ Rn×m denote a matrix of RGB vectors and L ∈ Rn×3 the correspond-
ing matrix of L∗a∗b∗ vectors, the mapping from RGB to L∗a∗b∗ can be represented
by

L = RM, (1)

where the matrix M ∈ Rm×3 is derived by the following equation:

M = (RT R)−1RT L. (2)

Here, n is the number of samples and m is the number of terms of the polyno-
mials. The number and the grade of these terms define the type of the mapping.
As our image is gamma corrected and therefore not linear, a higher order polyno-
mial will most probably give better results than a linear polynomial. On the other
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hand, for higher order polynomials the solution may start oscillating, i.e. the poly-
nomial has adapted to the training data too accurately and is therefore not usable
for general data anymore [JHP+06]. In order to find the polynomial that gives the
best results, we tested the following coefficients:

1. r, g, b

2. r, g, b, rgb, 1

3. r, g, b, rg, rb, gb

4. r, g, b, rg, rb, gb, rgb, 1

5. r, g, b, rg, rb, gb, r2, g2, b2

6. r, g, b, rg, rb, gb, r2, g2, b2, rgb, 1

7. r, g, b, rg, rb, gb, r2, g2, b2, r3, g3, b3, 1

8. r, g, b, rg, rb, gb, r2, g2, b2, r2g2, r2b2, g2b2, r2g2b2, r3, g3, b3, r3g3, r3b3,
g3b3, 1

9. r, g, b, rg, rb, gb, r2, g2, b2, r3, g3, b3, r4, g4, b4, 1

10. r, g, b, rg, rb, gb, rgb, r2, g2, b2, r2g2, r2b2, g2b2, r2g2b2, r3 g3, b3, r3g3,
r3b3, g3b3, r3g3b3, r4, g4, b4, r4g4, r4b4, g4b4, r4g4b4, 1

11. r, g, b, rg, rb, gb, r2, g2, b2, r3, g3, b3, r4, g4, b4, r5, g5, b5, 1

As the results were quite similar for the 3 test cases described in sections 7.1
and 7.2, we only analyze test case 1 – the 8bit TIFF image – from now on. Fig-
ure 58 shows histograms of the L∗a∗b∗ differences between the measured L∗a∗b∗

values and the results of using the 4 linear polynomials, whereas figure 59 shows
the according histograms for the higher order polynomials. For the linear poly-
nomials, we see that adding more terms clearly reduces the maximum error. The
same effect can be observed when adding terms of higher order.

Further analyses of the L∗a∗b∗ differences give us the results presented in
tables 11 (linear polynomials) and 12 (higher order polynomials). Adding either
linear terms or terms of higher order improves the mapping noticeably. While the
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(a) (b)

(c) (d)

Figure 58: Histogram of L∗a∗b∗ differences between the measured L∗a∗b∗ values
and the results of using the linear polynomials (a) 1, (b) 2, (c) 3 and (d) 4.

linear polynomials still give quite high maximum values, the third order polyno-
mials already yield acceptable results, i.e. the maximum value is close to ∆E∗

ab =

8 (see section 3.2 for details). The actual improvement for each polynomial can be
better seen in figure 60, where the results listed in tables 11 and 12 are presented
in a plot. Polynomials 1 (red) to 11 (blue) are sorted from left to right. The result
seems to converge to values close to that of polynomial 10. Detailed results for all
140 patches can be found in appendices E.3 (linear polynomials) and E.4 (higher
order polynomials).

1 2 3 4
Min 1.44 0.55 1.70 0.41
Max 21.90 22.33 17.81 17.42

Median 6.64 5.80 5.30 4.92
Mean 7.63 6.99 6.26 5.68
Stdev 4.60 5.01 3.64 3.86

Table 11: Minimum and maximum, median, mean values, and standard deviations
of L∗a∗b∗ difference values for the adapted mapping for linear polynomials (1-4),
respectively.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 59: Histogram of L∗a∗b∗ differences between the measured L∗a∗b∗ values
and the results of using the higher order polynomials (a) 5, (b) 6, (c) 7, (d) 8, (e)
9, (f) 10 and (g) 11.
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5 6 7 8 9 10 11
Min 0.50 0.49 0.13 0.26 0.32 0.13 0.08
Max 15.84 14.97 9.67 8.92 8.73 5.67 7.68

Median 3.87 3.00 2.42 2.28 2.42 1.86 2.14
Mean 4.50 3.93 2.89 2.56 2.79 2.13 2.64
Stdev 2.65 2.81 1.69 1.45 1.65 1.16 1.64

Table 12: Minimum and maximum, median, mean values, and standard deviations
of L∗a∗b∗ differences for the adapted mapping for higher order polynomials (5-
11), respectively.

Figure 60: Comparison of minimum and maximum, median, mean values, and
standard deviations of L∗a∗b∗ differences for polynomials 1 to 11.

Using an adapted mapping clearly improves the result, as the ∆E∗
ab values are

generally lower than for using an ICC profile or just the color space of the cam-
era. By adding fewer terms we avoid that the polynomial starts oscillating. This
gives us a general mapping that can also be used for different targets or materials.
Adding more terms enhances the result for a specific test target. Therefore, we
propose to generate two different mappings: one using a polynomial of degree
two or three to get a general mapping that can be used for arbitrary images, and a
second one using a polynomial of degree four. This second mapping should only
be used for a specific test scene: the color chart itself. For this, we model the
scene we set up for taking the photograph (see section 6.1.1) and render an image
of that scene. Now we can compare this scene to a very accurate measurement by
applying the mapping to the RGB values of the photograph. If our renderer pro-
duced an image that is practically identical to these measurements, we can assume
that our renderer is correct (as far as the included materials and light sources are
concerned).
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7.4 Treating the Camera as a Black Box

The basic goal of color management is that of reproducing color as it is seen by
a human observer, like for example taking a photograph and displaying it on a
screen in a way that the colors match the original scene. Our problem is different
to that of color management, though. As stated in section 1, we primarily want
to verify the light transport simulation but not necessarily the subsequent steps of
image synthesis (like e.g. the tone mapping step). First, we have to prove that our
physically based rendering algorithm is implemented correctly. Only after that,
we can verify the tone mapping and gamut mapping algorithms. Otherwise we
would analyze two different steps in the rendering pipeline at once and – if errors
would occur – we could not say whether the tone mapping step is the cause of
error or the rendering algorithm itself is not performing correctly. One possible
solution to this problem is not to convert to XYZ or L∗a∗b∗ color space at all, but
to do the comparison in RGB space.

After light hits the CCD, various processing steps are done in the camera.
Some of them can be simulated – like e.g. the interaction of light and CCD ele-
ments – but others, like e.g. color correction, cannot. Manufacturers usually do
not publish details about the internal processes of their cameras. We do not have
to care about steps like color correction if we use the RAW file format. But we
still have to know the camera’s spectral sensitivities and probably some details
about the behaviour of the CCD element itself to be able to convert a rendering to
a RAW file that is identical to a RAW photo of the same scene.

If we lack information about the camera’s spectral sensitivities, the following
method can be used. As we do not know exactly what is happening inside the
camera, we treat it as a black box. The input data of our black box is light, i.e.
light spectra. The output data is of type RGB, i.e. the RGB values of the final
image. What we want to find now is a mapping that simulates what happens
inside the black box for one pixel.

As described in section 5, the result of the light transport simulation consists
of one spectrum per pixel. If we apply the mapping to each of the spectra we get
an RGB value for each pixel. This procedure is illustrated by the dotted line in
figure 26. For verification purposes, this RGB value is now directly comparable
to the RAW RGB value of the correspondent pixel of an image produced by a
camera. A difference between these two values can be caused either by an error

82



in the light transport simulation or by inaccuracies of the mapping. We therefore
have to determine the amount of error caused by the mapping in order to be able
to better interpret a difference between these two RGB values.

We seek a mapping µ, that models the response of the CCD elements for each
of the channels R, G, and B. For the following, the vector (R′, G′, B′) denotes
the simulated values yielded by the mapping µ, whereas (R, G, B) denotes the
measured values of the CCD elements. Furthermore, xi denotes the i− th spectral
sample. Therefore, µ performs a mapping from Rm to R3, where m is the number
of spectral samples. We define

µ : (x1 . . . xm) −→ (R′, G′, B′)

and

R′ =
m∑

i=1

r2
i xi,

G′ =
m∑

i=1

g2
i xi, and

B′ =
m∑

i=1

b2
i xi,

where ri, gi, and bi denote the coefficients we are searching for. The coefficients
are squared to avoid negative values as they represent the spectral sensitivities of
a camera. We measure the quality of µ by

∆R =
n∑

j=1

(
R′

j −Rj

)2
,

∆G =
n∑

j=1

(
G′

j −Gj

)2 , and

∆B =
n∑

j=1

(
B′

j −Bj

)2
,

where (R′
j , G′

j , B′
j) denotes the simulated values for patch j, (Rj , Gj , Bj) denotes
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R G B
Min 0.81 (0.02%) 0.36 (0.009%) 0.15 (0.004%)
Max 193.93 (4.74%) 295.46 (7.22%) 167.69 (4.09%)

Median 57.44 (1.40%) 51.70 (1.26%) 46.30 (1.13%)
Mean 65.57 (1.60%) 63.98 (1.56%) 52.99 (1.29%)
Stdev 45.24 (1.10%) 51.31 (1.25%) 40.77 (1.00%)

Table 13: Minimum and maximum, median, mean values, and standard deviations
of the residuals of R, G, and B values with respect to the values of the RAW image.
The RGB values lie in the range of 0 to 4095. Relative errors are given in brackets.

the measured values for patch j, and n is the number of patches used in our tests.
We obtain the optimal coefficients for ri, gi and bi by minimizing ∆R, ∆G, and
∆B. We do this by using non-linear regression.

The spectra we use in this case are the spectra of the n = 140 patches of the
ColorChecker SG. Those were measured with a GretagMacbeth Spectrolino (see
section 6.3).

In order to avoid inaccuracies due to image enhancement we use the RAW
image for gaining the RGB values (see section 6.1.4). Again, we search for the
most representative RGB value in a subarea of each patch. As the Canon EOS
20D is a 12bit camera, the RGB values are in the range of 0 to 4095.

The results of the mapping cannot be compared to methods that are operat-
ing in L∗a∗b∗ space. Our results are part of the camera’s RAW RGB space and
can therefore not easily be converted to XYZ and then L∗a∗b∗ space. We would
have to find a mapping from camera’s RAW RGB to XYZ that again will intro-
duce some error. Therefore, we analyze the difference of calculated RGB values
to the ones that were actually produced by a camera. In order to test the quality
of our mapping, we use the 140 spectra (the same that were used to generate the
mapping) as input value and compare the result to the RGB values of the camera.
Absolute values for minimum, maximum, mean value, median, and standard de-
viation of this comparison can be found in table 13. The maximum error of 7.22%
occurs in the green channel. The mean value of 1.56% is much lower though
so we can assume that there are only a few outliers. The same tendency can be
observed for the other two channels. Moreover we can see that the blue channel
causes the least amount of error in general. The residuals for R, G, and B channels
for all 140 patches can be found in appendix E.5.

This method has two main advantages: We do not need any knowledge about
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the internal data of a camera and we avoid the errors that are caused by the differ-
ent spectral sensitivities of a camera and a human observer. The camera is used as
a pure measurement instrument, without any image enhancement. We can directly
compare the camera’s RAW RGB values to the results of applying the described
mapping to the spectral values of a rendered image.

7.5 Other Approaches

In this section we list other possible ways of using a digital camera for verification
purposes. For each method, we point out why we could not test it or why it cannot
be used in practice.

7.5.1 Imitation of a Multi-spectral Camera

We wanted to find out whether it is possible to imitate the approach of Pat-
tanaik et al. [PFTG97] (see section 2.2.5) by using a prosumer-grade camera
instead of a scientific grade CCD sensor with narrow band filters, i.e. a multi-
spectral camera. Pattanaik et al. used such a camera to reconstruct XYZ values
for each pixel of an image. Multi-spectral cameras usually contain seven or more
narrow band filters, in order to take a sufficient number of samples of the spectrum.
We wanted to investigate, whether a prosumer-grade camera with less filters can
also be used in this way. Some prosumer-grade cameras – like the Nikon Coolpix
4500 – do not use red, green, and blue filters for the Bayer pattern (see section
4), but cyan, yellow, green, and magenta filters. This gives us four filters instead
of seven. Unfortunately, the spectral curves of these filters differ too much from
those of narrow band filters, as can be seen in figure 61. Therefore, they cannot
be used to reproduce the approach of Pattanaik et al.

7.5.2 Converting RGB Values to Spectra

Jetsu et al. [JHP+06] use the least-squares regression method to convert RGB
values to spectra, instead of converting to XYZ or L∗a∗b∗ values (see section 7.3).
The main advantage of this version is that spectra are light source independent, i.e.
that it is possible to calculate any needed color information using arbitrary light
sources. Compared to the CIE L∗a∗b∗ approach, it yielded similar or even slightly
worse results.
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Figure 61: Example of spectral sensitivity curves of a CYGM CCD sensor.

The main problem of this approach is that of metamerism. A single RGB value
can be caused by an infinitely large number of spectra. The mapping is of the type
R3 → Rn, n being the number of samples of a spectrum, usually n > 3. The set
of equations is under-determined, therefore we get a non-trivial solution space.
Let W be a transformation matrix that gives us the point in this space that has the
smallest Frobenius norm. Let Si be the spectrum that caused the RGB value and
let Sj be the reconstructed spectrum. There is no way to tell whether Sj is equal
to the original spectrum Si, or not. It is possible, that if Si 6= Sj , Sj is a metamere
of Si as far as the camera is concerned. Most likely Si and Sj are not a metameric
pair to a human observer due to the different spectral sensitivities, though.

It is obvious, that although this method gives acceptable results when e.g.
samples of the Munsell Book of Colors are used for the training set and the valid-
ation set, it will normally fail on measuring arbitrary scenes due to metamerism.

7.5.3 Simulating the CCD Sensor

The method presented in section 7.4 tries to find a mapping that converts light
spectra to RGB values. No knowledge about the internal properties of the camera
is needed. If this knowledge is available though, the following method may give
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better results:
One can measure the spectral sensitivity curves of the camera using e.g. a

monochromatic light source and a spectroradiometer. Then, instead of multiply-
ing the spectrum of each pixel of the rendering image with the CIE color match-
ing functions to get XYZ values, one can multiply it with the spectral sensitivity
curves of the camera to get RGB values. In doing so, one avoids the most severe
problem in using a camera for color validation, that is the different sensitivity
curves of camera and human observer.

We could not test this method as we do not have the required instruments to
measure the spectral sensitivity curves of our camera.
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8 A Problem with the Use of XYZ Color Space for
Photorealistic Rendering Computations

8.1 Introduction

CIE XYZ color space is sometimes recommended in literature for photorealistic
rendering computations because it allows one to simultaneously handle all per-
ceivable colors at much lower computational cost than by using spectral render-
ing.

In this chapter we show that XYZ is actually a poor choice for such compu-
tations, since it is not closed under the component-wise multiplication which is a
typical operation in a rendering system. We also discuss why this rather obvious
fact has not received much attention yet, and give pointers to alternative solutions.

Even though the theoretical desirability of using full spectral representations
for light and reflectance values in photorealistic rendering computations has been
known for a very long time [HG83], the overwhelming majority of rendering ap-
plications performs those computations which model the interaction of light with
matter by using color values.

Color values are numerical correlates of human perception, which in turn is an
exceedingly complex phenomenon. If one considers this, it is actually somewhat
surprising that color values can be used so well to model light-matter interactions;
the main reason why they work is because an RGB triplet basically amounts to a
very crude spectral sampling of the visual range.

8.1.1 RGB Rendering

Even though a large number of other color models – such as CIE XYZ or L∗a∗b∗ –
exist, the standard choice for the color space to perform rendering computations in
is usually an RGB space; the question of which specific RGB space is suited best
for this purpose has been investigated by Ward and Eydelberg-Vileshin [WEV02].

The major disadvantage of RGB color spaces is of course that none of them
contains all visible colors; the obvious problem that arises from this fact is that
not all colors that can be found in reality can be represented by positive RGB
triplets. This in turn can lead to problems when modelling scenes which contain
large numbers of very saturated colors and lights.
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Figure 62: A Mathematica generated plot of the domain of valid XYZ values in
the first octant.

8.1.2 CIE XYZ Rendering

A seemingly logical alternative that has been infrequently used in practice is
to perform those computations directly in XYZ space [GJB80][Gla95][WS00],
thereby eliminating any gamut restrictions from the rendering process. Figure 62
shows a three-dimensional representation of XYZ space, which forms a closed
subspace of the first octant (X,Y, Z ≥ 0). The parameter lines follow different
contours for the curved mantle section and the magenta plane, since these were
done using different Mathematica plots which were joined together afterwards. A
better visualization of this limit surface is shown in figure 63. This figure shows
the same shape as figure 62. The geometrical data for the limit surface was expor-
ted from Mathematica to 3D Studio Max [3dS06] and rendered using false-color
shading, transparency and cutting planes which reveal the chromaticity-diagram
shaped cross-section of the subspace.

The key argument in favour of using XYZ space for rendering calculations is
that it assigns positive values to all colors that can be perceived by humans; this
property is crucial to ensure a meaningful component-wise multiplication between
individual color values. Nevertheless, Ward et al. [WEV02] came to the conclu-
sion that a carefully chosen RGB space yielded better results than using XYZ
space. Unfortunately, the reasons for this behavior were not analyzed further.

It is known and understood that multiplication between light and reflectance
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Figure 63: A more intuitive representation of the subspace of valid XYZ values in
the first octant (produced by Andrea Weidlich).

values in color space is just an approximation of reality; the error incurred by this
approximation has been studied by Borges [Bor91]. He compared the result of a
multiplication in XYZ space to a reference solution obtained by multiplying two
spectra and then converting the result to XYZ space.

Since the potential error bounds were within an acceptable range, the author
recommended to use XYZ space instead of spectral rendering because of the
lower computational cost and lower storage requirements. However, he did not
investigate the error bounds of an RGB space with carefully chosen primaries,
which still might be smaller than those of XYZ, especially in the light of Ward’s
work [WEV02].

8.2 A Potential Problem with the Use of XYZ Color Space

In practice, renderers usually still resort to using an RGB space for their compu-
tations, not at least because colorimetric accuracy is usually not a prime concern
for such applications at the moment. Therefore actual rendering systems – as op-
posed to scientific proof of concept implementations – have rarely used XYZ as
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their internal color space.
This might account for the fact that one fundamental problem of using XYZ

coordinates for computations that model the interaction of light with matter has
apparently not received any attention in the computer graphics community so far.

In color space the interaction of light and matter is approximated through the
component-wise multiplication of the tristimulus values of the light and the sur-
face reflectance. In any given RGB space, this operation is not problematical
since such an RGB space by definition occupies the entire first octant of the three
dimensional coordinate system established by the R, G, and B basis vectors; there-
fore the RGB space is closed with respect to the component-wise multiplication
of RGB triplets (i.e. a multiplication of two valid RGB values will always yield a
valid, entirely positive RGB triplet as result).

In contrast to this, not all positive XYZ triplets are valid color values; the
gamut of perceivable colors is only a subset of the first octant. This means that a
component-wise multiplication of valid XYZ values cannot be guaranteed to yield
a meaningful color value as result, even though all its components will of course
be positive.

In particular, multiplications of similar, highly saturated colors almost always
generate colors which are outside the range of valid XYZ triplets.

Figure 64 shows the space that is created by “squaring” (i.e. multiplying by
itself component-wise) the XYZ triplet of each point that lies on the border of the
subspace of valid XYZ values. All results of component-wise multiplication in
XYZ space lie within this “squared” space, which turns out to be considerably lar-
ger than the gamut of valid XYZ values. A better visualization of the relationship
between these two surfaces is shown in figure 65. This is again a 3D Studio Max
rendering of the same data-set that is shown in figure 64, and it clearly shows that
the gray subspace is outside the range of valid XYZ triplets almost everywhere.

8.3 Severity of the Problem in Practice

There is one mitigating circumstance which leads to this problem not being as
grave as it might seem at first glance for real rendering systems, and which might
also account for the fact that it has apparently not been discussed in computer
graphics literature so far.

Meaningful interactions of light and matter usually only occur between val-
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Figure 64: A Mathematica generated plot of the domain of valid XYZ values with
the larger surface of possible result values from component-wise multiplication
superimposed over it.

Figure 65: A visualization of both the gamut of valid XYZ values (in false-color)
and the gamut of triplets that can be generated by component-wise multiplication
of these valid XYZ values (gray). The slight overlapping on the edges occurs
because of different clipping planes (produced by Andrea Weidlich).
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Figure 66: Surface reflectance values form a comparatively small subset (gray
volume) of all possible XYZ colors (produced by Andrea Weidlich).

ues which describe a light – which can be arbitrarily saturated – and surface re-
flectance values, which form a comparatively small subset of all possible XYZ
colors [Wys62]; see figure 66 for a qualitative sketch. While the shape of the sub-
set is not correctly represented in this plot it still shows its key feature as far as
the topic of this paper is concerned: even its most saturated colors are located at
comparatively large distances from the gamut boundary, which means that com-
binations of surface colors and light values are very unlikely to produce invalid
results.

Since the interactions which potentially produce invalid results are those where
both operands are highly saturated colors (i.e. those which are already near the
boundary of the solid of valid XYZ colors) this means that realistic light and sur-
face interactions are not likely to produce the kind of problem we are trying to
illustrate here.

However, the theoretical weakness of XYZ space as a color space for render-
ing calculations remains, especially since some kinds of light and matter inter-
actions (such as calculations involving transparency, diffraction effects or disper-
sion) can lead to situations where invalid colors are easily produced.
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9 Conclusions and Future Work

9.1 Using a Digital Camera for Verification Purposes

In physically based rendering, it is crucial to be able to rely on the results of
rendering systems. In section 2, we have discussed several different approaches
for verifying physically based rendering sytems; none of them is what one could
consider a truly workable, robust solution suitable for widespread use. While the
sophistication of the published techniques has grown considerably over the years,
even the latest contributions still have weaknesses. One major drawback is that
many of them require expensive, non-standard measurement devices. For this
reason, we focused on using prosumer-grade digital cameras. These devices can
be easily obtained and are much cheaper than e.g. multispectral imaging devices.

As each laboratory has different premises, we analyzed the quality of several
approaches to using a digital camera for verification purposes. On the one hand,
we examined standard and non-standard methods from the field of color man-
agement. On the other hand, we also developed a novel approach, that is espe-
cially designed for verifying rendering systems. Depending on whether particular
devices or software packages are available or not, one can choose the appropriate
method from table 14.

Devices Software Time Accuracy
Camera’s
color space

None Color man-
agement lib-
rary

Little Insufficient

ICC profile None Profiling
software,
color man-
agement
library

Little Insufficient

Adapted
mapping

Colorimeter
/ None

None Medium Medium to
good

Black box Spectro-
photometer

None Medium Medium to
good

Table 14: Qualitative comparison of four approaches (analyzed in section 7) on
using a digital camera for verification purposes.

If no measurement device is available, one of the first two methods (described
in chapters 7.1 and 7.2) can be used, although the results have to be considered

94



as bad compared to other methods. Still, those methods are standard methods
in the field of color management and therefore easy to use and affordable. And
even if a serious amount of error is present, it is still better to compare rendering
results to biased measurements than do no comparison (or no color management)
at all. Outstanding differences between measured and calculated values can still
be considered as inaccuracy or error of the rendering process.

The third method (see section 7.3) can be used if a measurement device cap-
able of measuring L∗a∗b∗ values is available. Only the L∗a∗b∗ values of the color
chart used are necessary. If these values are provided by the manufacturer or can
be obtained otherwise, no measurement device is needed at all (referring to the
“None”-entry in the “Devices” column in table 14). The advantage of this method
over the previous two is that by selecting an appropriate polynomial one can ad-
just the mapping to better fit the requirements. Higher order polynomials tend to
oscillate and can therefore usually not be used to define a general mapping. In our
case, though, we can use this kind of polynomials to get a very accurate mapping
for one specific test scene.

The fourth method (see section 7.4) differs from the other three as it does not
operate in L∗a∗b∗ color space. Therefore it is not directly comparable to the other
methods. It avoids the effect of eye-camera metamerism, i.e. that the spectral
sensitivities of the eye and a digital camera are different and that they therefore
see colors differently. Knowledge about the interior of the camera is not needed.
We just apply the generated mapping to the spectral values of the resulting image
of the light transport simulation and can then directly compare the RGB values to
the RAW RGB values of the photograph. Instead of trying to simulate a human
observer with our camera, we use it as measurement device only.

For both the third and the fourth approach some time is needed in order to
implement the required software. These methods generally yield better results
than the first two methods. Depending on the amount of accuracy needed and the
available time and equipment, a developer can choose the appropriate procedure
in order to get the best possible verification result.

9.2 Using XYZ Color Space as Internal Color Space

Based on the observations we made in chapter 8, it can only be concluded that
XYZ space should never be used as the internal color space for rendering com-
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putations. While it does offer the benefit of being able to represent all possible
colors, the fact that color multiplications are no longer an operation which can be
guaranteed to yield meaningful results pretty much removes any incentive to use
it.

As outlined by Ward et al. [WEV02], one should always use a suitably chosen
RGB space instead or consider full spectral rendering if colorimetric accuracy is
of prime concern.

9.3 Future Work

At this time, it is necessary to define what an ideal validation procedure should
look like. For comparisons, it would be good to have one or several complex test
scenes where for each pixel of a rendered image the physically correct spectral
distribution is known. Moreover, the acquisition of these scenes has to be practic-
able and affordable. The problem of the methods developed so far is that none of
them is capable of providing such scenes. Analytically derived light distribution
solutions are exact, but the complexity of the scene is limited. If we measure the
reflected light with an adequate device, the scene can be arbitrarily complex, but
there will always be some kind of error that is introduced by the measurement
method itself. The amount of this error is often hard to determine. If we compare
our image to such ambiguous values, an exact match will be most unlikely. It is
hard to say whether this mismatch is caused by an error in our physically based
rendering system or by the inaccuracy of our measurements. Therefore the most
promising solution is probably a combination of different approaches (see sec-
tion 2.4) to compensate for the disadvantages of each approach and thus enhance
the quality of our verification (for analytical tests one could use the set of test
cases that is provided by the CIE Technical Committee 3.33 [CIE06a]).

The fact that no standard procedures for this fundamental problem of computer
graphics exist also raises the question what open research challenges remain –
apart from the possible use of improved measurement devices. The following list
is probably incomplete, but should give an idea of how far-spread the problems
are.

• Differences in scene geometry between real and synthetic images – mainly
caused by misalignment and inaccurate measurements – are a source of er-
ror. Its exact influence on the verification process has not been characterized
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in sufficient detail. The approach of Karner and Prantl [KP96] to simply
skip the problematic areas of the images under consideration might be an
improvement over not acknowledging the problem at all, but is something
that should definitely be improved.

• Previous work does not explicitly discuss the issue of new techniques in
computer graphics like scenes with measured Bi-directional Texture Func-
tions (BTFs) or lightfields (e.g. near field photometry measurements of light
sources). As BTFs, for example, are usually generated out of a small sample
part of a surface and then extrapolated to larger areas, an exact match with
the original surface will not be possible. Therefore one has to find a method
to determine whether a generated surface has an appearance which is reas-
onably similar to the original surface.

• Whole classes of physical effects like e.g. polarization and fluorescence
have never been verified in practice yet. Since the problems for which phys-
ically based renderers are being used – e.g. glare prediction in the automot-
ive industry, which needs polarization support if it is to be highly accurate
– very often depend on just these capabilities, this is a grave omission. It is
aggravated by the fact that the measurement procedures published in liter-
ature so far are usually not capable of characterizing such effects at all.

• HDR technology could be used to overcome the limited dynamic range of
conventional CCD sensors. This is especially useful for capturing outdoor
scenes and scenes that contain light sources that are directly visible from
the view point.

• Is it possible to introduce a ranking scheme for physically based rendering
systems? What are the criteria for such a ranking scheme? Although the
focus of this thesis mainly is on the acquisition of measurements of real
scenes, these questions should not be disregarded.

As the capabilities of physically based rendering engines continue to grow and
appearance–sensitive industries increasingly rely on physically based rendering
technologies, one can confidently expect that these problems will become active
research areas in the near future, and that the field of image synthesis system
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verification will become more active as the demands of customers for accuracy
guarantees in commercial rendering solutions grow.

As a concluding remark it can be said that the groundwork in this field has
been well laid, but that the task of developing robust, practicable solutions is still
mostly before us.
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A Radiometric and Photometric Quantities

Photometric quantities consider only the visible part of the electromagnetic spec-
trum and are weighted by the visibility factor V(λ), which is the photopic sens-
itivity curve of the human eye. The quantities of the radiometric measurements
correspond to photometric quantities, but consider the total amount of radiation
with the watt replacing the lumen. Table 15 lists radiometric and corresponding
photometric quantities.

Radiometric Quantities Photometric Quantities

Radiant Flux is the total radiant
power that is either emitted by a source
or received by a surface. The unit is
watt [W ].

Luminous Flux is a measure of the
energy emitted by a light source or re-
ceived by a surface, weighted by the
visibility factor V(λ). The SI unit of
Luminous flux is the lumen [lm] or
candela · steradian [cd · sr]. One lu-
men is defined as the amount of light
that falls on a unit spherical area at
unit distance from a light source of one
candela.

Radiant Intensity is the radiant power
of a source emitted in a certain direc-
tion. The unit is watts per steradian
[W · sr−1].

Luminous intensity is a measure of
luminous flux emitted by a light source
in a particular direction. The SI unit of
luminous intensity is candela [cd].

Irradiance is a measure of the total ra-
diant flux incident on a surface. The
unit is watts per square meter [W ·
m−2].

Illuminance is the total luminous flux
incident per unit area. It refers to the
amount of incident light. The unit is
lux [lx] or lumen per square meter [lm·
m−2].

Radiance is the total radiant intensity
emitted or reflected from a certain loc-
ation on an emitting or reflecting sur-
face in a particular direction. The unit
is watts per steradian per square meter
[W · sr−1 ·m−2].

Luminance is the measure of lumin-
ous flux emitted from, or reflected by a
surface. The unit is candela per square
meter [cd ·m−2].

Table 15: Radiometric and photometric quantities.
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B Measurement Devices - Definitions

B.1 Radiometer

Radiometer is a general term for a device that is used to measure the intensity of
radiant energy. A photometer is a special type of radiometer.

B.2 Photometer

In the broadest sense, a photometer is any instrument used to measure light intens-
ity. A photometer must respond to light as the CIE standard observer. Luminance
and illuminance meters are the most common photometers.

B.2.1 Luminance Meter

A luminance meter is an instrument for measuring luminance, i.e. the amount of
light that is reflected by a surface in a given direction.

B.2.2 Illuminance Meter

An illuminance meter is used to measure the visible energy falling upon an ob-
ject’s surface.

B.3 Spectroradiometer

A spectroradiometer measures absolute light intensity as a function of the wavelength
of light.

B.4 Spectrophotometer

A spectrophotometer measures relative reflectance as a function of the wavelength
of light.

B.5 Colorimeter

A colorimeter is used for the measurement of colored light. It uses three filters
whose spectral sensitivities are matched to the CIE color matching functions.
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B.6 Goniophotometer

A goniophotometer is a device for measuring the directional pattern of light dis-
tribution from a source.

B.7 Gonioreflectometer

A gonioreflectometer is a device to measure the reflectance properties of a material
and is therefore commonly used to determine BRDFs. It consists of a light source
illuminating the material to be measured and a sensor that captures light reflected
from that material. Both the sensor and the light source are moved around the
material in order to measure the anisotropic properties of the material.
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C Color Lab

This appendix presents some of the instruments that are available in the institute’s
color lab and that were used within the scope of this thesis.

C.1 Light Cabinet

The Verivide Color Assessment Cabinet (see figure 67) is of 120cm width and has
5 light sources. We chose light sources D65, TL84, CWF, A and UV. Light source
D65 has a correlated color temperature of 6500K and simulates daylight. It is
specified for applications where there is a need to maintain color consistency and
accurate color matching. Light source TL84 (also known as 840 or CIE Illuminant
F11) has a correlated color temperature of 4000K and provides good color render-
ing. It is often chosen as European “Point of Sale” illuminant. Light source CWF
(also known as CIE Illuminant F2) has the same color temperature as TL84 but
only moderate color rendering. It is used as American “Point of Sale” illuminant.
CIE illuminant A has a correlated color temperature of 2856K and corresponds
to a typical tungsten filament lighting. Ultra-Violet Blacklight is commonly used
to detect the presence of optical brightening agents or fluorescent dyes. As our
rendering engine is capable of handling fluorescent materials we plan to use it for
verifying these calculations. The light cabinet also has a dimmer and a diffusor.

Figure 67: Verivide color assessment cabinet with five light sources.

C.2 Luminance Meter

The Konica Minolta Luminance Meter LS-100 (see figure 68) is a compact, light-
weight meter for measuring the luminance of light sources or reflective surfaces.
The luminance unit can be set to either cd/m2 or fL. The measuring range is
from 0.001 to 299, 900cd/m2 (0.001 to 87,530fL).
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Figure 68: A Konica Minolta LS-110 luminance meter.

C.3 Color Chart

The GretagMacbeth Digital ColorChecker Semi Gloss (SG, see figure 69) has 140
patches in total, including 24 patches from the original ColorChecker, 17 step gray
scale and 14 skin tone colors. Its size is 21.59 × 27.94cm. It is specifically de-
signed for digital photography, e.g. to use the chart with camera profiling software
to create an ICC profile of a camera.

Figure 69: The Digital ColorChecker SG can be used for creating an ICC profile
of a camera.

C.4 Spectrophotometer

The GretagMacbeth Spectrolino (see figure 70) is a handheld tethered spectro-
photometer with a high level of accuracy at low cost. Its spectral range is from
380nm to 730nm with a physical resolution of 10nm. It is capable of measuring
reflection, emission and transmission (with SpectroScan T, see appendix C.5).
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Figure 70: The GretagMacbeth Spectrolino spectrophotometer is capable of meas-
uring reflection, emission and transmission.

C.5 Spectroscan T

The Spectrolino (see appendix C.4) can be mounted on the GretagMacbeth Spec-
troscan T automatic table for fast, automatic measurement of color charts. Differ-
ent from the GretagMacbeth Spectroscan the GretagMacbeth Spectroscan T also
provides the possibility of measuring transmission.

Figure 71: The GretagMacbeth Spectroscan T allows automatic measurement of
color charts.
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D Web Resources of Validation Data

For some of the projects described in section 2, the data that was acquired during
the studies was made publicly available. This gives other researchers the chance to
use this data for comparison and further research. The following list enumerates
these projects and the corresponding web addresses, all last accessed in Novem-
ber, 2006.

• The Cornell Box: http://www.graphics.cornell.edu/cbox/

Specifications of the geometry and material properties of the box used in the
approach of Pattanaik et al. [PFTG97] are provided together with the result
images .

• Aizu atrium: http://www.mpi-sb.mpg.de/resources/atrium/

Drago and Myszkowski [DM01] contribute the complete scene of the at-
rium of Aizu, including model, goniometric diagrams, textures, and BRDF
measurements.
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E Detailed Results

E.1 Using the Camera’s Color Space

8 bit jpg 16 bit

1 18.25 18.25 18.18

2 11.91 11.88 11.96

3 6.36 6.06 6.00

4 18.02 18.01 17.93

5 12.37 12.31 12.39

6 5.90 5.82 5.80

7 17.88 17.87 17.81

8 12.55 12.52 12.56

9 6.40 6.25 6.16

10 17.95 17.95 17.88

11 12.28 12.31 12.29

12 6.15 5.93 5.77

13 11.75 11.75 11.81

14 18.09 18.10 17.98

15 5.60 5.35 5.32

16 26.91 26.79 26.63

17 11.53 11.56 11.37

18 22.16 22.16 22.16

19 16.59 16.61 16.10

20 8.69 8.63 8.83

21 17.31 17.45 17.54

22 9.73 9.55 9.37

23 24.80 24.84 24.60

24 18.20 18.32 18.44

25 6.38 6.19 6.63

26 17.84 17.85 17.52

27 22.99 22.72 22.88

28 11.55 11.53 11.49
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8 bit jpg 16 bit

29 11.58 11.52 11.63

30 24.82 25.20 25.21

31 20.66 20.84 21.19

32 18.27 18.26 18.34

33 5.40 5.21 5.29

34 17.80 18.05 18.18

35 18.55 18.51 18.43

36 18.18 18.26 18.13

37 14.91 15.22 15.72

38 6.47 6.52 6.59

39 16.26 16.28 16.45

40 16.40 16.40 16.25

41 18.48 18.60 18.01

42 5.78 5.56 5.43

43 18.25 18.25 18.17

44 22.16 22.25 22.28

45 6.09 6.21 5.99

46 18.76 18.82 18.91

47 12.56 12.69 12.86

48 8.70 9.05 9.31

49 21.95 22.13 21.67

50 17.55 17.82 18.02

51 21.91 21.81 21.78

52 16.11 16.29 16.42

53 20.95 20.98 21.20

54 16.19 15.98 16.01

55 23.34 23.70 23.04

56 18.34 18.33 18.24

57 5.38 5.29 5.40

58 28.44 28.78 28.77

59 26.40 26.47 26.65
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8 bit jpg 16 bit

60 13.41 13.32 13.34

61 17.85 17.85 17.81

62 16.14 16.13 16.19

63 15.49 15.51 15.59

64 12.35 12.33 12.48

65 9.25 9.23 9.28

66 7.57 7.38 7.30

67 22.78 22.77 22.65

68 11.87 11.65 11.71

69 12.04 12.35 11.81

70 10.91 10.88 10.99

71 11.45 11.46 11.47

72 22.40 22.51 22.59

73 10.24 10.70 10.86

74 8.62 8.63 8.51

75 5.59 5.26 5.32

76 8.74 8.75 8.70

77 10.44 10.46 10.43

78 14.75 14.76 14.87

79 15.82 15.83 15.88

80 17.63 17.63 17.61

81 15.54 15.60 15.66

82 4.96 5.07 5.33

83 12.99 13.02 13.22

84 5.57 5.39 5.36

85 18.51 18.51 18.42

86 12.39 12.72 12.51

87 29.21 29.26 29.39

88 10.16 10.08 9.72

89 9.08 8.55 9.05

90 7.01 7.00 7.26
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8 bit jpg 16 bit

91 17.21 17.11 17.13

92 8.72 8.69 8.65

93 16.09 15.90 15.90

94 8.35 8.22 8.32

95 10.68 10.73 10.75

96 6.62 6.73 7.00

97 15.11 15.48 15.64

98 18.58 18.56 18.47

99 5.49 5.21 5.27

100 17.58 17.68 17.90

101 14.60 14.65 14.71

102 7.55 7.48 7.67

103 10.17 9.95 10.25

104 9.98 9.72 9.95

105 9.02 8.99 9.23

106 8.48 8.24 8.48

107 15.41 15.40 15.05

108 5.84 5.80 5.90

109 6.88 6.82 6.68

110 7.43 7.18 7.13

111 6.82 6.92 7.29

112 10.59 10.64 10.53

113 11.13 11.05 11.11

114 5.06 4.60 4.01

115 15.28 15.68 15.71

116 12.50 12.79 12.92

117 7.40 7.81 8.18

118 15.98 16.17 16.51

119 8.85 8.81 8.90

120 6.48 6.84 7.14

121 18.68 18.93 19.29
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8 bit jpg 16 bit

122 8.76 8.59 8.54

123 6.67 6.47 6.40

124 11.46 11.83 12.17

125 2.77 2.28 1.85

126 5.32 5.20 5.10

127 18.85 18.86 18.77

128 11.15 11.14 11.19

129 6.55 6.64 6.86

130 18.53 18.53 18.45

131 11.62 11.63 11.67

132 6.00 6.07 6.32

133 18.27 18.26 18.19

134 11.73 11.73 11.78

135 6.59 6.69 7.02

136 18.42 18.40 18.32

137 11.43 11.48 11.37

138 6.25 6.34 6.60

139 10.61 10.68 10.43

140 19.32 19.32 19.21

Table 16: L∗a∗b∗ differences for all 140 patches of the three test cases for using
the camera’s color space. The patches are consecutively numbered from left to
right, starting at the upper left corner of the color chart. For details on the used
method see section 7.1.
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E.2 Using an ICC Profile

8 bit jpg 16 bit

1 18.86 18.86 18.79

2 11.07 10.99 10.95

3 5.94 5.78 5.76

4 18.58 18.58 18.50

5 11.07 10.93 10.89

6 5.59 5.64 5.66

7 18.43 18.41 18.37

8 11.06 10.96 10.89

9 6.04 6.02 5.99

10 18.50 18.51 18.44

11 10.97 10.96 10.78

12 5.75 5.66 5.55

13 10.81 10.77 10.71

14 18.73 18.74 18.62

15 5.33 5.19 5.16

16 18.68 18.55 18.39

17 9.42 9.34 9.14

18 20.65 20.64 20.56

19 14.52 14.56 14.19

20 10.64 10.46 10.67

21 13.95 13.92 13.93

22 10.66 10.70 10.54

23 18.01 17.95 17.28

24 11.21 11.30 11.30

25 9.40 9.05 9.65

26 14.30 14.21 14.19

27 15.29 14.99 15.35

28 10.89 10.83 10.68

29 10.94 10.83 10.86

30 16.79 17.42 17.06
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8 bit jpg 16 bit

31 12.90 12.87 13.20

32 16.67 16.66 16.69

33 10.19 10.07 10.23

34 12.03 12.24 11.85

35 13.14 13.15 13.16

36 12.16 12.01 11.78

37 7.59 7.59 7.66

38 15.50 15.73 15.68

39 16.90 16.97 17.15

40 9.10 8.94 9.20

41 16.31 16.42 16.04

42 5.39 5.31 5.22

43 18.88 18.87 18.80

44 14.73 14.69 14.72

45 9.60 9.68 9.72

46 17.64 17.83 17.96

47 13.04 12.91 12.82

48 7.00 7.10 7.20

49 12.75 12.81 12.73

50 8.83 8.61 8.90

51 15.97 16.05 16.00

52 10.80 10.77 10.59

53 19.31 19.35 19.65

54 16.50 16.50 16.43

55 15.54 15.79 15.51

56 19.00 18.99 18.90

57 5.21 5.22 5.33

58 17.19 17.42 17.07

59 17.35 17.23 17.30

60 13.34 13.20 13.21

61 18.42 18.42 18.38
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8 bit jpg 16 bit

62 16.10 16.08 16.09

63 14.05 14.02 13.99

64 10.97 10.90 10.94

65 9.23 9.12 9.04

66 8.24 8.13 8.08

67 20.96 20.95 20.69

68 13.10 13.06 13.07

69 9.54 9.82 9.55

70 10.54 10.48 10.51

71 11.10 11.05 10.97

72 16.07 15.98 15.98

73 7.21 7.63 7.75

74 11.24 11.31 11.26

75 5.55 5.32 5.29

76 9.13 9.09 8.98

77 9.80 9.74 9.60

78 13.30 13.29 13.25

79 15.41 15.42 15.41

80 18.09 18.08 18.05

81 14.71 14.78 14.76

82 6.11 5.97 5.91

83 9.99 9.96 9.90

84 5.29 5.24 5.26

85 19.21 19.21 19.12

86 11.23 11.59 11.15

87 19.36 19.19 19.21

88 12.93 12.97 12.55

89 12.18 11.86 12.18

90 9.25 9.24 9.57

91 16.35 16.32 16.48

92 10.75 10.73 10.68
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8 bit jpg 16 bit

93 14.53 14.37 14.37

94 11.99 12.00 12.05

95 9.97 9.98 9.88

96 12.06 12.31 12.08

97 7.78 7.78 7.71

98 19.32 19.30 19.21

99 5.45 5.29 5.25

100 11.55 11.66 11.63

101 8.89 8.86 8.89

102 10.35 10.36 10.43

103 12.31 12.22 12.54

104 11.81 11.50 11.93

105 11.18 11.17 11.14

106 10.61 10.31 10.42

107 14.19 14.15 13.89

108 9.38 9.34 9.50

109 7.65 7.60 7.45

110 14.25 14.24 14.13

111 12.05 12.24 12.43

112 10.75 10.78 10.58

113 11.28 11.14 11.11

114 5.79 5.52 5.22

115 9.92 10.21 10.39

116 6.43 6.40 6.41

117 8.95 9.37 9.47

118 8.83 8.81 9.33

119 12.87 12.69 12.70

120 5.56 5.54 5.55

121 15.08 15.08 15.09

122 12.94 13.01 12.95

123 16.56 16.60 16.72
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8 bit jpg 16 bit

124 11.08 10.89 11.17

125 4.05 3.82 3.65

126 5.32 5.31 5.19

127 19.69 19.69 19.61

128 11.04 10.98 10.95

129 6.35 6.35 6.36

130 19.25 19.25 19.18

131 10.95 10.92 10.86

132 5.78 5.74 5.77

133 18.95 18.95 18.88

134 10.87 10.82 10.75

135 6.25 6.20 6.30

136 19.14 19.11 19.04

137 10.81 10.82 10.59

138 5.98 5.95 5.97

139 10.75 10.80 10.44

140 20.30 20.30 20.21

Table 17: L∗a∗b∗ differences for all 140 patches of the three test cases for using an
ICC profile. The patches are consecutively numbered from left to right, starting
at the upper left corner of the color chart. For details on the used method see
section 7.2.
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E.3 Adaptive Mapping – Linear Polynomials

1 2 3 4

1 2.12 3.00 0.77 2.73

2 1.92 1.76 2.40 0.55

3 1.86 3.89 2.56 3.73

4 0.98 2.08 1.24 1.78

5 2.14 2.13 2.63 0.76

6 2.12 3.68 1.54 3.46

7 0.55 1.74 1.73 1.43

8 2.29 2.31 2.71 1.12

9 1.73 3.76 2.14 3.57

10 0.85 1.96 1.35 1.66

11 1.95 1.92 2.43 0.58

12 1.77 3.86 2.58 3.63

13 1.73 1.70 2.31 0.50

14 2.21 3.02 1.00 2.76

15 2.50 3.80 1.23 3.63

16 11.93 11.80 11.44 5.39

17 9.11 7.07 4.86 8.00

18 6.30 6.88 6.53 4.86

19 5.95 5.15 3.91 7.20

20 7.24 7.89 6.51 6.09

21 5.74 5.31 5.40 2.87

22 4.94 11.92 12.13 5.65

23 10.83 9.85 9.93 3.50

24 14.85 10.63 10.61 8.88

25 8.53 7.65 7.76 5.72

26 3.49 8.02 6.25 4.75

27 15.79 12.14 11.97 4.31

28 1.92 1.91 2.46 1.14

29 1.93 1.98 2.54 1.11

30 10.28 8.26 7.96 2.67
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1 2 3 4

31 9.10 3.61 4.26 5.96

32 8.23 7.15 7.10 5.75

33 10.17 8.89 8.97 2.87

34 14.87 6.41 6.52 11.16

35 9.70 7.55 7.45 5.24

36 13.41 9.89 8.86 10.56

37 10.25 13.04 12.84 5.66

38 17.94 12.45 12.36 7.15

39 12.54 11.03 11.34 10.01

40 18.20 9.16 9.22 3.57

41 10.57 12.46 10.41 8.99

42 1.77 3.36 2.25 3.21

43 2.27 3.12 0.97 2.86

44 5.91 7.69 6.31 2.33

45 7.57 8.37 6.90 5.90

46 9.76 7.44 7.73 6.74

47 22.33 6.30 6.60 4.71

48 10.71 5.03 4.86 4.91

49 16.04 5.21 5.89 3.69

50 11.55 13.63 13.81 6.09

51 6.99 9.52 9.66 8.63

52 4.68 6.89 5.77 6.58

53 6.70 7.33 7.03 5.10

54 6.85 4.82 3.50 2.69

55 15.54 5.52 5.15 3.52

56 2.88 3.64 1.63 3.39

57 2.78 3.83 0.55 3.62

58 14.35 15.36 15.11 8.72

59 8.24 9.06 9.10 4.87

60 7.28 5.93 5.93 5.33

61 0.98 2.01 1.12 1.71
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1 2 3 4

62 3.63 3.77 2.81 3.42

63 4.75 4.89 3.24 4.36

64 2.02 1.89 2.36 0.69

65 2.53 3.41 3.11 2.90

66 2.80 4.92 2.52 4.86

67 8.15 7.17 7.07 5.98

68 6.73 5.40 4.20 3.21

69 12.22 8.43 7.99 3.75

70 2.09 2.07 2.36 1.98

71 2.31 2.30 2.77 1.67

72 5.73 5.07 5.49 3.38

73 9.09 16.17 15.20 12.51

74 13.16 14.16 14.44 7.30

75 3.60 4.34 0.89 3.94

76 3.05 4.24 3.19 3.81

77 2.09 2.45 2.80 1.76

78 3.74 3.75 2.82 2.94

79 3.99 4.11 2.74 3.70

80 2.10 2.57 2.38 2.21

81 4.10 4.27 2.71 3.77

82 10.23 8.85 8.84 4.45

83 19.38 4.93 4.99 7.64

84 2.02 3.37 1.53 3.16

85 3.37 4.08 2.21 3.83

86 15.61 17.81 17.42 15.84

87 12.04 13.07 13.07 5.37

88 6.85 4.44 4.41 4.77

89 9.21 7.10 6.26 6.08

90 5.65 6.60 5.57 4.42

91 8.62 7.84 7.76 7.01

92 5.87 6.07 4.61 4.34
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1 2 3 4

93 6.25 4.11 4.05 8.69

94 4.02 2.97 1.93 0.91

95 1.59 1.81 2.20 1.40

96 11.21 7.97 8.05 2.89

97 11.04 5.99 6.87 3.36

98 4.06 4.68 3.10 4.46

99 3.56 4.10 1.15 3.73

100 12.88 7.24 7.70 4.68

101 16.04 11.83 11.18 1.84

102 5.45 6.13 5.03 4.46

103 10.65 8.52 7.61 6.44

104 3.57 3.23 1.56 2.23

105 4.55 4.90 3.52 3.45

106 5.20 5.62 4.27 3.88

107 5.62 4.83 4.45 7.43

108 6.11 6.30 5.41 3.52

109 2.29 4.07 1.95 3.77

110 9.97 9.68 9.97 4.01

111 3.48 3.54 3.28 0.61

112 3.08 3.15 3.14 3.14

113 3.11 3.12 3.30 2.85

114 4.76 6.33 6.26 5.60

115 18.85 14.90 14.43 7.77

116 18.68 13.25 12.26 2.61

117 13.06 11.06 11.24 10.97

118 18.29 13.36 13.02 6.16

119 7.20 4.02 3.82 5.06

120 9.01 5.04 5.01 8.12

121 20.44 14.88 13.99 4.71

122 8.68 7.58 7.86 4.56

123 9.26 10.08 10.47 6.05
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1 2 3 4

124 5.03 7.19 6.68 2.10

125 9.41 10.55 11.20 12.32

126 2.53 3.36 0.41 3.06

127 5.02 5.55 4.32 5.35

128 2.67 2.69 2.98 2.32

129 6.25 5.96 5.30 5.51

130 3.66 4.33 2.59 4.09

131 1.94 1.95 2.52 1.05

132 5.69 5.28 4.98 4.79

133 3.03 3.74 1.83 3.49

134 1.82 1.81 2.43 0.65

135 6.52 5.96 5.82 5.50

136 3.41 4.08 2.32 3.85

137 1.92 1.99 2.51 1.26

138 6.26 5.76 5.60 5.31

139 2.99 3.07 3.08 3.07

140 6.53 6.94 6.18 6.77

Table 18: L∗a∗b∗ differences for all 140 patches for linear polynomials when using
the adaptive mapping. The patches are consecutively numbered from left to right,
starting at the upper left corner of the color chart. For details on the used method
see section 7.3.
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E.4 Adaptive Mapping – Higher Order Polynomials

5 6 7 8 9 10 11

1 2.73 0.49 0.13 0.74 0.72 0.15 0.31

2 0.55 1.06 1.77 1.27 1.31 1.28 1.18

3 3.73 2.48 2.96 2.23 1.92 1.68 1.40

4 1.78 1.14 1.57 2.46 2.55 1.25 1.88

5 0.76 1.20 1.98 1.74 1.84 2.01 1.70

6 3.46 1.52 1.97 1.35 1.15 0.89 0.84

7 1.43 1.69 2.21 3.23 3.34 1.56 2.50

8 1.12 1.34 2.05 1.91 2.02 2.23 1.87

9 3.57 2.08 2.42 1.87 1.62 1.56 1.31

10 1.66 1.27 1.74 2.69 2.78 1.29 2.04

11 0.58 0.97 1.76 1.54 1.63 1.79 1.49

12 3.63 2.45 2.95 2.20 1.88 1.72 1.37

13 0.50 0.91 1.70 1.24 1.26 1.23 1.10

14 2.76 0.74 0.69 0.26 0.34 0.58 0.42

15 3.63 1.22 1.69 0.86 0.62 0.63 0.30

16 5.39 5.66 3.42 3.54 2.90 1.65 3.57

17 8.00 6.61 1.33 1.94 2.22 2.38 2.04

18 4.86 4.56 2.13 2.57 2.46 1.85 2.41

19 7.20 7.18 3.82 2.81 2.66 1.71 0.54

20 6.09 4.75 5.20 4.95 4.91 4.40 4.12

21 2.87 2.53 2.62 2.63 2.14 1.95 3.08

22 5.65 4.40 5.38 4.30 5.72 2.14 5.32

23 3.50 2.80 2.79 2.71 2.32 3.29 2.33

24 8.88 7.70 2.58 1.95 1.79 2.13 2.73

25 5.72 5.75 1.19 0.95 2.05 1.98 0.25

26 4.75 5.09 6.41 5.28 6.90 2.36 6.96

27 4.31 4.74 2.36 0.90 2.68 1.24 2.74

28 1.14 1.29 1.90 1.35 1.29 1.05 1.10

29 1.11 1.34 1.99 1.45 1.40 1.21 1.23

30 2.67 0.88 3.51 1.84 3.53 1.86 3.62
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5 6 7 8 9 10 11

31 5.96 5.29 1.13 2.38 2.06 0.57 2.26

32 5.75 5.77 1.63 1.50 1.74 1.81 1.54

33 2.87 2.77 2.05 2.87 2.77 1.05 2.94

34 11.16 11.02 6.92 5.72 7.21 3.94 7.68

35 5.24 5.45 2.75 1.97 2.97 2.29 3.33

36 10.56 10.12 4.54 4.10 4.78 2.40 4.81

37 5.66 4.53 4.47 2.99 4.00 2.28 3.49

38 7.15 7.04 6.77 4.93 7.19 4.07 6.55

39 10.01 10.27 5.06 4.53 5.39 5.67 5.42

40 3.57 4.17 3.63 2.32 3.44 1.01 3.98

41 8.99 8.02 3.52 3.62 3.83 2.17 3.24

42 3.21 1.98 2.36 1.78 1.46 1.78 1.26

43 2.86 0.71 0.41 0.33 0.32 0.28 0.08

44 2.33 2.20 3.06 4.57 2.65 2.51 0.77

45 5.90 3.57 2.70 2.87 3.18 2.82 2.69

46 6.74 6.71 1.10 1.36 0.92 1.38 1.09

47 4.71 5.82 6.41 4.22 5.76 1.39 5.58

48 4.91 5.62 3.35 3.41 3.60 3.51 4.02

49 3.69 4.47 2.73 1.58 2.44 2.43 1.79

50 6.09 5.12 5.11 3.01 5.44 0.80 6.18

51 8.63 8.61 4.98 0.79 5.19 1.55 5.48

52 6.58 6.37 4.01 4.48 3.58 3.47 3.57

53 5.10 4.88 2.79 3.28 2.91 1.85 3.35

54 2.69 1.75 0.35 1.45 0.50 2.27 0.48

55 3.52 3.37 2.69 2.12 2.66 1.99 3.78

56 3.39 1.47 1.24 0.85 0.84 0.72 0.95

57 3.62 0.72 1.04 0.32 0.35 0.41 0.45

58 8.72 8.63 3.90 2.51 3.86 2.44 4.09

59 4.87 4.31 4.20 3.72 3.37 2.26 4.00

60 5.33 5.40 1.28 1.81 2.30 2.26 1.63

61 1.71 1.04 1.49 2.38 2.46 1.19 1.79
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5 6 7 8 9 10 11

62 3.42 2.52 2.51 2.56 2.88 1.02 2.37

63 4.36 2.65 2.80 2.58 2.98 2.75 3.17

64 0.69 0.95 1.67 1.49 1.60 1.79 1.46

65 2.90 1.34 1.64 2.23 1.70 0.94 1.48

66 4.86 2.58 1.95 3.13 3.07 4.31 3.88

67 5.98 5.83 1.61 2.73 2.40 2.41 1.84

68 3.21 2.86 1.92 1.96 1.28 2.13 1.46

69 3.75 3.32 2.73 3.49 3.16 2.61 3.17

70 1.98 1.70 1.96 1.41 1.22 0.80 1.04

71 1.67 1.75 2.23 1.66 1.56 1.20 1.35

72 3.38 3.43 1.82 1.10 1.01 0.71 1.23

73 12.51 11.07 5.41 4.45 4.82 1.26 4.37

74 7.30 6.98 3.94 2.28 3.50 1.39 3.21

75 3.94 1.26 1.56 1.42 1.62 1.36 1.66

76 3.81 1.67 1.62 2.62 2.02 1.51 1.34

77 1.76 1.05 1.64 1.82 1.65 1.48 1.73

78 2.94 1.86 2.54 2.14 2.59 3.52 3.11

79 3.70 2.34 2.32 2.36 2.84 0.57 2.43

80 2.21 2.11 2.00 1.94 2.03 2.21 1.86

81 3.77 2.15 2.40 2.38 2.96 1.66 2.84

82 4.45 4.19 2.36 2.75 2.39 1.96 3.08

83 7.64 7.87 3.74 3.57 2.90 2.75 2.76

84 3.16 1.32 1.63 1.12 0.86 1.14 0.69

85 3.83 2.09 1.91 1.63 1.64 1.30 1.67

86 15.84 14.97 9.67 8.92 8.73 4.08 6.41

87 5.37 5.16 1.23 1.09 0.51 1.59 1.42

88 4.77 5.35 2.12 1.45 1.43 0.44 0.53

89 6.08 5.71 2.93 2.54 3.33 2.63 3.79

90 4.42 3.18 4.00 3.84 3.57 3.40 3.20

91 7.01 6.69 2.24 2.28 1.83 3.75 2.14

92 4.34 2.78 1.75 1.83 1.19 1.57 0.75
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5 6 7 8 9 10 11

93 8.69 8.40 2.42 3.36 2.53 4.49 2.67

94 0.91 1.34 1.54 1.15 1.34 1.19 1.28

95 1.40 0.77 1.29 1.15 0.93 0.73 0.70

96 2.89 3.02 4.33 2.15 5.64 3.55 6.06

97 3.36 3.99 3.10 2.60 3.20 3.38 3.03

98 4.46 2.98 2.92 2.70 2.77 2.07 2.65

99 3.73 1.37 1.58 1.49 1.67 1.39 1.71

100 4.68 4.75 5.06 3.40 4.45 3.81 3.64

101 1.84 1.75 4.14 2.19 4.85 2.31 4.36

102 4.46 3.43 4.08 3.74 3.83 3.36 3.28

103 6.44 6.17 0.93 1.18 1.17 1.91 2.02

104 2.23 1.16 0.61 1.11 1.22 1.71 1.52

105 3.45 2.03 2.21 2.17 2.02 1.82 1.23

106 3.88 2.46 2.52 2.43 2.20 2.00 1.48

107 7.43 7.36 2.87 2.31 2.06 2.98 2.10

108 3.52 2.78 3.85 3.28 3.31 3.14 3.11

109 3.77 1.23 0.57 2.06 1.79 3.00 2.14

110 4.01 4.02 1.21 1.55 1.54 1.62 1.60

111 0.61 0.78 2.97 2.10 3.08 2.10 3.54

112 3.14 2.70 2.77 2.30 2.05 1.55 1.79

113 2.85 2.63 2.84 2.30 2.11 1.58 1.85

114 5.60 5.85 3.82 4.34 3.96 4.09 3.38

115 7.77 7.19 5.70 5.63 5.41 4.11 4.68

116 2.61 2.17 1.84 1.14 2.85 1.29 3.57

117 10.97 10.91 7.16 6.22 6.25 3.32 5.92

118 6.16 5.44 3.66 2.75 3.35 2.11 1.83

119 5.06 5.41 2.10 2.71 2.00 3.90 1.72

120 8.12 8.16 2.40 1.06 2.33 1.89 3.10

121 4.71 4.37 5.14 4.43 4.93 2.31 5.16

122 4.56 4.86 1.36 1.54 1.77 2.80 1.66

123 6.05 6.10 4.14 2.52 4.27 3.76 4.63
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5 6 7 8 9 10 11

124 2.10 2.14 2.96 2.28 3.12 1.48 3.00

125 12.32 13.55 8.05 6.64 6.12 3.77 5.63

126 3.06 0.52 0.50 0.45 0.53 0.13 0.39

127 5.35 4.23 4.26 4.22 4.34 3.40 4.08

128 2.32 2.19 2.51 1.95 1.78 1.30 1.55

129 5.51 5.26 5.62 5.21 5.17 4.65 4.75

130 4.09 2.47 2.35 2.08 2.12 1.61 2.08

131 1.05 1.31 1.96 1.42 1.38 1.20 1.21

132 4.79 4.87 5.32 4.80 4.76 4.21 4.29

133 3.49 1.70 1.53 1.24 1.23 0.96 1.29

134 0.65 1.07 1.83 1.34 1.36 1.30 1.20

135 5.50 5.70 6.16 5.65 5.62 5.09 5.18

136 3.85 2.18 2.09 1.74 1.79 1.31 1.76

137 1.26 1.38 1.99 1.44 1.36 1.11 1.18

138 5.31 5.50 5.95 5.41 5.35 4.71 4.82

139 3.07 2.65 2.75 2.27 2.02 1.55 1.79

140 6.77 6.09 6.28 6.43 6.63 5.36 6.17

Table 19: L∗a∗b∗ differences for all 140 patches for higher order polynomials
when using the adaptive mapping. The patches are consecutively numbered from
left to right, starting at the upper left corner of the color chart. For details on the
used method see section 7.3.
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E.5 Treating the Camera as a Black Box

R G B

1 -62.00 -13.77 -1.37

2 47.27 7.05 -0.15

3 124.57 126.82 118.12

4 -26.69 62.20 44.63

5 53.17 19.91 7.56

6 121.82 121.93 111.66

7 -13.02 91.41 69.61

8 56.30 28.36 14.79

9 119.17 113.61 106.26

10 -18.24 79.25 66.31

11 50.58 14.43 4.28

12 119.13 114.29 106.78

13 48.16 6.32 2.03

14 -63.04 -11.91 16.23

15 124.05 125.66 116.29

16 -57.17 -86.93 -40.63

17 9.35 -38.76 -19.79

18 7.97 100.73 98.31

19 107.53 90.09 69.92

20 -1.53 49.41 -25.19

21 4.25 -20.15 4.16

22 112.78 65.30 60.79

23 -6.49 -10.60 30.71

24 38.88 89.19 32.47

25 -13.93 -30.84 -67.56

26 80.24 48.42 46.30

27 -13.80 -77.00 -56.54

28 39.88 -9.25 -10.25

29 45.45 2.11 -2.91

30 -33.37 -22.21 12.76
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R G B

31 -38.94 -25.49 29.26

32 -9.58 54.47 34.83

33 100.41 97.02 40.54

34 -7.36 23.02 87.18

35 56.65 -8.01 -14.64

36 -2.19 -21.09 22.82

37 150.12 155.67 82.61

38 119.35 72.94 13.56

39 -47.64 -15.57 -61.38

40 57.72 59.38 51.91

41 5.11 34.67 54.89

42 127.46 130.60 123.22

43 -66.63 -24.99 -5.58

44 -54.61 -45.44 31.11

45 85.47 90.73 92.14

46 -47.96 -53.99 -61.02

47 89.05 111.03 141.68

48 129.85 141.84 98.77

49 71.04 72.81 67.98

50 158.21 157.72 53.56

51 -37.98 -74.44 -16.78

52 49.63 96.51 86.05

53 6.01 108.27 104.64

54 10.00 -34.56 -20.01

55 29.97 19.39 22.84

56 -77.60 -43.33 -2.88

57 131.05 138.20 129.21

58 35.07 105.09 126.30

59 7.25 46.16 56.95

60 -67.53 -85.79 -90.30

61 -26.96 61.10 49.22
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62 18.92 61.77 45.70

63 25.58 13.78 -4.32

64 61.20 33.00 20.63

65 78.36 48.07 38.61

66 107.23 94.33 85.07

67 -66.93 -85.97 -46.31

68 8.87 -59.64 -53.41

69 35.25 4.72 -4.13

70 34.87 -18.33 -17.76

71 37.19 -17.11 -20.05

72 14.68 25.49 33.47

73 108.53 136.17 105.75

74 10.09 -0.54 -45.96

75 133.65 145.14 131.89

76 77.88 43.57 34.22

77 66.70 29.43 20.11

78 25.57 -10.64 -16.48

79 31.27 57.50 49.22

80 -0.81 63.64 64.19

81 19.71 22.01 17.93

82 78.01 81.80 34.58

83 62.53 13.71 -35.75

84 124.38 124.42 115.76

85 -100.81 -103.66 -63.73

86 115.44 135.35 109.42

87 3.93 34.73 69.82

88 33.66 -13.27 -60.12

89 6.41 24.66 -60.60

90 51.33 55.18 4.77

91 83.67 84.14 56.00

92 27.45 34.69 -22.64
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93 103.86 109.28 55.06

94 31.38 28.25 -48.41

95 39.82 -16.39 -19.43

96 118.78 74.76 39.84

97 97.51 39.65 20.36

98 -130.76 -155.42 -79.11

99 126.78 130.93 118.32

100 29.39 27.01 -5.54

101 72.52 103.03 53.22

102 -1.01 -7.92 -63.04

103 3.92 31.79 -64.95

104 20.49 33.33 4.02

105 20.38 6.31 -21.98

106 24.22 29.83 -25.33

107 87.22 66.29 48.23

108 21.52 25.77 -59.88

109 102.81 87.59 77.88

110 83.76 4.31 8.32

111 97.55 -7.70 20.71

112 28.93 -33.60 -24.79

113 34.81 -20.58 -17.93

114 102.29 81.92 71.11

115 68.54 39.66 6.23

116 96.05 67.06 55.78

117 120.50 119.56 106.85

118 63.74 65.24 25.72

119 95.72 -12.77 17.19

120 132.05 42.90 80.47

121 131.45 83.01 85.16

122 63.70 35.80 -14.21

123 93.64 0.36 15.72
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124 105.28 -31.34 18.45

125 125.55 134.71 117.68

126 126.55 130.89 120.40

127 -157.73 -222.38 -139.47

128 35.36 -19.04 -17.10

129 134.97 149.82 133.22

130 -113.30 -122.97 -74.57

131 36.66 -14.75 -18.35

132 134.39 148.32 131.89

133 -87.85 -70.37 -30.17

134 44.93 2.62 -2.81

135 141.36 162.52 145.33

136 -110.21 -116.09 -60.72

137 42.06 -3.51 -3.99

138 137.66 155.27 138.18

139 31.90 -25.50 -17.38

140 -193.93 -295.46 -167.69

Table 20: Residuals for all 140 patches for channels R, G and B when treating the
camera as a black box. The patches are consecutively numbered from left to right,
starting at the upper left corner of the color chart. For details on the used method
see section 7.4.
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