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Abstract
Shell mapping is a technique to represent three-dimensional surface details. This is achieved by extruding the tri-
angles of an existing mesh along their normals, and mapping a 3D function (e.g., a 3D texture) into the resulting
prisms. Unfortunately, such a mapping is nonlinear. Previous approaches perform a piece-wise linear approxima-
tion by subdividing the prisms into tetrahedrons. However, such an approximation often leads to severe artifacts.
In this paper we present a correct (i.e., smooth) mapping that does not rely on a decomposition into tetrahedrons.
We present an efficient GPU ray casting algorithm which provides correct parallax, self-occlusion, and silhouettes,
at the cost of longer rendering times. The new formulation also allows modeling shells with smooth curvatures
using Coons patches within the prisms. Tangent continuity between adjacent prisms is guaranteed, while the
mapping itself remains local, i.e. every curved prism content is modeled at runtime in the GPU without the need
for any precomputation. This allows instantly replacing animated triangular meshes with prism-based shells.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture/Image Generation]: Display algorithms;
I.3.7 [Three-Dimensional Graphics and Realism]: Color, shading, shadowing, and texture;

1. Introduction

Image-based representations have been used for a long
time to simulate surface detail. Common examples are tex-
ture maps [BN76] for color, bump maps [Bli78] for en-
hanced shading, and displacement maps [CCC87] for fine-
scale height field-like details. Volume textures by Kajiya and
Kay [KK89] and more recently shell maps by Porumbescu et
al. [PBFJ05]) add arbitrary small-scale surface detail to a tri-
angulated object. The detail, called texture function, can be a
sampled height field, a 3D texture, an analytical 3D function,
or, in the case of shell maps [PBFJ05], even meshes. The
idea is to construct a volume from a surface mesh by apply-
ing an extrusion along the vertex normals to obtain prisms.
The texture function is then mapped into these prisms. This
makes it possible to interactively render three-dimensional
surfaces like bricks, fur, cloth, webbing, facades, ornaments,
etc. but also complete 3D textural objects, with correct par-
allax, occlusions, silhouettes and shadows.

However, there is as yet no formulation that allows a
smooth mapping between the surface detail definition space
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and its world-space representation. While some offline ap-
proaches provide a reasonable approximation through recur-
sive subdivision [SSS00] for the special case of displace-
ment mapping, recent approaches [PBFJ05,HEGD04] resort
to piece-wise linear mappings induced by subdivision of the
world-space prisms into tetrahedrons. These mappings lead
to objectionable artifacts at the subdivision borders similar
to the artifacts induced by non-perspective correct texture
mapping (see Figure 1, left).

In this paper, we present a new formulation and imple-
mentation of a smooth mapping between the texture func-
tion and world space. Texture functions can be applied to
geometry with high local curvature, and even very thick sur-
faces can be displayed without reducing image quality (see
Figure 1, middle). The new formulation allows for the defi-
nition of smooth curved shells based on Coons patches (Fig-
ure 1, right). Our implementation of the mapping relies on
ray casting on graphics hardware and provides interactive
frame rates.

The main contributions in this paper are:

• A high-quality shell-mapping algorithm that avoids arti-
facts due to piece-wise linear approximations. This algo-
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Figure 1: Shell mapped blowfish. Left: previous shell mapping approach based on tetrahedra. Middle: smooth shell mapping.
Right: curved shell mapping. Note that the mesh is the same in all three images.

rithm gives pixel-correct results for the intended mapping,
runs completely on graphics hardware and is interactive.

• Curved shell maps, an extension to smooth shell maps that
provides tangent-continuity at the prism borders. This is
achieved using a Coons-patch formulation that has previ-
ously been introduced for curved displacement mapping
in offline rendering. Curved shell maps are slower than
smooth shell maps, but still interactive.

The shell mapping methods do not require any preprocessing
so that the mesh and the extrusion (i.e., normals) can be mod-
ified interactively. This fact makes smooth and curved shell
maps a powerful modeling primitive. Both methods can sim-
ply replace a standard texture map without any other modi-
fications to the base mesh.

2. Related Work

There are numerous methods for representing volumetric
surface detail, including parallax mapping, displacement
mapping, relief maps, and image slice-based methods. Ren-
dering surface detail can in general be done by forward
mapping polygonal representations or backward mapping
texture-based representations using ray casting. In the fol-
lowing, we will focus the discussion on methods based on
ray casting, as they are most closely related to the new ap-
proach.

Kajiya and Kay [KK89] first used ray casting through
3D texture maps to display fur. They define a shell volume
over a surface and use mappings to transfer from texture
space to shell space. Rays that intersect the shell are trans-
formed to texture space and traced through the 3D texture.
Neyret [Ney98] used a similar algorithm and rendered vari-
ous types of objects using volumetric textures. In contrast,
the hypertexture introduced by Perlin and Hoffert [PH89]
renders functions instead of sampled data.

Several approaches [PHL91, HS98, PH96] are based on

ray tracing displacement maps, which is computationally ex-
pensive and can still not be implemented on graphics hard-
ware. Smits et al. [SSS00] already pointed out the problem
of curved rays in texture space (see Section 4), but their al-
gorithm did not address it.

View-dependent visibility information along rays can also
be precomputed, as was demonstrated by Wang et al. for
displacement maps [WWT∗03] and arbitrary volumetric
data [WTL∗04]. The method provides impressive results (in-
cluding indirect illumination, shadowing, and correct silhou-
ettes), runs in real time on a GPU, but needs large amounts
of memory for the sampled five-dimensional function. In ad-
dition, the approximated mesh curvature can lead to texture
distortions and only works for static 3D textures.

Recently, performing ray casting on graphics hardware
became popular. Policarpo et al. [POC05] presented re-
lief texture mapping, which starts with rendering a textured
mesh. For every rendered pixel, the entry point and view di-
rection of the corresponding ray is transformed to texture
space, which contains a height field. The ray is linearly tra-
versed until it hits the height field, and a binary search is used
to increase the intersection accuracy. In practice, the method
shows visually pleasing results with correctly handled self-
occlusions and real-time performance, and it is simple to im-
plement. However, as for simple texture mapping, the ob-
ject silhouette remains flat, and systematic artifacts are in-
troduced between adjacent triangles.

In subsequent work, Oliveira and Policarpo [OP05] tried
to correctly render silhouettes by locally approximating the
object surface with a piecewise quadric representation at
the fragment shader level. These quadrics are used as ref-
erence surfaces for ray traversal so that a ray can leave the
mesh, resulting in better approximated object silhouettes.
Unfortunately, the quadrics work only sufficiently correct
for the direct neighborhood of the ray entry point. Figure 2
shows an example where this approximation is incorrect
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for a torus, resulting in large texture distortions and even
holes in the representation. In addition, interactively deform-
ing the mesh is not straightforward because the quadrics
must be precalculated from the mesh geometry. Most re-

Figure 2: Texture distortions and holes due to wrong surface
curvature approximation.

cently, Policarpo [PO06] presented a variation of his method
that renders multiple image layers instead of height fields.
However, since the work is based on the previous meth-
ods [POC05, OP05], it shares the same problems.

Hirche et al. [HEGD04] form prisms by extruding the
base mesh. In contrast to this paper, every prism is decom-
posed into three tetrahedrons, with adjacent prism sides shar-
ing the same triangulation in order to ensure a continuous
volume. For each pixel of a rendered tetrahedron, the two in-
tersections of the viewing ray with the tetrahedron are com-
puted, transformed into texture space, and linear sampling is
applied between them. The result is a linear bijective map-
ping between tetrahedrons and texture space which is an ap-
proximation of the “smooth” mapping described in this pa-
per. Unfortunately, as Porumbescu et al. [PBFJ05] pointed
out, the piecewise linear approximation systematically re-
sults in objectionable artifacts. These are visible as “buck-
lings” along the tetrahedron borders, as can be observed in
Figure 3 as well as Figure 1. In addition, tetrahedrons can be
inverted at long thin triangles, resulting in empty shell space.
By rendering the prism geometry directly, our algorithm can
avoid all such systematic errors, generate fewer primitives
and consequently has less overdraw.

Texture space

World space

Figure 3: Bucklings in a height field function due to a linear
approximation of the prisms using tetrahedrons.

Dufort et al. [DLP05] showed how the algorithm by
Hirche et al. can be used for semi-transparent surfaces by

a front-to-back composition of the tetrahedra. Porumbescu
et al. [PBFJ05] introduced shell maps, which use the
same tetrahedron-based (i.e., piece-wise linear) mapping as
Hirche [Por06]. They show both forward mapping of geome-
try and backward mapping using a software ray tracer. How-
ever, since their mapping is still based on tetrahedrons, it
shares the problems of Hirche et al. [HEGD04]. Note that for
forward mapping of geometry-based surfaces, mesh quilt-
ing [ZHW∗06] can greatly reduce distortions.

Recently, Baboud and Decoret [BD06] rendered whole
objects on the GPU as a collection of images with depth. Or-
thogonal and perspective projections are supported, which
are linear mappings between world space and texture space
in contrast to shell mapping.

3. Shell Definition

In this section, we give a definition of the spaces involved
in shell mapping, and describe the “correct” mapping func-
tion which is the basis for smooth shells. The term “correct”
means here that the shell is defined along the interpolated
vertex normals, which is the most intuitive and common de-
finition. We will then extend the smooth mapping formula-
tion to curved shell maps which provide tangent continuity
between prisms.

Texture spaceWorld space

Offset
mesh

Base
mesh

Figure 4: Shell definition: world-space prisms correspond
to prisms in texture space.

Given a triangle mesh called base mesh (see Figure 4,
left), a shell is constructed by extruding this mesh to an
offset mesh along its normals at every vertex. The shell is
then the union of all prisms formed by the base mesh trian-
gles together with their offset mesh counterparts [WWT∗03,
HEGD04, PBFJ05]. Every prism has a corresponding prism
in texture space (see Figure 4, right). Intersections between
prisms pose no problem to the rendering algorithm and can
be allowed similar to [PBFJ05].

3.1. Smooth Shell Mapping

Given a shell construction as above, the question is how to
define a function Φ to map between a texture space prism
and its corresponding world space prism. This will then be
used to map the texture function to a shell. Previous ap-
proaches based the mapping on a tetrahedalization, basically
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a piece-wise linear approximation without C1 continuity at
tetrahedron boundaries, leading to image artifacts. In con-
trast, we define a smooth mapping that is C1 continuous
within every prism, and C0 continuous between prisms. The
mapping is based on a displacement mapping function pro-
posed by Smits et al. [SSS00], who used it to displace mi-
crotriangles of a mesh according to analytic functions. How-
ever, the mapping could also be seen as a straightforward
application of Phong shading, as it is based on normal vec-
tor interpolation.

Let (u,v,w) be the coordinates of a texture-space point
pt with respect to the current texture-space prism (note that
mapping from texture space to the current texture space
prism is a trivial affine mapping). Let p0,p1,p2 be the world-
space coordinates of the base triangle, and n0,n1,n2 the cor-
responding normal vectors. With t = 1−u− v, the mapping
is given by interpreting (t,u,v) as the barycentric coordi-
nates of a world-space point on the base triangle and extrud-
ing this point by w along the interpolated normal vector:

p = Φ(pt) = tp0 +up1 + vp2 +w(tn0 +un1 + vn2) (1)

For the texture-space prism given by u,v, t ≥ 0,0 ≤ w ≤ 1,
this mapping gives exactly the prism in world space that was
defined above (see Figure 5), which means that we have cre-
ated a valid mapping. In general, this prism is twisted: The
world-space prism is bounded by bilinear patches given by
u = 0,v = 0 and t = 0 respectively.

World space

wv

w

uv
Smooth

shell mapping u

Texture space

Figure 5: World space and texture space correspondence for
smooth shell mapping.

Starting from a texture function f (pt) in texture space,
the shell itself can now be defined by mapping the texture
function to world space using Φ:

f ′(p) = f (Φ−1)(p))

For this to work, Φ has to be a bijective mapping, which
is the case as long as the normal vectors do not define a con-
cave or even self-intersecting prism. As Φ is a smooth map-
ping, also the surface detail defined in the texture function
will appear smooth in the prism as shown in Figure 5. How-
ever, note that Φ is not in general an easy function to invert.
The solution requires finding the appropriate root of a third-
order polynomial, which is possible but expensive.

Barycentric correspondence. In order to solve the prob-
lem of inverting Φ, we make the following observation
which we call barycentric correspondence: for a fixed w,
the mapping defines a triangle T (w) within the prism given
by the vertices T (w) = {p0 + wn0,p1 + wn1,p2 + wn2)}.
Now the coordinates (u,v) of any point mapped into T ,
p = Φ(u,v,w) ∈ T correspond exactly to the barycentric co-
ordinates of p with respect to T . Conversely this means if we
know the barycentric coordinates (u,v) of a point p ∈ T (w),
we can conclude that Φ−1(p) = (u,v,w).

Therefore, for any given w, we can intersect a world-space
ray with T (w) and map the intersection point back to texture
space just by calculating its barycentric coordinates. This
correspondence is the basis for the rendering algorithm de-
scribed in Section 4.

3.2. Curved Shell Mapping

Here we extend the smooth mapping to a curved mapping
so that the resulting surface maintains tangent continuity at
the prism boundaries. It is of essential importance for the
rendering algorithm that the barycentric correspondence is
also valid for the curved shells, so they must be defined over
the interpolated vertex normals. This excludes Bezier sur-
faces and most other curved surface definitions. Instead, to
the best of our knowledge, the only technique fulfilling this
requirement is a construction based on Coons patches, pre-
viously used for displacing polygon vertices [SSS00]. An-
other advantage of Coons patches is that their construction
is completely local to the base triangle, which makes them
useful for dynamic mesh deformations without any precom-
putations. We briefly repeat the patch construction here (for
details of the lengthy derivation see Smits et al. [SSM00]),
and then describe how these patches can be integrated in our
shell mapping framework.

We start with a triangle T = {P1,P2,P3} together with the
corresponding normals and a point P at barycentric coordi-
nates (1−u− v,u,v) (see Figure 6, left). The Coons surface
defines a displacement of P in direction of its interpolated
normal vector. This displacement is constructed using Her-
mite interpolation as follows: starting at vertex P1, curves
are constructed to P2 and P3 by applying Hermite interpola-
tion with the vertex normals. On each of the two curves, we
construct a point and corresponding normal at the location
defined by 1−u−v. Between these two points we apply an-
other Hermite interpolation at position (1− u− v,u,v) (see
Figure 6), resulting in a displacement value for P.

These steps are repeated for vertices P2 and P3, respec-
tively. Finally, the three obtained displacement values are
blended using either Boolean sums or again Hermite interpo-
lation. Smits et al. [SSM00] use the resulting displacement
CoonsT (1−u− v,u,v) to modulate P along its normal.

Coons patch construction for shells. In order to de-
fine curved shell maps, for any given w we construct a
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Figure 6: Construction of a curved shell map in world space
using Coons patches.

coons patch for the corresponding world-space prism tri-
angle T (w). A straightforward application of the Coons
patch to the triangle would have the problem that the con-
structed surface may protrude from the world-space prism.
For curved shell maps, we therefore compress the texture
function in height, giving a new height value w′ = w/2 +
1/4. Note that this compression is heuristic, and does not
guarantee that the shell stays within the world-space prism
for extreme curvatures. In Section 7 we will show a general
way how this problem can be solved given sufficiently fast
hardware. We also denote the interpolated normal n(u,v) =
(1− u− v)n0 + un1 + vn2. Then we define the curved shell
mapping function Φc as:

Φc(u,v,w) = Φ(u,v,w′)+ n(u,v)
|n(u,v)|CoonsT (w′)(1−u−v,u,v)

Note that the Coons patch is not simply a distortion of tex-
ture space, since its definition depends on the world-space
prism. The resulting family of curved surfaces defines a
smoothly curved volume inside the prism (Figure 6), and
also maintains tangent continuity to adjacent prisms at the
prism boundaries.

Barycentric correspondence for curved shells. As for
smooth shells, we face the problem of inverting Φc. Due
to the construction the barycentric correspondence holds in
a similar way as for smooth shells: for a certain height w̄,
the coordinates (u,v) of any point mapped to T (w̄, p) =
Φc(u,v,w), correspond exactly to the barycentric coordi-
nates (u,v) of p with respect to T (w̄).

There is, however, a notable difference to the smooth case:
from w̄ we cannot immediately determine the texture space
height value w that generated the point p so that it lies on
T (w̄). An exact solution to this problem consists in solv-
ing the equation Φc(u,v,w)−Φ(u,v, w̄) = 0 for w. In prac-
tice, we determine w through linear interpolation between
the bounding Coons patches at w = 0 and w = 1:

w =
|p−Φc(u,v,0)|

|Φc(u,v,1)−Φc(u,v,0)| (2)

It can easily be shown that Equation 2 provides exact re-

sults for prism boundaries. While we have not found an an-
alytic bound for the error towards the prism center, we have
verified it for all our test models and the introduced error
(manifesting itself in tangent continuity violations) never ex-
ceeded 1

100 of the shell thickness, making it invisible in prac-
tice.

In conclusion,

Φ−1
c (p) = (u,v,w),

where (u,v) is determined as for smooth shells, and w is
determined by Equation 2.

4. Rendering Shells

Φ−1 is a non-linear mapping between prism and texture
space (Section 3.1). Consequently, marching a ray through
world space and evaluating the corresponding texture space
samples is not feasible in graphics hardware, as Φ−1 in-
volves finding the roots of a third-order polynomial at each
step. Even if the analytic inverse mapping or any approxima-
tion (for instance, using polynomials) were used, ray march-
ing acceleration techniques (see Section 4.4) could not be
applied because they march the ray at defined distances in
texture space. This would only be possible for the special
case that Φ−1 is a linear mapping. Unfortunately, interactive
framerates and a high image quality are hardly possible with-
out such acceleration methods. On the other hand, adopting
a coarse piece-wise linear approximation as in previous ap-
proaches leads to a non-exact solution and systematic arti-
facts, as demonstrated in Section 2. Instead, we march the
ray stepwise linearly in texture space and correct the march-
ing direction so as to not exceed a given error (e.g., one
pixel).

The first step is to choose a geometric structure to repre-
sent shells on graphics hardware (Section 4.1). For each ras-
terized fragment of the geometric structure, a pixel shader
will carry out ray casting operations into the shell. In do-
ing so, first the ray vs. prism entry and exit points are com-
puted (Section 4.2). Afterwards, the ray is sampled between
these two points while keeping the introduced error below
one pixel (Section 4.3). Section 4.4 shows how to keep the
number of samples low for fast processing without reducing
image quality. Finally, Section 4.5 shows how curved shells
are sampled.

4.1. Choosing a Rendering Primitive

The primitive to be displayed has to cover every pixel of
the shell on the screen. As Hirche et al. [HEGD04] already
pointed out, simply using the base or the offset mesh is not
sufficient to capture object silhouettes. Instead, the entire
volume between the base mesh and the offset mesh must
be rasterized by rendering every individual prism defined
in Section 3. Every prism should be enclosed as tightly as
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possible to avoid unnecessary fragment computations. Con-
sequently, we triangulate the prisms directly.

The prism sides need special attention: the triangulation
has to form the convex hull of the prism. This can be obtained
by forming a “hypothetical” triangle that connects three ar-
bitrary vertices of one side. If the fourth vertex lies behind
the corresponding plane, the triangulation is convex. Other-
wise, the other vertex combination has to be used for this
side. This is repeated for all three prism sides. Please note
that this triangulation does not introduce any error in the ac-
tual rendering result as will become clear in Section 4.3.

4.2. Ray Segment Calculation

For each rasterized fragment, we need to cast a ray through
the prism, transform it to texture space and evaluate the tex-
ture function. For this, we have to compute the entry and
exit point in world space and afterwards transform them
to texture space. Note that for our sampling algorithm (see
Section 4.3) a point slightly outside the prism is sufficient
instead of the exact intersection. Consequently, the current
world space position generated by the rasterizer can already
be taken as the entry point.

The exit point is calculated by intersecting the ray with
all prism triangles. From the resulting points the one with
the largest distance to the viewer is identified. Further, the
barycentric coordinates of the resulting points with respect
to the triangles make it easy to determine whether the inter-
section points lie inside the triangles (considered a “valid”
intersection) or not (discarded from further consideration).
Note that while there exist correct ray vs. bilinear patch in-
tersections for the prism sides (for instance by Ramsey et
al. [RPH04]), the described approximate solution is faster to
compute and sufficiently correct.

Now the obtained world space entry and exit points are
mapped to texture space. As discussed in Section 3.1, Φ can
be inverted for any given value w. We therefore need to find
the value w for the entry and exit points. This is done us-
ing a bisectional search: Starting from w = 0 for a point p,
a triangle T (w) = {p1,p2,p3} is constructed in world space
at the current height and its normal vector n is computed.
In each iteration, the sign of the dot product dot(n,p−p1)
determines the search direction. In practice, we have found
12 iterations to provide a sufficiently correct solution, also
for shells with very large thickness. The (u,v) coordinates
can then directly be calculated with the obtained w compo-
nents by using the barycentric correspondence. Finally, the
obtained (u,v,w) coordinates of the entry and exit point are
passed to the actual ray sampling step. Again, note that the
ray segment starting and ending slightly outside the actual
prism does not introduce any errors to the rendering result
as will become clear in the following section.

4.3. Corrected Ray Path Sampling

With the approximate ray vs. prism entry and exit points in
texture space, we sample along this ray segment in order to
compute possible surface intersections. Note that a ray in
world space forms a curve in texture space, as can be ob-
served in Figure 7. In this figure, the ray even leaves and

�

Figure 7: Transforming a viewing ray from world space
(left) to texture space (right) typically forms a curve. The
footprint of the curve emphasises the curve progression.

re-enters the prism. Figure 8 shows what happens if we just
linearly sample in texture space: the texture in world space
is bent in the opposite direction to the way the ray is curved
in texture space.

Texture space

World space

Figure 8: Linearly approximating the ray in texture space
results in a bent output. The bending is view dependent.

The idea of our approach is to linearly approximate the
curved ray in texture space, but adjust towards the correct
world-space sampling position if the introduced error ex-
ceeds some image-space error. For now we assume a fixed
distance between two subsequent samples. Section 4.4 will
lift this restriction.

We start at the (approximate) ray entry point and sam-
ple linearly towards the exit point (see Figure 9, top left). In
order to guarantee a decent image quality, the next sample
position is transformed back to world space by evaluating
Φ for the current position, see Figure 9, top right. The vi-
sual error is calculated as the angle between the view vector
and a vector from the eye to the sample point. If this error
exceeds a user-defined limit (for instance, one pixel angle)
the sampling position must be recalculated. In this case, a
triangle is constructed in world space at the current w posi-
tion and the viewing ray vs. triangle intersection (the yellow
point in Figure 9) defines the new sampling direction after
being transformed back into texture space. This procedure is
repeated with a sampling point in the new direction until the
error is low enough (Figure 9, bottom). This approximation
converges quickly, and in practice 4 iterations are usually
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Texture space World space

Figure 9: Sampling correction: the sample point is projected
into world space and checked for validity (top row). If in-
valid, we redirect to a closer valid point (bottom row).

sufficient. Afterwards, we test whether the new sampling po-
sition is inside the prism using barycentric coordinates. This
is necessary because we might have started outside the ac-
tual prism (see Section 4.2) or the ray has already left the
prism but might re-enter (see Figure 7). Finally, sampling is
continued towards the exit point and the whole process is re-
peated until an intersection occurs or the exit point is passed.

Figure 10 shows a possible sampling path through the tex-
ture space (left) and the obtained result (right). A compar-
ison to Figure 3 and Figure 8 shows the improved image
quality compared to coarse linear approximations.

Texture space

World space

Figure 10: Corrected sampling. Because the ray always
stays within one pixel difference to the correct ray (pink
area), no visible artifacts appear.

It is important to note that for viewing rays almost aligned
with a triangle, the ray intersection-based correction cannot
work. However, it turns out that in this case a correction is
not needed at all because linear sampling is already correct
for such rays. This important property ensures that the algo-
rithm works for all possible configurations and does not re-
quire special-case treatment. Another interesting property is
that due to the image-space error metric, the number of cor-
rections required decreases with increasing distance to the
viewer, thus naturally reducing the computational time for
distant scene parts.

The actual sample evaluation depends on the actual tex-
ture function. For height fields, the current w component of
the ray is tested against the lookup value. If it is lower, an
intersection is found. For 3D textures we simply have to test
if the texture at the current position is non-empty.

Note that in case of an intersection, an exact z-buffer value
must be stored in order to provide correct visibility. The frag-
ment depth value cannot be used here because neighboring
prisms might alternately intersect the viewing ray if it en-
ters, leaves and re-enters, as shown in Figure 7. The correct
z-value is computed by transforming the intersection point
to world space, computing the distance to the eye and multi-
plying that value with the camera projection matrix.

4.4. Efficient Sampling and Filtering

So far we have assumed a constant sampling distance. How-
ever, the sampling should be adjusted in order not to miss
any surface detail while at the same time providing fast sam-
pling with only few steps. In order to reconcile these two
demands, we chose distance maps [Don, KJZV92], because
they can be applied to height fields as well as to 3D tex-
tures (another possible techniques include [KRS05,RSP05]).
They require preprocessing for the texture function, but this
does not impact the possibility to interactively modify the
base and offset meshes.

In a preprocess, the texture space is partitioned using a
regular 3D grid of cells called the distance map. For each
such cell, the distance to the closest surface point is calcu-
lated and stored. Conceptually this defines the radius of an
empty sphere around each cell (see Figure 11, left). Cells be-
low the surface have a radius of 0. At runtime the radii are
used as distance to the next sampling position as described
in Section 4.3, because no surface can be missed in between.
This process is repeated until a radius of 0 is reached (indi-
cating an intersection), or the exit point of the ray has been
passed (discarding the pixel). Figure 11 gives an example for
this process.

Figure 11: Left: sphere tracing algorithm. Right: example
with the number of steps visualized: from white=0 steps to
black=40 steps.

An important issue is a good reconstruction filter of the
height field in order to avoid artifacts. We adopt a commonly
used strategy: after an intersection point has been found, a
bisectional search with the linearly filtered original texture
provides much better quality with only little additional ef-
fort. Four search steps have been found to be sufficient.

4.5. Curved Shell Rendering

The display algorithm for curved shells is similar to the one
for smooth shells, i.e., the geometric representation (Sec-
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tion 4.1), the ray segment computation (Section 4.2) and the
corrected ray sampling (Section 4.3) are identical. The main
difference is the transformation of the sampling position be-
fore a sample value is looked up by computing the inverse
mapping (2) in Section 3.2.

In order to still accelerate rendering with distance map-
ping as described in Section 4.4, we adapted the method to
also work for curved shells. Because the empty spheres are
compressed and curved by the space defined by the Coons
patches (Figure 12 (left)), we scale each sphere by the thick-
ness of the curved surface with respect to the thickness of the
curved shell, resulting in the dotted sphere in Figure 12 (bot-
tom, left). Although the effectiveness of the distance map
acceleration is reduced, it is still more efficient than using
a constant step size. Also note that while this heuristic is a
non-conservative approximation and can theoretically lead
to artifacts in regions where the curvature of the shell is
higher than the curvature of the downscaled sphere, in prat-
ice we never experienced such artifacts.

Curved Space

Texture space

Figure 12: Curved shell mapping (left) with an example
(right).

5. Implementation and Results

Given a base mesh with corresponding normals and tex-
ture coordinates, the application performs the extrusion and
prism triangulation in a preprocessing step. At runtime the
whole prism geometry (i.e. base mesh vertices and normals)
and texture coordinates are passed through the vertex shader
to the pixel shader. The latter performs the ray segment cal-
culation (see Section 4.2) and the sampling step (Sections
4.3 to 4.5) in a single rendering pass. We implemented the
described algorithm as a Shader Model 3.0 HLSL shader un-
der DirectX 9. The machine was an Intel Pentium4 running
at 3.2GHz with two NVIDIA Geforce 8800 GTX graphics
boards running in SLI mode.

Concerning image quality, Figures 1 and 13 show the
difference between tetrahedron-based, smooth, and curved
shell mapping. Note the correct mapping along the surface
offset for smooth shell mapping, and the absence of image
artifacts. The curved shell mapping variant keeps this prop-
erty and additionally smoothes the surface with C1 continu-
ity (Figures 1 and 13, right).

The additional images that come with this paper (ad-
ditional electronic material) show numerous examples for

mapping sampled data (although shells are not limited to
this) onto different objects. For scene illumination we used
Normal Mapping and Phong shading, or environment re-
flection mapping (Figure 14). The technique works equally
well for very close and distant view points, and the screen-
space error metric ensures that even very large offsets do not
lead to any artifacts. Note that the filtering described in Sec-

Figure 14: Smooth shell map with environment mapping.

tion 4.4 lets the surfaces and silhouettes appear smooth, al-
though all textures have a resolution of only 128 by 128 (by
128 for 3D textures) texels. Because the correct depth buffer
value is stored, shadow mapping is also naturally applicable
for smooth and curved shells.

Concerning rendering speed, we deal with fairly simple
geometry and the vertex shader only passes data, so we are
clearly pixel shader limited. Table 1 shows the achieved
frame rates for the well known tiger model (see the addi-
tional images) mapped with a height field. We include frame
rates for just the ray segment generation (see Section 4.2),
and the smooth, the curved, and the tetrahedron-based shell
mapping. In order to give an impression how the meth-
ods perform, we modulated some of the most performance-
dominating parameters.

Technique Ray Smooth Curved Tetra
Test segment shells shells shells
Reference 115 15 5 43
Screen 640x480 135 18 5.9 51
Screen 1280x1024 55 7.6 3.4 33
Half thickness 139 19 7.5 53
Double thickness 83 10 3.1 32
8 times tiling 115 8.5 2.8 20
1
8 th tiling 115 21 5.5 79

Table 1: Frame rates for the smooth, curved and
tetrahedron-based shell maps for the tiger model.

The test in the row marked “Reference” was performed
at 800x600 pixels screen resolution. As can be expected, all
methods are sensitive to the number of actually rasterized
fragments. Changing the shell thickness has a similarly high
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Figure 13: Tetrahedra-based (left), smooth (middle), and curved (right) shell mapping. The mesh is the same in all three images.

influence on the performance as changing the screen reso-
lution. In contrast, the texture tiling influences the ray cast-
ing performance less than linearly. Smooth shell mapping is
between 2.3 and 4.3 times slower than previous tetrahedron-
based methods, which is the price for the high quality of
the output images. The curved version is another 2.2 to
3.8 times slower than the smooth shell mapping because of
the Coons patch evaluation and the increased sampling rate.
However, note that the representation quality is also signifi-
cantly higher.

It is interesting to note that the performance influence of
the chosen error angle is negligible: relaxing it from one
pixel hardly influences the frame rate, but lowers the im-
age quality by introducing distortions. Consequently, it is not
useful for trading rendering speed against image quality—
the shell thickness has much more influence.

6. Discussion

The two presented shell-mapping techniques ensure high im-
age quality for a given base mesh with normals. One of the
big advantages of the new technique is its flexibility: be-
cause the mapping is local (i.e. only the vertex coordinates,
normals and texture coordinates are required), any existing
mesh can instantly be extended to a shell without the need
for any preprocessing. We also used the geometry shader
available in DirectX 10 to generate the prisms, which makes
the technique completely transparent to the CPU. Anima-
tions are also naturally possible, i.e., deforming the base
and/or the offset mesh, changing the mesh parametrization,
or animating the texture function itself, as can also be seen in
the video provided with this paper. In addition, when render-
ing the back facing polygons of a prism, all required frag-
ments are generated even if the viewer is placed inside a
prism. Only the ray segment calculation (Section 4.2) must
be modified accordingly.

These desirable properties come at the cost of slower ren-
dering than previous approaches because the pixel shader is
more complex. It depends on the application if the image
quality justifies the reduced rendering speed. For the curved

shells, we also tried to subdivide the base mesh in the Di-
rectX 10 geometry shader using the Coons patch approach
and then applied the (faster) smooth shell mapping in order
to get approximated curved shells. Unfortunately, the geom-
etry shader performance was too low to be efficient, thus
postponing this option for future drivers and/or hardware.
Note that the two techniques can also be applied in a se-
lective way, for instance, in mesh regions with varying lo-
cal curvature, or by switching between smooth, curved and
tetrahedron-based shells at certain distances, thus providing
different levels of detail.

Rendering semi-transparent data with smooth and curved
shells is not straightforward. Primitive sorting as in Dufort
et al. [DLP05] is not sufficient here, because a ray may al-
ternately intersect two prisms (see Figure 7). Depth peel-
ing [Eve99] would be possible but this is rather slow due
to the significant overdraw.

7. Conclusions and Future Work

This paper has presented smooth and curved shell map-
ping, two techniques for mapping volumetric data to arbi-
trary meshes. The main contribution compared to existing
approaches is a correct smooth and optionally curved map-
ping along the interpolated surface normal. Exactly the same
results are rendered as would be obtained by inverting the
mapping Φ within the given pixel tolerance. In particular,
our mapping does not exhibit any of the artifacts shown by
previous methods, nor does it introduce new ones. It can
even handle meshes where tetrahedra-based approaches fail
(see Section 2). This allows us to apply textures to geometry
with high local curvature and very thick surfaces with high
image quality. Furthermore, in contrast to a hypothetical so-
lution based on inverting Φ, our algorithm allows using ren-
dering acceleration techniques for interactive rendering. We
believe that this correct mapping will facilitate using volu-
metrically mapped surfaces in a more general way, also be-
cause it can instantly replace texture-mapped triangles with-
out the need for any preprocessing.

An interesting question for future work is how to effec-
tively define the prism height for curved shells (see Sec-
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tion 3.2) so that it is tightly enclosed by the base and off-
set mesh. This will reduce the amount of fragments that do
actually not contribute to the output image. Tesselating each
base and offset triangle with respect to the curved surface in
the geometry shader is too slow at the moment, but might
become efficient in the future.

Another problem to be solved in the future are texture
distortions due to the piecewise linear mapping along the
surface. Because such distortions are more distracting with
shell mapping than with simple texture mapping, one of the
numerous surface parameterization techniques for reducing
them should be applied. It might also be possible to non-
linearly distort the textures at runtime, just as we did with
the height in curved shell maps.
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