
186.119 Projektpraktikum mit Bakkalaureatsarbeit (2006/07)
Ralf Habel (Tutor)

Realtime HDR Rendering

Christian Luksch

MatNr. 0525392

Institute of Computer Graphics and Algorithms
TU Vienna

Abstract

High dynamic range rendering in realtime graphics has increased the visual quality of realtime scenes essentially.
There are several techniques of HDR-Rendering. This work summarizes the theoretical background and results
of previous works. A ready-to-use HDR rendering library has been developed that integrates seamlessly into the
open source graphics engine Ogre3D [Ogr]. Further a comparison that show the advantages and disadvantages
of different techniques in a realtime rendered scene has been made.

1. Introduction

HDR-Rendering follows another way to create images. The
algorithms tries to imitate the physical behavior of light and
human vision. Color and luminance values are calculated in
high dynamic range, approaching to real-world luminance
values, measured in Candela per square meter. Instead of
8-bit color depth the whole calculation has to be done
in floating-point values. The dynamic range is the ratio
of the highest and lowest value of these data. In natural
environments this range is very high and to visualise these
range, often a logarithmic scale is used. The term HDR is
not clearly defined, but speaking of HDR usually means to
cover more than about 4 orders of magnitude.
HDR images cannot be displayed directly on normal display
hardware. To display these data a tone mapping operator
maps them back to low dynamic range, also called device
color space. Most techniques use a logarithmic based
mapping to simulate human vision. The goal is to find
a display representation which yields the same visual
sensation as viewing a scene in the real world.
In the library we handle global tone mapping operators due
to realtime rendering constraints. A global tone mapping
operator determinates a mapping function for all pixels,
e.g. it takes the average luminance of the scene to scale
all values. Another approach is a local tone mapping
operator which calculates a mapping value for each pixel
from the surrounding pixels. Grzegorz [KMS05] shows a
realtime implementation of this approach mainly based on

the theoretical background of Erik Reinhard [RSSF02].
To improve the realism one can use techniques which
imitates the behaviour of human perception, e.g. a
temporal adaptation can be used to simulate the reaction
of human vision in changing luminance. Also a glare
and star effect that imitates the recording of light in
photographically equipment can be added. The whole
process of HDR-Rendering is computationally expensive. To
handle this in realtime at least a Shader 2.0 graphics device
that supports floating-point render targets is required.
The major part of this work was to implement a library and to
test different tone mappers and HDR rendering techniques.
It is currently part of the Ogre3D Add-ons library
collection [Ogr]. It can be used in any Ogre3D application
with minor exceptions. The library can be controlled by
several parameters to configure the processing from the
main application. Internal it uses the Ogre3D compositor
framework and creates a post-processing effect, which
handles all the HDR processing and adds it to the compositor
chain. The HDR effect can also be combined with other
post-processing effects e.g. Motion-Blur, Depth-Of-View, ...

2. Human perception

First we take a closer look at human perception to
understand the processes on witch the implemented models
are based on.
Humans are capable of seeing a huge range of intensities,

Christian Luksch / Realtime HDR Rendering

from daylight level to night luminances. The cells of the
Human Visual System have a much more limited response
range, about 4 orders of magnitude. They cope the large
luminance range by a process called adaptation. A raw
adaptation takes place in the first seconds, but the final
adaptation takes several minutes. At this an additional
distinction has to be made by either adopting to dark or to
light intensities and it is also depending on the actual level
of illumination. [FPSG96a]
Human perception is not equal at all light intensities,
because of the different sensitivities of the two different
kinds of photoreceptors, the rods and cones.
Rods are responsible for perception of luminance
differences, but have no capability to distinguish different
colors. They are sensitive to low luminance values, in
higher orders they lose their capability. The range where
predominantly rods are responsible for vision is called
scotopic vision [FPSG96b].
The second kind of photoreceptors are cones, which are
responsible for color vision. In detail there are three
different types, each sensitive at a certain wavelength
of light, approximately red, green and blue. They are
concentrated in the center of the retina called fovea and only
work in the well lighted luminance range. The range where
cones are responsible for vision is called photopic vision.
The overlapping region between the scotopic and photopic
range is called mesopic [FPSG96b].

Figure 1: The range of luminances of a natural environment
and associated visual parameters. [FPSG96b]

Another phenomena of human vision is loss of visual acuity
at scotopic levels of illumination where barely rough shapes
can be perceived. Further there are changes in perception
of color at different light intensities [FPSG96b] and the
phenomena of color constancy where the perceived color
remains relatively constant under varying illumination
conditions [col07].

3. The scene

To demonstrate and test the tone mappers, a small scene with
three objects: a simple sphere, a knot and the ogre head has
been created. They have an Image-Based Lighting material
[Deb02] with a static convoluted environment map [KM99].
The background is a sky-sphere textured with a 32-bit
floating point HDR cube map in DirectX’s .dds-Format
[dds07]. Additionally, the demo includes a GUI to control
all parameters of the library.

Figure 2 shows a screenshot of the demo application.

Figure 2: Screenshot of the demo application

Convoluted Environment Maps extend the environment
mapping [env07] technique and include diffuse and phong
features to enable the rendering of non-metallic objects. The
material simplifies a Bi-Directional Reflectance Distribution
Function (BRDF), which describes the reflectance of a
material from all points of view over the whole hemisphere,
considering the light irradiance over the whole hemisphere.
[Mon06] BRDFs are a huge amount of data, but they can
be simplified to a good approximation. It is achieved by
convoluting the environent map using a filter kernel that
approximates the BRDF. This creates a lookup-texture for
the diffuse light and another for the phong reflectance.
The specular reflection is looked-up in the environment
map like in common environment mapping. Therefore it
does not support self reflection and only considers a static
environment, which does not allow reflection of dynamic
objects in a scene. The problem of no reflections of
other objects, could be accomplished by updating and
convoluting the environment map in realtime, but because
the filter kernels are quite large it would radically reduce the
performance.
Figure 3 shows the environment map, original from [Deb02],
and the in course of the work of Monitzer [Mon06] created
phong and diffuse map, both generated with the tool
CubeMapGen [Cub].
In the material-shader the diffuse term is looked up with
the surface normal, the phong and specular term is looked
up with the reflected view vector. Each gets multiplied with
an adjustable factor. Together they are used to calculate the
surface color:

Color = MatColor · (Di f f use+Phong+Specular) (1)

With this formula, a range of materials, from diffuse to fully
reflective can be created.

Christian Luksch / Realtime HDR Rendering

Figure 4: HDR rendering processing chain

Figure 3: One face of the environment map and
the convoluted diffuse and phong map, created with
CubeMapGen [Cub]. The original environment map is from
[Deb02].

4. Processing overview

The whole process of HDR rendering requires a lot of
temporary render-targets. Therefore it comes to many
render-target switches each frame. Furthermore the
performance of the process rather depends on the memory
bandwidth and the pixel fill-rate of the graphics device.
Figure 4 gives a general overview of the processing steps.
For HDR rendering, the following sequence has to be
calculated:

1. Render the scene
2. Down-sample the scene

3. Extract the average luminance
4. Filter bright areas
5. Build the glare effect
6. Build the star effect
7. Apply final tone mapping and merge with effects

Additional we do the following two steps:

a) Adapt luminance
b) Calculate key

The next sections will explain each step in detail.

5. Rendering the scene

The processing begins by rendering the scene in a
floating-point render-target of same size as the viewport.
All materials of the scene have at least to be Shader 2.0,
where all light calculations are done in high dynamic range.
Otherwise the render-target will get invalid values, because
of lower shader versions or fixed function pipeline do not
support rendering to floating-point render-targets.
To improve the performance, the next step is to sample
the scene down, into a temporary texture, to a quarter of
its original size. With that texture all further calculations
will be done. The lost of spatial accuracy does not matter
for calculating the average luminance or building the
glare and star effect. Every pixel of the down-sampled
scene is calculated by building the arithmetic mean of the
corresponding 4x4 block of the original scene.

6. Calculating the average luminance

The average luminance is needed to do the proper final tone
mapping and it is also required to decide the bright areas

Christian Luksch / Realtime HDR Rendering

of the scene which are needed to build the glare and star
effect. A suitable way to measure the luminacne is to build
a logarithmic average of all pixel luminances in the scene
[Rei02]:

L̄w = exp
(

1
N ∑

(
log(δ+Lw (x,y))

))
(2)

To calculate the luminance of a pixel one can take
the arithmetic mean of red, green and blue, but in this
implementation a weighted sum like in the YUV color model
is used, because it covers the human perception of color
more closely. It follows the equation:

Lw (x,y) = RGBxy ·

 0.2126
0.7152
0.0722

 (3)

The average luminance calculation of the scene can be done
in four passes. The first pass starts with a texture with a
size of 64x64. For each pixel of this texture the logarithmic
average of a 3x3 pixel group from the down-sampled scene
is calculated. The offset of the texture coordinates for
the group is equivalent to one pixel of the down-sampled
scene. However, this method can only acquire 192x192
pixels of the down-sampled scene, with is equivalent to an
original resolution of 768x768. Due to the slightly higher
usual original resolution, not all pixels from the scene are
acquired, but they are enough to get an adequate result.
In the next passes the 64x64 texture gets sampled down.
First to a size of 16x16, then 4x4 and finally to a 1x1 texture,
where the logarithmic average luminance also gets mapped
back to world luminance by the exponential function. The
pyramidal character of this step can be seen in Figure 5.

Figure 5: Calculating the luminance

Theoretic this calculation could be done in one pass with
a dynamic flow control by iterating all pixels in two nested
loops on newer graphics hardware. However, one would lose
the benefit of parallel processing with multiple shader units,
but it may proof to be efficient on future hardware, saving
one or two temporary steps.

7. Exposure control

By knowing the average scene luminance we can map the
high dynamic range spectrum of the scene to a low dynamic
range. A simple way to achieve that would be a linear
mapping function:

Lscaled = a · Lw

L̄w
(4)

The key value a adjusts the brightness of the final image.
Figure 6 shows the result of different key-values.
Using a constant key leads to the problem that the final
image always has his certain luminance even if there is
darkest night or brightest sunlight. Furthermore if one define
a certain key for a specific stetting it probably will not fit for
another one. Two pictures of Figure 7 shows these problems.
The work of Grzegorz [KMS05] comes with the solution
to use a formula to calculate the key automatically. This
function has to be adapted to the scene where one want to
use it. For our demo scene we use this function:

Key = max
(

0,1.5− 1.5
L̄w ·0.1+1

)
+0.1 (5)

It has been devoloped by testing with different key values
in several luminance conditions. Figure 8 illustrates the
behavior.

Figure 8: Automatic key calculation

The result is a key that produces a satisfactory final image in
both setting of the camera in Figure 7.

8. Luminance adaptation

The human perception of luminance does not work as strict
as the formula above, it adapts over time. The time course
of adaption differs on wether we adopt to high or low
intensities, and if we perceive the light using rods or cones
[FPSG96a]. Rods are more sensitive to low light intensities
and are rather responsible for peripheral vision. Cones are
responsible for the perception of color and only work in
relatively bright light.
In the library we adopt the model described in [KMS05]. To
simulate this behavior the luminace gets temporary adapted

Christian Luksch / Realtime HDR Rendering

Figure 6: Results with different key-values

by using an exponential decal function:

L̄new
a = La +(L̄w −La) ·

(
1− exp

(
−T

τ

))
(6)

where T is the elapsed time since the last frame. The
adaptation constant τ is different for rods (0.4sec) and cones
(0.1sec). The actual adaptation constant is calculated by
interpolating between these two values depending on the
actual scene luminance. Cones start to lose their sensitivity
at 3.4 cd

m2 and become completely insensitive at 0.03 cd
m2 . So

the sensitivity σ of the rods can be calculated with:

σ =
0.04

0.04+ L̄w
(7)

The interpolation formula to calculate the adaption constant
is:

τ = σ ·0.4+(1−σ) ·0.1 (8)

Using this model requires to calculate with real world
luminance values otherwise the adaptation is not correct.

Instead one can take a simpler model with a constant
adaptation.

9. The bright-pass filter

The bright-pass filter extracts the bright regions of the scene.
This is the first step of building the glare and star effect.
We build the bright-pass with the same resolution than the
down-sampled scene, because for the star and glare effect a
lower spatial resolution is enough. The bright-pass texture
already is in device color space and has 8-bit color depth per
channel. First the HDR color value is linearly mapped down
to the final color value:

Lscaled = a · Lw

L̄w
(9)

Then a threshold t, that determines the minimum color level
for the bright region, is applied to the value and the result
gets clamped by zero to suppress negative values.

Lbright = max(Lscaled − t,0) (10)

Christian Luksch / Realtime HDR Rendering

Figure 7: Showcase of the automatic key calculation in comparison to a constant key.

Because of the linear mapping bright lights still might have
relative high color values. In a final step the color values get
mapped in the range [0,1]:

Bright =
Lbright

o+Lbright
(11)

The offset o controls the separation between bright objects
and the more intensive lights. For the demo scene a rather
small offset o = 1 and threshold t = 2.5 are used, because
the dynamic range of the scene is not that high and a strong
effect should be produced. Figure 9 illustrates the result with
these parameters.

10. Glare effect

The glare effect is caused by bright intensities light which
exhibits a blooming effect that takes over neighboring
regions. It is produced by the scattering of light within the
human eye or photography equipment. In the past, this effect
has been simulated by rendering billboards on top of the

Figure 9: Result of the bright pass
Note: The left image is the final output of the tonemapper.

lights, but this approach is rather static and can create some
unaesthetic artifacts.
A more realistic way to accomplish this effect is to blur the
scene and blend it to the final render target. To blur we use a

Christian Luksch / Realtime HDR Rendering

5x5 Gaussian filter-kernel Fxy, with σ = 2:

Fxy =
1

π ·σ2 · exp(− x2 + y2

2 ·σ2) (12)

Only the 13 center-pixels |x| + |y| <= 2 get sampled in
the shader, because of the limitation of Shader 2.0. It is
important to normalize the sum of the weights. Figure 10
shows the according distribution on one axis. The red border
marks the range that is used and one can see that the weights
there are still rather high. Usually the kernel size should be
bigger, approximately 2· ↓ (3σ) + 1 that is 13x13, but that
would overkill the graphic device just for a slight smoother
result.

Figure 10: Gauss distribution with σ = 2

The weight values get each handled with their texture
coordinate offsets (x

Texxl
, y

Texyl
,Fxy) as a f loat3 array to the

shader. The source for blurring is the bright-pass output,
because the glare effect is only caused by bright regions. The
output size is the same as the bright-pass which is the same
as the down-sampled scene; beside down-sampling is also a
kind of blurring.
In the shader the sum of the 13 samples from the source
texture with the offset multiplied by the weight is calculated
per pixel. Figure 11 illustrates the result of an extracted
80x60 region.

Figure 11: bright pass convoluted with the 5x5 Gaussian
filter-kernel

To achieve a bigger filter-kernel, the blur filter can be
repeated on the output.

11. Star effect

Another phenomena that occurs when filming bright light is
that there is a star-like glow with streaks in various directions

around the light. This is caused by microscopic bumps
and scratches in the camera optic which produce internal
reflections and refractions. This effect is also noticed when
driving in a car and watching other cars headlights through
the windshield. [SL04]
To achieve this effect we use a special blur filter. The number
of passes needed to generate the star effect depends on how
many and how big the generated streaks are.
The library builds a horizontal and a vertical streak, each
in a separate render target, from the bright pass. We build
an array with texture coordinate offsets and weights for
the samples. The weights are defined from a normalized
one-dimensional gauss distribution (Equation 13); with σ =
2, and the offset d for each pixel.

Fd =
1

π ·σ2 · exp(− d2

2 ·σ2) (13)

Shader 2.0 has a limit on texture samples, but the blurring
can be repeated to increase the effect dimension.
Finally the vertical and horizontal blurs get merged by:

Star = max(StarV,StarH) (14)

Figure 12 illustrates the result of an extracted 80x60 region.

Figure 12: Final star effect

In the library only the number of passes, which control the
size, and the strength, used when blending all together, of
the star and glare effect can be configured. To see more
characteristics of these effects one can take a look at the
DirectX HDRLighting Sample [HDR]. It provides a small
library where these effects are shown.

12. The final pass

In the last pass the scene gets mapped into low dynamic
range by a specific tone mapping operator and the glare
and star effect are added. So far the library supports
five different global tone mappers: Linear mapping, the
Reinhard’s operator [RSSF02], the modified version of
it, logarithmic mapping and the adaptive logarithmic
tonemapper [DMAC03].

13. The tone mapping operators

This section describes the implemented tone mapping
operators and finally shows a comparison of the different
results.

Christian Luksch / Realtime HDR Rendering

Figure 13: Result of linear mapping
The left image scales nearly the whole spectre in LDR, the right scales to an average luminance

13.1. Linear mapping

It is the simplest and fastest mapping. The high dynamic
range is simply scaled to fit the LDR. Additionally the key
a controls the brightness, but actually it is no real tone
mapping.

Color =
a ·Lw

L̄w
(15)

Conditional on the linear mapping only colors with
luminance values close to the average scene luminance,
scaled by the key, are clear and have high contrast. The left
image in figure 13 has been created with a low key so that
detail in the sky can be noticed, but the rest of the scene is
rather dark, although the sky starts to overexpose. The right
image has a higher key and shows more detail in most parts
of the scene, but the sky and the reflections are just white.

13.2. The Reinhard’s operator

The Reinhard’s operator is named after Erik Reinhard who
published this tone mapper in his work [RSSF02]. It uses a
non linear mapping to display the whole dynamic range of
an image.
The first step is to scale the HDR with a key and the
logarithmic average scene luminance to LDR using Equation
15. Further it makes a compression of high luminance values
with this formula:

Color =
Lscaled

1+Lscaled
(16)

This operator scales high luminance values by 1
L and low

values by almost 1, so it maps all values in the range [0,1].
Figure 15 illustrates the mapping function.
The weakness of this operator is that the colors shift to grey

and it never reaches pure white. In the left image of figure
14 these effects are visible: light colors have only barely
contrast and are rather grey.

13.3. The modified Reinhard’s operator

Reinhard further developed an improved version of his
original operator to reduce the last mentioned weaknesses
of the loss of color and the infinite mapping. [RSSF02]
Like the Reinhard’s operator the first step is to map the scene
colors to LDR using Equation 15. Now it uses an extended
version of the Reinhard’ operator (Equation 16). The new
function is a blend between the Reinhard’s operator and
linear mapping:

Color =
Lscaled ·

(
1+ Lscaled

L2
white

)
1+Lscaled

(17)

This formula allows to decide at which luminance Lwhite the
mapping should fade out to 1. The library uses a constant
Lwhite = 2.5, it has enough contrast and the colors are
still strong. The improvement over the common Reinhard’s
operator can be clearly seen in Figure 14.
Figure 15 illustrates the mapping function of the so far
discussed tone mappers. One can see that the Reinhard’s
operator approximates 1 at infinity and therefore always
maps all values to low dynamic range. The modified
operator also covers most of the values in scenes with an
average dynamic range and therefore produces a good result.
However, in scenes with a very high dynamic range, details
will be lost with the modified operator.

Christian Luksch / Realtime HDR Rendering

Figure 14: Comparison of Reinhard’s and modified Reinhard’s operator.

Figure 15: Mapping functions of the tone mappers.

13.4. Adaptive Logarithmic Mapping

Another method of tone mapping is adaptive logarithmic
mapping [DMAC03]. It uses a logarithmic mapping,
following the relation:

Ld =
logx(Lw +1)

logx (Lmax +1)
(18)

This mapping ensures that always all values will be mapped
in range [0,1], but generally the luminance compression is
excessive and the feeling of contrast is lost. The approach
of [DMAC03] is an adaptive adjustment of the logarithmic
base depending on each pixel’s radiance. They interpolate
between log2 (Lw) (good contrast) and log10(Lw) (good
compression). Bases x < 2 or x > 10 produce too excessive
results. The final equation of their work is:

Color =
Ldmax ·0.01

log10 (Lwmax +1)
· log(Lw +1)

log

(
2+

((
Lw

Lwmax

) log(b)
log(0.5)

)
·8

)
(19)

where Ldmax is their key to adapt the output; Lw the pixels
luminance; Lwmax the maximum luminance in the scene and
with the parameter b, which should be between 0.5 and 1,
the run of the interpolation is controlled. Figure 16 illustrates
this mapping function using different values for b.

Figure 16: Adaptive logarithmic mapping function with
different values of b.

To use this method in a realtime application it had to be
modified a bit. The usage of the maximum scene luminance
for scaling is a problem, because it produces heavy changes
of the adaptation when moving in the scene. It has been
tested to only calculate the maximum luminance of the 4x4
luminance pass, but this is still useless. So we also use the
logarithmic average luminance with a key value a to adjust
the mapping. Further we use a constant parameter b = 0.7;
now the function is:

Color =
a

log10 (L̄w +1)
· log(Lw +1)

log

(
2+

((
Lw
L̄w

) log(0.7)
log(0.5)

)
·8

)
(20)

This method has been developed to map all values, like
the Reinhard’s operator. The additional parameter b gives a

Christian Luksch / Realtime HDR Rendering

Figure 17: Comparison of all tone mapping operators. Note: Glare and star effect are disabled.

better way to control the mapping, but it makes it harder to
configure and it can’t be automated. However, in figure 17
one can see a slight advantage over the Reinhard’s operator.

13.5. Comparison

Figure 17 compares all tone mapping operators. For these
purposes, the glare and star effect as well as the luminance
adaptation have been disabled, and the key has manually
been set to a suitable value. The image shows that the
Reinhard’s operator and the adaptive logarithmic mapping
have a good contrast and show all details of the scene.
However, the image looks rather grey, but details can be seen
quite good even in the low reflection on the objects. With the
modified Reinhard’s operator one lose a bit of the contrast,
but the colors are more saturated. The sky in the image of
the linear mapping is overexposed, while the other parts are
quite dark.

14. Conclusion and future work

There is no general solution to tone mapping, a balance
between performance and image quality must be assessed on
a per scene basis. To choose a suitable tone mapper requires
knowing how each tone mapper works, their differences,
strengths and weaknesses.
A full featured HDR library for Ogre3D has been
implemented and its features tested on different scenes,
therewith a direct comparison was possible.
Because most of the tone mapping techniques have been
developed for offline rendering, these techniques can only
be partly applied in realtime rendering. The parameters for
the tone mapping operators also have to be set to a constant
or automatically estimated value, some works have not been
developed for that use. Therefore the Reinhard’s operator is
a good choice. In comparison to adaptive logarithmic tone
mapping the Reinhards’s operator is not that complex with
nearly the same result.
With more powerful graphics devices coming up, local tone
mappers become applicable with acceptable performance in

Christian Luksch / Realtime HDR Rendering

realtime, and additionally improve the realism in realtime
graphics. Complex models of human perception can be
implemented to give a more natural impression when
moving through a scene as well.

References

[col07] Color constancy, March 2007. http://en.
wikipedia.org/wiki/Color_constancy.

[Cub] Cubemapgen. http://ati.amd.com/developer/
cubemapgen/index.html.

[dds07] Dds file reference. http://msdn.microsoft.
com/archive/default.asp?url=/archive/en-us/
directx9_c/directx/graphics/reference/
ddsfilereference/ddsfileformat.asp.

[Deb02] DEBEVEC P.: Image based lighting tutorial. In
IEEE Computer Graphics and Applications (2002).

[DMAC03] DRAGO F., MYSZKOWSKI K., ANNEN T.,
CHIBA N.: Adaptive logarithmic mapping for displaying
high contrast scenes, 2003.

[env07] Environment mapping, March 2007. http://en.
wikipedia.org/wiki/Reflection_mapping.

[FPSG96a] FERWERDA J. A., PATTANAIK S. N.,
SHIRLEY P., GREENBERG D. P.: A model of visual
adaptation for realistic image synthesis. In SIGGRAPH
’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (New
York, NY, USA, 1996), ACM Press, pp. 249–258.

[FPSG96b] FERWERDA J. A., PATTANAIK S. N.,
SHIRLEY P., GREENBERG D. P.: A model of visual
adaptation for realistic image synthesis. In SIGGRAPH
’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (New
York, NY, USA, 1996), ACM Press, pp. 249–258.

[HDR] Directx hdrlighting sample. DirectX SDK
(December 2006).

[KM99] KAUTZ J., MCCOOL M. D.: Interactive
rendering with arbitrary BRDFs using separable
approximations. pp. 253–253.

[KM00] KAUTZ J., MCCOOL M. D.: Approximation of
glossy reflection with prefiltered environment maps. In
Graphics Interface (2000), pp. 119–126.

[KMS05] KRAWCZYK G., MYSZKOWSKI K., SEIDEL

H.-P.: Perceptual effects in real-time tone mapping.
In Spring Conference on Computer Graphics 2005
(Budmerice, Slovakia, 2005), Jüttler B., (Ed.), ACM.

[Luk] LUKSCH C.: Hdrlib. http://www.ogre3d.org/
wiki/index.php/HDRlib.

[Mon06] MONITZER A.: Complex material in realtime
graphics.

[Ogr] Ogre (object-oriented graphics rendering engine).
http://www.ogre3d.org.

[Rei02] REINHARD E.: Parameter estimation for
photographic tone reproduction. J. Graph. Tools 7, 1
(2002), 45–52.

[RSSF02] REINHARD E., STARK M., SHIRLEY P.,
FERWERDA J.: Photographic tone reproduction for digital
images. ACM Trans. Graph. 21, 3 (2002), 267–276.

[SL04] ST-LAURENT S.: Shaders for Game Programmers
and Artists. May 2004.

http://en.wikipedia.org/wiki/Color_constancy
http://ati.amd.com/developer/cubemapgen/index.html
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/directx9_c/directx/graphics/reference/ddsfilereference/ddsfileformat.asp
http://en.wikipedia.org/wiki/Reflection_mapping
http://www.ogre3d.org/wiki/index.php/HDRlib
http://www.ogre3d.org

