
Interactive cross-detector analysis of vortical flow data

Raphael Bürger1,2, Philipp Muigg2, Helmut Doleisch2, Helwig Hauser2
1 Institute of Computer Graphics , Vienna University of Technology, Austria

2 VRVis Research Center, Vienna, Austria

Abstract
In this paper we discuss the application of multiple linked
views for advanced vortex investigation in flow data. Local
feature detectors and additional measures integrate into an
interactive flow feature detection system based on multi-
ple linked views. We discuss how linking and brushing of
derived feature information can lead to increased perfor-
mance in interactive feature analysis. In a case study we
demonstrate how the possibility to integrate the informa-
tion of multiple detectors leads to sound understanding of
vortex type features. Enhanced credibility and combined
advantages of several detectors can be achieved by uniting
the results of multiple feature detectors in multiple coordi-
nated views.

1 Introduction
Flow is everywhere. Gaseous or liquid flows occur on all
scales from capillary flows transporting oxygen to a mus-
cle to the motion of plasma inside the sun. One funda-
mental property of flow is the ubiquitous nature of turbu-
lence. A century ago many people believed there might be
some kind of ’universal theory of turbulence’ that was sup-
posed to be valid under a wide range of circumstances. It is
now generally agreed that such a theory does not exist [6].
Since there is no general theory that describes turbulent
fluids many engineers do not fully trust automated feature
extraction methods. Therefore, in the context of flow vi-
sualization, interactive approaches are an important tool to
understand the complex movements inside the flow and the
changes of related attributes such as temperature and pres-
sure.

Computational fluid dynamics (CFD) methods output
simulation data with ever increasing complexity. The en-
gineer wants to answer questions like: What is the flow
like now? How does the flow change over time? Where
does the flow lead to? As long as the turbulence is not de-
veloped into chaos, there still exist coherent structures that
allow predictions and can give insight in the behavior of the
flow [11]. Vortices are an important structure and by now
we know a lot on their behavior. It is widely agreed that
vortices belong to the most important coherent features in
flow fields. Therefore tools that can help to find and ana-

lyze the parts of the fluid that exhibit swirling motion can
greatly help the engineer or physicist to gain insight into
the properties of the fluid motion.

There is no ultimate agreement on how to generally de-
fine and detect vortices. Even though the concept of a vor-
tex is common in fluid dynamics and flow visualization has
proven useful to describe and model the behavior of flu-
ids. Therefore there exists a wide range of local and global
feature detectors that can find vortices in the flow under
the right conditions [19]. They have individual advantages
and can outperform others in certain situations. Some of
the intrinsic properties of a vortex detector include:

• Representation of the vortex: vortex core methods
extract line type features giving precise insight into
the location of the vortex core. Vortex region ex-
traction algorithms extract an approximate volume
that describes the extent of the connected region of
swirling motion.

• Galilean invariance: a vortex detection algorithm
that is Galilean invariant is valid in all inertial frames
of reference [12]. A detector that has this property
is able to find vortices also in cases where a steady
current in one direction is added to the flow field and
masks the vortical motion of the fluid.

• Robustness: many detection schemes are considered
to be prone to errors in special configurations of the
flow. Robustness can vary with respect to noise in
the data and the size of the grid in unique ways for
each detector [20].

In the remainder of this paper we will see how multiple
linked views can give access to many of the useful prop-
erties of the different detectors at once, but in the scope of
this paper we will limit the analysis to vortex region extrac-
tion based approaches. These are of interest, since vortices
are especially difficult to detect and even approved extrac-
tion algorithms can differ in their outputs significantly.

While most detectors are prone to find false posi-
tives [9], because the higher order derivatives are subject
to frequency amplification, they do not share exactly the



same numerical issues. In this paper we discuss how the
different vortex extraction schemes can interact and com-
plement each other using interactive visual analysis.

This is also an example on how visual analysis can ben-
efit from multiple views that allow the user to build a com-
plex mental model of the properties of the flow. Until re-
cently the rising computing power has led mainly to rising
complexities in the data generated. We propose higher-
order features for visual analysis as a tool to meet this chal-
lenge by incorporating complex automated feature detec-
tors into the process of visual analysis.

The contribution of this paper is: the presentation of a
general multi-view framework where smooth feature de-
tectors are combined for interactive analysis. The adaption
of the P ,Q and R plots to an analytic view based on scat-
terplots. An extension of classical rectangular brushing to
integrate visual analysis and automated feature detection
based on multiple detectors. Furthermore we present an-
alytical interaction schemes for interactive visual analysis
based on multiple views that give a general approach to
vortex type feature analysis.

2 Related Work
In this section we will shortly recapitulate related work in
visual analysis of scientific datasets. We will give some
background on the SimVis [28, 7] approach to visual data
analysis, especially the concept of smooth brushing and
linking. Then we will give an overview on the vortex de-
tectors that we have implemented to combine them into a
multiview vortex inspection framework.

Interactive extraction of information has been a hot re-
search topic in recent years focusing on interactive infor-
mation drill-down [24], visual data mining [29, 13] and
visual analytics [26]. Important issues are advanced in-
teraction concepts as well as procedures and algorithms to
gain access to features and information in the data.

Recently developed visualization techniques and mod-
ern graphics hardware make it possible to interact with vast
amounts of multidimensional data in an intuitive way. The
SimVis system aims at the interactive visual analysis of
large, multi-dimensional and time-dependent datasets from
CFD simulation. To obtain a feature-based flow visualiza-
tion, different forms of data visualization are combined for
data exploration and analysis. Advanced interaction mech-
anisms enable the user to intuitively specify features in the
flow data. Multiple, linked views [1] are used to show dif-
ferent aspects of the flow data. It is important that all views
which concurrently show the same dataset are consistent
among each other with respect to the selected features.

In Figure 1 we see an example for this approach. Mul-
tiple views and smooth brushing improve the flow feature
analysis. The two 3D views show (a) regions of high local
vortex-measure and (b) low velocity and high temperature

in focus and serve as reference. (c) The scatterplot of a vor-
tex detector (λ2) vs. its local extrema can be used to get an
overall impression on the distribution of detector response
values and brushing can be used to select vortical regions.
In all attribute views the brushed elements appear red. El-
ements that are colored black are not selected in any of the
views. Dots are colored green to show data items that are
not selected in the current view but in other linked vies,
i.e. they show the difference between the current selection
from selections in other views. (d) The histogram shows
the development of the features selected in the scatterplots
(using color linking between views) and reveals two peaks
of turbulence over time. This could be time steps that qual-
ify for further investigation. (e) A scatterplot of velocity
vs. temperature allows to compare attribute values of the
selection (red) with those of the vortex regions (green).

Details on the vortex detectors and references will fol-
low in Section 3. The combination of multiple classifiers
has received much attention in the machine learning and
and statistic communities. Lam [14] discuss methodolo-
gies for the combination of multiple classifiers to obtain
improved recognition results. Roli and Kittler [21] present
an overview on fusion methodologies.

3 Detectors and flow measures
In this section we give a short overview on the feature
extraction techniques implemented in the context of this
paper. A more general overview on flow feature extrac-
tion algorithms and visualization was published by Post et
al. [19].

3.1 Flow measures
From engineers and from literature we have found a se-

ries of additional flow attributes to be useful for inspection
and to understand the properties of vortices in the data set:
Pressure p can give hints to the location of a vortex. The
swirling motion around the center of rotation can result in
lower pressure in the vortex core region [17].
Vorticity (or curl) ω = ∇× v measures the local angular
rate of rotation in the fluid. In interactive analysis it has
proven to be a useful feature for discriminating vortices of
different strength.
The velocity gradient tensor J = ∇v is defined as the
Jacobian of v. It describes the rate of change of the ve-
locity along the principal directions and is computed in an
intermediate step for most of the detectors.
The rate-of-strain tensor S = 1

2 (∇v+∇vT ) is the sym-
metric part of the velocity gradient, and measures the de-
formation of a fluid cell element.
The rate-of-rotation tensor Ω = 1

2 (∇v − ∇vT ) is the
antisymmetric part of the Jacobian and measures the rota-
tional movement of a fluid cell element.
A local coordinate system uses a frame of reference that
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Figure 1: Multiple views and smooth brushing for vortex analysis. (a) A 3D view showing regions of high local vortex-
measures. (b) A 3D-view with low velocity and high temperature in focus serves as reference. (c) A scatterplot of the λ2

vortex detector output vs. local extrema of λ2. (d) The histogram shows the development of the features selected in the
scatterplots and reveals three peaks of turbulence over time. (e) A scatterplot of velocity vs. temperature allows to compare
attribute values of the selection (red) with those of the vortex regions (green).

is tuned to the local situation at a fluid element. The pa-
rameters of a local curvilinear coordinate system can give
insight into the swirling motion of the fluid, ∇v becomes

∇v = [vrvcrvci]




λr

λcr λci

−λci λcr


 [vrvcrvci]−1

With vr, vcr and vci being eigenvectors of J , λr the real
eigenvalue and λcr ± iλci the conjugated complex eigen-
value pair.

In their standard definition the common feature detectors
give a binary classification for each volume element to the
classes ’vortex’ and ’no vortex’. In our work we have ex-
perienced that it is more useful to consider the whole spec-
trum of local feature detector response instead of using a
binary threshold. Especially in combination with direct
volume rendering more information is communicated by
also showing the gradient information in the visualization.
Nevertheless, the interaction framework still allows us to
use thresholding and binary brushes.
3.2 Feature Detectors

Some of these feature detectors use the same building
bricks as others but calculate the final result in a differ-

ent way. Especially the parallel vectors operator [22] and
the critical point criterion of Chong et al. [5] are common
”building parts” for feature detection algorithms. For ex-
ample by combining the two we get the detector introduced
by Sujudi and Haimes [25]. This shows how multiple
views and brushing can widen the possibilities of interac-
tive analysis: by implementing the building bricks the user
can combine these in standard ways using default values or
combine them in new ways when the standard methods do
not give satisfying results.

Vorticity magnitude The straightforward way to look for
vortices is to search for regions of high vorticity magni-
tude. Vorticity magnitude thresholding is often used as a
detection method to mark cells as potential vortex regions
and apply local verification using computationally more
demanding methods.
Helicity and Curl Levy et al. propose the use of nor-
malized helicity and curl and search for regions where
v||ω [16]. Even though this may not always correspond
to the actual vortex core line, the authors used this feature
with corresponding colors successfully on meteorological
data.
Hunt’s Q criterion compares the symmetric (S) and the ro-



Figure 2: Combining multiple detectors using linked views: (a) Lambda vs. Q shows that the two are closely related in
this data set. (b) The relation between λ2 and kinematic vorticity number is smaller but the sharp ’edge’ in the distribution
helps to specify a good threshold for λ2. (c) The comparison with the swirl criterion verifies that we have selected a good
threshold. (d-e) the pairwise relations of Q, the swirl criterion and the kinematic vorticity number can be used as a sanity
check for the detected region.

tational component (Ω) of J [10]. Hunt combines this with
the additional requirement of a local pressure minimum. In
our framework we do not need to do this, since this addi-
tional requirement can be added interactively by brushing
a derived quantity that finds local pressure minima.
Lambda2 introduced by Jeong and Hussain [12] is one of
the most popular vortex region detectors and has been stud-
ied extensively over the years. The criterion involves com-
puting the symmetric matrix S2 + Ω2 and its eigenvalues
λ1 ≥ λ2 ≥ λ3. A vortex is detected in the connected re-
gion where λ2 is negative.
Kinematic Vorticity Number Nk introduced by Trues-
dell [27] is a local measure that gives the quality of rotation
independent from vorticity magnitude. Very large values
correspond to solid body rotation and very small values to
irrotational motion.
Chong’s criterion is based on critical point theory and the
eigenvalues and eigenvectors of the Jacobian. A material
particle is considered to show spiraling motion if ∇v has
two complex eigenvectors [5]. Perry and Chong give a de-
scription of the relation between the Jacobian and its in-
variants P , Q and R [18].
The swirling strength parameter of Berdahl [2] and re-
lated methods [30, 4] derive values measuring swirling
from the imaginary and real parts of the complex eigen-
value pair. In interactive analysis these methods are use-
ful since they give information on the local strength of

swirling motion. To combine different vortex detectors
using multiple views we have extended them to output
smooth fuzzy response values [3].

In Figure 2 we see that the different detectors have
unique response characteristics and inspection of their in-
teraction can help visual analysis. Since the detectors are
all based on values computed from the Jacobian there is
very often some correspondence. Chakraborty et al. [4]
present an analysis of the relations between local feature
detectors. Nevertheless, the different criteria give differ-
ent perspectives on the vortex features inside the dataset.
Since the nature of vortex features is not fully understood,
it is still necessary to experiment how to combine the dif-
ferent detectors especially to achieve confidence in the pre-
cise shape of feature boundaries. The fuzzyness of these
boundaries makes it difficult to use a single detector and a
single view to understand them.

4 PQR Plots

The analysis of critical points of the fluid field has proven
to be very useful for understanding the behavior of flow
fields. Perry and Chong discuss how critical point con-
cepts can help understand eddying and swirling flow pat-
terns [18, 5]. They use three invariants of the Jacobian P,
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Figure 3: A PQ-plot: (a) most of the cells selected by the the OR-combination of the λ2 method and the low-pressure-high-
temperature feature lie above the parabola q = p2

4 in the pq-plot (drawn red over the scatterplot for illustration). (b) The
first feature (red) selects λ2 values suggesting a vortex region. We see where this differs from the second feature (green).
(c) The second feature (red) selects low pressure and high temperature. We see that most of the cells belonging to a vortex
unexpectedly exhibit high pressure values (green). (d) In the 3D-view we can see the region in space where we have both
features present.

Q and R:

P = −trace(J), Q =
1
2
(P 2 − trace(J2))

R = −det(J)

The invariants define the topology of possible patterns and
tell about physical properties of the flow. Therefore they
give a useful complement to the other views. Since plots
of P , Q and R are traditionally used for presentation and
discussion in the literature and not as vortex extraction cri-
teria we do not scale or transform them in any way but
map them directly to scatterplots. Plotting different planes
of these invariants is a common tool when discussing flow
topology features. Typically one invariant is held constant
(e.g., P vs. Q with R = 0) such that the result can be vi-
sualized using a 2D plot, but to our knowledge this has not
been done interactively using multiple linked views, where
it is possible to compare the distribution of points interac-
tively for different settings. The invariants are related to
the eigenvalues of the characteristic equation by

det(A− λI) = 0 ↔ λ3 + Pλ2 + Qλ + R = 0

plots of P , Q and R give insight into the complex and
real eigenvalues of the characteristic equation and there-
fore into parts of the flow which show eddying motion.

In Figure 3 the PQ-plot shows the spread of cells in the
PQ-plane with R selected to be zero and compares this with
the results of the λ2 method. In (a) we see that most of the

cells selected by the λ2 method and the low-pressure-high-
temperature feature lie inside above the parabola q = p2

4 in
the PQ-plot. This is the region of stable and unstable focus
flow, that is a pattern of spiralling motion. In (b) the selec-
tion (red) is centered at high λ2 values. Through linking
we see where this differs from the second feature (green).
(c) The selected feature (red) of low pressure and high tem-
perature can be compared with the feature from the other
views (i.e., b). We see that most of the cells belonging to
a vortex exhibit high pressure values (green). This is an
atypical finding, since due to the forces outwards the cen-
ter of spiraling motion we commonly find lower pressure
values connected with vortices. The 3D view (d) comple-
ments the analysis by showing the regions in space where
we have at least one of the features present. The regions
match with what would have been expected, that is to say
behind the inlet, at the region on top opposite of the outlet
and around the outlet.

5 Correlation Brushing
When trying to understand how several detectors combine
we would like to understand how the response values of
two detectors correlate. For this purpose we use a rotation
of the scatterplot to be able to use rectangular brushing to
find correlating parts of a feature. We calculate the offset
and slope of the regression line and rotate the scatterplot
to match the regression line with the x-Axis. See Figure 4
(e+f) for an example. Let X and Y be the attributes un-
der inspection in the scatterplot. Then we can compute the
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Figure 4: Correlating several detectors: (a) The dataset contains a weak and small vortex in a slow portion of the fluid,
that no single method can find satisfyingly. (b) The λ2 method has to be set to very high sensitivity to include the vortex
region. (c) The swirling strength method detects a similar region. (d) The region selected by using a combined detector that
correlates λ2 and swirling strength. (e) The rotation of the points (see text) in the scatterplot is dependent on the slope of
the regression line. (f) After rotation the regression line matches with the x-Axis. (g) A rectangular selection now contains
an inherent measure of correlation of the detectors.

mean values x̄ ȳ to translate the points in the plot such that
(x̄, ȳ) coincides with the origin of the scatterplot . The
slope β of the regression line y = α + βx, (α = 0 after
translation) is then

β =
∑

i((xi − x̄)(yi − ȳ))∑
i(xi − x̄)2

This gives the angle between the x-Axis and the regression
line as arctan(β). After rotating the points in the scatter-
plot we can use rectangular brushing to select correlating
parts of the attributes X and Y . Since linear regression us-
ing a regression line based on least-squares-fitting is very
sensitive to outliers in the data, we include the option to
exclude a certain percentage of the data from the calcula-
tion of the covariance (e.g. the 100th percentile) in the user
interface.

In Figure 4 we see an example of this approach. The
3D images (a-c) are linked in relation to zoom and view-
ing parameters, while the fourth 3D view (d) has a linked
projection parameter but larger zoom for closeup visual-
ization. The scatterplot (g) and the 3D view (d) are linked
such that the selected cells get full opacity. We study a
weak vortex in a region behind the inlet where the flow is
moving slowly close to a stronger main current from inlet
to outlet. For this reason the general direction of the flow

from inlet to outlet is difficult to distinguish from the loca-
tion of the vortex by local feature detectors. In (b) and (c)
we can see that both detectors tend to include some por-
tion of the bend flow into the detected vortex region. Still,
the strengths of response differ in a systematic way from
each other: in the faster portion of the flow we get detector
responses that correlate differently than the responses for
fluid cells inside the weak vortex. Therefore we can se-
lect a good approximation to the vortex region with a sin-
gle brush. Of course we could have improved the selected
region by using additional brushes and including other fea-
tures, but in the image we can clearly see that in the rotated
view a single selection already performs very well.

6 Multiple detector views
Numerical data visualization aims at supporting the tasks
of exploration and analysis to find out about certain charac-
teristics of the dataset. Important tasks are: verification of
simulation results by the experts for sanity, improvement
and optimization of shape and geometry, definition of set-
tings and parameters of controlling hardware (e.g., the chip
controlling injection speed for different engine loads) and
prediction of fluid-material interaction (e.g., transport of
lubrication fluid). All these properties of the data are con-
nected to a certain extent to the control of vortices and their
development over time.
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Figure 5: Feature localization analysis in the application case of a 2-stroke engine simulation: (a) an overview showing the
engine geometry. (b) In the first step we select the parts of the data with the desired oxygen/fuel ratio. (c) To find out which
portions of the vortex result in optimal mixing we plot λ2 against local extremes of λ2, the optimal mixing seems to result
from medium vortex strength. (d) We check this result by comparing with a histogram of the kinetic vorticity number and
see that the cells under strong rotation do not show optimal mixing ratios. (e) The resulting mixing vortex region colored
by ER attribute (”ER” measures combustibility).

We have identified four important interaction schemes
that are often used in interactive analysis - they all involve
the use of multiple linked views:

• vortex and feature localization answers questions
on the location of vortices and related features in-
side the data. The engineer uses interactive brushing
in multiple views to select ranges of different fea-
tures that are of interest. Different 3D views will
show where the concerned regions are located and
the user can relate regions and their properties with
each other.

For example in a simulation of two mixing fluids
the user can search for regions of turbulent flow by
brushing high vorticity values and compare them
with regions of high concentrations of one fluid to
find stable vortices that are interfering with the mix-
ing process. (See Figure 5 for an example and its
discussion later in the text.)

• spatial analysis answers questions concerning the
properties of a certain subvolume of the data. The
engineer selects the relevant region using projections
and 3D views and uses multiple scatterplots to visu-
alize the situation and compare it to the overall be-
havior of the fluid in other views. This kind of anal-

ysis is necessary to understand the situation at im-
portant parts of the geometry to find out if the flow
behaves as expected. See Figure 6 for an example.

• vortex-feature analysis answers questions on the
relationships between vortices and other features.
The engineer uses multiple connected views to gain
understanding on how a selected feature effects other
attributes of the data. For example the user can use
several feature detectors to detect all vortices and to
exclude false positives. Afterwards the engineer can
analyze how the temperature in these regions com-
pares to the overall situation. See Figure 7 for an
example.

• time-dependent vortex analysis answers questions
on the progression of properties of the data in time.
The engineer uses multiple views that show the sit-
uation at different time steps or the development of
a feature over time. For example the user can select
a vortex and analyze its progression in the course of
time.

The key to these analysis guides is the linking between the
different views. When we need to interpret data - that
is to go from numbers to meaning - we need the built-
in connection between the different views: linked view-
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Figure 6: Analysis of the tumbling motion inside the combustion chamber: (a) a 3D view of the tumbling motion that causes
mixing of fuel and oxygen. (b) The selection of high turbulence measure. (c) A scatterplot showing the distribution of time
vs. helicity shows that the current timestep is of importance for the overall process. (d) A 2D projection of the engine were
the combustion chamber is selected for spatial analysis. (e) A second 3D view with color mapped to helicity shows that the
selected vortex consists of at least two counterrotating parts.

ing parameters in the 3D views during feature localization
and linked feature brushing for inter-feature analysis and
spatial analysis. This procedural approach to interactive
drill-down analysis is based on a combination of computa-
tional, automatic feature detectors that are computed in a
pre-processing step with interactive brushing and attribute
selection.

We see that using multiple linked views and comple-
mentary feature detectors we can gain deepened insight of
the vortex-type features inside the flow. The analysis in-
volving several feature detectors gives two opportunities
for further inspection. The first way is to interrelate differ-
ent detectors to

• increase confidence in the detected region or core
[26].

• find false positives and false negatives by comparing
where the detectors agree and disagree.

• limit the response to a certain type of vortex feature.
For example this can be beneficial to be able to dis-
cern vortices corresponding to the direction of rota-
tion or strength of rotation.

These properties are important when dealing with a
large number of automatically detected vortices, where it
is necessary to analyze only the largest ones or otherwise
classified as ’critical’. The combination of detectors and
attributes of the data is beneficial to

• find vortices that are critical in the context. For ex-
ample vortices that hinder mixing, that stall the fluid

motion, take away kinetic energy or cause material
wearout.

• analyze vortices that are caused by purpose to check
their effectiveness and general shape (e.g., to cause
mixing).

• understand how the existence of vortices is related to
relevant properties inside the fluid.

All these tasks inevitably involve the use of multiple views,
both 2D and 3D, and require to relate features and detectors
to each other.

7 Application study
Datasets from computational fluid dynamics (CFD)

simulation share specific characteristics: they cover mul-
tiple aspects of the simulation related to physical proper-
ties of the material (e.g., temperature, density or strain),
the fluid component (e.g., direction, kinetic energy or pres-
sure) and additional quantities related to the application do-
main (e.g., rate of combustion or soot density). In the fol-
lowing we will discuss two examples of interactive visual
analysis of simulation data from the field of automotive re-
search.
7.1 Two-Stroke Engine

The 2-stroke engine dataset contains a complete simu-
lation of the injection and combustion of fuel during one
crank revolution. The model is based on a moving vol-
ume mesh such that at every time step a new unstructured
grid is introduced. In a previous work, Schmidt et al. have
analyzed this dataset with the SimVis approach [23] and
compared the results with a VR/AR method. With the use
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Figure 7: Further investigation of optimal mixing. (a) The portion of the vortex from Figure 6 where the mixing attribute
lies inside the optimal range. (b) In the 3D view we can see that this region is located at the boundary of the rotating motion.
(c) Plotting kinematic vorticity vs. helicity reveals two clusters with a tendency to slowly rotating motion. (d) In 3D we can
see that the region of optimal mixing differs from the main parts of the tumbling motion (compare Fig. 6 (e)).

of CFD simulation initial experiments can be made with-
out costly production of prototype hardware. In this step,
unexpected processes can be investigated and the course
of physical processes can be shaped according to the en-
gine specifications. One key attribute that is related both
to emission and engine performance is equivalence ratio
(ER), which is the relation between fuel and air within a
volume cell. It is crucial that ER lies in the optimal interval
between 0.7 and 1.4 for most fluid cells at the moment of
ignition. In Figure 5 we inspect the mixing process inside
the combustion chamber - using the approach following a
spatial feature analysis process: (b) in the first step we see
the region of optimal mixing in a timestep at the begin-
ning of the compression process when the reaction has not
started yet. (c) This region was selected using a scatter-
plot showing ER and a reaction progression attribute. (d)
A scatterplot that relates vortex detector output against its
local extrema shows that optimal mixing is related to re-
gions that are not at the peaks of vortex detector response.
This could be related to the ambivalent nature of vortices
in relation to mixing: a strong vortex can isolate portions
of the flow inside and hinder mixing while chaotic motion
and turbulence tend to cause full mixing of different fluid
materials. (e) The histogram of kinematic vorticity shows
clearly that the parts of the fluid that have reached optimal
mixing (colored red in the histogram) are rotating slower
than the rest.

In order to further analyze the connection between tur-
bulent motion and mixing inside the combustion chamber
we continue with a spatial analysis. In Figure 6 a mea-
sure of high turbulence is selected and related to the region
that exhibits optimal mixing. In (a) we see a visualization

of the rotating motion that is part of the tumbling motion
which is the main force of the mixing process of fluid and
oxygen. This first orientation step of the spatial analysis
shows the vortex in nearly full development. This vortex
constitutes an important part of turbulent motion inside the
combustion chamber and is essential in the mixing process
during compression resulting from the upward motion of
the piston. Even though we have mapped color to ER, spa-
tial relations do not become immediately clear. (b) In the
scatterplot we can see that ER in the combustion cham-
ber is contained in a very narrow band (the yellow portion)
probably due to the effect of the injection setup. We have
selected high vortex-measure (λ2) values. (c) A scatterplot
of time vs. helicity shows a tendency to clockwise rotation
in later timesteps. (d) We have used a 2D projection of the
geometry to select the combustion chamber for local anal-
ysis. (e) Mapping helicity to color of the volume cells we
can distinguish the main vortex (red) from a smaller turbu-
lent region (green).

To understand the properties of this vortex we continue
with an inter-feature analysis that relates features of the
fluid with ER. This is shown in Figure 7. (a) As a first step
we select optimal ER in a scatterplot showing the situation
in the current timestep. (b) The 3D view shows that the por-
tion of the vortex where the mixing attribute lies inside the
optimal range is located at the boundary of the vortex. (c)
Plotting kinematic vorticity vs. helicity reveals two clus-
ters, both with a tendency to slower rotating motion. (d) In
a 3D view we can see that the region of optimal mixing dif-
fers from the main parts of the tumbling motion (compare
Fig. 6 (e)). We can assume that the second cluster (green)
is a weaker child vortex caused by the main vortex and that
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Figure 8: One key part of the flow inside the cooling jacket are the vortices caused by the gaskets between the cylinder block
and cylinder head parts. (a) An overview of the cooling jacket geometry [3]. (b) A closeup of one of the vortices behind a
gasket (see also Fig. 9 (a) no. 1). (c) The central parts of the vortices can be selected by combining λ2 and high swirl. (d)
When plotting velocity against temperature the gasket vortices lie inside a single cluster.

the mixing process is related to the appearance of smaller
regions of turbulence caused by the main tumbling motion.

7.2 Cooling Jacket
In the second application example we inspect fluid flow
through a cooling jacket. In this application evaluation
we continue work done by Garth et al. [8] and Laramee
et al. [15] where the regions of turbulence behind the gas-
kets were not considered. Computational fluid dynamics
software is used to inspect and improve the design process
and we know that engineers invest large amounts of time
to optimize the geometry of cooling jackets.

The cooling jacket in focus (see Figure 8 (a)) is de-
signed for a four cylinder engine for cars. The shape of
the cooling jacket is the result of multiple factors includ-
ing the shape of the engine block and the optimal working
temperature for the particular engine. The cooling jacket
geometry consists mainly of three components: the cylin-
der head on top, the cylinder block on the bottom and a thin
component connecting the cylinder head and block called
the gasket. The cylinder head is responsible for transfer-
ring heat away from the intake and exhaust ports at the top
of the engine block. The cylinder block is responsible for
heat transfer from the engine cylinders and for even dis-
tribution of flow to the head. Between the cylinder head
and block lies the cooling jacket gasket. It consists of a se-
ries of small holes that act as conduits between block and
head. These ducts can be quite small relative to the overall
geometry but they are nonetheless very important because
they are used to govern the motion of fluid flow through
the cooling jacket.

The coolant flow inside the jacket is governed by two

major directions - a longitudinal motion along the cylin-
ders of the engine and a transversal motion from cylinder
block to head. To keep the engine operative it is necessary
to obtain an even distribution of flow to each engine cylin-
der and to avoid regions of stagnant flow to ensure good
overall heat transport.

Around the combustion chambers heat is transported
away from the surface by a mixing process that replaces
the heated fluid. To this end the shape of the gaskets causes
turbulent regions behind the gaskets. The turbulent regions
differ in size and heat transport efficiency. In Figure 8 (b)
we see a closeup of a single vortex with color mapped to
velocity. (c) We use a combination of λ2 and the swirling
strength parameter to select the full region of turbulence
restricted to the parts rotating stronger. In (d) we see a
scatterplot involving all vortices and so far we cannot dis-
tinguish differences between the two vortices in relation to
their attributes.

In Figure 9 (a) we see six of these turbulent regions in
focus with the rest of the geometry in shades of gray for
context visualization. In scatterplots visualizing detector
outputs ((d) and (e)) we cannot see obvious differences be-
tween the turbulent regions 1 and 2. Therefore we switch
to analyzing their attribute values using additional linked
views. In a scatterplot (b) of turbulent kinetic energy vs.
velocity we see that the second vortex (red) tends towards
slower movements and less kinetic energy. A second scat-
terplot (c) now reveals that the two turbulent regions differ
in their temperature attributes. Further analysis shows that
they are similar in other aspects. We can conclude that
the difference between the two regions of turbulence stems



(a) (b)   

(d)

(c)

(e)

1

2

Figure 9: We analyze the difference between two of the vortices caused by the gasket geometry: (a) an overview of the
gasket vortices in the cooling jacket geometry. (b) This scatterplot shows that second vortex (red) tends to lower turbulence
and velocity but clear distinction is not possible. (c) We found the differing attribute: plotting temperature separates the two
regions. (d+e) Both vortices are very similar in the outputs of the vortex detectors.

from the larger temperature of the fluid before entering gas-
ket 2. This is due to the fact that the fluid arriving at the sec-
ond gasket has covered a larger distance from the inlet than
the fluid that goes through gasket 1. The result is therefore
that the slightly lower cooling effect of the second gasket
is not due to the gasket geometry but an acceptable effect
of the overall situation.

Technical Considerations
SimVis has to handle data sets with up to 1000 time steps,
20-50 data attributes and up to several million cells. There-
fore it is important to save resources available when calcu-
lating derived features. In this respect storing the feature
information that was output by the detector in a float chan-
nel is a very good solution since the computations have
to be done only once. The additional amount of data is
comparatively small and the lazy loading capability of the
SimVis implementation supports this approach.

To achieve fast rendering speeds for the large amount
of cells we use the vertex buffer object arrays to store the
information necessary for rendering directly on graphics
hardware. To further speed up computationally intensive
processes, we use the SSE (Streaming SIMD Extensions)
instruction set. This allows to perform calculations on four
32 bit float values simultaneously. It is possible to optimize
the calculation of the degree of interest function and fuzzy-
logic operations based on this extension, since it packs four
operations into one. The SimVis system currently runs in-
teractively on a standard PC (AMD Athlon 64 Dual Core
2,2GHz with a NVidia GeForce 6800 graphics card).

Conclusions
We have presented a case study of vortex feature analy-

sis using combined detectors and multiple views in the con-
text of CFD data for automotive industries research. Using
multiple views it is possible to compare and weight the
response values of several detectors intuitively by means
of interactive visual analysis. Furthermore we have pre-
sented an extension to brushing features in scatterplots that
allows to analyze the correlation of features using rectan-
gular brushing. It was demonstrated that by correlating two
detectors one can find features that could not be studied be-
fore. The case study reveals that the combination of mul-
tiple 2D and 3D views can help understanding complex
3D flow features when linking and brushing are combined
appropriately. We have identified systematic approaches
to study vortex phenomena in multidimensional datasets,
based on multiple views, linking and combined feature de-
tectors.

In the context of an application study the benefits of
multiple linked views become clear: taking advantage
of the combined potential of infovis views, 3D graph-
ics visualization and automated feature detectors allows
to understand the situation inside the data. Reading be-
tween the lines and gaining deepened understanding is
possible by the streamlined and integrated approach of
coordinated views and multiple detectors. For supple-
mentary documentation and results to this case study,
in particular video, high-resolution images and other
material, we refer to www.vrvis.at/via/research/

multi-views-case/. Future work in multiple coor-
dinated views contains a generalized approach to linked



brushing and navigation that allows to link several views
in a generalized fashion such that the analysis process is
assisted with adapting 3D presentation.
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