
Institut für Computergraphik und
Algorithmen

Technische Universität Wien
Karlsplatz 13/186/2

A-1040 Wien
AUSTRIA

Tel: +43 (1) 58801-18601
Fax: +43 (1) 58801-18698

Institute of Computer Graphics and
Algorithms

Vienna University of Technology
email:

technical-report@cg.tuwien.ac.at

other services:
http://www.cg.tuwien.ac.at/
ftp://ftp.cg.tuwien.ac.at/

TECHNICAL REPORT

Rendering Imperfections: Dust, Scratches, Aging,..

Michael Schwärzler
Vienna University of Technology, Austria

supervised by Michael Wimmer
Vienna University of Technology, Austria

TR-186-2-07-09
September 2007

Keywords: imperfections, dust, scratches, aging, materials, details

Rendering Imperfections: Dust, Scratches, Aging,..

Michael Schwärzler∗

Vienna University of Technology, Austria

supervised by Michael Wimmer†

Vienna University of Technology, Austria

Abstract

In order to incrase the realism of an image or a scene
in a computer-graphics application, so-called “imper-
fections” are often used during rendering. These are
techniques which add details like dirt, scratches, dust
or aging effects to the models and textures.

Realism is improved through imperfections since com-
puter generated models are usually too “perfect” to be
accepted as “realistic” by human observers. By mak-
ing them, for example, dusty and scratched, people can
imagine them being part of their real world much more
easily.

This article gives an overview of currently used imper-
fections techniques and algorithms. Topics like textures,
scratches, aging, dust, weathering, lichen growth and
terrain erosion are covered.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading,
shadowing, and texture

Keywords: imperfections, dust, scratches, aging, ma-
terials, details

1 Introduction

Computer-generated images suffer from the fact that
most of the underlying models are heavily influenced by
mathematical approaches and are therefore “too perfect”
to be perceived as images from the real world we live in.
The introduction of so-called imperfections deals with
this problem by modifying object and scene properties
in order to add dirt, scratches, dust, and a lot more kinds
of blemish.

One of the most straight-forward approaches is to sim-
ply generate detailed textures and objects “by hand”.

∗e-mail: michael@schwaerzler.com
†e-mail:wimmer@cg.tuwien.ac.at

But this is a very time-consuming and difficult task,
which can only be performed by skilled and gifted artists
and designers. Therefore, some techniques were de-
veloped which allow (semi-)automatic creation of such
blemish textures by using simplified physical models,
statistical distributions or rule-based systems.

To be able to model and render scratches or dust, some
special methods had to be developed due to their geom-
etry: Conventional surface description approaches are
not really well adapted to defects close to pixel range,
as the width of scratches or dust particles is usually very
small (but they can nevertheless remain strongly visi-
ble).

Weathering effects (for example erosion on terrains or
rust on objects) are another kind of imperfections which
must be taken care of, since nearly all objects in nature
are influenced by them. Furthermore, “biological im-
perfections” such as lichen growth and terrain erosion
are strongly related to weather.

2 Overview

Starting with general texture techniques, two ap-
proaches are presented to generate blemish textures in
an efficient and easy way. The third paper in this section
is about solid textures, called hypertextures, which can
be used for modeling objects with special surfaces not
easily describable by the usual methods.

The next section deals with scratches and aging of sur-
faces. The first approach uses specific BRDFs to display
scratches; the second describes a semi-automatic way to
simulate surface aging by impacts.

Dust simulation using surface properties and geometri-
cal information is discussed in section 5.

Three completely different approaches to simulate
weathering effects are presented then: The first uses γ-
tons for simulation of weather, the second one concen-
trates on the impact of water & rain on a scene, and

1

2 3 GENERAL TEXTURE TECHNIQUES

the third gives detailed information about modeling and
rendering of corrosion.

The growth of lichen is described in section 7, followed
by some information about terrain erosion.

3 General Texture Techniques

Using textures in 3D computer graphics is definitely one
of best ways to create realistic pictures in an efficient
and fast way. They offer the opportunity to “fake” many
details without specifying additional geometry. There-
fore, they are widely used to create imperfections like
dirt, dust, etc.

3.1 A Geometry Dependent Texture Gen-
eration Framework for Simulating
Surface Imperfections

Wong et al. introduced a two-step texture generation
framework in between manual texture synthesis and au-
tomatic physical simulation [Wong et al. 1997]. The for-
mation of blemish may be due to human factors, physi-
cal laws, chemical reactions, etc. It is usually complex
and sometimes even unknow, but usually looks irregu-
lar. Still, the underlying systematic distribution of such
a pattern is observable in most cases. Therefore, the
first step in the generation process is to model this so-
called tendency distribution. Tendency is a scalar ex-
pressing the potential for the occurrence of surface im-
perfections.

In order to simplify the simulation process, abstract
imperfection sources are introduced. For instance,
scratches are usually often found near the handle of a
leather handbag, due to frequent human contact. By
placing these sources, the user can specify where to in-
troduce blemishes.

Figure 1: A brand new Beethoven statue and the same
a few years later with patina formed on less exposed
regions

Since the underlying distribution of these patterns is
usually geometry dependent, geometric information

such as curvature and exposure can be used to automate
the generation of the detailed textures.

The flux density represents the effect of an imperfection
source on that surface point. It depends on the geomet-
rical relationship between the surface point and the im-
perfection source, and takes values in the range [0,1]. A
value of 0 means the surface is free of blemishes while
a value of 1 means it is full of blemishes.

Various abstract imperfection sources are modeled sim-
ilar to light sources: ambient, point, directional, spot-
light, and slide projector. If more than one imperfection
source is given, flux densities are summed up after be-
ing scaled separately. Negative sources are possible as
well.

Apart from flux density, local geometry parameters like
exposure or curvature affect the actual distribution of
blemishes.

So the final tendency T at a surface point P is the overall
flux density Fs perturbed by a function α of all geomet-
ric factors G j:

T ′ = Fs ∗α(G1,G2,G3, ...), (1)

T =

0 if T ′ < 0,

T ′ if 0≤ T ′ ≤ 1,

1 if T ′ > 1.

(2)

The perturbation function α() is a function of all geo-
metric factors and returns a positive real value.

Surface exposure at a surface point P is a measure of
exposure to air. A nearby obstacle results in a low expo-
sure. As the distance of the obstacle increases, its effect
on the surface exposure decreases, hence it is more ex-
posed. To calculate its value for a point P, n0 infinite
rays are fired from P and evenly distributed on the up-
per hemisphere. Its value ranges from 1 (completely
exposed) to 0 (touched by an object):

Gξ ≈
1
n0

n0

∑
i=1

ω(di), (3)

where di is the point of intersection and ω(di) a weight
function.

By firing the rays in random directions, a rough approx-
imation can be achieved which is much more economic
in computational cost. The drawback is the introduction
of noise due to randomness.

3.1 A Geometry Dependent Texture Generation Framework for Simulating Surface Imperfections 3

Figure 2: Ray intersecting with obstacle (left) and
evenly distributed rays emitted from point P (right)

Other ways to determine surface exposure are calculat-
ing tangent-sphere and offset-distance accessibility as
proposed by [Miller 1994], or using radiosity methods.

Although surface exposure can be computed on the fly,
it is suggested to precompute and store it for later use,
for example in a 2D texture map. As surface exposure is
related to the topic of “Ambient Ocllusion”, further im-
provements could be achieved using the techniqes pre-
sented in [Knecht 2007].

Surface curvature is a quite important geometric factor
for imperfections as well: For example, paint on a pro-
trusive area is more likely to be peeled off than that on
a flat one. It can either be analytically determined in
case of a biparametric surface, or it is approximated by
the length of the vector resulting from the subtraction of
the unit normal vectors of polygons sharing the vertex
in case of a mesh.

Figure 3: Paint on the convex surface has a larger ten-
dency to be peeled off than that on a flat one, even
though they have the same surface exposure.

Whenever the surface curvature has been determined, it
can be stored in a 2D texture map just as in the case of
surface exposure.

Figure 4: Average and Gaussian curvature of a teapot

Once the tendency value T is determined, texture can be
generated according to the tendency distribution: Places
with higher tendency should obtain more blemishes.
Solid texturing [Peachey 1985; Perlin 1985] is used to
prevent texture distortion: In order to obtain irregular
blemish patterns, volumes are either scanned or mod-
eled by using fractional Brownian motion [Mandelbrot
1983] and Perlin’s noise and turbulence functions [Per-
lin 1985].

By defining appropriate functions for the surface proper-
ties, the authors of this technique achieved remarkable
results in the simulation of dust accumulation, patina,
peeling, and other imperfection scenarios. Figures 5, 6
and 7 show some examples.

Figure 5: A dusty sphere with a scrap pattern

Figure 6: Growth of peeling

Figure 7: A synthesized image of a peeled teapot

4 3 GENERAL TEXTURE TECHNIQUES

3.2 Imperfection for Realistic Image Syn-
thesis

This approach suggests using a rule-based system to
create textures instead of simulating complex scenes,
because most imperfections are viewed from distances
where exact details of distribution or local appearance
are indistinguishable [Badler and Becket 1990].

The approach involves two steps:

• Blemish instance modeling: Finding some tech-
nique to model a localized instance or concept of
blemish

• Blemish placement: designing rules that place or
control the distribution and local simulation of in-
stances. This process constructs relevant statisti-
cal parameters for local simulation given simple
object information such as shape and composition
and specific contextual information such as the use
of the object or location of adjoining objects.

In order to create the textures representing the blemish
instances, Gaussian and random distribution functions
are used as well as rule-guided aggregation and 2D frac-
tal subdivision.

Rule-based aggregation can be used to construct tree-
like clusters by simulating the diffusion of randomly
moving particles in a “sticky” environment. Some par-
ticles are defined as sticky, so that there is a chance of
clustering on every collision during the diffusion pro-
cess. By replacing the stickiness probability by a growth
probability based on any set of growth rules consider-
ing distances from centre or other particles, interesting
blemishes like rust or complex stains can appear.

Figure 8: Rule-based aggregation (Rust)

Using fractal algorithms, 2D arrays of values are gen-
erated, which can achieve blemishes exhibiting fractal

boundaries or densities. The fractal dimension of the
array can be

• interpreted directly as a mapping between two sur-
face qualities.

• cut at a thresholding value to a binary map giving
filled regions of circular Brownian motion.

• clipped to a range to form fractal Brownian motion
rings.

Figure 9: Fractal (Coffee stain)

By using texture mapping, the created blemishes are
then positioned on the object surface, depending on the
effect to be visualized. Positioning can be controlled
by a rule-based system which is based on a natural lan-
guage interface. A parser reads the commands given
by the user. The resulting structure is then analysed by
various rules considering the material, the object, the
severity and location of the imperfection, etc. to create
appropriate attribute map structures which are used for
blemish placement.

Some Examples:

• Scratches are simple geometric primitives, just
lines modifying surfaces either by increasing the
facet distribution value or revealing what is under-
neath a composite surface. They tend be appear
oriented towards some dominant axis. A quick
approximation can exploit this, accomplished eas-
ily by writing lines of Gaussian-deviant orienta-
tion from the given dominant axis. The intensities
should then vary as a Gaussian of a given intensity.

• Splotches of very viscous fluids or solutions such
as tar or mud, after having hit a surface, appear
as several boundary occurrences appearing to have
fractal characteristics. Modeling dried splotches is
easily accomplished by interpreting a 2D normal-
ized fractal.

3.3 Hypertexture 5

• Smudges and corrosion can be modeled as fractal-
based intensity distributions using the fractal di-
mension as an interpolation from the normal sur-
face to the disturbed surface. Corrosion interpo-
lates from the original surface to the attribute of an
oxide.

• Mould can be modeled as just a Gaussian distribu-
tion in dots of central points in randomly chosen
clusters.

• Stains from a distance appear as fractal boundaries,
and rust on a surface can be modeled using a rule-
guided aggregation.

Figure 10: Planes in a room increasing from left to right
in scratches and from top to bottom in tar splotches.

3.3 Hypertexture

The approach presented in [Perlin and Hoffert 1989] is
quite different from other texture techniques: Instead
of surfaces, three dimensional textures (distributions of
density) are used to represent the objects. The main ad-
vantage of this technique is to be able to render objects
which can hardly be described by surfaces, like for ex-
ample woven materials, fluids, clouds, flames, smoke
or (and this is why this paper is presented here) eroded
materials.

The following concepts have to be introduced:

• an Object Density Function D(x) with range [0,1]
which describes the density of a 3D shape for all
points x throughout R3. The soft region of an object
consists of all x such that 0 < D(x) < 1.

• a Density Modulation Function (DMF) fi, which is
used to modulate an object’s density within its soft
region. Each DMF is used to control some aspect

of an object’s spatial characteristics; a collection of
DMFs comprises a volume modeling toolkit.

In order to create a hypertexture, DMFs fi are applied
successively to an object’s D(x):

H(D(x),x) = fn(.. f2(f1(f0(D(x))))) (4)

A so-called soft object is a density function D(x) over
R3, where D is 1.0 inside the object, 0.0 outside the ob-
ject, and 0.0 < D < 1.0 in a region of nonzero thickness
in between.

The Boolean operators are extended to soft objects A
and B through their density functions a(x) and b(x):

• intersection: A∩B ≡ a(x)b(x)

• complement: A ≡ 1.0 - a(x)

• difference: A - B = A∩B ≡ a(x) - a(x)b(x)

• union: A∪B ≡ a(x) + b(x) - a(x)b(x)

The base level DMFs used for modeling are as follows:

• bias is used to either push up or pull down an ob-
ject’s density

• gain is used to make an object’s density gradient
either flatter or steeper

• noise (introduces randomness)

• turbulence

• arithmetic base functions such as abs and sine

One example shown in this paper is an eroded cube,
modeled by using the generalized Booleans operator
“intersection” to combine a fractal sphere with a cube.
Furthermore, the turbulence function was used here as
well in order to create color variations.

Figure 11: An eroded cube

6 4 SCRATCHES AND AGING

Hypertextures can be rendered using volume rendering
techniques. An algorithm called “Ray Marching” is pro-
posed, but since the presented paper is already quite old
(compared to recent developments), some more sophis-
ticated approaches using current shader models should
be used.

4 Scratches and Aging

Scratches and aging effects are some of the most im-
portant and mostly noticed techniques to apply imper-
fections. But because of their geometrical properties,
finding a suitable way to model and render them can be
quite challenging.

4.1 Surface Scratches: measuring, model-
ing and rendering

A very realistic and accurate way to model and render
scratches is suggested in [Mérillou et al. 2001b]. It uses
separate reflection models for scratched and unscratched
areas.

There are several ways to create imperfection and aging
effects on models: Colors can be modified as well as
the texture(s); bump- and displacement-maps were in-
troduced and are widely used. BRDFs (bi-directional
reflectance distribution functions) help to achieve a high
degree of realism. But in order to model and render
scratches, none of the methods mentioned above are
suited for rendering them efficiently (bump maps and
displacement maps, for example, suffer from aliasing ef-
fects close to the pixel range). In [2001b], a new method
based on existing BRDFs and classical 2D texture map-
ping is suggested.

In order to obtain realistic results, scratches on “real”
models were measured using a surface measurement de-
vice. The values were used to define corresponding
BRDFs for each material.

Since the reflection properties of the scratch differ from
the rest of the object, the scratch and the rest are exam-
ined separately: Using the data from the measurements,
theoretical cross-sections are defined. Each profile is di-
vided into six zones: four central zones, corresponding
to the “scratched” are and two “unscratched” zones on
the left and right side. Their properties (like angle or
width) are later used in the BRDF calculation.

In order to describe the location of the scratch on the
object itself, a simple 2D texture mapping technique is

Figure 12: A measured scratch profile and a cross-setion
geometry of the scratch model

used: One color describes the scratched area, the other
the unscratched. The map is not used to change the color
of the object, but to change its BRDF.

Figure 13: Fresh scratches on an old tool

This way, two BRDFs are computed for the rendering
process: One for the unscratched area, and one for the
scratches using the previously measured values in the 4
“scratch-zones”.

It has to be said that this technique is not sufficient for
extremely close view points like in microscopic views,
for which a computationally more expensive approach
like displacement mapping should be used: If the view
point is too near, the observer expects to see geometric
deformations, which are not created by the previously
described technique.

4.2 Surface Aging by Impacts 7

Figure 14: The scratch map appliead on a torus

Figure 15: Results obtained on a painted surface

4.2 Surface Aging by Impacts

A semi-automatic surface-aging technique that simu-
lates the deformation of an object caused by repeti-
tive impacts over long periods of time is decribed in
[Eric Paquette 2001]. This is done by simulating another
object hitting the surface, followed by mesh refinement.

Figure 16: Examples of aged objects

As an initial step, the user selects a so-called “tool”
which simulates the object which repeatedly hits the sur-
face. The tool’s parameters, such as shape, size, and

compaction volume (defines the reaction of the object
on the impact) are set, and are either used directly or as
input to statistical distributions (e.g. uniform, Gaussian,
etc.).

A linear tool path is then defined interactively in a 3D
view, which describes the tool motion when hitting the
object. The user specifies how many paths are created
by a single mouse click. Each path represents a hit dur-
ing the simulation. The computed paths can be exe-
cuted immediately and/or recorded and stored in a file,
which is useful for re-applying an effect after the origi-
nal model has been edited.

Figure 17: The first two stages of a simulation step:
finding and refining the affected faces

In order to refine the mesh, the tool feature points are
projected onto the mesh surface. The projected points
are then used to refine the mesh by subdividing the cor-
responding triangles. To avoid regularity, the position of
the new vertices along the edge is jittered. To avoid self-
intersections and deformation, the vertices are forced
to move along a deformation direction. T-Vertices are
avoided by dividing adjacent faces as well.

Figure 18: Adaptively refined mesh

When mesh refinement is completed, their displacement
is computed. The technique described uses a copy of
the faces and vertices, and moves them first along the
path direction and then along their deformation direc-
tion. Most likely, this step could nowadays also be done
using recent shader technologies, which would more-
over be a lot more efficient.

8 5 DUST

In order to render the deformed model, new normals
have to be computed for proper display.

Figure 19: Real (left) and synthetic images (right)

5 Dust

Apart from places like laboratories or surgery rooms,
nearly every room and every object in the world is more
or less dusty. Although dust is not noticed by us most
of the time, it is often necessary to include it in ren-
dered scenes to obtain really realistic images, since the
reflection and scattering of light on a dusty surface dif-
fers from that on a clean one.

5.1 Visual Simulation of Dust Accumula-
tion

The paper by [chi Hsu and tsin Wong 1995] describes a
dust modeling technique. Dust accumulation is first pre-
dicted by examining the surface properties like inclina-
tion and stickiness, and then adjusted according to some
external factors like surface exposure, wind or scraping
off by other objects. The dust accumulation pattern can
then be stored as a texture map for subsequent use.

To predict the dust accumulation, a so-called “normal
dust function” is defined. This function approximates
the amount of dust using surface orientation, dust source
orientation, and surface stickiness. It is somehow simi-
lar to Phong’s specular reflection model:

The influence of external factors is modeled using the
factor alpha, which gives information about how much
of the normal dust amount is actually realized in the
environment. Surface exposure (see 3.1 and [Knecht
2007]) for a point P is measured by shooting and tracing
several random rays from that point and calculating the
intersections. Depending on the environment, the sur-
face exposure can have a negative (fewer particles can
reach the surface there) as well as a positive effect (dust
has less chance of being removed by wind or cleared by
scraping) on dust accumulation.

Scraping effects are modeled using a dust mapping tech-
nique: The dust amount on the surface is changed due
to the looked-up values in the dust map (they are used
to change the perturbation effect).

To improve realism, several dust sources can be used.
This can be compared to the effect of multi-pass spray-
ing.

Rendering is done by first multiplying the dust amounts
with Perlin’s noise function in order to perturb it even
more. The final surface properties are then linearly in-
terpolated with the perturbed values when fully covered
with dust and the original surface properties.

To gain more accurate results, BRDF tables with differ-
ent amounts of dust can be precomputed. During ren-
dering, the reflectance can be interpolated among these
tables.

[Blinn 1982] studies the rendering of clouds and dust by
statistically simulating their reflection properties. The
presented model has been the base for a lot of research
in this area.

6.1 Visual Simulation of Weathering by γ-ton Tracing 9

Figure 20: Dusty sphere modified with a dust map

Figure 21: The effect of using a negative exposure scal-
ing factor: the less-exposed area accumulated more dust

6 Weathering

Modeling weathering phenomena is definitely a very
important aspect in generating realistic images, as
nearly every outdoor object in “real world” is influenced
by weathering effects. Of course weathering effects can
simply be modeled by creating detailed textures and
combining them, but this is usually a very time consum-
ing task. Furthermore, this approach is not very flexi-
ble, since only a small change in geometry could make
it necessary to begin anew. The following more sophis-
ticated methods offer various possibilities to achieve the
same or even better results in less time and effort.

6.1 Visual Simulation of Weathering by γ-
ton Tracing

The proposed technique is based on aging-particles
called γ-tons [Chen et al. 2005]. The main idea is to use
γ-sources, which emit these γ-tons. These particles are
traced through the scene, comparable to the way pho-

tons are traced in photon tracing [Jensen 1996]. The
results are saved in a so-called γ-ton map, which is then
used in a second pass to generate the actual weathering
effect by modifying surface material properties and ge-
ometry through multitexturing, texture synthesis or dis-
placement mapping. This process can be repeated itera-
tively in order to simulate and model cumulative weath-
ering effects over time.

The γ-sources model the sources of aging in this algo-
rithm. Such sources can come in the form of points
(e.g. for effects like dribble of rust down a wall from
a leaky pipe), areas, or even environments (like, for ex-
ample, a hemisphere which simulates the surrounding
polluted atmosphere). Within each iteration, thousands
of γ-tons are emitted from the γ-sources and are shot
into the scene. As these particles hit surfaces, they cat-
alyze weathering effects, as they can deposit or pick up
substances on the surfaces, which determines the distri-
bution of blemishes. Once a γ-ton runs out of energy
after one or several bounces, it settles down. This so-
called γ-ton propagation is stochastically determined by
their motion probabilities and the γ-reflectance of the
encountered surfaces.

Figure 22: γ-tons shot from the hemispherical envi-
ronment γ-ton surface bounce in the scene and induce
weathering

Figure 23: γ-transport by a γ-ton

To be able to record the stochastic weathering contri-
bution and to represent the local surface attributes, a
point-based model is generated from the input scene by
resampling. Each of these points has its own values
for γ-reflectance (affects how a γ-ton deflects from the
surface) and for material properties (keeps track of the
essential substances for weathering). The blemish be-
ing modeled is one of these material properties, and its
saved distribution forms the so-called γ-ton map.

In the next iteration step, the surface values have
changed due to γ-transport and γ-ton propagation, lead-

10 6 WEATHERING

Figure 24: The original model (left) is resampled into
a point-based representation (middle). After γ-ton trac-
ing, the γ-ton map is obtained (right). Here the map
indicates the presence of metallic patina.

ing to different surface behavior. For example, the intro-
duction of rust particles increases the surface roughness,
decreasing the γ-reflectance of the material.

Figure 25: Patina on a bronze sculpture. The two tex-
tures used for appearance rendering are labeled as “A”
and “B”.

For rendering, the γ-ton map values are used in multi-
texturing or even to displace the surface (for example in
cases such as corrosion or erosion).

6.2 Flow and Changes in Appearance

The approach described in [Dorsey et al. 1996] concen-
trates on modeling the influence of the flow of water,
using a particle system where each particle represents
a “drop”. The particle motion is controlled by physical
factors such as gravity, friction, wind, roughness, and
constraints that force them to maintain contact with the
surface. The model consists of three basic inputs: sur-
face geometry, materials and the environment.

The environment description specifies the initial distri-
bution of water droplets in the scene. The “drops” are
created according to a distribution function for incident
rain, influenced by wind. These particles are traced until
they intersect a model and are deposited in an exposure
map (This is usually done in a preprocessing step for ef-
ficiency reasons). The particle flow is controlled by rate
equations, which take into account the physical factors
described above. Comparing the surface normals at reg-
ular time steps, obstacles can be detected. The amount

Figure 26: A weathering sequence generated by the γ-
ton system.

of carried water in a simulated “drop” decreases as it
encounters surfaces with absorbing materials. On the
other hand, the particles can dissolve material such as
dirt, and transport it to another location.

Figure 27: Particle simulation on a complex model

The surface is modeled as a collection of parametric
patches, either polygons or cubic spline patches. The
need for a continuous flow across a patch boundary
makes it necessary to store adjacacency information.
Furthermore, a set of two-dimensional set of texture co-
ordinates is stored for each surface, since some surface
information is stored in textures (e.g. a saturation map).

Two different simple rough surface models were cre-
ated during development of this algorithm: The first
uses a scalar to control the diffusion process of the flow
(the higher the scalar, the stronger a force in the tan-
gent plane of the surface, leading to higher dispersion),
the second uses a displacement map (the particle simply
follows the cracks and bumps of the map). Moreover,

6.3 Corrosion: Simulating and Rendering 11

droplets are allowed to fall off a surface and to hit an-
other surface under influence of gravity.

The absorption of water by a surface is controlled by
three parameters: absorption, absorptivity, and satura-
tion. Absorption is the maximum amount of water the
surface can hold, while absorptivity is the rate at which
water can be absorbed. Saturation indicates the ratio
of the water currently held to the maximum absorption.
During a simulation, it is stored in a saturation map,
which can be used by the rendering system to modify
its appearance accordingly.

Furthermore, materials have to store solubility (the rate
at which water picks up surface deposits) and adhesion
(the rate of redeposition) in order to enable a working
deposition model used for sedimentation processes.

Rendering is done using multitexturing again, using the
information from corresponding maps: The color of de-
posit is computed by summing the color of each deposit,
weighted by the value from the appropriate texture map,
which is then alpha-blended with the original surface.
Wet surfaces are simply made darker by modifying the
diffuse reflectivity according to the saturation.

Figure 28: Rendering without (left) and with (right) flow
patterns.

6.3 Corrosion: Simulating and Rendering

The techniques described in this paper focus on model-
ing and rendering porous corrosion layers (rust for ex-
ample) by modifying geometry (“real holes” are pro-
duced), color and reflectance [Merillou et al. 2001a].

As a first step, the user sets the number of corrosion
starting points for each metallic object (represented as a

mesh) in a scene. The location of such a starting point is
then computed automatically using several parameters.

In detail, initially each face Fi of an object has the same
probability coefficient pi to obtain a starting point equal
to Area(Fi)/ΣArea(Fi). This coefficient is then modified
by so-called internal and external parameters.

Internal parameters are, for example, surface imperfec-
tions (which usually increase the corrosion probability)
or dirtiness (greasy layers usually hinder corrosion). Ex-
ternal parameters are connectedness with other objects
(leading to corrosion at the contacting faces at the less
noble object) or differential aeration (a sudden differ-
ence of the oxygen accessibility over two parts of the
same material). A high differential aeration value oc-
curs whenever the angle between the face and the face
of a nearby object is significant. For example, imagine a
pipeline coming out of a wall: the faces of the pipeline
close to the wall are characterized by high differential
aeration values, leading to higher corrosion.

Figure 29: Galvanic corrosion (left) and differential aer-
ation corrosion (right) principles

Once all starting probabilities are set, the corrosion
starting points can be chosen randomly according to the
coefficients of the faces.

The next step consists of creating a “thick plate” or
corrosion-map, which is then mapped onto the object.
The previously computed corrosion points are placed
on the map using an inverse transformation mapping.
Color, a porosity coefficient, a roughness coefficient
and an elevation coefficient (decreasing according to the
spread of corrosion) are saved.

Starting from the saved points, corrosion is expanded
using a random walk technique. On eroded “pixels”,
roughness, color and porosity are changed, while the
height is decreased. Since corrosion does not affect
all points at the same time, a “local corrosion time” is
calculated for each pixel which influences the corrosion
speed accordingly.

Rendering is done using a model described in [Mérillou
et al. 2000] which accounts for both porosity and rough-
ness. On non-eroded parts, the “Cook and Torrance
BRDF for iron” [Cook and Torrance 1981] is used.

12 7 LICHEN GROWTH

Figure 30: Affected geomtry of a tool

Figure 31: Pitting corrosion (top) compared to uniform
corrosion (bottom)

6.4 Related work:

Several other authors published very interesting articles
on weathering phenomena, but they are too specific to
be presented here in detail. In [Dorsey et al. 1999],
modeling and rendering of weathered stone is focused,
whereas in [Dorsey and Hanrahan 1996] the same is
done for metallic patinas.

7 Lichen Growth

The appearance of objects in nature is heavily influ-
enced by weathering and aging phenomena. Moreover,
fungi and lichen growth are an important factor. The

following paper uses a fractal algorithm to simulate and
model lichen growth.

7.1 Simulating and modeling lichen
growth

[Desbenoit et al. 2004] The technique described in this
paper consists of three main steps: First, lichen spores
are spread over the objects that will be colonized. Sec-
ond, the lichens propagate over the surface. As the last
step, the complex geometry and texture of lichens is cre-
ated.

For spreading the spores, wind and water flow simula-
tions are used. They are randomly emitted from spher-
ical regions of the scene which are placed by the user.
Depending on the characteristics of the substrate, the
local geometry, the type of lichen and the local acces-
sibility of the surface, spores stick to specific regions.
For example, a candidate in a highly accessible area is
removed to take into account the fact that wind may
blow the spore away; spores in hardly accessible regions
are removed as well. Flow simulations, as proposed in
[Dorsey et al. 1996] may be used as well to gain a real-
istic distribution.

Figure 32: Seed regions and lichen growth using acces-
sibility and water flow simulations.

Since such a simulation can be computationally de-
manding, a painting technique is proposed as an alter-
native seeding method. It consists in spreading spores
directly over the surface by painting. The painted color
defines the local intensity of the spores then.

Surface propagation is done in two steps. First, the
moisture and lighting parameters of the colonized sur-
faces are evaluated. The trajectory of sun in the sky-
hemisphere, dispersion of rain and water and moisture
sources such as rivers and lakes are taken into account
during simulation. The second step consists of invoking
an Open Diffusion Limited Aggregation (Open DLA)
model that distributes articles in order to form clusters.

Lichens prefer indirect light sources, while direct light-
ing limits their development. Therefore, two different

7.1 Simulating and modeling lichen growth 13

lighting maps are created for objects to be colonized
(which can be easily identified in the scene graph as
the nodes that hold the lichen spores created during the
seeding process). Stochastic Monte Carlo raytracing
techniques are suggested to approximate lighting. The
mesh triangles are reorganized into a BSP data structure
to speed up computations. Direct lighting is computed
by evaluating the integral of light coming from the sun
in the day, where the trajectory of the sun is discretized
into a set of light sources.

Since simulating the flow of rain water in the whole
scene as well as the influence of water sources such as
rivers or ponds is a very complicated and computation-
ally expensive task, the moisture map is created by the
user using a three-dimensional painting interface, allow-
ing him to specify wet and dry regions.

As mentioned before, spore propagation is done using
an Open DLA model (a modified version of the DLA
model proposed in [Witten and Sander 1981]). Spores
are first transformed into seed particles that will progres-
sively grow into clusters that form shapes with multiple
dendrites organized in a fractal pattern. In contrast to
the original DLA model, the characteristics of the en-
vironment are taken into account by using a probability
function E (p) for a particle p that defines whether the
environment favors or limits lichen growth:

E (p) = min(I (p),L (p),W (p)) (5)

where I (p), L (p) and W (p) are the functions for in-
direct lighting, direct lighting and moisture conditions.
Every kind of lichen is characterized by its own opti-
mal lighting and moisture values. So the probability of
aggregation of a particle p is defined as follows:

P(p) = E (p)×A (p) (6)

where A (p) is the probability of aggregation of an arti-
cle, based on the Pareto law (rich get richer):

A (p) = α +(1−α)e−σ(n(p)−τ)2
(7)

The number of neighbouring particles n(p) is evaluated
by searching the number of particles within a distance
ρ of p. α , σ and τ are control parameters which define
the pattern style.

The particles are then randomly moved over the surface,
building clusters on contact by evaluating the function
P(p) described above.

The difference to the original DLA algorithm is that new
particles are created nearby existing clusters to shorten
simulation time, so the radius for candidates joining the
cluster can be kept a lot smaller. As soon as a particle
collides with another cluster or moves out of the defined
radius, it is removed from the simulation.

Figure 33: The original (left) and the modified DLA
(right) algorithms. On the left side, particles are cre-
ated at a fixed distance R of p0. Once they move too
far away, they are removed from the simulation. On the
right side, the creation distance as well as the death ra-
dius are much smaller, reducing computation time.

Since a lot of collision detection has to be done in
this propagation simulation, only particles in the 1-ring
neighborhood of the triangle the candidate lies in are
checked for collisions.

Using the information generated by the propagation
method, the lichens have to be visualized. Since all of
them have a very complex color and texture patterns,
the suggestion is to create a lichen atlas, where a vari-
ety of previously modeled lichen shapes are stored. The
particles are instantiated into mesh models taken from
the lichen atlas, which saves memory and enables large
areas to be covered efficiently. Parameters like type of
lichen, age and relative orientation influence the selec-
tion process.

In order to model crustose lichens that form almost two
dimensional bumpy crusts and shells, an approach using
textured height fields was developed. Starting from a
lichen image, the designer selects interesting feature re-
gions and extracts smaller images, and interactively de-
fines a corresponding height field for every small image.
The final so-called cellular texture [Fleischer et al. 1995]
is obtained by mapping the sub-image on the height
field.

Lichens that produce three-dimensional leaf-like lobes
and little scrubs growing upward are created using spe-
cific L-System; the corresponding texture map is again
obtained from real images.

14 8 TERRAINS

Figure 34: A complex scene with different types of
lichens

8 Terrains

Terrains are usually modeled using fractal algorithms
such as Brownian motion or Perlin Noise, which makes
the statistical character of the surface, by design, the
same everywhere. But in nature, terrain geography is
heavily influenced by rain and erosion. The approaches
described in this section try simulate these effects by
creating appropriate models.

8.1 The Synthesis and Rendering of
Eroded Fractal Terrains

Using an erosion-model on fractal terrains, [Musgrave
et al. 1989] tries to simulate realistic landscapes influ-
enced by rain and thermal weathering.

Initially, a standard fractal terrain is created by using
well-known fractal algorithms (which will not be ex-
plained here). In the next step, a hydraulic erosion
model is implemented by associating an altitude av

t , a
volume of water wv

t and an amount of sediment sv
t sus-

pended in the water with each vertex v at time t. At

each time step, excess water and suspended sediment
are passed from v to each neighboring vertex u. The
amount of water δw is defined as:

δw = min(wv
t ,(w

v
t +av

t)− (wu
t +au

t)) (8)

If δw is less than or equal to zero, some sediment sus-
pended in the water is deposited at v. The constants Kc,
Kd and Ks are, respectively, the sediment capacity con-
stant, the deposition constant and the soil softness con-
stant. Kc specifies the maximum amount of sediment
which may be suspended in a unit of water. Ks speci-
fies the softness and soil and is used to control the rate
at which soil is converted to sediment. Kd specifies the
rate at which suspended sediment settles out of a unit of
water and is added to the altitude of a vertex.

Through the described process, water and soil are trans-
ported from higher points on the landscape to and de-
posited in lower areas.

Rainfall on landscapes is usually heavily influenced by
so-called adiabatics, or the behavior of moisture-laden
air as it rises and descends in the atmosphere. It is easy
to include a rough approximation of adiabatic effects by
making precipitation a linear function of altitude, which
has a significant effect on the erosion patterns produced.

Figure 35: Terrain generated using fractal methods and
erosion as proposed in the paper after 2000 time steps.

The second modeled erosion process is thermal weath-
ering. This includes all processes knocking loose ma-
terial, which then falls down to pile up at the bottom
of an incline. At each time step t+1, the difference be-
tween the altitude av

t at the previous time step t of each
vertex v and its neighbors u to the so-called global con-
stant talus angle T is compared. If the computed slope

REFERENCES 15

is greater than the talus angle, some fixed percentage of
the difference is moved to the neighbor. So the slope to
the neighboring vertices asymptotically approaches the
talus angle.

8.2 Related Work

[Kelley et al. 1988] uses a virtual drainage system,
which is basically a tree lying on the terrain surface, to
simulate water flow and erosion effects on a landscape.

9 Conclusion & Future Work

A lot of different methods and algorithms from the area
of imperfections have been presented here. Nearly all
of them try to build up simplified physical models in-
spired by real-world processes in order to create realistic
scratches, dirt, aging and weathering effects, etc.

The usefulness of these algorithms depends heavily on
the situation: for example, some of them can’t be used in
real-time applications (yet) as they are computationally
too expensive, and others need renderers which are only
available in specific setups.

But since there are so many different approaches for
solving the same problem, chances are high to find a
suitable solution for applying imperfections in most sce-
narios.

In the future, it is to expect that some of the approaches
are modified in order to be calculated on the GPU, es-
pecially since the Shader Model 4 introduces geometric
shaders, allowing new geometry primitives to be cre-
ated directly in the graphics accelerator card’s memory
(shaders offer the opportunity to modify the previously
fixed grapics pipeline at will). Using this technology,
fast and efficient mesh refinement could enable complex
real-time mesh deformation.

Imperfections will definitely stay an active research area
for the next decade, since the need for more and more
realistic computer generated images, videos and games
will abide.

References

BADLER, N. I., AND BECKET, W. 1990. Imperfection
for realistic image synthesis. 26–32.

BLINN, J. F. 1982. Light reflection functions for simu-
lation of clouds and dusty surfaces. In SIGGRAPH
’82: Proceedings of the 9th annual conference on
Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 21–29.

CHEN, Y., XIA, L., WONG, T.-T., TONG, X., BAO,
H., GUO, B., AND SHUM, H.-Y. 2005. Visual
simulation of weathering by γ-ton tracing. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM
Press, New York, NY, USA, 1127–1133.

CHI HSU, S., AND TSIN WONG, T. 1995. Simulating
dust accumulation. IEEE Comput. Graph. Appl. 15,
1, 18–22.

COOK, R. L., AND TORRANCE, K. E. 1981. A
reflectance model for computer graphics. In SIG-
GRAPH ’81: Proceedings of the 8th annual con-
ference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 307–316.

DESBENOIT, B., GALIN, E., AND AKKOUCHE, S.
2004. Simulating and modeling lichen growth.
Tech. Rep. RR-LIRIS-2004-007, LIRIS UMR 5205
CNRS/INSA de Lyon/Universit Claude Bernard Lyon
1/Universit Lumire Lyon 2/Ecole Centrale de Lyon,
Mar.

DORSEY, J., AND HANRAHAN, P. 1996. Modeling and
rendering of metallic patinas. Computer Graphics 30,
Annual Conference Series, 387–396.

DORSEY, J., PEDERSEN, H. K., AND HANRAHAN, P.
1996. Flow and changes in appearance. In SIG-
GRAPH ’96: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 411–420.

DORSEY, J., EDELMAN, A., LEGAKIS, J., JENSEN,
H. W., AND PEDERSEN, H. K. 1999. Modeling
and rendering of weathered stone. In Siggraph 1999,
Computer Graphics Proceedings, Addison Wesley
Longman, Los Angeles, A. Rockwood, Ed., 225–234.

ERIC PAQUETTE, PIERRE POULIN, G. D. 2001. Sur-
face aging by impacts. In Graphics Interface 2001,
175–182.

FLEISCHER, K. W., LAIDLAW, D. H., CURRIN, B. L.,
AND BARR, A. H. 1995. Cellular texture genera-
tion. Computer Graphics 29, Annual Conference Se-
ries, 239–248.

JENSEN, H. W. 1996. Global Illumination Using Pho-
ton Maps. In Rendering Techniques ’96 (Proceed-
ings of the Seventh Eurographics Workshop on Ren-

16 REFERENCES

dering), Springer-Verlag/Wien, New York, NY, 21–
30.

KELLEY, A. D., MALIN, M. C., AND NIELSON, G. M.
1988. Terrain simulation using a model of stream ero-
sion. In SIGGRAPH ’88: Proceedings of the 15th
annual conference on Computer graphics and inter-
active techniques, ACM Press, New York, NY, USA,
263–268.

KNECHT, M. 2007. State of the art report on ambient
occlusion.

MANDELBROT, B. B. 1983. The Fractal Geometry of
Nature. W. H. Freedman and Co., New York.

MÉRILLOU, S., DISCHLER, J.-M., AND GHAZAN-
FARPOUR, D. 2000. A brdf post-process to integrate
porosity on rendered surfaces. IEEE Transaction on
Visualization and Computer Graphics 6, 4.

MERILLOU, S., DISCHLER, J.-M., AND GHAZAN-
FARPOUR, D. 2001. Corrosion: Simulating and ren-
dering. In Proceedings of Graphics Interface 2001,
B. Watson and J. W. Buchanan, Eds., 167–174.

MÉRILLOU, S., DISCHLER, J.-M., AND GHAZAN-
FARPOUR, D. 2001. Surface scratches: measuring,
modeling and rendering. The Visual Computer 17, 1,
30–45.

MILLER, G. 1994. Efficient algorithms for local
and global accessibility shading. In SIGGRAPH
’94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 319–326.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S.
1989. The synthesis and rendering of eroded fractal
terrains. Computer Graphics 23, 3, 41–50.

PEACHEY, D. R. 1985. Solid texturing of complex sur-
faces. In SIGGRAPH ’85: Proceedings of the 12th
annual conference on Computer graphics and inter-
active techniques, ACM Press, New York, NY, USA,
279–286.

PERLIN, K., AND HOFFERT, E. M. 1989. Hypertex-
ture. SIGGRAPH Comput. Graph. 23, 3, 253–262.

PERLIN, K. 1985. An image synthesizer. In SIG-
GRAPH ’85: Proceedings of the 12th annual con-
ference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 287–296.

WITTEN, T. A., AND SANDER, L. M. 1981. Diffusion-
limited aggregation, a kinetic critical phenomenon.
Physical Review Letters 47, 19 (November), 1400+.

WONG, T.-T., NG, W.-Y., AND HENG, P.-A. 1997.
A geometry dependent texture generation framework
for simulating surface imperfections. In Proceedings
of the Eurographics Workshop on Rendering Tech-
niques ’97, Springer-Verlag, London, UK, 139–150.

