
Optimized Subdivisions for Preprocessed Visibility

Oliver Mattausch∗ Jǐŕı Bittner∗,† Peter Wonka‡ Michael Wimmer∗

∗Vienna University of Technology †Czech Technical University in Prague ‡Arizona State University

ABSTRACT

This paper describes a new tool for preprocessed visibility. It puts
together view space and object space partitioning in order to control
the render cost and memory cost of the visibility description gen-
erated by a visibility solver. The presented method progressively
refines view space and object space subdivisions while minimiz-
ing the associated render and memory costs. Contrary to previous
techniques, both subdivisions are driven by actual visibility infor-
mation. We show that treating view space and object space together
provides a powerful method for controlling the efficiency of the re-
sulting visibility data structures.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface algorithms

Keywords: visibility preprocessing, potentially visible sets

1 INTRODUCTION

Visibility preprocessing is an important method for accelerating
real-time walkthroughs of large scale virtual environments. Tradi-
tional visibility preprocessing algorithms assume that a view space
is partitioned into a set of view cells and the object space is par-
titioned into a set of objects. In a preprocessing step, they deter-
mine for each view cell a potentially visible set of objects (PVS).
At runtime, only the PVS stored with the view cell containing the
viewpoint needs to be rendered, leading to potentially huge savings
in rendering time. Visibility preprocessing is applicable even in to-
day’s dynamic environments since they still contain a predominant
static part.

While there is a great body of literature on how to do the actual
visibility calculation for a given view cell, the problem of how to
subdivide view space into view cells has received only marginal at-
tention so far [14]. What is even more surprising is that the problem
of finding a good object space subdivision for preprocessed visibil-
ity has practically not been addressed. Traditional techniques would
either use scene triangles, objects specified manually in the model-
ing phase, or objects defined by traditional object-space partitioning
techniques.

It is important to note that both view space and object space subdivi-
sion are visibility dependent and also interdependent. The resulting
set of objects directly influences the quality of the preprocessed vis-
ibility information. If the partitioning is too fine, the memory costs
for storing preprocessed visibility will be very high. Additionally
the setup costs for rendering the corresponding fine-grained objects

∗e-mail: {matt|wimmer}@cg.tuwien.ac.at
†e-mail: bittner@fel.cvut.cz
‡e-mail: wonka@asu.edu

Figure 1: Example of combined view space and object space subdi-
visions. The scene consists of a sphere inside the room which can
be seen only through a small hole. We show a cut through the 3d
view space subdivision. The view space subdivision concentrates in
the regions which see the sphere through the hole and therefore have
higher render cost (low cost=blue, high cost=magenta). The object
space subdivision focuses on the front of the sphere which is visible
from more view points.

on the GPU will become a burden. On the other hand if the parti-
tioning is too coarse, visibility information will be inaccurate, lead-
ing to more geometry being rendered than necessary, and therefore
slower frame rates.

In this paper we present a technique which aims to automatically
generate good view space and object space subdivisions based on
visibility information. Once these subdivisions are constructed, vis-
ibility preprocessing can be carried out using any of the published
PVS computation methods. The paper provides two main contri-
butions: 1) This is the first paper to consider object space subdi-
vision as a visibility problem and which provides a solution for
visibility driven object splits. 2) This paper presents the first in-
tegrated visibility-based solution for view space subdivision and
object space subdivision.

As a result, the average render cost in the scene can be reduced
significantly compared to a naive view space and object space sub-
division. We will show that our algorithm consistently improves the
render cost at a given memory cost, while naive methods are very
fragile with respect to the relative depths of object and view space
subdivisions. Figure 1 shows a simple illustrative example: using a
non visibility-aware object subdivision method, the spherical in the
room would inevitably have been needlessly subdivided uniformly,
whereas our method concentrates the subdivision to the front where
actual visibility events take place.

2 RELATED WORK

View space subdivision techniques have been used in visibility pre-
processing from the very beginning, whereas object space subdivi-
sion are usually assumed to be already given. For an overview of

the actual visibility preprocessing methods we refer the reader to
the surveys of Cohen-Or et al. [5] or Bittner and Wonka [4].

2.1 View space subdivision

The first visibility preprocessing methods designed for indoor
architectural environments [2, 18] partition the scene into cells
roughly corresponding to rooms in the building. The cells are con-
nected by portals which correspond to transparent boundaries be-
tween the cells. Airey et al. [2] construct a kD-tree taking into
account simplified occlusion information. A similar technique was
used by Teller and Séquin [18], and was later extended to an auto-
partition BSP tree [19]. As noticed by Teller [19], in general
3D scenes with non-axial polygons, the subdivision may result in
cell fragmentation. This problem was addressed by Meneveaux
et al. [15], who use clustering of splitting plane candidates when
constructing optimized view cells and portals for building interiors.
Further research in that direction aims at short portals [10] or builds
on the watershed algorithm [7], while he manual construction of
cells and portals during the modeling phase is still considered a
valuable option especially for indoor maze-like scenes [11, 1].

Most recent methods for PVS computation do not rely on cells and
portals [5]. They compute PVSs by solving the from-region visibil-
ity problem while treating the scene geometry as occluders. These
methods assume that the view cells are either defined by the user
or use simple view space subdivisions like regular grids. How-
ever, there are several methods which create view cells during the
PVS computation. Gotsman et al. [6] construct a 5D subdivision
of view space in which they use sampled visibility to evaluate the
efficiency of the candidate splitting planes. The visibility octree of
Saona-Vázquez et al. [17] is constructed by a view space subdivi-
sion which terminates when reaching a predefined triangle budget
or when visibility cannot be reduced by the associated conserva-
tive algorithm. Van de Panne and Stewart [20] designed a com-
pression scheme for PVSs computed for a set of view cells. As a
side-product of the compression, some cells get merged. Nirenstein
and Blake [16] use a hierarchical view space subdivision which is
terminated if the desired triangle budget is reached. The triangle
budget is determined from the PVS computed for the view cell us-
ing adaptive visibility sampling.

Recently, Mattausch et al. [14] gave a deeper analysis of finding a
good set of view cells based on actual visibility. Their method aims
to minimize the estimated rendering cost for a given view space
partition, however it does not address the problem of finding a good
object space subdivision.

2.2 Object space subdivision

Object space subdivision is crucial for ray tracing, occlusion
culling, and collision detection. There are many different tech-
niques optimized for a particular target application. Common tech-
niques include regular grids, octrees, kD-trees, B-kD trees, bound-
ing volume hierarchies (BVH), and hierarchal grids. In particular
kD-trees have become very popular for ray tracing acceleration, as
they statistically provide the best performance over a large class
of scenes [8]. One of the reasons for the success of kD-trees is
that they can be easily optimized using a cost model for ray-object
intersections called “Surface Area Heuristics” (SAH) [12]. This
heuristics assumes a uniform distribution of rays with no occlu-
sion and then performs a greedy optimization of the subdivision.
The method achieves very good results for ray tracing applications,
however its effect for optimizing the object space subdivision for
preprocessed visibility is limited.

Baxter at al. [3] developed a method which clusters geometry in
a bottom-up fashion and then refines the clusters by partitioning.
This technique was successfully applied for online visibility com-
putations, but it is not obvious how to use the method for optimizing
subdivision for preprocessed visibility. Another clustering method
for online visibility has been recently developed by Kortenjan and
Schomaker [9]. They construct an object space subdivision so that
the nodes of the subdivision maintain spatial locality as well as con-
tain geometry of comparable size.

We are not aware of a method which would construct an object
space subdivision that is optimized for storing preprocessed visi-
bility. The known visibility preprocessing methods assume that the
objects are either (1) identical to the triangles, (2) defined in the
modeling phase, or (3) result from a subdivision with some local
termination criteria. In the first case the memory consumption of
the resulting PVSs for scenes with many triangles and view cells
are prohibitive. The second case requires manual modeling; addi-
tionally it is not obvious how well the results of modeling will fit
the visibility data. In the third case the success of the preprocessing
strongly depends on setting the termination criteria of the subdivi-
sion: if the partitioning is too fine, the memory costs for storing
preprocessed visibility will be very high. If the partitioning is too
coarse, there might be significant reserves in the render cost reduc-
tion and the desired frame rate will not be reached.

3 OUTLINE

The main idea of the proposed algorithm is to acquire coarse visibil-
ity information about the scene in a global sampling step, and then
use this visibility information to partition view space and object
space simultaneously. The proposed method thus consists of two
main parts: visibility sampling and interleaved subdivision. Visibil-
ity sampling acquires visibility information which is represented as
a set of maximal free line segments. These segments are then used
to quickly determine visibility between the cells of the constructed
view space and object space partitions. It is not our goal to compute
an exact visibility solution. Instead we want to capture the visibil-
ity in the scene in an approximate fashion. The information gained
from the sampling is then used to guide the view space and object
space subdivision.

The subdivision starts with a single view cell representing the whole
view space and a single object representing the whole scene geom-
etry. Both the view and object space partitions are progressively
refined by splitting either a view cell or an object into two parts.
The main criterion driving the splits are the expected render and
memory costs which are estimated using visibility samples. Each
split attempts to reduce the render cost while keeping the associated
memory cost increase as small as possible.

Candidates for splitting are chosen from all current view cells and
object space cells. The candidates are stored in a priority queue,
and at each step we pick the candidate which provides the best ra-
tio of render cost reduction over memory increase. This candidate
is then used to subdivide the associated view space or object space
cell. The subdivision proceeds until the given termination criteria
are reached. In particular the algorithm terminates if the local ren-
der cost reduction falls below a specified threshold, or a maximal
memory budget for the whole visibility data is reached. As a re-
sult the algorithm delivers optimized view space and object space
partitions which can then be fed into any from-region visibility pre-
processing algorithm.

The rest of the paper is organized as follows: section 4 presents
a theoretical framework for the method. Section 5 discusses the

visibility sampling step. Section 6 presents the interleaved subdivi-
sion algorithm. The results are summarized in section 7. Finally,
Section 7 concludes the paper.

4 FRAMEWORK FOR INTERLEAVED OBJECT AND VIEW
SPACE SUBDIVISIONS

The interleaved object and view space partitioning which is the core
of the proposed method is driven by a cost model which is based on
the estimate of the average rendering time and the memory costs
needed for storing the visibility information. This section describes
a theoretical framework for the rest of the paper. In particular it
addresses the representation of the subdivisions, and evaluation of
the render cost and the memory cost.

4.1 Representing the subdivisions

The input to the algorithm is a subset V S ⊆ R3 called view space,
and a set OS ⊆ N of object identifiers representing the geometric
primitives in the scene. The algorithm operates on partitions (or
subdivisions) of V S and OS, called V and O respectively. Initially,
V = {V S} and O = {OS}. Each step in the algorithm splits exactly
one cell in either V or O . An object space split of cell O = O1 +
O2, for example, transforms the partition O into O ′ = (O \{O})∪
{O1,O2}.

In our implementation, we use an axis-aligned kD-tree to represent
the view space subdivision, with the leaf nodes corresponding to
the view cells. We decided to use a kD-tree as it is efficient and
provides good render cost reduction [14]. To represent the object
space subdivision, we use a bounding volume hierarchy. The hier-
archy is a binary tree where each node recursively subdivides the
associated triangles into two disjoint subsets represented by its two
children. The leaves of the hierarchy correspond to the constructed
scene objects. Each leaf (object) contains references to scene trian-
gles. Note that each triangle is referred to only once and thus the
memory consumption of the data structure is O(n) (internal nodes
of the hierarchy only add a constant factor). For each node we also
keep an axis-aligned bounding box.

4.2 Render cost

The main factor in determining whether a split is beneficial or not is
the effect such a split has on the expected render cost. For example,
a view cell split often causes the child view cells to see less objects
than the original cell, so that the render cost is lower in both cells.
Similarly, an object space split can cause the resulting sub-objects
to be present in the PVS of fewer view cells, similarly reducing the
overall rendering costs.

The render cost cr of a given view space and object space partition
V and O is given by the expected value of the rendering time over
all view cells:

cr(V ,O) = ∑
V∈V

p(V)r(PV SV), PV SV ⊆O (1)

where PV SV is an approximate PVS of view cell V consisting of
objects from O , r(PV SV) is a rendering time estimator [21] for this
PVS, and p(V) is the probability of the viewpoint being located
in view cell V . Assuming that viewpoints will be distributed uni-
formly in the whole view space, p(V) can be chosen as the ratio of

the volume VolV of the given view cell and the total volume Voltot
of the view space:

p(V) =
VolV
Voltot

.

Alternatively, the user can specify any probability density d for
viewpoint locations, so that areas where the user is more likely to
move receive more attention in the view cell construction. p(V) is
then given by:

p(V) =
∫
V d(V)∫

V S d(V)
.

The rendering time for a view cell is estimated from the rendering
times for the objects in the PVS as seen from view cell V :

r(PV SV) = ∑
O∈PV SV

r(O,V).

The rendering time estimation function r(O,V) is difficult to estab-
lish exactly since it depends not only on the particular set of objects,
their attributes and distance to the view cell V , but also on the ac-
tual implementation and hardware. On the other hand, the view
cell subdivision should not be tied too much to a specific hardware,
neither do we have an accurate PVS (it is only estimated from a
coarse visibility sampling) to determine the absolute value of the
rendering time. Therefore we propose to loosely calibrate an ana-
lytic rendering time estimation function [21] to a small number of
target machines. Since current graphics hardware is CPU limited
for small batches, the following function provides good results:

r(O,V) = max(a,btO,cpO),

where a, b and c are positive constants, and tO and pO are the num-
ber of triangles and the number of projected pixels of object o (es-
timated from some points in the cell) respectively.

4.3 Memory cost

While fine-grained partitions can reduce the rendering cost, they
also increase memory costs. Therefore, memory costs need to be
controlled. The memory cost cm of a given set of view cells V and
objects O is given by:

cm(V ,O) = MV +MO +MPV S, (2)

where MV is the memory needed to store the view cells, MO is the
memory needed to store the objects, and MPV S is the memory for
storing the PVSs, given as follows:

MPV S = ∑
V∈V

∑
o∈PV SV

me (3)

based on the elementary cost me of storing one object identifier.

4.4 Optimization approach

We cast the partitioning problem as an optimization problem. Let
{(Vi,Oi) : i ∈ N} be the set of all possible view space and object
space subdivisions resulting from splitting (we assume that there is
only a finite number of possible split positions for each cell, and
therefore this set is also finite). Then we look for a partition (V ,O)
with cr(V ,O) = mini(cr(Vi,Oi)) and cm(V ,O) ≤ maxmem, i.e.,
we look for the partition with the least render cost given a maximum
allowed memory cost maxmem.

Enumerating all possible partitions would be prohibitively costly,
and we therefore follow an idea borrowed from the well-known
Knapsack problem [13]: a common greedy solution to the Knap-
sack problem always adds the element with the highest “value per
size” ratio to the Knapsack. If we interpret the render cost decrease
dR of a split as its “value”, and the memory cost increase dM of a
split as its “size”, we can follow the same strategy.

We place all potential split candidates in a priority queue and cal-
culate the priority of each candidate by the described ratio, i.e.,

p =
dR
dM

. (4)

The optimization algorithm therefore proceeds by repeatedly re-
moving the split with the highest priority from the queue and apply-
ing it to the current partition. For the newly generated cells, new po-
tential split candidates are added to the priority queue. This process
is repeated until the maximum memory cost is reached. How the
potential split candidates are obtained is described in Section 6.1.

Note that the algorithm does not distinguish between object space
and view space splits—they are treated equally. The memory cost
increase consists of a constant overhead of the split (new view cell
or new object) on one hand and the number of new PVS entries
following from the split on the other hand. For example, when
splitting an object, the PVS size of all view cells that see both sub-
objects will be increased by me. The evaluation of the render cost
reduction is described in the next section.

4.5 Evaluating the render cost reduction

The crucial part of the algorithm is to evaluate the render cost re-
duction dR resulting from subdividing either view space or object
space.

View space splits The render cost of a single view cell is
defined as:

cr(V) = p(V)r(PV SV) (5)

When subdividing a view cell V by a splitting plane, the render cost
reduction is given by the difference of the render cost of the new
view cells and the old one:

dR(V) = cr(Vb)+ cr(V f)− cr(V) (6)

where Vb and V f are back and front fragments of the view cell V
with respect to the splitting plane. The view space split is illustrated
in Figure 2.

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

Figure 2: Illustration of a view space split. A view cell (red) is
split by a plane which is aligned with certain scene occluder (black).
The PVS breaks into two parts seen from the new view cells by the
visibility samples. Each part consists of objects seen only by one
view cell (blue and green) and objects seen by both view cells (two
hatched objects in the bottom).

Figure 3: Scene with four view cells (left) and five objects (right).
Four objects are shown in blue and one object is shown in red. The
render cost of the highlighted object is given by its render time esti-
mate weighted by the sum of area (volume) of all view cells that see
the object (VC2 and VC3 shown in light blue).

Object space splits To evaluate the render cost reduction
when splitting an object, we first need to know from which view
cells the object and its new fragments can be seen. We denote the
set of view cells which can see an object O as PV SO. The expected
render cost of an object is then expressed as:

cr(O) = ∑
V∈PV SO

r(O,V)p(V) (7)

where p(V) is the probability of view point located in view cell V
and r(O,V) is the render cost of the object O seen from view cell V
(see Figure 3).

When subdividing an object O, the render cost reduction is given
by:

dR(O) = cr(Ob)+ cr(O f)− cr(O) (8)

where Ob and O f are the back and front fragments of the object.
The object space split is illustrated in Figures 3 and 4.

Figure 4: Illustration of an object space split. A spherical object
inside a tube-like structure is subdivided into two parts shown in
blue and green. In this example the view cells which see the object
(identified by visibility samples) break into two disjoint sets.

5 VISIBILITY SAMPLING

Similarly to [14], we gain information about global visibility in the
scene by sampling. This section describes how the visibility sam-
ples are created and how they are used to estimate PVSs.

5.1 Creating visibility samples

Each sample is a line segment which associates all points on the
line segment with visibility of the object(s) on its endpoints. Ev-
ery sample is obtained by casting a ray which starts on an object
surface and goes towards the view cells which see the object. The
ray origins are distributed uniformly over the object surface, and
the ray directions use q cosine weighted distribution over the object
surfaces. The resulting visibility samples are line segments which
are bound by the ray origin on one side and the intersection point
determined by the ray casting algorithm on the other side. If the
ray caster reports no intersection, we clip the ray to the view space
bounding box. The visibility sample also stores the triangle from
which the sample was generated. Thus it provides information from
which points in the view space this triangle can be seen.

In the further steps of the algorithm, each sample is associated with
an object resulting from the object space subdivision as well as a
list of view cells resulting from the view space subdivision.

5.2 Estimating PVSs using visibility samples

Every leaf of the view space and object space hierarchies is asso-
ciated with a set of visibility samples. For a view space node, this
list consists of rays that intersect the corresponding view cell. For
an object space node, this list consists of rays which are associated
with triangles contained in the node. The PVS of a view space node
(PV SV) is enumerated as the union of all objects seen by the rays
associated with the node. The PVS of an object space node (PV SO)
is enumerated as the union of all view cells intersected by the asso-
ciated rays.

In the beginning of the subdivision there are many visibility sam-
ples per node and the accuracy of the PVS estimation is relatively
high. As the subdivision proceeds, there are less and less samples
per node, and consequently the accuracy of the PVS estimation
drops. As a result the estimated PVSs in the leafs can be signifi-
cantly smaller than the real PVSs which would be obtained with an
exact visibility solver.

To compensate for this visibility undersampling, we compute an un-
dersampling factor for each subdivided node based on the number
of rays intersecting the node and the size of the associated estimated
PVS. This factor expresses the credibility of the PVSs computed for
child nodes using the associated rays. We use this factor to correct
the PVS size estimate as well as the render cost estimate for the
nodes. The correction is done by blending the values computed
using rays with the values determined for the parent node. If the
number of rays is significantly larger than the PVS size (every ob-
ject is sampled by many rays), we use the PVS and render cost
without any correction. However, if the number of rays is compa-
rable to the PVS size (every ray sees a different object) we use the
PVS size and the render cost determined in the parent node. For
cases between these two extremes we linearly interpolate between
the values determined by the rays and those computed for the parent
node.

Note that this correction is only an estimate, and therefore the total
memory cost of the PVS calculated by the actual visibility solver

Figure 5: Establishing the split candidate for a view space node. The
split planes are placed at the end-points of visibility samples inside
the view cell and intersections of visibility samples with the view cell
boundary. Then we pick the plane with highest priority as a split
candidate for this node. The example shows only the split positions
evaluated for one axis.

can be larger than the bound maxmem.

6 SUBDIVISION

This section describes in detail the selection of splitting planes, de-
termination of their processing order, and the computation of the
actual splits of view space or object space nodes.

6.1 Establishing split candidates

Whenever a new (object space or view space) cell is generated in
the subdivision, we establish a new splitting plane candidate for
this cell and add it to the priority queue. Within the cell, we aim
to find the split plane with the highest priority according to Eq. 4.
Both dR and dM functions have discontinuities at places of visi-
bility changes (changes in PVS). The visibility changes can occur
only at the end-points of the visibility samples clipped to the cur-
rent node, i.e., either at an end-point of a visibility sample due to
an object within the view cell, or at the intersection of a visibil-
ity sample with the view cell boundary. In order to achieve a high
chance of separating the PVS, we compute these points and eval-
uate the split priorities for the corresponding split plane positions
in all three axes. The splitting plane candidate for this node is then
established at the position with highest priority. The selection of
split plane candidate is illustrated in Figure 5.

To efficiently calculate the priorities for all positions, we use a
sweeping plane algorithm [14]. We sort the positions and sweep
the splitting plane along these positions. At every position of the
plane, we compute the PVS incrementally by counting the refer-
ences to objects seen by rays on both sides of plane. The priority
for each position is then computed from the PVS using the formulas
given in Section 4.5.

6.2 Processing split candidates

The split candidates established for every leaf of the current sub-
division have to be processed in the order of descending priority.
The basic algorithm described so far would just use a single prior-
ity queue of the candidates, pick the candidate with best priority,
split the corresponding node and put split candidates for the newly
created nodes into the priority queue. However, a view space split
induces a change of the priorities of object space split candidates
and vice versa. The affected candidates are those which could see
the node that was split, i.e., those which are connected with that

node with at least one ray. The priorities of the affected candidates
have to be reevaluated and their position in the priority queue has
to be updated. In the extreme case, a split of a single view space
or object space node can affect all of the split candidates from the
other domain.

In order to cope with this situation, we exploit the following obser-
vation: when performing a split, the priority of other candidates in
the queue remains valid if they are from the same domain as the
split. This follows from the fact that the cost evaluation of disjoint
nodes of the same domain is independent. We use this observation
to reduce the number of recomputations of split candidate priori-
ties. The optimized algorithm maintains separate priority queues
for split candidates of view space and object space domains and
proceeds as follows:

Initially we take the split candidate with the highest priority by
comparing the fronts of the view space and object space priority
queues. We take at least nmin splits from the same domain with-
out reevaluation of split candidate priorities. Then we compare
the priority of the current split candidate with the best split of the
other domain. If the priority of the current split is lower (condi-
tion 1), we recalculate the priorities of the candidates and decide
whether to switch the domains. Otherwise we continue subdivid-
ing in the current domain until condition 1 is met or we reach nmax
splits (condition 2). nmax is a safety criterion ensuring that reeval-
uation is made with sufficient frequency. As a result the number
of steps without reevaluating the split candidate priorities is in the
range (nmin,nmax).

Even when processing the splitting planes in batches, the update
of all affected split candidates per batch is expensive. The deeper
the subdivision, the more candidates have to be updated. To further
reduce the number of recomputations of priorities, we only update
a subset of split candidates. This subset is chosen randomly from
the set of affected candidates.

We found that using a range of (nmin,nmax) = (100,900), and up-
dating 2000 candidates per batch gives stable results. The final ratio
of view space splits to object space splits is nearly independent from
the range of nmin and nmax. The chosen settings are quite conser-
vative, so taking less repair candidates will speed up the algorithm
without significantly impacting the efficiency of the algorithm.

6.3 Splitting a node

The algorithm for the actual split of the node depends on the do-
main of the node. If a view space node is subdivided, we split
the corresponding cell into two disjoint parts and create two new
view cells (leaves of the kD-tree). Then we distribute the associ-
ated visibility samples to the new view cells using a line segment /
box intersection tests. The visibility samples are used to compute
the split candidates for the newly created nodes and their priorities.
These split plane candidates are then inserted into the view space
priority queue.

If an object space node is subdivided, we partition the triangles of
the subdivided cell (object) into two disjoint sets based on the posi-
tion of their center of mass with respect to the splitting plane. Then
we distribute the visibility samples according to the position of the
triangles stored with the rays in the child nodes. Similarly as for
the view space splits, the visibility samples are used to compute the
split plane candidates for the newly created nodes as well as their
priorities. These split candidates are then inserted into the object
space priority queue.

7 RESULTS

We have evaluated the proposed method on two different scenes.
The scenes are depicted in Figure 9). The first scene (Vienna) rep-
resents 8km2 of the city of Vienna. The second scene (Arena) is
a model of Sazka-Arena—a multipurpose stadium in Prague (cour-
tesy of Digital Media Production a.s.). The Vienna scene consists
of houses with windows and balconies, pavements, and roads. The
Arena scene represents both the interior and the exterior of the sta-
dium. The interior has high depth complexity (apart from the large
open spaces, the building contains about 1000 rooms) and includes
many instances of coarsely modeled objects such as chairs and ta-
bles. The Vienna scene contains 1M triangles, the Arena scene
1.5M triangles.

For both scenes we measured the dependence of the render cost es-
timate on the memory cost of the constructed subdivisions. As a
reference for comparison, we used a method which initially subdi-
vides object space using the surface area heuristics up to a specified
number of objects, and then applies the visibility-driven view cell
construction [14] to subdivide view space. We used different termi-
nation criteria of the initial object space subdivision (10k and 60k
objects) to observe the dependence of the reference method on this
parameter.

For both test scenes the subdivisions were constructed with 3M,
and 6M visibility samples, respectively. We terminated the subdivi-
sions when they reached a specified memory budget (35MB). After
the construction of the subdivisions, we also evaluated the quality
of the subdivision by casting a large number of visibility samples
and recomputing the render cost and memory cost curves. We used
160M evaluation samples for both scenes. The results of these mea-
surements are summarized in Figures 6 and 7. Our new method is
labeled INT (interleaved) and the reference method is labeled SEQ
(sequential) together with a number expressing the number of ob-
jects in the initial object space partition. We used a 2.2 GHz Dell
Inspiron 9300 notebook with 2GB RAM for computing the results.

To analyze the behavior of the compared methods, we measured
the ratio of the total number of view cells and objects during the
subdivision process (Figure 8-(left)). This ratio is monotonically
growing for the reference methods, whereas for the new method it
adapts to the visibility properties of the scene. Interestingly, after a
steady falloff the ratio increases again at the end of the subdivision.

The middle and rightmost plots in Figure 6 and Figure 7 show the
evaluation of the subdivisions using 160M samples. We can see that
the number of samples has significant influence on the results. Our
method profits from increasing the number of samples from 3M to
6M in both scenes. On the other hand, the reference methods are
sensitive to the larger number of samples only in Arena. It is hard
to tell which would be the optimal number of samples for a certain
scene. Our experiments indicate that with 6M samples, satisfactory
results can be achieved for typical scenes such as the ones shown.

The results show that with a sufficient number of visibility samples,
the proposed method provides a consistent reduction of the average
render cost at any given memory cost when compared to the refer-
ence methods. The render cost reductions for selected memory bud-
gets are summarized in Table 1. Compared to the reference meth-
ods we obtained speedups of 16–68% for Vienna and 32–153% for
Arena. Note that the speedup is based on the average render cost,
a quantity which is smoothed over all view space, whereas locally
the speedup can be much higher. For example, both scenes contain
some large irreducible view cells which prevent large variations in
the average render cost, therefore the speedups shown are quite sig-
nificant. This fact is illustrated in Figure 8-(right), which depicts
the histogram showing the distribution of render cost over the view

Scene Method Time [m] Memory [MB] View cells Objects Render cost Speedup
SEQ-10k 25 60 11000 10000 81999.2 1.67

Vienna SEQ-60k 21 60 3000 60000 58149.2 1.18
INT 212 60 3106 60894 49221.9 –

SEQ-10k 33 80 15500 10000 24631.4 2.53
Arena SEQ-60k 29 80 5500 60000 12825.7 1.32

INT 106 80 5305 57195 9745.91 –

Table 1: Summary of results for Vienna and Arena scenes.

space volume for Vienna. It can be seen that for the new method,
significantly more volume is covered by lower render cost. We can
see from Table 1 that our method requires several times more com-
putation time than the sequential methods. However, to find a good
subdivision using a sequential method, it would have to be evalu-
ated several times for different numbers of objects, which would be
even more costly. Most of the computation time of our method is
spent evaluating local split planes for the view space splits, the cost
of which highly depends on the number of visibility samples. A
viable alternative is to use only mid splits, which speeds up compu-
tations a lot.

We have presented a new tool which allows constructing an opti-
mized subdivision of view space and object space for preprocessed
visibility. The method treats view space and object space partition-
ing together and it progressively refines both subdivisions while
minimizing the associated render and memory costs. Contrary to
previous techniques, both subdivisions are driven by the actual vis-
ibility in the scene. This allows a better adaptation to the visibility
distribution within the view space and the object space.

In the future we would like to improve our model of render cost. In
particular we want to integrate the cost of state changes due to ma-
terials and textures in the algorithm. Further we want to deal with
the issue of determining how many samples to use, by implement-
ing an adaptive version that starts with a low number of samples
and casts more samples on demand. We are also working on an
algorithm which uses the scalability of the subdivisions for rapid
sampling-based global visibility precomputation.

ACKNOWLEDGMENTS

This work has been supported by the EU under the project no. IST-
2-004363 (GameTools) and by the Ministry of Education, Youth
and Sports of the Czech Republic under the research program LC-
06008 (Center for Computer Graphics). The Arena scene is a cour-
tesy of Digital Media Production a.s.

REFERENCES

[1] Timo Aila. Surrender umbra: A visibility determination framework
for dynamic environments. Master’s thesis, Helsinki University of
Technology, 2000.

[2] John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. Towards
image realism with interactive update rates in complex virtual building
environments. In 1990 Symposium on Interactive 3D Graphics, pages
41–50. ACM SIGGRAPH, March 1990.

[3] William V. Baxter III, Avneesh Sud, Naga K. Govindaraju, and Di-
nesh Manocha. GigaWalk: Interactive walkthrough of complex en-
vironments. In Simon Gibson and Paul Debevec, editors, Proceed-
ings of the 13th Eurographics Workshop on Rendering (RENDERING
TECHNIQUES-02), pages 203–214, Aire-la-Ville, Switzerland, June
26–28 2002. Eurographics Association.

[4] Jiřı́ Bittner and Peter Wonka. Visibility in computer graphics. Envi-
ronment and Planning B: Planning and Design, 30(5):729–756, sep
2003.

[5] D. Cohen-Or, Y. Chrysanthou, C. Silva, and F. Durand. A survey of
visibility for walkthrough applications. IEEE Transactions on Visual-
ization and Computer Graphics., 2002.

[6] Craig Gotsman, Oded Sudarsky, and Jeffrey A. Fayman. Optimized
occlusion culling using five-dimensional subdivision. Computers and
Graphics, 23(5):645–654, October 1999.

[7] Denis Haumont, Olivier Debeir, and Franois Sillion. Volumetric cell-
and-portal generation. Computer Graphics Forum, 22(3):303–312,
September 2003.

[8] Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis,
Department of Computer Science and Engineering, Faculty of Elec-
trical Engineering, Czech Technical University in Prague, November
2000.

[9] Michael Kortenjan and Gunnar Schomaker. Size equivalent clus-
ter trees (sec-trees) realtime rendering of large industrial scenes. In
Afrigaph ’06: Proceedings of the 4th international conference on
Computer graphics, virtual reality, visualisation and interaction in
Africa, pages 107–116, New York, NY, USA, 2006. ACM Press.

[10] A. Lerner, D. Cohen-Or, and Y. Chrysanthou. Breaking the walls:
Scene partitioning and portal creation. In Pacific Graphics, 2003.

[11] David Luebke and Chris Georges. Portals and mirrors: Simple, fast
evaluation of potentially visible sets. In Pat Hanrahan and Jim Winget,
editors, 1995 Symposium on Interactive 3D Graphics, pages 105–106.
ACM SIGGRAPH, April 1995.

[12] J. David MacDonald and Kellogg S. Booth. Heuristics for ray tracing
using space subdivision. Visual Computer, 6(6):153–65, 1990. criteria
for building octree (actually BSP) efficiency structures.

[13] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms
and Computer Implementations. John Wiley & Sons Inc., New York,
1990.

[14] Oliver Mattausch, Jiřı́ Bittner, and Michael Wimmer. Adaptive
visibility-driven view cell construction. In Wolfgang Heidrich and
Tomas Akenine-Moller, editors, Rendering Techniques 2006 (Pro-
ceedings of the Eurographics Symposium on Rendering 2006), pages
195–206. Eurographics, Eurographics Association, June 2006.

[15] Daniel Meneveaux, Kadi Bouatouch, Eric Maisel, and R. Delmont. A
new partitioning method for architectural environments. Journal of
Visualization and Computer Animation, 9(4):195–213, 1998.

[16] S. Nirenstein and E. Blake. Hardware accelerated aggressive visibil-
ity preprocessing using adaptive sampling. In Rendering Technqiues
2004, pages 207–216, 2004.

[17] C. Saona-Vázquez, I. Navazo, and P. Brunet. The visibility oc-
tree: a data structure for 3D navigation. Computers and Graphics,
23(5):635–643, October 1999.

[18] S. J. Teller and C. H. Séquin. Visibility preprocessing for interactive
walkthroughs. In Proceedings of SIGGRAPH ’91, pages 61–69, July
1991.

[19] Seth Jared Teller. Visibility Computations in Densely Occluded Poly-
hedral Environments. PhD thesis, Dept. of Computer Science, Univer-
sity of California, Berkeley, 1992. Also available as Technical Report
UCB//CSD-92-708.

[20] Michiel van de Panne and A. James Stewart. Effective compression
techniques for precomputed visibility. In Rendering Techniques, pages
305–316, 1999.

[21] Michael Wimmer and Peter Wonka. Rendering time estimation for
real-time rendering. In Rendering Techniques, pages 118–129, 2003.

Render cost

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

SEQ−10K
SEQ−60K

INT

Memory cost

 1000

Memory cost

 100000

 1e+06

 0 50 100 150 200 250

SEQ−10K
SEQ−60K

INT

Render cost

 10000

Render cost

 100000

 1e+06

 0 20 40 60 80 100 120 140 160
Memory cost

SEQ−10K
SEQ−60K

INT

 10000

Figure 6: Render cost vs. memory cost curves for Vienna. (left) Original curves, 6M samples. (center) 3M samples, measured using 160M
evaluation samples. (right) 6M samples, measured using 160M evaluation samples.

Memory

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30 35 40

SEQ−10K
SEQ−60K

INT

Render cost

 1000

Render cost

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100 120 140 160
Memory cost

SEQ−10K
SEQ−60K

INT

 1000

Render cost

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100 120 140 160 180

SEQ−10K
SEQ−60K

INT

Memoy Cost

 1000

Figure 7: Render cost vs. memory cost curves for Arena. (left) Original curves, 6M samples. (center) 3M samples, measured using 160M
evaluation samples. (right) 6M samples, measured using 160M evaluation samples.

 90K

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Splits

SEQ−10K
SEQ−60K

INT

Ratio view / object space

 0 50K
 0

����
����
����
����

�� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�� ��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

���� �
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����

����
����
����INT

 0.1

 0.2

 0 50000 100000 150000 200000

SEQ−50k

Volume

Render cost

 0

Figure 8: (left) Evaluation of the ratio of the total number of view cells and objects during the subdivision of Arena. (right) Histogram showing
amount of view space volume in a particular range of render cost for the subdivision of Vienna.

Figure 9: Snapshot of Vienna scene (leftmost) and visualization of the view / object space partition (second from left). Snapshot of Arena
scene (second from right) and visualization of the view / object space partition (rightmost). Each colored patch represents one object from the
PVS. We show a cut through the 3d view space subdivision. The view cells are colored from blue (low render cost) to magenta (high render
cost).

