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Abstract

Illustrative visualization aims to effectively communi-

cate a specific information. In traditional illustration the

choice of appropriate styles and rendering techniques is

guided by the intention of the artist. For illustrative vol-

ume visualizations it is difficult to specify the mapping

between the 3D data and the visual representation.

We introduce a layer between data and visual appear-

ance that allows the semantic specification of the visu-

alization mapping. Our framework enables a linguis-

tic formulation of rendering styles and techniques. A

fuzzy logic rule base determines the constraints of the

resulting interactive illustration. The fuzzy logic is auto-

matically translated into a shader program and is evalu-

ated directly on the GPU. The framework provides high

quality illustrations that are guided by the specification

of semantic illustration rules. The evaluation of the

fuzzy logic on the GPU allows user-guided and view-

dependent changes of the resulting illustrations. We

show examples of semantics driven illustrative volume

rendering at interactive frame rates.

1 Introduction

Illustrations are depictions that aim to intuitively ex-

plain topics of interest. The illustration is typically non-

photorealistic and guided by its intention. Two illus-

trations showing the same object but with different in-

tention might look completely different. The intention

of an illustration defines the way it is drawn and which

features of the underlying object are shown. Using the

appropriate styles and depicting the features of interest

accurately is the most important task of scientific illus-

tration. Interesting regions are drawn to become salient

features in the final image. Regions of less interest are

drawn using more subtle styles or are even overdrawn by

more important regions. The visual appearance of fea-

tures in the final rendering is guided by the semantics

that describe the intention of the illustration.

Medical doctors for instance use simple illustrations for

the purpose of patient briefing. The illustrations de-

scribe a specific diagnosis, the future treatment of dis-

eases, or a planned surgical intervention. In the optimal

case patients are shown illustrations that are consistent

with their anatomy and the special instance of their dis-

ease. However, hand drawn (traditional) illustrations are

elaborate pieces of art usually done in a very time con-

suming way. Therefore it is impossible to create high

quality hand-drawn illustrations for each patient.

One goal of illustrative medical visualization is to pro-

duce patient specific illustrations derived from mea-

sured data. CT-scans or MRI-scans provide measure-

ments of the patients anatomy and can be used to au-

tomatically generate illustrations. The illustrations are

dependent on the intention and therefore constrained by

the diagnosis, the treatment, or the possible surgical in-

tervention. The illustration must be guided by the un-

derlying semantics. Similar to medical illustrations, se-

mantic driven illustrations are used in various other ex-

pert areas as well (e.g., architecture, biology, machine

construction, etc.).

In this paper we demonstrate the concept of seman-

tics driven illustrations on volumetric (mainly medical)

data. However, the presented concept can be adapted

to other areas as well. The semantics that guide the il-

lustration emanate from different sources. We differen-

tiate between high-level semantics (expert semantics),

and low-level semantics (data semantics, illustration se-

mantics, and user-driven semantics). Expert semantics

as the most obvious kind of semantics originate from

the specialization field of the expert. The purpose of a

CT-scan, which parts of the body are scanned as well

as the diagnosis are examples for known semantics that

can be used in the automated generation of illustrations.

Data semantics are depend on the available data. CT-

scans, for example, provide information on tissue densi-

ties. Different ranges of density correspond to seman-

tically meaningful tissues (like air, soft tissue, bone,

metal, etc.). Illustration semantics originate from the

area of traditional illustrators. Illustrators use specific
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vec4 GetColor(...)

{

       //evaluation of the fuzzy logic

       ...

}

void main()

{      //rendering procedure

       ...

       do

       {       //perform volume ray casting

               vec4   vecSampleColor = GetColor(vecPosition);

                ...

fuzzy logic 

rule base

shader program

void main()

{

       vec4   vecRayColor =  vec4(0.0, 0.0, 0.0, 0.0);

       vec4   vecPosition =  vec4(0.0, 0.0, 0.0, 0.0);

       do

       {

               vec4   vecSampleColor = #TEMPLATE_GETCOLOR;

               if   (vecSampleColor.a > 0.0)

               {

                     ...

shader program template

interactive illustration
user-driven semantics

viewpoint, user focus, etc.

illustration semantics

rendering technique,

illustration technique,

style description, etc.

data semantics

modality, protocol,

etc.

Figure 1: Outline of the presented semantics driven rendering framework: The different kinds of low-level seman-

tics guide the generation of the interactive illustration.

semantics for the description of styles and of rendering

techniques. Examples include:

• The way regions of interest are emphasized and the

remaining features are drawn to provide context.

• The description of rendering styles.

• The way spatial relations are emphasized or to the

contrary ignored to depict occluded structures.

User-driven semantics originate from the interactive il-

lustration itself. Examples are:

• The direction the depicted object is viewed from.

• The distance between features and the image plane.

• The region of user focus (e.g., position of the

mouse cursor).

These user-driven parameters taken be used to interac-

tively change the illustration. The user interacts with

semantically meaningful parameters that affect the ap-

pearance of the depicted object.

In Figure 1 an outline of semantics driven illustrative

rendering is shown. The central component in our sys-

tem is a fuzzy logic rule base. The rules are guided by

the different kinds of semantics. The if part of the rule

states constraints using data semantics and user-driven

semantics. The then part of the rules describes the con-

sequences for the illustration using illustration seman-

tics. A shader program template is chosen according

to the intended illustration technique. The rule base is

translated into shader code to complete the shader pro-

gram template. The result is an interactive semantics

driven illustration. The user explores the depicted object

interacting with semantically meaningful parameters.

Expert semantics as high-level semantics are not shown

in Figure 1. The fuzzy rule base for one specific in-

stance of an illustration application is affected by the

low-level semantics. The expert semantics define the

specific case itself and therefore completely determine

the set of rules that are applicable. In this paper we as-

sume that expert semantics are known for the given use

case. We concentrate on the technical issues of illustra-

tive rendering that is driven by low-level semantics. In

earlier work [RBG07] we introduced the use of data and

illustration semantics for illustrative volume rendering.

In this paper we extend the previously presented frame-

work with the following main contributions:

User-driven semantics: We introduce user-driven se-

mantics for the generation of interactive illustrations.

Interactive parameters are taken to derive user-driven

semantics. For example, adjustable slicing planes, the

mouse cursor, and view-dependent parameters are ma-

nipulated interactively. Semantics like distance to the

mouse cursor, distance to the slicing plane, distance to

the image plane can be used to influence the illustration.

With user-driven semantics it is possible to change ren-

dering styles and the opacity of features automatically

and in a viewpoint-dependent manner, resulting in an

interactive illustration.
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GPU based evaluation of the fuzzy logic pipeline: In

this paper we describe a GPU based implementation

of the fuzzy logic component. All steps in the fuzzy

logic reasoning are evaluated directly on the GPU. The

shader program is automatically generated according to

the fuzzy logic rule base and adapted each time the rule

base changes.

Flat rendering mode: Illustrators often ignore spatial

relations and draw layers with more important features

on top of other layers. This results in a flat depiction

of the important features on top of more contextual re-

gions. In this paper we present the flat rendering mode

that uses the concept of prioritized layers. Layers of

high priority overdraw layers of lower priority resem-

bling the above described illustration technique.

Presentation of a general rendering concept: We

use automatically generated shader programs. The pro-

grams are generated using shader program templates.

The templates provide the rendering code. Placehold-

ers are used in the shader program templates and are

automatically substituted depending on the given fuzzy

logic. The automatic shader program generation is inde-

pendent of the rendering template. Different shader pro-

gram templates can be used to generate shader programs

for volume rendering as well as for surface rendering.

The remainder of the paper is structured as follows: In

Section 2 we briefly review the related work. In Sec-

tion 3 we give an brief overview of the implemented sys-

tem. In Section 4 we explain the evaluation of rendering

attributes using fuzzy logic. This process is carried out

on the GPU. We give details on the implementation of

the GPU based fuzzy logic. The evaluated rendering

attributes define the visual appearance of the depicted

object. Image generation employs those rendering at-

tributes that have been evaluated with fuzzy logic. The

process of rendering is described in Section 5.

2 Related Work

The presented approach is a general rendering concept

that translates low-level semantics into images. A map-

ping from data semantics and user-driven semantics to

illustration semantics is specified using fuzzy rules. Be-

cause of the wide variety of diverse illustration tech-

niques that can be achieved with this framework exten-

sive related work exists. However, the strength of our

approach is the linguistic definition of the different il-

lustration techniques within a uniform framework.

Earlier work dealing with the automatic generation of

imagery from semantics was done by Seligmann and

Feiner [SF91]. In their system they use design rules to

achieve intent-based 3D illustrations of geometric ob-

jects. The work of Coyne and Sproat [CS01] follows

a similar idea. Their text-to-scene approach translates

simple semantics into images. Svakhine et al. [SES05]

use illustration motifs to adjust the illustrations to the

intended audience.

Hauser et al. [HMBG01] introduce two-level volume

rendering that allows the combination of multiple meth-

ods in one final rendering. Based on volume attributes

other previous work [BG05, LM04] showed the se-

lective application of specific styles and rendering at-

tributes. For the parameterization of rendering styles

we use an approach that is based on the work of Sloan

et al. [SMGG01]. They present a technique to render

pre-defined artistic styles.

A mapping from multi-dimensional attributes to visual

appearance was shown by Kniss et al. [KKH02]. They

present a method based on multi-dimensional trans-

fer functions. Further, the quantification of statisti-

cal measures of multiple fuzzy segmentation volumes

was shown in related work [KUS∗05]. The formulation

of a mapping from attributes to visual appearance us-

ing mathematical expressions was shown in the work

of McCormick et al. [MIA∗04] as well as Stockinger

et al. [SSBW05]. Set operators and numerical opera-

tors were used by Woodring and Shen [WS06] to com-

pare multi-variate as well as time-varying data. Sato et

al. [SWB∗00] use classification rules to identify tissue

structures in multi-modal data. Viola et al. [VKG04]

present importance-driven volume rendering that is con-

ceptually similar to our flat rendering mode. However,

our focus lies on the semantic specification of the im-

portance. Krüger et al. [KSW06] show a technique for

the visualization of hotspots. Our system allows similar

results with the introduction of user-driven semantics.

3 Semantics Driven Rendering

System

The idea of semantics driven rendering makes use of

the semantics that accompany the process from acquir-

ing data to drawing an illustration. We use the seman-

tics in a fuzzy rule base. Rules employ data semantics

such as ”if density is high then ...” or ”if diffusion is

low then. . . ”. Other rules employ illustration seman-

tics such as ”if curvature is high then. . . ” or ”if fea-

ture is focus then. . . ”. User-driven semantics are rep-

resented in the rule base by rules like ”if distance to

slicing plane is low then. . . ”. The rules can further use
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antecedent

density

distance to slicing plane

attribute

low, middle, high

zero, very low, low

value

consequents

bone-style

skin-style

contour

transparent, opaque

transparent, opaque

none, thin, thick

user focus near, far

rules

if antecedent then consequent

if density is high and user focus is near then bone-style is opaque

if distance to slicing plane is very low then skin-style is transparent

rendering attribute valueis

is

Figure 2: Fuzzy logic rules consist of antecedents and

consequents. The antecedents (i.e., the if part) state a

condition that has implications on the consequent (i.e.,

the then part). The gray boxes show examples for logi-

cal components that can be used in the antecedents, ex-

amples for consequents and exemplary rules that can be

used in the rule base of our system.

any logical combination of the above mentioned seman-

tics such as ”if distance to slicing plane is low and den-

sity is high then. . . ”. The if -part of rules is called the

antecedent, the then-part is called the consequent. The

consequent describes the consequences for illustrative

styles if the antecedent of a rule is true. In fuzzy logic

the antecedent of a rule is not simply true or false but

it can also have any transitional value in between. The

consequent in our system describes the resulting render-

ing attributes, like ”. . . then bone-style is transparent”

or ”. . . then contours are thick”. Figure 2 shows the

structure of fuzzy rules. Antecedents consist of logi-

cal combinations of semantic values for attributes. The

consequent consists of a list of semantic values for ren-

dering attributes. The gray boxes in Figure 2 show cor-

responding examples for antecedents, consequents and

fuzzy logic rules.

The rendering styles are parameterized. Each parameter

is evaluated separately using all fuzzy logic rules that

have consequences for the parameter. The antecedents

of the rules are evaluated describing to which degree a

rule is true. Implication, aggregation and defuzzyfica-

tion are the remaining steps that are performed to derive

a value in the interval 0..1 for each rendering attribute.

It is a challenging task to implement a volume rendering

system that evaluates fuzzy rules per sample to deter-

mine rendering attributes interactively. Modern CPUs

are not capable of evaluating fuzzy logic rules for a 3D

volume several times per second. On the other hand

modern GPUs do not offer the flexibility to fully imple-

ment a fuzzy logic system. Our implementation makes

use of the flexibility of CPUs and the processing capa-

bilities of modern GPUs.

fuzzy logic 

rule base

CPU GPU

membership functions

pre-calculated 

fuzzy logic functions texture array

texture array

vec4 GetColor(...)

{

       //evaluation of the fuzzy logic

       ...

}

shader code

Figure 3: System overview: The fuzzy logic rule base

is parsed and translated into shader code on the CPU.

Membership functions and pre-calculated fuzzy logic

functions are encoded in 1D texture arrays. The GPU

makes use of the generated shader program and the tex-

ture arrays to perform interactive semantics driven illus-

trative rendering.

In Figure 3 an overview of the components of the sys-

tem is shown. The rule base is translated into shader

code on the CPU. The shader code is used to gener-

ate a shader program for volume rendering performed

on the GPU. The membership functions as well as pre-

calculated fuzzy logic functions are stored in 1D texture

arrays that are used on the GPU to efficiently evaluate

these functions.

The realized framework provides a user interface for the

design of styles, the construction of membership func-

tions, the definition of the interactive attributes, and for

the input of the rules. The shader program has to be
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adapted for each change of the rule base. The generation

of the shader code and the update of the shader program

is the most costly operation in our system. However it

has only to be done if the rules change and does not take

longer than a second. Changes in membership functions

result in an update of the corresponding texture arrays.

The update of the texture arrays is faster than the update

of the rule base and can be done interactively.

In Section 4 we give details about the generation of

shader code, the pre-calculation of fuzzy logic func-

tions, and the fuzzy logic evaluation on the GPU.

4 Fuzzy Logic on the GPU

Our framework parses the fuzzy logic rules and gen-

erates appropriate shader code for the fuzzyfication,

fuzzy logic operations, aggregation, implication and de-

fuzzyfication. The entire fuzzy logic is carried out on

the graphics hardware allowing for interactive semantic

driven volume rendering. In the following we describe

the fuzzy logic used in our framework. We describe the

evaluation of the antecedents, the implication, the aggre-

gation of multiple rules, and finally the defuzzyfication.

A more elaborate discussion on fuzzy logic in general

can be found in the literature [YZ92, TU97].

4.1 Evaluation of Antecedents

high

densitydistance to coursor

if  distance to coursor is low  and  density is high then ...

0.1 0.7

low

min

0.95

0.2

result = 0.2

Figure 4: Evaluation of antecedent of an exemplary rule.

The membership functions are evaluated and combined

with fuzzy logic arithmetics. In this example the dis-

tance to cursor is 0.1 and the density is 0.7.

The evaluation of the antecedents is done using fuzzy

logic operations. The antecedent contains a logical com-

bination of semantic values of attributes. In Figure 4 two

examples of attributes are shown. The distance to cur-

sor is a user-driven attribute that encodes the distance

to the mouse cursor for each sample. In the example of

Figure 4 the membership function of the values low is

shown for the attribute distance to cursor. The attribute

density has the semantic value high in Figure 4. The

membership functions are evaluated for each attribute

that occurs in the antecedent of the rule. In Figure 4

we assume the value for distance to cursor to be 0.1 re-

sulting in a membership of 0.95 for the semantic value

low. Thus the distance to cursor is low with a member-

ship of 0.95 in the example above. The evaluation of

the membership function for density is high results in a

membership of 0.2 for an assumed density of 0.7. The

fuzzy logic operation and results in the minimum of the

operands. In Figure 4 the result of the antecedent of the

rule if distance to cursor is low and density is high then

. . . is the minimum of the two operands of the logical

and and is therefore 0.2.

Other fuzzy logic operations are the or and the unary

not operation. The or is evaluated as the maximum of

the operands and the unary not is one minus the operand.

In our implementation the rules are parsed and trans-

lated into shader code. We build a fuzzy logic expres-

sion tree containing the operations and, or, and not. The

nodes of the expression tree are substituted with the cor-

responding operations min, max, and 1.0−. . . . The leafs

of the tree are the operands of the fuzzy logic expression

(i.e., the membership functions). We store the member-

ship functions as 1D textures and combine them into a

1D texture array. We substitute the leaf nodes of the

if  (distance to coursor is low  and  density is high) 

or distance to slicing plane is low then ...
C

and

or

A

A

B

B

C

...

//membership function evaluation

float   A = texture1DArray(...);

float   B = texture1DArray(...);

float   C = texture1DArray(...);

//evaluatuion of the antecedent

float antecedent = max( min(A, B), C );

...

expression tree shader code

Figure 5: Shader code generation for the evaluation of

antecedents. An expression tree and the corresponding

shader code are generated from a simple rule.

expression tree with texture lookups in the 1D texture

array and expand the expression tree to generate valid

shader code. Figure 5 shows an example of a simple

rule, the constructed expression tree, and the translation

into shader code.
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4.2 Implication

The evaluated antecedent has an implication on the con-

sequent of a rule. The membership functions of the

styles in the consequents are affected by the antecedent.

Let the value of an antecedent be a and the membership

function of a style be m(x) then the implication on this

membership function is given by:

m′(x) = min(m(x),a) (1)

bone-style

opaque
opaque

bone-style

a = 0.2

if   antecedent  a    then bone-style is opaque1

1

a = 0.5

if   antecedent  a    then bone-style is semi transparent2

2

bone-style

semi transparent

bone-style

semi transparent

m(x)

m(x)

m’(x)

m’(x)

Figure 6: Implications of two different rules affecting

the same style. The membership functions opaque and

semi transparent are truncated according to the values

of the respective antecedents.

The membership function of a style is truncated at the

height of a. In Figure 6 two examples of implications

are shown. The upper example shows the implication

on the membership function opaque of the style bone-

style. The antecedent value of a1 truncates the mem-

bership function at a height of 0.2. The lower example

in Figure 6 shows the effect of implication on a second

membership function of the same style. The member-

ship function semi transparent is truncated at a height

of 0.5 because of the exemplarily chosen value of a2.

4.3 Aggregation

Aggregation is the process of building the sum of all

membership functions that are non-zero after implica-

tion and that affect the same style. Aggregation has to

be done for each style separately. Each aggregation re-

sults in a (usually more complex) function for one style.

In Figure 7 the aggregation of two functions for the style

bone-style can be seen. The two functions are the result

opaque

 membership functions for bone-style after implication

semi transparent
+

aggregated function

m’(x)
1

m’(x)
2

f(x) =             +m’(x)
1

m’(x)
2

Figure 7: Aggregation of two membership functions of

the same style. The aggregated function is the sum of

all truncated membership functions affecting the same

style.

of the previous implications and are aggregated using

the sum.

4.4 Defuzzyfication

The defuzzyfication is the process of deriving a crisp

value for each style used in one or more consequents.

Defuzzyfication for one style is done by finding the cen-

troid of the aggregated function for this style. The de-

fuzzyfied value is used as rendering attribute and influ-

ences the visual appearance of the sample.

4.5 Implication, Aggregation and Defuzzi-

fication on the GPU

Obviously implication, aggregation and defuzzyfication

are operations that are not straightforward to implement

on the GPU. The representation of 1D functions (i.e., the

membership functions of semantic values for the styles),

the truncation of these functions (i.e., the implication),

the sum of the truncated functions (i.e., the aggregation)

and the calculation of the centroid of a potentially arbi-

trary shaped function (i.e., the defuzzyfication) are tasks

that are hard to achieve on the GPU. We show that the

computationally most expensive tasks can be precom-

puted and stored in textures.

The derivation of the defuzzyfication as described in our

earlier work [RBG07] follows: For defuzzyfication we

want to find the centroid of the aggregated function. Let

f (x) be the result from the aggregation, then its centroid

c f is given by the equation:

c f =

∫

x f (x)dx
∫

f (x)dx
(2)
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Let the semantic values respectively the membership

functions of one style be m j(x). The membership func-

tion for the semantic value affected by rule i after the

implication is then given by the equation

mi
′(x,ai) = min(ai,mi(x)) (3)

where ai is the antecedent value of the rule i. The aggre-

gated membership function f (x) is then given by

f (x) = ∑
i∈I

mi
′(x,ai) (4)

where I is the set of indices of rules that affect the given

style. The centroid of the aggregated function can then

be calculated by substituting Equation 4 in Equation 2:

c f =

∫

x∑i∈I mi
′(x,ai)dx

∫

∑i∈I mi
′(x,ai)dx

(5)

We can rewrite Equation 5 as follows:

c f =
∑i∈I

∫

xmi
′(x,ai)dx

∑i∈I

∫

mi
′(x,ai)dx

(6)

In Equation 6 it can be seen, that the integrals (i.e., the

summands in the nominator as well as in the denom-

inator) do solely depend on the ai. This allows us to

pre-compute the summands of the nominator as well

as of the denominator and store them in a lookup ta-

ble. During evaluation the ai are used as index for the

lookup tables. For each rendering attribute Equation 6

has to be evaluated, resulting in a total of 2n texture

lookups for the precomputed nominators and denomi-

nators, 2(n− 1) summations and one division, where n

is the number of rules that affect the rendering attribute.

The shader code for the implication, aggregation and de-

fuzzyfication resulting from Equation 6 is automatically

generated.

5 Rendering

In Section 4 the evaluation of the fuzzy logic on the GPU

is described. The result of the fuzzy logic is a floating

point value for each rendering attribute that was used

in the consequents of the fuzzy rules. The flexibility of

our framework is achieved using shader program tem-

plates. A shader program template implements a ren-

dering technique. It specifies rendering attributes, that

can be used in the consequent of rules. Placeholders are

put in the shader program template at the fuzzy logic

specific parts of the rendering procedure. The parts con-

taining the fuzzy logic evaluation of the rendering at-

tributes are generated automatically and complete the

shader program template.

We describe two different shader program templates im-

plementing volume rendering techniques. In Section 5.1

the artistic volume rendering template is described. Sec-

tion 5.2 deals with the more advanced flat rendering

mode template.

5.1 Artistic Volume Rendering Template

We use a direct volume rendering approach for the vi-

sualization of volumetric data. Viewing rays are cast

through the volume and sampled at equidistant sample

positions. For each sample an opacity transfer func-

tion is evaluated determining the visibility of the cur-

rent sample. Samples with opacity greater than zero

are colored. In the artistic volume rendering template

the color evaluation is the only part of the shader pro-

gram template that depends on the fuzzy logic rules.

The color evaluation is done using artistic styles. Each

style is a rendering attribute that is evaluated accord-

ing to the fuzzy rules. The rules ensure that styles

are applied gradually and selectively to different re-

gions. The styles are described using style transfer func-

tions [BG07]. Style transfer functions allow the param-

eterization of artistic styles. A style transfer function is

given by a set of images of shaded spheres. In Figure 8

style a = 0.8

style b = 0.4

normal in eye-space = 

style a over style b

=+

style b over style a

=+

Figure 8: Example for the compositing of two styles is

shown. The current exemplary sample has a value of 0.8

for style a and a value of 0.4 for style b. The correspond-

ing spheres are outlined in yellow. The normal in eye-

space for the current sample is shown as yellow arrow.

The color for each style is evaluated accordingly (out-

lined in light green). The compositing is done following

the priority of the styles. The final color is outlined in

dark green.

two examples for styles can be seen. Note that in the ex-

ample for simplicity both styles vary from transparent
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to opaque but this is not necessarily the case. Another

example could be that the line thickness of a style is pa-

rameterized.

The defuzzyfication gives a floating point value for each

style. Figure 8 shows exemplary results of the defuzzy-

fication outlined in yellow. In this example the defuzzy-

fication for style a resulted in 0.8 and for style b in 0.4.

The resulting color for each style depends on the normal

of the current sample in eye-space. The yellow arrows

in Figure 8 indicate an exemplary normal in eye-space.

The normal in eye-space is used to index the image of

the spheres. The evaluation of a style is described in

more detail in previous work [BG07]. In Figure 8 the

resulting colors for the styles are outlined in light green.

The final color of the sample is composited from all used

styles. The styles are prioritized and composited from

the bottom to the top style, following the widely known

compositing scheme used in image manipulation pro-

grams (such as Adobe Photoshop or GIMP). In Figure 8

two possibilities for the resulting color are shown. The

result depends on the priority of the styles. If the priority

of style a is higher then the priority of style b (i.e., style

a over style b) then the resulting style is a blueish sphere

and the final color of the sample is blue (outlined in dark

green in Figure 8). If the priority of style a is lower then

the priority of style b (i.e., style b over style a) then the

resulting style is a violet sphere. The final color of the

sample is also outlined in dark green in Figure 8.

5.2 Flat Rendering Mode Template
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Figure 9: The flat rendering mode favors samples of

higher priority during ray casting. The yellow line de-

picts a viewing ray. Along the ray common compositing

is done until a region of higher priority is reached. The

composited color is deemphasized according to the flat-

ness parameter.

Spatial relations are often emphasized to aid the viewer

of an illustration in correctly interpreting the image.

However, in traditional illustration spatial relations can

also be completely ignored in order to show hidden

structures of higher importance. The flat rendering

mode template extends an artistic volume rendering

template. It uses the prioritization of styles to achieve

the effect of ignoring spatial relations. If the flat render-

ing mode is used, regions in the volume that use styles

of higher priority overdraw regions with lower prior-

ity. This is conceptually similar to the work of Viola et

al. [VKG04]. Our method can be applied gradually and

selectively driven by data and user-driven semantics.

Figure 9 depicts the rendering process using the flat ren-

dering mode. The dashed yellow line shows a viewing

ray. The blue and red boxes denote two regions that

use different styles according to specific rules. Samples

along the viewing ray are evaluated and composited. If

the ray reaches a region of higher priority the ray-color

is influenced accordingly to the flatness parameter. A

flatness parameter of 0 results in common volume ren-

dering. A flatness parameter of 1 always shows the re-

gions with highest priority. At each position the ray en-

ters a region of higher priority the ray-color cr(xi) is set

to:

cr(xi) = cr(xi−1)
(

1− p f

)

(7)

where xi is the current sample position, xi−1 is the posi-

tion of the last sample and p f is the flatness parameter.

styles

p
ri

o
ri

ty

flatness0 1p
f

Figure 10: Example renderings using different values

of the flatness parameter. The inner cube has higher

priority and is therefore shown for a flatness parameter

greater than zero.

Figure 10 shows a volume rendering of a cube dataset

where densities increase towards the cube center. A sim-

ple rule states that the reddish style is high for regions of

high density. The left most rendering of Figure 10 shows

just the outer surface of the cube. The region with the

style of higher priority remains hidden. The rendering

in the middle of Figure 10 uses a flatness parameter of

0.5 and the right most rendering a flatness parameter of

1.0.

In all three examples of Figure 10 the flatness param-

eter is set globally. However, the flatness is a seman-

tic parameter that describes the trade-off between show-

ing spatial relationships and showing important regions.

Shader program templates can offer illustration seman-

tics for the use in the fuzzy rules. The flat rendering
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mode template offers the property flatness. The flatness

as any other rendering attribute offered by shader pro-

gram templates can be used in the consequents of fuzzy

rules and is dynamically evaluated per sample. This re-

sults in a local semantics driven application of the flat-

ness parameter.

The flat rendering mode cannot make use of early ray

termination. This reduces the performance for large

datasets. However, the method can be used for the gen-

eration of high quality illustrations or offline rendered

animations.

6 Results

We show a few examples of interactive illustrations

that can be achieved with our system and demonstrate

the possibilities of user-driven semantics and the view-

dependent evaluation of the fuzzy rules. Rules that use

only data semantics define the visual appearance of the

depicted object. The behavior of the interactive illustra-

tion is defined with rules that incorporate user-driven se-

mantics. All results that are presented in this paper were

achieved in interactive sessions using our system with-

out any pre-segmentation of the data. The rules defining

the behavior of the interactive illustrations are shown in

the respective Figures. Rules that solely depend on the

density are not shown in the Figures.

In Figure 11 an illustration of the upper part of the vis-

ible human dataset is shown. A slicing plane is used

to specify a focus region. The slicing plane addition-

ally shows the histological cut data of the visible human

dataset. The spheres used to define the styles are shown

at the bottom of Figure 11. The left most style is applied

in regions very close to the slicing plane. The second

and third styles are used to render the skin. Rules that

depend on the distance to the slicing plane are specified

to modulate the style used for the skin. The right most

style is used for regions of high density (i.e., bones).

The dataset has a size of 2563. Renderings with the

same rules and styles applied are achieved at an aver-

age of 23fps for a view port size of 5122 and a sample

distance of 1.0.

In Figure 12 an interactive illustration of a human body

is shown. The user focus is defined at the position of the

mouse. Rules using the distance to the mouse define the

appearance of the skin. The skin is shown completely

transparent close to the mouse, in unshaded white at

a farther distance and in pink for high distances. The

spheres used for the styles are shown on the left of Fig-

ure 12. The lower two styles are used for the skin color.

if distance to plane is low 

then skin-style is transparent blueish and glossy green is low

if distancne to plane is high 

then skin-style is opaque pink and glossy green is transparent

Figure 11: Rendering of the visible human dataset. A

slice plane of the histological data is shown. The CT-

data is used for the volume rendering providing the con-

text for the slice plane.

The upper two styles are used for the bones and the ves-

sels and are applied according to rules that do solely de-

pend on the density. The dataset shown in Figure 12 has

a size of 2562
× 415. Images with the same rules and

styles applied are rendered at an average of 20fps for a

view port size of 5122 and a sample distance of 1.0.

In Figure 13 renderings of a CT-scan of a human leg

is shown. A slicing plane is used to show the CT-data.

Rules dependent on the distance to the slicing plane are

specified to influence the transparency of the skin and

the soft tissue. Skin and soft tissue close to the slicing

plane are made transparent. The spheres used to cre-

ate the styles are shown on the left of Figure 13. From

left to right the spheres are used to color skin regions,

soft-tissue regions, bone regions, and the metallic im-

plants of the patient. Further, rules were specified that

influence the flatness of the illustration in dependence

on the distance to the slicing plane. The left most ren-

dering shows a rendering fully applying the flat render-

ing mode in all regions. The other renderings use the
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if  distance to plane is not very low 

then skin-style is opaque

if distance to plane is low 

then flatness is medium 

if distance to plane is middle 

then flatness is dominant

if distance to plane is very low 

then flatness is subtle and skin-style is transparent and muscle-style is transparent 

if distance to plane is high 

then flatness is low

Figure 13: Rendering of a CT-scan of a human leg. The distance to the slicing plane influences the rendering styles

and the flatness parameter. The left rendering shows the flat rendering mode fully applied ignoring the spatial

relations. The remaining three renderings show the effect of the rules. The flatness parameter is applied gradually

and selectively. Spatial cues are provided in regions close to the slicing plane.

flat rendering mode gradually only in regions of middle

distance to the slicing plane. This results in illustrations,

that preserve the spatial relations close to and far away

from the slicing plane, but ignore spatial relations in be-

tween. The dataset shown in Figure 13 has a size of

147×162×429. Images with the same rules and styles

applied are rendered at an average of 6fps for a view

port size of 5122 and a sample distance of 1.0.

These simple examples illustrate the power and flexibil-

ity of our approach. The system is easily extensible for

other interactive illustration scenarios. The interactive

behavior of our system can be seen in the accompany-

ing video.

7 Conclusions and Future Work

We presented a rendering concept for interactive illus-

trations that is driven by low-level semantics. In our

system fuzzy logic rules are specified. They linguisti-

cally define a mapping from data attributes respectively

user-driven semantically meaningful parameters to vi-

sual styles and rendering techniques. Our framework

handles a great variety of rendering techniques in a uni-

form way. We showed the interactive semantics driven

specification of rendering attributes such as the flatness

parameter of the flat rendering mode. Interactive illus-

trations were presented that are the result of the semantic

driven rendering concept.

For the future we identified major research challenges

where the current framework might be of significant

value. One of these challenges is the automatic illustra-

tion for medical diagnosis and treatment. Often patients

are examined with expensive equipment. The diagnosis

and the further treatment of the patient are communi-

cated in the language of experts. For example, a typical

diagnosis using a CT-scan is full of semantics encoded

in medical language. We believe that the language of

the medical experts can be automatically translated into

illustrations. These illustrations are undoubtable of help

for the patient to understand her/his situation. The pre-

sented framework is a first step in the direction of au-

tomated semantic illustrations using domain expert lan-
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if penetration depth is low and distance to focus is low 

then skin-style is transparent white

if penetration depth is high or distance to focus is high 

then skin-style is pink

Figure 12: The mouse cursor defines the user focus. De-

pending on the user focus the illustrative rendering is

altered.

guage. We show with our work how low-level semantics

can be translated into interactive illustrations.
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