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Abstract — Direct volume rendering techniques map volumetric attributes (e.g., density, gradient magnitude, etc.) to visual styles.
Commonly this mapping is speci ed by a transfer function. Th e speci cation of transfer functions is a complex task and re quires
expert knowledge about the underlying rendering technique. In the case of multiple volumetric attributes and multiple visual styles the
speci cation of the multi-dimensional transfer function b ecomes more challenging and non-intuitive. We present a novel methodology
for the speci cation of a mapping from several volumetric at tributes to multiple illustrative visual styles. We introduce semantic layers
that allow a domain expert to specify the mapping in the natural language of the domain. A semantic layer de nes the mappin g
of volumetric attributes to one visual style. Volumetric attributes and visual styles are represented as fuzzy sets. The mapping
is speci ed by rules that are evaluated with fuzzy logic arit hmetics. The user speci es the fuzzy sets and the rules witho ut special
knowledge about the underlying rendering technique. Semantic layers allow for a linguistic speci cation of the mappin g from attributes
to visual styles replacing the traditional transfer function speci cation.

Index Terms —lllustrative Visualization, Focus+Context Techniques, Volume Visualization
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Many popular direct volume rendering techniques use afeafianc-
tion that maps the measured density values to colors andtigsac
These visual properties are usually composited into thé image.
More advanced techniques use other volumetric attriblikesgradi-
ent magnitude, curvature, or statistical properties angltimese values
via a multi-dimensional transfer function to visual attriés. All these
techniques have in common, that they map attributes of tbenlying
data on visual appearance via a transfer function. Traffisfetions
are a powerful tool to achieve various visualizations. Havethe
speci cation of transfer functions is a complex task. Therusas to
have expert knowledge about the underlying rendering igaento
achieve the desired results.

Especially the speci cation of higher-dimensional trarsfunc-
tions is challenging. Common user interfaces provide nusho
brush in two dimensions. While brushing in 2D is an intuitmethod
to select regions of interest or to specify features, userfaces for
higher-dimensions are more challenging and often noritiveu

We propose an alternative method to achieve meaningful mgep
from volumetric attributes to visual appearance. Our mg#rmables a
multi-dimensional mapping from several volumetric atiités to mul-
tiple visual styles. We replace the complex task of multreisional
color transfer function design by introducing semanticelay A se-
mantic layer linguistically describes a mapping from a coration of
volume attributes to one visual style. An opacity transferction is

INTRODUCTION

this idea by explicitly de ning semantic values using fuzzsts, en-
abling a linguistic speci cation of renderings. The fuzatsare de-
scribed by membership functions that are speci ed by the. uShe

mapping of various volume attributes to a given visual stylchieved
with fuzzy logic arithmetics. Fuzzy logic rules specify thapping

with the natural language of the application domain.

The objective of the semantic layers concept is a meanimgéyd-
ping from given volume attributes to given visual styles fioe pur-
pose of illustration. We identi ed two major challenges take our
novel concept applicable. On one hand the mapping shouldioot
late the property of bijectivity in order to be an adequajdaeement
of the well established color transfer functions. On theeotand it
is desirable to achieve a semantic mapping by the use of sm@i&n
meaningful values.

Bijective Mapping: A bijective mapping ensures that the generated
image can be interpreted by the viewer. For the purpose obiiz-
tion it is necessary that the meaning of the image can bevexol' he
viewer of the image has to be provided with details about thpping
procedure in order to resolve the meaning of the image. A comm
example for a bijective mapping is a visualization with ec@acoding.
The legend accompanying the visualization ensures thatthge can
be resolved and has a meaningful interpretation in the lyidgrpa-
rameter domain.

Volume rendering with semi-transparent regions in the macan-

set by the user to specifyhatis shown. The semantic layers describaiot guarantee to provide bijective visualizations. The positing of
howit is shown. A semantic layer establishes a mapping from semahe semi-transparent colors introduces ambiguities. Meweolume

tic values of volume attributes to semantic values of vistiges. The

rendering does potentially convey more information abdt data

volume attributedensityis for example described by semantic valuethan pure iso-surface renderings. Because of the sensipaaancy

ranging fromzerq very low low andmiddleto high. The styleshading
can for example range frosoft, to hard until cartoonish A seman-
tic layer can for example map the semantic valh&h densityand
positive curvaturago the semantic valueartoonish shading

Drebin et al. [5] suggested to use probabilistic classi@atalgo-
rithms to avoid the artifacts of binary classi cation. Thesulting clas-
si cation for descriptions of tissue types likar, fat, soft tissueand

inner structures are unveiled and can be explored. The aiitibig)in-
troduced by the compositing function can be resolved if theducol-
ors are chosen carefully. Animation or interactive exgioraprovides
further help to resolve the ambiguities. The introductiborthogonal
styles gives a guideline for our approach not to violate tijectiv-
ity of the visual mapping. However, our approach does notestile
problem of ambiguous volume renderings with semi-trarespay.

bonecorrespond to membership functions of fuzzy sets. We eetgtnd Semantic Mapping: The speci cation of the semantic mapping
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from volume attributes to visual styles in our approach isedwith
semantic values. Measured and simulated data have usesatyas
meaningful intervals that are relevant to the user. For gram PET
scan of a brain measures brain activity. It shows homogenegions
of activity in the brain that are labeled by experts with setitavalues
such aglow activity or high activity Diffusion MRI data provides
information about the healthiness of tissue regions andaissced
by experts with semantic values likeealthy diseased or necrotic
Medical CT data encode the measured density values in Helths
units. Speci c intervals of the Houns eld scale refer tofdifent tissue
types like air, soft tissue, bone, contrast enhanced \&ssel
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Fig. 1. Comparison of the traditional color transfer function based shading and the novel semantic layer approach: In the traditional pipeline multiple
volume attributes are used to look up color in the color transfer function. The color is commonly shaded afterwards. In the semantic layers pipeline
the volume attributes are described by semantic values. Rules are speci ed using the semantic values of the volume attri butes in the antecedent
part of the rule. The rules map the antecedents to semantic values for visual styles specied in the consequent part. All r ules affecting one
visual style are evaluated to determine the numeric values for the style. The visual styles are layered on top of each other and blended from the
background to the top most style.

There are many more examples of domains where semantic @aranf non-photorealistic surface rendering techniques. Eaatsal. [6]
ters exist. Common visualization techniques (especiatctivolume  introduce two-level volume rendering that allows the s@leacombi-
rendering with transfer functions) do typically not make ws$ these nation of multiple rendering methods for different regioiibe selec-
parameters. tive application of speci ¢ styles based on volume attrésivas also

Common direct volume rendering techniques also do not ma&e wsed in other previous work [1, 11]. Our approach also pewithe
of semantics for the description of visual styles. Althowgheral se- possibility to selectively show features of interest witfiedent visual

mantic parameters exist and are used naturally by illssator ex-
ample the descriptions ahading tone rendering style saturation

styles. However the focus of our work lies on the semanticpirap
of volumetric attributes to visual styles and on a uniformrapach for

texture etc. are done with semantic values. We propose to use théise speci cation of different styles.

parameters in the speci cation of the visualization magps well.
The remainder of this paper is structured as follows: IniSec@
we review related work. In Section 3 the novel concept of sgina
layers for illustrative volume rendering is described itaile We give
an overview of the concept and illustrate it with a simpleregée. In
Section 4 we give details about the implementation of outgtype

system. In Section 5 we show exemplary results of our system f

different potential application areas. In Section 6 we tahe our
work and give ideas for possible extensions of our approach.

2 RELATED WORK

Our approach is conceptually similar to the work of Coynd.g8has

it establishes a linguistic mapping from the data to the iendgmain.
The related work about volume visualization and illustritvisual-

ization is divided into three different categories. We eswthe related
work in illustrative visualization in Section 2.1. In Sewti 2.2 we
compare our work to other multi-dimensional visualizatiechniques
that map multiple volume attributes to multiple visual st/l In Sec-
tion 2.3 we describe related work in the area of medical Vization

that deals with the semantic classi cation of volume data.

2.1 lllustrative Visualization

Many previous approaches for the selective applicationisafal styles
have been presented. Seligmann and Feiner [15] presentesrsfer
intent-based illustrations. They use design rules to aehtbe in-
tended visualization of geometric objects. Svakhine €8] present
the idea of illustration motifs. They generate illustratiisualizations
guided by a speci ¢ motif like the purpose or the targetediencke
of the illustration. The level of expertise of the viewenas as input
to adjust the automatically generated illustration. Yuad @hen [23]
present a method to enhance volume rendering with diffesgiés

Sloan et al. [16] present a technique to render pre-de nédtiar
styles. Their method allows the speci cation and use of \aifferent
artistic styles in a uniform framework. We adapted theihteque to
serve as a basis for the parameterized representatiorferidif styles.

2.2 Multi-Dimensional Volume Visualization

Kniss et al. [9] present an approach for multi-dimensiomahsfer
functions. They also employ this technique to quantifyistiaal mea-
sures of multiple fuzzy segmentation volumes [10]. Hladugkal. [7]
as well as Kindimann et al. [8] used multi-dimensional tfangéunc-
tions based on the density and a curvature measure. In tHeafor
McCormick et al. [12] as well as Stockinger et al. [17] sysseare pre-
sented that allow a formulation of the visualization magpis mathe-
matical expressions. Our approach hides the complexityatfiemat-
ical formulations by the use of fuzzy logic. In the work of Bidch
et al. [4] a system for the interactive exploration of compliata is
presented. Woodring and Shen [21] use set and numericahtoper
to visualize and compare multi-variate and time-varyintgad&ato et
al. [14] use rules to identify tissue structures in multidabdata.

Our approach is similar to these approaches as it uses aaséglb
speci cation of features in the data. However the speci@atof the
mapping to visual attributes in our system is done usingyfuagic.
Fuzzy logic allows the speci cation of rules mapping sen@maalues
of volume attributes to semantic values of visual styles.

2.3 Medical Visualization

We see illustrative visualization for operation planniitigstration for
patient brie ng, and multi-modal visualization as potahtapplica-
tions of our approach. Others have presented approactesdeb
our work.



Tappenbeck et al. [19] as well as Zhou et al. [24] modify the agolor and contour are shown. For the visual stytlor the de ni-

pearance of volumetric structures based on the distancprama ned
region. Our system provides a similar functionality. Therusan de-
ne a style that is used in dependence of the distance to agegion.
The chosen style can be altered and modi ed interactively.

Rezk-Salama et al. [13] present a high-level user interfac¢he
speci cation of transfer functions with semantics. We éaliup on the
idea of specifying a mapping from volume attributes to a aisiyle
by semantically meaningful parameters.

3 OVERVIEW OF THE SEMANTIC LAYERS CONCEPT

A comparison between the traditional color transfer fumtbased ap-
proach and the semantic layers approach is shown in Figdreeltra-
ditional approach takes multiple volume attributes asfgma derives
a basic color via the color transfer function for each sarppition.
The color is usually shaded and used for compositing to getrtal
color of the pixel. The semantic layers approach also takésipte
volume attributes as input but in contrast evaluates a sefles to de-
termine the different visual styles applied to the curremhple. The
styles are blended from the background style to the top nagst Ito
determine the color of the current sample. The color of timepa is
used for compositing to determine the color of the pixel.

To achieve the linguistic mapping from values of volumeilbities
to values of visual styles we use semantic values. The s@naties
are described in Section 3.1. The mapping from semanticegadd
volume attributes to semantic values of visual styles icispe with
rules. The rule base described in Section 3.2 computes tpeina
onto visual styles. The evaluation of the rules results imeric val-
ues for each visual style. Each style is parameterized antililcotes
according to the numeric value to the nal visual appearasicene
sample. The styles are described in Section 3.3. The nalaliap-
pearance of a sample is determined by the composition oiferdd
visual styles. The concept of layered styles is describ&kition 3.4.

3.1 Semantic Values

A semantic value is a linguistic description of a value of duvre
attribute or a visual style. It is de ned as a fuzzy set givenits
membership function.

Volume Atributes) (Layered Syles

density color
curvature contour
s. o' o

Fig. 2. Exemplary speci cation of semantic values. Simple s emantic
values for the volume attributes density, and curvature are shown as
well as for the visual styles color and contour.

Figure 2 shows an example of the speci cation of semantioasl
for the volume attributedensityandcurvature The attributadensityis
described with the semantic valuesv andhigh. The attributecurva-
ture is described with the semantic vala®se-to-zero The semantic
values are speci ed with a membership function. In Figure® cim-
ple examples are shown to illustrate the concept of memipefshc-
tions and semantic value de nition. The membership furmgishown
in Figure 2 are just straight lines. In practice membershipcfions
can be more complex and attributes are described with manarsée

tion of the semantic valuggreenandred are shown. The visual style
contouris described by the semantic valuién andthick Shading
is another examples of a visual style that could be descrb#dthe
semanitc valuesone soft, phongishandcartoonish The styledesat-
uration could range from the valueo to the semantic valutill.

3.2 Rule Base

The central component of our system is the rule base thas givie-
guistic description of the desired mapping. A rule statespfemise
in the antecedent part and the conclusion in the conseqaentThe
premise is a logical combination of semantic values of vauat
tributes. The conclusion is a list of styles that are affédtg the rule.
A rule could for example staiédensity is middle and brain activity is
very high then color is redThe result of the evaluation of one rule is
another fuzzy set quantifying the membership to the anttedin-
tecedents of all rules that have implications on the appeearaf one
style are aggregated and defuzzy ed. The result of the dgfaation

is a style volume describing the value of the visual styleaatevoxel
position. Implication, aggregation, and defuzzi caticencfor the mo-
ment be seen as black boxes that map the antecedents of ésetaul
values for the visual styles. In Section 4 we give detailsuabite used
fuzzy logic methods.

value for style

low high
Ruk 1 Ruk 2
if dersityis highthen if principd aurvature is ot close
style § is high tozerothenstyle $ is high

Fig. 3. Style volumes: Two iso-surfaces of the cube dataset for each
style volume are rendered. A color-coding was used to encode the nu-
meric values for each style. The left style volume shows the result of
a density based rule. The right image shows the result of a curvature
based rule. Green color means low values for the given style, yellow
color means high values for the given style.

In Figure 3 two style volumes are shown. A color-coding was ap
plied on two nested iso-surfaces of the cube dataset to enthedralue
of the style. Green means low value for the style and yellovamse
high value for the style. The left style volume is the restlthe rule
if density is high then stylepSs high The right style volume is the
result of the rulef curvature is not close-to-zero then stylgiS high

3.3 Styles

Each style volume speci es the value for a style at each jositTo
apply a style to a sample the style needs to be parameteriiied.
parameterization of a style ensures a continuous applicaif one
style.
Parameterization: A common example of a parameterized style

is a color scale. In traditional illustration however a degasariety
of gradually varying styles exists. It is desirable that #ipplication
of one style volume results in a gradual application of tlygestPa-

values. For example the volume attribdensitycould have the values rameterized styles are needed to achieve this graduaittoansAn
very low low, middleandhigh referring to meaningful types of tissue example of parameterized styles can be seen in Figure 4. phteges

like air, soft tissugbong contrast enhanced vessgetsc.
The linguistic values for visual styles are also de ned gsnem-
bership functions. In Figure 2 simple examples for the Jistiges

in Figure 4 are drawn manually. The glossyness varies oeevetti-
cal axis fromnoneoverweakto strong The style contour varies along
the horizontal axis fronmoneover thin to thick. In practice all three



pearance of the rendered object. Details about the apiplicaf pre-
de ned styles during rendering are given in Section 4. Thigedi
ent layers respectively the different styles are blendedtisg with a
background style applied to all regions. The leftmost imagEig-
ure 5 was rendered using the unshaded background styleisloase
the background style is speci ed by the sphere in the lowiclarner
of Figure 4. The second image in Figure 5 is drawn applyingka su
tle cartoon shading style. The cartoon shading style is hotva in
Figure 4. The third image in Figure 5 is rendered adding aatont
The contour style is given by the sphere in the lower righteoiin
Figure 4. Finally the layer that resembles a glossy highilighpplied.
The result is shown in the rightmost image of Figure 5. Theeupp
left image in Figure 4 was used to describe the glossynekes &gch
style can be applied gradually, however in Figure 5 all stgee fully
applied to show the effect of an incremental applicatioresksal lay-
ered styles.

Selective Application of Styles: Illustrators are taught to avoid
mixtures of too many styles. A selective application of esyto spe-
ci ¢ regions can aid to differentiate the individual reggonEach se-
none thin thick mantic layer de nes one style according to a set of rules. fhes

Fig. 4. Combination of three parameterized orthogonal styles: The style allow for a differentiation of regions and for a selectiveplation of

color is constantly set to blue. The styles contour, and glossyness grad-  the styles. Each layer is applied in speci ¢ regions acemydb its
ually vary over their speci ed domain. style volume, resulting in a selective application of thdestNote that

a completely opaque style overdraws all styles lower in ieeanchy.

axis (the color, the glossyness, and the contours) varjragnisly al- To achieve meaningful illustrations it is important to ckedhe styles
lowing a gradual change in each dimension. In Figure 4 tHe sgjor ~ carefully.
is constantly set tblue
Orthogonality: We propose to use orthogonal styles to achieve
meaningful mappings. Potentially the combination of d#f& styles
leads to ambiguities. It is desirable to achieve mappingsufiple
styles that can be combined without leading to ambiguitiés.de ne
orthogonal styles as a set of styles that do not infer wittheziber.
The concept of orthogonal styles can be seen in Figure 4. ¥he e
ample illustrates the combination of the three orthogotydéscolor,
contour and glossyness Nine exemplary combinations of the grad-

glossyness

strong

weak

none

contour

ually varying stylescontour and glossynessre shown. Theolor- interpretation: |if glossyness is highen | if cortoursarered then
dimension is not shown in Figure 4, however it is orthogowaihe dersity is high principal cuvature is
shown dimensionsontour and glossyness The orthogonality of vi- not close to zero

sual styles does in general not solve the problem of amliéguiit vol-

ume renderings using semi-transparency. The use of ontlabgtyles Fig. 6. Selective application of styles: The left image shows two iso-
is (not suf cient, but) necessary to achieve meaningful aijeictive  syrface of the cube dataset. All styles are fully applied. In the mid-

volume visualizations. dle image the style glossyness is determined by a density based rule.

Glossy highlights are only drawn in regions of high density. In the right
3.4 Layered Styles image the style contour is determined by a curvature based rule. The
From an illustration point of view it is desirable to applyetstyles contours are drawn ir_] r_ed in regions_of high absolute principle curva-
incrementally and selectively. ture. The rules specifying the mapping can be read backward as an

Incremental Application of Styles: Our approach for the incre- Nerpretation of the images.

mental application of multiple styles resembles the wookv of a tra-
ditional illustrator. Traditional illustrations are dravin layers. Each ~ Figure 6 shows the selective application of visual styleise Teft-
layer is applied on top of another. First a basic style isiapplo a Most image shows two iso-surfaces of the cube dataset. yidissare
speci ¢ region. On top of the basic style shading is appl=shtours fully applied. In the middle image of Figure 6 the rifleensity is high
are added and specular highlights are drawn. then glossyness is hidgh applied. The stylglossynesss affected by
this rule and applied only to regions of high density. Thédrignage
of Figure 6 demonstrates the selective application of & $ojlowing
a curvature based rule. The contours are drawn in red inmegidth
the rst principal curvature not close to zero. The rulegibad to the
selective application of the visual styles can be read inohosite
direction to resolve the image and to map back the stylesetotigi-
nal semantic parameters. The image in the middle of Figuantbe
interpreted with the sentendeglossyness is high then density is high
Fig. 5. Incremental application of styles: Two nested iso-surfaces of the  and the image on the right can be interpreted with the seaiéoon-
cube dataset are shown. From left to right the following layers are in-  tours are red then curvature is not close-to-zefbhe augmentation
crementally applied: background style, subtle cartoonish shading, con-  of the nal result with the inverted rules ensures the intetability of
tours, and glossy highlights. the achieved visualization.
In this Section we introduced the concept of semantic lajars
Figure 5 shows the incremental application of layered stylevo illustrative volume rendering. Semantic layers provide ethodol-
nested iso-surfaces of the cube dataset are rendered hsirgpine ogy for a linguistically speci ed mapping from volumetri¢tabutes
styles as shown in Figure 4. During rendering we automdyieg- to visual styles. Note that each of the described comporeartshe
ply the style of the manually drawn spheres to achieve theesgpn replaced independently.
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Fig. 7. Overview of the fuzzy logic system: The evaluation of two simple rules in uencing the same style is illustrated. T he density and curvature
based rules are evaluated. The implication truncates the membership function of the semantic values speci ed in the con sequent part of the rules.
The membership functions after the implication are aggregated and defuzzy ed. The result is a numeric value for the styl e color-coding

4 |IMPLEMENTATION

In this Section we describe the implementation of the corsciro-

duced in Section 3. We chose fuzzy logic to achieve the denibf

semantic values for volume attributes as well as for thergssm of

styles. Each semantic value is speci ed by a membershiptifumof

a fuzzy set. The actual mapping of the values of volume attig#bto
values of visual styles is speci ed using fuzzy rules. Thealestion
of the rule base is done using fuzzy logic operations. Theevhuzzy

logic inference process used in our system is describeddtidBes. 1.
More general introductions to fuzzy logic can be found in,[22].

The result of the fuzzy logic inference are style volumes tiescribe
the value of each voxel for a given style. Each style proviaem-
rameterization. The parameterized de nition of stylesdhiaved in
our system by style descriptors. For the nal rendering ttyées are
applied incrementally. In our implementation the incretaéappli-

cation of the layered styles is done during rendering. Wechice
style descriptors in Section 4.2 and give details aboutrttémented
direct volume rendering algorithm.

4.1 Fuzzy Logic Inference

In Figure 7 an overview of the fuzzy logic inference processdne
visual style is shown. The inference process evaluatesahe \for
a given style at each voxel position. In Figure 7 two rulegétfthe

Logical operations can be applied on fuzzy sets. The unaygtien
operator (i.e.not) results in the calculation of one minus the member-
ship function. In the example of Figure 7 the negation is i@pitio the
fuzzy setcurvature is close to zerdThe curvature value of:2 there-
fore results in a membership value o80dor the fuzzy seturvature is
not close to zero

The combination of multiple fuzzy sets is done using one ef th
binary operatoraind andor. Theand operator results in a minimum
operation for the membership functions of the operands.orftoper-
ator results in a maximum operation for the membership fanstof
the operands. In the example of Figure 7 &inel operator is applied to
the fuzzy setslensity is highandcurvature is not close-to-zerarhe
result of this operation is:Q5 as this is the minimum of the chosen
values in the example.

Rule Speci cation: The user speci es the rules using the member-
ship functions of the attributes and styles. In the exampleigure 7
the attributeslensityandcurvatureare used. Note that the number of
volume attributes is not restricted in our implementatiBar instance
an attributedistance to vesselsan be used if a distance eld for the
vessels of a given dataset is known. The user can specifymo@p
ate number of semantic values for each volume attributeinsteince
the user could specify fuzzy sets for the semantic vatlistance to
vessels is zeralistance to vessels is very lpetc. In the antecedent

visual stylecolor-coding The fuzzy logic inference is illustrated for Part, i.e., thef part, of a rule a logical combination of these semantic

a voxel with density value :6 and a curvature value ofd We use
the example of Figure 7 for the description of all fuzzy logiference
steps: rule speci cation, membership function evaluatifuzzy set
operations, implication, aggregation, and defuzzy catio
Membership Functions and Fuzzy Set Operations: The base
for the semantic description of parameters are fuzzy setgzyFsets
are speci ed via membership functions. In Figure 7 the ddan of
the piecewise linear membership functidow density middle den-
sity, high densityclose to zero curvaturgreen color-codingandred

values is stated. In the consequent part, i.e. thiea part, of a rule

a list of semantic values for styles is speci ed by the usarthe ex-
ample of Figure 7 the rules in uence the stydelor-codingwith the
semantic valuegreenandred. Note that the small number of semantic
values for the styleolor-codingis not a restriction of our approach. In
practice the number of semantic values for visual stylesp@etively
for volume attributes) is de ned by the user to appropriatidscribe
the underlying style (respectively the volume attribute).

Implication, Aggregation, and Defuzzy cation: The fuzzy im-

color-codingcan be seen. The membership of a given value of a vghlication results in a fuzzy set for a visual style. The resiflthe

ume attribute to a fuzzy set is described by the membersinigtifon.
There is a wide range of functions that can be used to spedifgzy
set. However, we found piecewise linear membership funstguf -
cient. In Figure 7 the evaluation of the membership functiuddle

antecedent shapes the fuzzy set of the consequent partsmdste
common implication methods are scaling and minimum. In ow i
plementation we chose the minimum function. The resultiegnier-
ship function is therefore the minimum of the membershipcfiam

densityresults in 08 for a density value of :@8, whereas the member- describing the semantic value of the style and the value efati
ship functionhigh densityresults in 025. The membership function tecedent. In Figure 7 the result of the implication of theampple is

close-to-zero curvatureesults in 02 for the curvature value:R in the
example of Figure 7.

the truncated membership function for the semantic vgiaen color-
coding The truncated membership function describes a fuzzy $et. T



lower rule in Figure 7 results in the truncation of the mershgy vari-
able for the semantic valued color-coding The implicated fuzzy
setsgreen color-codingandred color-codingare combined using the
aggregation function.

During aggregation multiple fuzzy sets in uencing one \dbstyle
are combined. In Figure 7 the two fuzzy sets describingciier-

coding are aggregated resulting in the sum of the two membership

functions.

The input for the defuzzy cation is the fuzzy set of the agggéon.
The output of the defuzzy cation is a numeric value for a givésual
style. Many common defuzzy cation methods exist. We chaseur
implementation the centroid method. In Figure 7 the defucation
results in a numeric value for the stydelor-coding The result of the
example in Figure 7 for the styleolor-codingis a yellowish green.
We chose the centroid method because its output variesnconisly
if the input varies continuously (This is not the case foreothopular
defuzzy cation methods like the smallest-, the middle-tloe largest
of maximum).

In our implementation we rst compute the antecedents ofpeici-
ed rules and store them in antecedent volumes. Whenevegte\sil-
ume has to be evaluated all previously computed anteced@nnes
that affect the style are used for implication, aggregation defuzzy-
cation. Implication, aggregation, and defuzzy cationeadone in one
calculation per voxel position. For defuzzy cation we want nd

the centroid of a functiorf (x) resulting from the aggregation. The

centroidc; of a functionf(x) is given by the equation:

R
_ xf(x)dx

“ T TFdx @)

Let the semantic values respectively the membership fometf one

-— interpolated styles user specified stigs

Fig. 8. Examples of style descriptors: A few styles are explicitly speci ed
by the user resulting in parameterized styles. Each row shows a few
examples of interpolated styles of one style descriptor.

4.2 Rendering

The outcome of the fuzzy logic inference is a style volumedach
speci ed style. During rendering the style volumes are usede-
termine the parameter for the application of each style. ¥é&ethe
approach of style transfer functions [2] for the parametgidon of
different styles. The style transfer functions are basedmirerical
texture mapping [16] and were introduced to apply artistytes to
volume rendering. We use style transfer functions to aehmaram-
eterizations of different artistic styles. In Figure 8 #rexamples of
style descriptors can be seen. Each style is described hy ianfeges
of spheres. Each sphere might be manually shaded by anrasésh-
bling the desired artistic style. The small gray triangled-igure 8
indicate the user speci ed pre-shaded spheres. Each rowssinter-
polated examples of the style. The top row shows an artistsuié
style, often found in medical illustration. The tissue stghows from
left to right examples for soft tissue, skin, and bone. Thddi@ row

style bem;(x). The membership function for the semantic value afgescribes different contour styles ranging from transpiaver black

fected by rula after the implication is then given by the equation

mx &)= min(a; m(x)) )

whereg; is the antecedent value of the ruléhe aggregated member-

ship functionf(x) is then given by

f9= & mUxa) ®
i21

wherel is the set of indices of rules that affect the given style. démr

troid of the aggregated function can then be calculated bgtiuting

Equation 3 in Equation 1:

R
_ aizimxa)dx

c B 4
"7 T8 mAxa)dx @
We can rewrite Equation 4 as follows:
R
ai X; gj)dx
o = izl Fmaxa) ®)

&iz1 mYxa)dx

In Equation 5 it can be seen, that the summands in the nomiaato
well as in the denominator do solely depend onghéVe precompute

to red contour. The last row in Figure 8 shows examples fodsha
ing styles ranching from phong shading to cartoonish stigadduring
rendering a common opacity transfer function is used. Therdor
each sample results from an application of the layeredstylee style
descriptors de ne the styles that are applied to each sawifteopac-
ity greater than zero. The style volumes specify the valueefizh
style. Each style is interpolated accordingly to this vahesulting in
an image of a pre-shaded sphere. The sphere implicitly deaneolor
value for each normal direction in eye-space. The colodtiegufrom
one style can therefore simply be looked up in the image ofrites-
polated sphere using the gradient in eye-space. The irégiquo of
the sphere and the look-up in the image is implemented withtex-
ture look up into a 3D texture that stores all images of theghieded
spheres. The nal color value of a sample is calculated bycthra-
position of the colors of all styles. The styles are appligd layers
on top of each other. Additionally the user can specify aedar the
strength of application for each style that is used to bl&edayers on
top of each other.

Style descriptors provide a uniform framework for the pastina-
tion of styles. The user de nes a few spheres that are usedranp
eterize the styles. The layered style descriptors are awedbiluring
rendering with few additional texture look-ups.

Our rendering approach is a GPU based ray-casting algariikien

the summands of the nominator as well as of the denominair amse one color channel per style. During the evaluation offi sage
store them in a lookup table. During evaluation tieare used as we do one texture lookup per sample. The styles are blenaed fr
index for the lookup tables. The sum and the maximum are thet meohe background style to the top most layer. Our approach witis
common aggregation functions. Using the maximum as agtioega interactive frame rates on a GeForce 8800GTX graphics csivd.

function does however not allow the precomputation of tiersands.
The defuzzy cation is computationally much more expengiging
the maximum for the aggregation. We therefore recommendddhe
sum as aggregation function.

In our implementation the antecedents are computed an@datth
semantic values of styles or the consequent part of a rulegehthe
cached antecedents are reused. The time for the evaludtenuée
depends very much on the complexity of the rule and the dasae
The time for the evaluation of the rules shown in the examalesre-
sults take a few seconds with our current unoptimized implaation.

measured the average frame rates for the datasets showe riestlit
images with a sample distance ab0and a viewport size of 800
600. The average frame rate for the dataset of size 2586 166
shown in Figure 10 was 9fps. For the engine block datasetzef si
256 256 256 shown in Figure 9 we achieved an average of 7fps.
However using a less transparent opacity transfer funétiotihe same
settings resulted in an average frame rate of 20fps. For tirekey
atlas dataset of size 256256 62 shown in Figure 11 average frame
rates from 9fps to 16fps were achieved depending on the ysstity
transfer function.



if principd aurvature is ot postivethen mntours aeblueish

Fig. 9. Incremental and selective application of styles on the engine block dataset. The left image shows a cartoonish shading effect. The middle
image shows a reduced cartoonish shading effect and enhances the edges of the engine block dataset with contours. The right image selectively

colors the contours. Convex regions are shown in black, whereas concave regions are shown with blueish contours.

5 RESULTS

This paper concentrates on the presentation of the geramaépt of
semantic layers. One of the main contributions of our apgragthe
separation of the visual mapping and the application sensan®ur
paper demonstrates the implementation of such a systenharefdre
shows exemplary results that illustrate the capabilitfesioapproach.
We expect our approach to be useful in a wide variety of appibos.
Therefore we do not concentrate on one speci ¢ applicatabrather
show three different examples. Our approach is capableddupe
renderings that are achieved with common transfer fundiamsed ap-
proaches. Further it provides an alternative interfaceegcdbe more
complex visual mappings. Fuzzy logic is known to be robustaso
to be able to cope with partially contradicting rules whictght exist
in several areas. The results show the capability of theesy$d deal
with very different volume attributes and many differeryiss.

In Figure 9 the result of a curvature based approach is shda.
illustrative renderings are achieved in a relatively simgractive ses-
sion. Three renderings of the engine block dataset are shdwe
chosen opacity transfer function and the chosen viewpdiotvahe
view on many details of the engine block dataset. On thenedigie in
Figure 9 a cartoonish shading is applied to make surfacéweagine
block with different normals clearly distinguishable. hetmiddle im-
age of Figure 9 the cartoonish shading style is reduced anbais
are added. The improvement of the illustration is achieweéhbre-
mentally adding styles and by modifying the applicatioesgth. The
contours accentuate the individual parts of the enginekbldo the
right image of Figure 9 a rule is used to selectively applydbstour
style. The ruléf curvature is not positive then contours are blueish
used to distinguish between convex and concave contouteimi-
age. All modi cations of styles are done interactively aliag for a
great exibility in the generation of illustrative rendegs.

are red In the images the red contours can be seen. In the top row
of Figure 11 two images are shown using a semi-transparextityp
transfer function to unveil all regions of high brain adiyiThe lower
image in Figure 11 uses a more opaque transfer function angr@ m
illustrative style. The very simple speci cation of the santic values

and the rule lead to an illustration highlighting regionsraérest.

6 CONCLUSION AND FUTURE WORK

In this paper we presented a novel approach for the spe@mcatf the
mapping from volume attributes to visual styles. We enaltilegaiistic
description for the speci cation of the desired visualiaatby using
semantic values for multiple volume attributes and for aisstyles.
The novel methodology describkewdifferent features in the data are
rendered. We believe that this paper opens up a new resdeectiah
dealing with the semantic speci cation of visualizations.

The next step will be an adaption of our system to incorporee
dependent attributes likdistance to the mouse cursalepth(i.e., dis-
tance to the image planejiewing direction etc. This will allow the
selective application of styles driven by view dependemitattes. An
adaption of the algorithm is necessary to make view dependiém
evaluation possible on the graphics card. However the usgarable
aggregation method described in Section 4 makes it podsileealu-
ate the rules partly on the CPU and partly on the GPU. We expect
view dependent attributes to be a powerful tool for intavadtlustra-
tion.

Further we want to investigate the automatic (or semi-aat@hn
derivation of membership functions. We experienced thahtember-
ship function speci cation for different applications wly follows a
similar strategy. The membership functions are usuallgispe over
the range of values that occur within the data. We plan to ispls
heuristics that automatically provide an initial speciticen of mem-

In Figure 10 an illustrative rendering of a CTA scan of a humaR€rship functions. The automatic generation of memberfsinigtions
head is shown. The left image of Figure 10 uses two differiesue  Will then be triggered by the keywonetlativelyin a rule. For exam-

styles for bone and skin. In the right image of Figure 10 blzmktours
are selectively applied on the bone using the simple ifudensity is

high then contours are thickrlhe major vessels of this dataset are se

mented. We used a distance transform of the segmented dapalto

a distance based rule. The ruiédistance to vessels is very low then

color is redandif distance to vessels is low then color is yellowgre

ple a rule statingf curvature is relatively low ...will be translated
into a membership function having a peak at the minimum vafue
he curvature and will range to include a pre-speci ed pstite of
he data.

Image manipulation programs like Adobe Photoshop or Ging us
the concept of layered images. We analogously use the cboiceql-

used. We applied the styt®lor on top of the other styles. Regions ofumetric layers. Currently the composition of layers is dasiag the

low distance to the vessels can be seen in yellow and red uré-ip.
The distance based rendering was achieved by simply speagifie

default composition method. However, following the anglad im-
age manipulation programs we could allow an interactiveispegion

semantic valuetow andvery lowfor the attributedistance to vessels ©f other composition operations like difference, invensimultiplica-

as well as the semantic value=d andyellow for the stylecolor and
the simple distance based rules.

In Figure 11 three images of the monkey atlas dataset arershO\qz

The monkey atlas dataset contains a registered CT and PBETofea

tion, etc.
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