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ÖZET 

Günümüzde, görüntü işleme ve bilgisayarla görü alanlarındaki araştırmacılar, insan 

yüzlerinin makineler tarafından tanınması konusunda oldukça yoğun çalışmalar 

yapmaktadır. Buna rağmen özellikle gerçek zamanlı işlemin gerekli olduğu 

durumlarda otomatik bir tanıma sistemin gerçeklenmesi hala zorluklar içermektedir. 

Bu zorlukların nedenleri arasında yüz görüntülerinin yüzün 3boyutlu geometrisi 

dolayısıyla aydınlatma ve poz değişimleri olduğunda büyük değişimler göstermesi ve 

yüz ifadesi, yaşlanma, sakal, bıyık, gözlük ve makyajdan oluşan değişimler yer 

almaktadır. Aynı yüzün farklı ışıklandırma ve görüş açısı durumlarında gösterdiği 

değişim farklı insan yüzlerinin arasında görülen değişimden daha fazla olduğu 

söylenebilir. Özellikle değişken aydınlatma koşulları, yüz tanımayı günümüzdeki en 

zor problemlerden birisi haline getirmiştir. 

Bu çalışma üç anahat üzerinde kurulmuştur. Sözü edilen hatlar yüz tanımadaki 

aydınlanma değişimlerle ilgili üç sorunu aşmak üzere geliştirilmiştir: 

• Temel Bileşen Analizi ve Doğrusal Ayrışım Analizi kullanıldığında değişken 

aydınlatma koşullarının yarattığı sorunlarının giderilmesi 

• Küçük örneklem probleminden kaynaklanan yüz nitelik çıkarma sorununun 

çözülmesi 

• Herhangi bir ışıklandırma koşulunda alınmış görüntülerin önden aydınlatılmış 

şekilde tekrar oluşturulması 

Bu çalışma boyunca alınan deneysel sonuçlar, bu üç yaklaşımın birleşiminden oluşan 

yöntemin, var olan yöntemlerinin başarımını geçtiğini göstermektedir. Aynı zamanda 

yöntem, aydınlanma değişimlerine dayanıklı gürbüz ve gerçek zamanlı bir yüz 

tanıma sistemi oluşturmaya olanak vermektedir. 
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SUMMARY 

Face Recognition, being one of the most active areas of image analysis and 

understanding, has received special attention during the past several years. 

Researchers in psychology, neural sciences and engineering, image processing and 

computer vision have been investigating a number of issues related to face 

recognition by human beings and machines. Despite this it is still difficult to design 

an automatic system, especially when real time identification is required. The reasons 

for this difficulty are two-fold: 1) Face images are highly variable and 2) Sources of 

variability include individual appearance, three dimensional pose, facial expression, 

facial hair, make-up, and so on and these factor change from time to time. It has been 

observed that, “The variations of the same face due to illumination and viewing 

direction are almost always larger than image variations due to changes in the face 

identity”. All these problems make face recognition and especially dealing with 

variable illumination on human face, one of the most challenging problems for robust 

face recognition systems.  

This study is based in three main axes which have been developed in an effort to 

overpass three problems of Face Recognition especially dealing with varying 

illumination: 

• Difficulty of Principal Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA) with varying illumination 

• Difficulty of  feature extraction due to the “small sample size ” (SSS) problem 

• Reconstruction of images illuminated by an arbitrary angle in order to have a 

frontal illumination 

During this study, experimental results have shown that the combination of these 

three approaches outperforms existing ones and in the same time offers the 

possibility of creating o robust real time Face Recognition system when dealing with 

illumination.  
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1. INTRODUCTION 

Face Recognition Systems (FRS) have been receiving recently special attention. This 

can be evidenced by the emergence of Face Recognition conferences, systematic 

empirical evaluations of face recognition techniques, protocols, and many 

commercially available systems. This introductory section offers a general view of 

the applications, the configuration of a generic FRS, and finally a background on the 

different approaches related with FRS under varying illumination. 

1.1 Application Areas 

The problem of machine recognition of human faces is attracting more and more 

researchers not only from areas as image processing, pattern recognition and neural 

networks but also from neuroscience and psychology. There is a strong need to 

secure our possessions and in the same time to protect our privacy. An important 

point is that while the other biometric identification methods such as fingerprint 

analysis or retinal scans rely on the cooperation of the participants, a FRS is often 

effective without the participant’s cooperation or knowledge. Table 1.1 lists some of 

the applications of face recognition. 

Table 1.1 Applications of Face Recognition 

Areas Specific Application 

Entertainment 

 

Video game, virtual reality, training programs 

Human-robot-interaction, human-computer-interaction 

Smart Cards Drivers’ licenses, entitlement programs 

Immigration, national ID, passports, voter registration 

Information 

Security 

TV Parental control, personal device logon, desktop logon 

Application security, database security, Intranet security, internet access 

Witness face reconstruction, Electronic mug shots  

Surveillance Advanced video surveillance, CCTV control 

Portal control, post-event analysis 

Shoplifting, suspect tracking and investigation 
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Commercial and surveillance applications of FRS range from controlled still images 

to uncontrolled video images, posing a wide range of technical challenges and 

requiring an equally wide range of techniques from image processing, analysis, 

understanding, and pattern recognition. Generally, FRS can be divided into two 

groups depending on whether they make use of static images or video. Even within 

these groups, significant differences exist, depending on the specific application. The 

differences are in terms of image quality, amount of background clutter (posing 

challenges to segmentation algorithms), variability of the images of a particular 

individual that must be recognized, availability of a well-defined recognition or 

matching criterion, and the nature, type, and amount of input from a user.  

In this study we will deal with still images received from a digital camera such as an 

IP camera, webcam and so on. 

1.2 Configuration of a Generic FRS 

A general statement of the problem of face recognition can be formulated as follows: 

given still or video images of a scene, match or verify one or more persons in the 

scene using a stored database of faces (learning or training set). Available extra 

information such as race, age, gender or facial expressions can be used as factors to 

speed the searching process. A general configuration of a FRS can be formulated 

over the following steps: 

• Face Detection (Face Tracking, Pose Estimation, Compression) 

• Feature Extraction (Facial Feature Tracking, Emotion Recognition, Gaze 

Estimation) 

• Face Recognition (Holistic Templates, Feature Geometry, Hybrid) 

In identification problems, the input is unknown face, and the system reports back 

the determined identity matched with a database of known individuals. On the other 

side, in verification problems the system needs to accept or reject the claimed 

identity of the input face. It is clear that the second case is the most problematic 

because we have to deal also with the rejection conditions of an input face.  

In this study we will deal will identification problems, with intention that in future 

works the matching criteria can be expanded in a way that can allow rejection. 



 3 

1.3 Face Recognition Research Survey 

Face perception is an important part of the capability of human perception system 

and is a routine task for humans, while building a similar computer system is still an 

on-going research area. Research on automatic machine recognition of faces started 

with Kelly’ work [1] in 1970, and after the seminal work done by Kanade [2] in 

1973.  As for the early researches, both geometric feature based methods and 

template-matching methods were regarded as typical technologies. The experimental 

results revealed that template matching outperforms the geometric feature based 

methods.  

Therefore since 1990s, appearance based methods have been playing a dominant role 

in the area, from which a number of approaches were derived: holistic appearance 

feature based, and analytical local feature based.  Popular methods belonging to the 

first paradigm include Eigenface [3], Fisherface [4], Probabilistic and Bayesian 

matching [5], and Active Shape/Appearance Models (ASMs/AAMs) [6, 7] based 

methods. Local Feature Analysis (LFA) [8] and Elastic Bunch Graph Matching 

(EBGM) [9] are typical instances of the latter category, among which LFA has been 

developed to one of the most successful commercial face recognition system, named 

FaceIt®, by Identix Corporation. FERET evaluation has provided extensive 

comparisons of these algorithms [10] as well as a kind of evaluation protocol for face 

recognition systems. More recently, Support Vector Machine (SVM) has also been 

applied to face recognition successfully [11].  

However, face recognition remains a difficult, unsolved problem in general. The 

performance of almost all current face recognition systems, both the best academic 

results and the most successful commercial systems, is heavily subject to the 

variations in the imaging conditions. It has been discovered by the FERET and 

FRVT2000 test that pose and illumination variations are among the several 

bottlenecks for a practical face recognition system [10].  

In this study we will deal with normalization and handling of varying illumination. 

The changes induced by illumination are often larger than the differences between 

individuals, causing systems based directly on comparing images to misclassify input 

images [12].  So far, no revolutionary or practical solutions are available for these 
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problems. However, some approaches have been proposed to handle illumination. 

These can be divided into four categories: 

• Extraction of illumination invariant features 

• Transformation of images with variable illuminations to a canonical 

representation 

• Modeling the illumination variations 

• Utilization of some 3D face models whose facial shapes and albedos are obtained 

in advance 

The approaches of the first category use illumination invariant face features to 

represent face images and for face recognition. Examples of these features include 

edge maps, image intensity derivations, and images convolved with the 2-D Gabor-

like filters. Edge maps can serve as relatively robust representations of illumination 

changes for some classes of objects such as telephones, tables, but for other subjects 

such as faces, parts of the edges do not remain stable. In [12], Adini’s empirical 

study shows that none of these representations is sufficient by itself to overcome 

image variations caused by a change in the illumination direction.  

The approaches in the second category transform face images with variable 

illuminations to canonical forms. Zhao and Chellappa [13] proposed a symmetrical 

shape from shading (SSFS) method based on a single face image of each person. The 

method uses a simple and generic 3D face model to estimate the pose and light 

source direction of the input image. Then, the input image is warped to a virtual 

image with frontal illumination, which is matched to the prototype images in a 

gallery. Shashua and Tammy [14] proposed the Quotient Image, which is defined as 

the ratio between the albedo functions of two objects under the assumption that all 

the faces have the same shape. Therefore, the Quotient Image is an illumination 

invariant signature of a face. This technique can produce an illumination invariant 

prototype image, which can be used for face recognition.  

The approaches in the third category represent illumination variations by means of an 

appropriate model based on many images of each person under various lighting 

conditions. Shashua [15] proposed that the set of images with variable illuminations 

of a face subject lies in a 3D linear subspace in the absence of shadowing. Efforts 

were made to enhance the 3D linear subspace model to deal with the shadows by 

segmenting a face image into some sub-regions that have surface normals with 
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directions close to each other. Georghiades et al. [16] proposed the individual 

illumination cone model that can be approximated by a low-dimensional linear 

subspace whose basis vectors are estimated using a large number of images under 

different lighting conditions. The images of each person are generated from a 3D 

facial shape and albedos which are reconstructed using seven frontal face images 

under different lighting conditions. However, the methods are computationally 

intensive.  

In general, the methods belonging to the fourth category can achieve good 

recognition results, and are more commonly in use at present. However, the methods 

require for each face subject either many images captured under different lighting 

conditions or many synthesized images with different illuminations by virtue of a set 

of bootstrap images. 3D Morphable Models are also classified into this category. 

This theory utilized a 3D Morphable Model to synthesize new face images with 

different lighting directions, and illumination variations are modeled using the Phong 

illumination model. However, the 3D face models are usually captured by a 3D Laser 

Scanner. 

1.4 Outline of proposed approach 

This study is based in three main axes which have been developed in an effort to 

overpass three problems of Face Recognition dealing with varying illumination: 

• Difficulties of Principal Component Analysis (PCA) [3] and Linear Discriminant 

Analysis (LDA) [4] with varying illumination 

• Difficulty of  feature extraction due to the “small sample size ” (SSS) problem 

• Reconstruction of images illuminated by an arbitrary angle in order to have a 

frontal illumination 

For the first problem, PCA and LDA are two powerful tools for dimensionality 

reduction and feature extraction. Still PCA is presumed to fail when dealing with 

variable illumination; and LDA methods, which outperform PCA, are supposed to 

loose some important discriminatory information during the effort to overcome the 

scatter matrix singularity by discarding the null space. To surpass this problem a 

combination of Fisher-LDA and Direct-LDA has been used and the results are 

overall superior to the other two methods. 
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For the second problem, by focusing on Lambertian surface classes and by creating 

analytically an image signature of an arbitrary illuminated input image, we are able 

to create the image space of this image for different illumination directions. This 

approach makes possible the multiplication of images in the training databases where 

only one image per person is available and so to overcome the SSS problem. 

For the third problem, many approaches have been tried to represent images with 

some canonical forms which are insensitive to illumination. Recently it has been 

showed that the ratio of two images of the same class is simpler than if the images 

are from different objects. This concept has been used to create a reconstructionist 

approach in order to restore arbitrary illumination of input images to frontal ones.  
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2. FACE SPACE AND DIMENSIONALITY REDUCTION 

In this section we will give an insight on the image space, a small part of which 

represents the face space. Furthermore, we will introduce how instead of dealing 

with such a huge space we can process the data retained by dimensionality reduction 

methods such as PCA and LDA. 

2.1 Image space vs. face space 

When using appearance based methods, we usually represent an image of width w 

and height h as a vector in a w h⋅ –dimensional space. In practice, this ( w h⋅ -

dimensional) space, i.e. the full image space, is too large to allow robust and fast 

object recognition. A common way to attempt to resolve this problem is to use 

dimensionality reduction techniques. This can be done also because we know that the 

face space is concentrated only in a small part of the image space. Two of the most 

popular techniques for this purpose are: PCA and LDA (also known as Fisher 

Discriminant Analysis). 

2.2 Principal Component Analysis 

Principal component analysis is a technique that is useful for the compression and 

classification of data. It is well known that there exist significant statistical 

redundancies in natural images. For a limited class of objects such as face images 

that are normalized with respect to scale, translation and rotation the redundancy is 

even greater. The purpose is to reduce the dimensionality of a data set (sample) by 

finding a new set of variables, smaller than the original set of variables that 

nonetheless retains most of the sample's information.  By information we mean the 

variation present in the sample, given by the correlations between the original 

variables.  The new variables, called principal components (PCs), are uncorrelated, 

and are ordered by the fraction of the total information each retains. 
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To better understand the role of the PCA we can give a graphical example in which 

we have n observations in the 2-D space 1 2( , )x x x= . The goal is to account for the 

variation in a sample in as few variables as possible, to some accuracy. As we see in 

Fig 2.1 PCA aims the better representation of these samples. 

 

  Fig 2.1: N observations in the 2-D space (left). Their presentation in the PCA space 

More formally let us consider a set of N sample images { 1 2, ,..., Nx x x } taking values 

in an n-dimensional image space, and assume that each image belongs to one of c 

classes 1 2{ , ,..., }cX X X .  We consider a linear transformation mapping the original n-

dimensional image space into an m-dimensional feature space, where (m < n). The 

new feature vectors m
ky ∈ are defined by the following linear transformation: 

1, 2, ...,T
k k Nky W x ==               (2.1) 

where nxmW ∈ is a matrix with orthonormal columns. If the total scatter matrix ST 

(covariance matrix) is defined as: 

1
( )( )

N
T

T k k
k

S x xµ µ
=

= − −∑                (2.2) 

where N is the number of sample images and nµ∈  is the mean image of all 

samples, then after applying the linear transformation WT, the scatter of the 

transformed feature vectors 1 2{ , ,..., }Ny y y is WTSTW. In PCA, the projection Wopt is 
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chosen to maximize the determinant of the total scatter matrix of the projected 

samples, i.e.: 

1 2arg max [ , ,..., ]T
opt T mW

W W S W w w w= =               (2.3) 

where { 1, 2 },...iw i m=  is the set of n-dimensional eigenvectors of ST corresponding 

to the m largest eigenvalues. Since these eigenvectors have the same dimension as 

the original images, they are referred to as Eigenpictures or Eigenfaces. If 

classification is performed using a nearest neighbor classifier in the reduced feature 

space and N is chosen to be the number of images in the training set, then the 

Eigenface method is equivalent to a simple correlation method. So we had that: 

TS Φ=ΦΛ                   (2.4) 

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of ST with 

their magnitudes in descending order, and Φ is a matrix whose ith column is the ith 

eigenvector of ST. In order to obtain the eigenspace we generally choose m 

eigenvectors corresponding to the m largest eigenvalues, which capture over 95% of 

the variations of the images. Fig 2.2 and Fig 2.3 shows a training set of 10 person 

faces taken from the YaleB database[17] and their respective eigenfaces 

(eigenpictures) sorted in descending order according to their eigenvalues(there are 

only nine eigenfaces). The eigenpictures have been normalized for display purpose: 

 

Fig 2.2 Face examples of 10 different persons from the YaleB database 
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Fig 2.3 Eigenfaces calculated on basis of the 10 examples from the YaleB database 

After calculating the eigenfaces the projection is the only process left to done. Let ΦS 

be the matrix consisting of the m eigenvectors, and nI be a new face image. The 

projection of nI onto the eigenspace is represented as follows: 

( )T
S na I µ=Φ −                  (2.5) 

Where a is mx1 vector containing the m projections coefficients. The reconstructed 

image '
nI is then given as follows: 

'
n sI a µ= Φ +                   (2.6) 

The reconstructed image is the best approximation of the raw input image in the 

mean square sense. An advantage of using such representations is their reduced 

sensitivity to noise. Some of this noise may be due to small occlusions, as long as the 

topological structure does not change. For example, good performance under 

blurring, partial occlusion and changes in background has been demonstrated in 

many eigenpictures based systems. This should not come as a surprise, since the 

PCA reconstructed images are much better than the original distorted images in 

terms of their global appearance. 

For better approximation of face images outside the training set, for example using 

an extended training set that adds mirror-imaged faces showed to achieve lower 

approximation error. Using such an extended training set, the eigenpictures are either 
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symmetric or antisymmetric, with the most leading eigenpictures typically being 

symmetric. 

A drawback of this approach is that the scatter being maximized is due not only to 

the between-class scatter that is useful for classification, but also to the within-class 

scatter that, that for classification purposes is unwanted information. Thus if PCA is 

presented with images of faces under varying illumination, the projection matrix Wopt 

will contain principal components (i.e., Eigenfaces) which retain, in the projected 

feature space, the variation due lighting. Consequently, the points in the projected 

space will not be well clustered, and worse, the classes may be smeared together. It 

has been suggested that by discarding the three most significant principal 

components, the variation due to lighting is reduced [4]. The hope is that if the first 

principal components capture the variation due to lighting, then better clustering of 

projected samples is achieved by ignoring them. Yet, it is unlikely that the first 

several principal components correspond solely to variation in lighting; as a 

consequence, information that is useful for discrimination may be lost. 

2.3 Fisher’s Linear Discriminant and Fisher Faces 

Fisher’s Linear Discriminant Analysis (FLDA) uses an important fact of photometric 

stereo: In the absence of shadowing, given three images of a Lambertian surface 

from the same viewpoint taken under three known, linearly independent light source 

directions, the albedo and surface normal can be recovered. For classification, this 

fact has great importance: It shows that, for a fixed viewpoint, the images of a 

Lambertian surface lie in a 3D linear subspace of the high-dimensional image space. 

One can perform dimensionality reduction using linear projection and still preserve 

linear separability. Fisher’s Linear Discriminant (FLD) is an example of a class 

specific method, in the sense that it tries to “shape” the scatter in order to make it 

more reliable for classification.  

More formally, let us continue our previous study of PCA from this new point of 

view. The LDA selects W in such way that the ratio of the between-class scatter and 

the within-class scatter is maximized. Let the between-class scatter matrix be defined 

as: 
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1
( ) ( )

c
T

B i i i
i

S N µ µ µ µ
=

= − −∑               (2.7) 

and the within-class scatter be defined as 

1 1
( ) ( )

c n
T

w k i k i
i k

S x xµ µ
= =

= − −∑ ∑               (2.8) 

where μi is the mean image of class Xi , and Ni is the number of samples in class Xi. If 

SW is nonsingular, the optimal projection Wopt is chosen as the matrix with 

orthonormal columns which maximizes the ratio of the determinant of the between-

class scatter matrix of the projected samples to the determinant of the within-class 

scatter matrix of the projected samples, i.e., 

1 2maxarg [ ... ]
T

B
opt mTw

W

W S W
W w w w

W S W
= =                            (2.9) 

where {wi | i = 1,2,…,m } is the set of generalized eigenvectors of SB and SW 

corresponding to the largest eigenvalues {λi | i = 1,2,…,m}, i.e., 

1, 2,...,B i i W i i mS w S wλ ==                                                            (2.10) 

Note that there are at most c - 1 nonzero generalized eigenvalues, and so an upper 

bound on m is c - 1, where c is the number of classes.  

A graphical example can better explain the role of LDA. If we imagine that the 

samples labelled 1ω  fall more or less into one cluster while those labelled 2ω all in 

another, we want the projections falling onto the line to be well separated, not 

thoroughly intermingled. Figure 2.4 illustrates the effect of choosing two different 

values for ω for a two-dimensional example. It should be abundantly clear that if the 

original distributions are multimodal and highly overlapping, even the “best” Wopt is 

unlikely to provide adequate separation, and thus this method will be of little use.  
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Figure 2.4: Projection of samples onto two different lines. The figure on the right 
shows greater separation between the red and black projected points. 

In the face recognition problem, one is confronted with the difficulty that the within-

class scatter matrix nxn
WS ∈ is always singular. This stems from the fact that the 

rank of SW is at most (N – c), and, in general, the number of images in the learning 

set N is much smaller than the number of pixels in each image n. This means that it is 

possible to choose the matrix W such that the within-class scatter of the projected 

samples can be made exactly zero.  

In order to overcome the complication of a singular SW, it has been proposed an 

alternative to the criterion in (2.9). This method, which is called Fisherfaces, avoids 

this problem by projecting the image set to a lower dimensional space so that the 

resulting within-class scatter matrix SW is nonsingular. This is achieved by using 

PCA to reduce the dimension of the feature space to N - c, and then applying the 

standard FLD defined by (2.9) to reduce the dimension to c - 1. More formally, Wopt 

is given by: 

T T T
opt fld pcaW W W= ⋅                (2.11) 

where 

arg max T
pca WW

W W S W=                (2.12) 

arg max
T T

pca B pca
fld T TW

pca W pca

W W S W W
W

W W S W W
=             (2.13) 
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Note that the optimization for Wpca is performed over ( )n N c× −  matrices with 

orthonormal columns, while the optimization for Wfld is performed over ( )N c m− ×  

matrices with orthonormal columns. In computing Wpca, only the smallest (c – 1) 

principal components have been thrown away.  

The Fisherface method appears to be the best simultaneously handling variation in 

lighting and has lower error rate than the PCA method. But to achieve better results 

some preprocessing as normalization to zero mean, unit standard deviation, and 

alignment of face textures is needed.  

2.4 A variant of Direct LDA 

As we stated in formula (2.9) assuming that SW is non-singular, the basis vectors W 

correspond to the first m eigenvectors with the largest eigenvalues of ( 1
W BS S− ). The 

m-dimensional representation is then obtained by projecting the original face images 

onto the subspace spanned by the m eigenvectors. However, a degenerated SW in 

(2.9) may be generated due to the SSS problem widely existing in most FR tasks. As 

we said in the previous section a possible solution is to apply a PCA step in order to 

remove the null space of SW prior to the maximization in (2.9). Nevertheless, it 

recently has been shown that the null space of SW may contain significant 

discriminatory information. As a consequence, some of the significant discriminatory 

information may be lost due to this pre-processing PCA step. An approach that is a 

successful variant of D-LDA [18] will be introduced next.  

The basic premise of the D-LDA methods that attempt to solve the SSS problem 

without a PCA step is, that the null space of SW contains significant discriminant 

information if the projection of SB is not zero in that direction, and that no significant 

information will be lost if the null space of SB is discarded. Assuming that A and B 

represent the null space of SB and SW, while NA A′ = −  and NB B′ = −  are the 

complement spaces of A and B respectively, the optimal discriminant subspace 

sought by D-LDA is the intersection space ( A B′∩ ). So a first approach is to find A′  

when seeking the solution of (2.9) by diagonalizing SB. Fortunately the rank is 

determined by ( ) min( , 1)Brank S N C= −  with C the number of image classes. Then 

( A B′∩ ) can be obtained by solving the null space of projection of SW into A′ . Based 

on the analysis given above, it can be known that the most significant discriminant 
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information exist in the intersection subspace ( A B′∩ ), which is usually low-

dimensional so that it becomes possible to further apply some sophisticated 

techniques, such as the rotation strategy of the LDA subspace used in F-LDA, to 

derive the optimal discriminant features from the intersection subspace. 

The maximization process in (2.9) is not directly linked to the classification error 

which is the criterion of performance used to measure the success of the FR 

procedure. Modified versions of the method, such as the F-LDA approach, use a 

weighting function in the input space, to penalize those classes that are close and can 

potentially lead to misclassifications in the output space. Thus, the weighted 

between-class scatter matrix can be expressed as: 

1

ˆ
C

T
B i i

i
S

=

= Φ Φ∑                (2.14) 

where 1 2 1 2
1

( ) ( ( ) ) ( )C
i i ij i jj

N N w d µ µ
=

Φ = −∑  and ij i jd µ µ= −  is the Euclidian 

distance between the mean of class i and j. The weighting function ( )ijw d  is a 

monotonically decreasing function of the distance dij. The only constraint is that the 

weight should drop faster than the Euclidean distance between the means of class i 

and class j. In this study instead of the conventional Fisher criterion as in (2.9) a new 

metric is proposed: 

ˆ
arg max ˆ( )

T
B

T TW
B W

W S W
W

W S W W S Wη
=

+
             (2.15) 

where 0 1η≤ ≤ is a regularization parameter. It can be proven that although Eq. 

(2.15) looks quite different from the conventional Fisher’s criterion, it can be show 

that they are exactly equivalent.  

The next steps of the approach can be given by the following algorithm: 

1. Calculate those eigenvectors of T
b bΦ Φ with non-zero eigenvalues: [ ]1...m mE e e=  

where ˆ1 and is from T
b B b bm C S≤ − Φ = Φ Φ . 

2. Calculate the first m most significant eigenvectors and their corresponding 

eigenvalues of ˆ ˆby and T
B b m b BS V E V S V= Φ Λ = . 
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3. Let 1 2
bU V −= Λ . Calculate eigenvectors of 1( ), [ ,..., ]T

W mU S U P p p= in increasing 

order. 

4. Choose the first ( )M m≤  eigenvectors in P. Let MP and wΛ be the selected 

eigenvectors and their corresponding eigenvalues, respectively. 

5. Let 1/ 2( )M WW HP Iη −= + Λ be the basis of the dimensionality reduction. 

6. The optimal discriminant feature representation of x can be obtained 

by ( ) Ty x W xϕ= = . 

It can be seen from the algorithm that varying the values of η within [0, 1] leads to a 

set of intermediate D-LDA representations variants in the feature space. Since the 

subspace spanned by W may contain the intersection space ( A B′∩ ), it is possible 

that there exist zero or very small eigenvalues in WΛ , which have been shown to be 

high variance for estimation in the SSS environments [18]. As a result, any bias 

arising from the eigenvectors corresponding to these eigenvalues is dramatically 

exaggerated due to the normalization process ( 1/ 2
M WP −Λ ). Against the effect, the 

introduction of the regularization helps to decrease the importance of these highly 

unstable eigenvectors, thereby reducing the overall variance. Also, there may exist 

the zero eigenvalues in WΛ , which are used as divisors due to η = 0 so that the LDA 

process can not be carried out. However, it is not difficult to see that the problem can 

be avoided simply by setting the regularization parameter 0η > . 

In order to display the effect of LDA in dimensionality reduction we take a training 

set form the YaleB database by choosing only three images per person (Fig 2.5). 

 

Fig. 2.5 Training set used for Linear Discriminant Analysis example 
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As we see the faces belonging to a person are not very different and they illumination 

angles also differ by at most 15’. So we expect that the eigenvectors of this training 

set will be similar to those extracted by the PCA method in Fig 2.3, because of the 

means of each class are quite near the value of each sample of that class. Indeed we 

can see in figure 2.6 that they are quite similar. On the other hand they differ in the 

values of most important non-zero eigenvalues and we must take into consideration 

that they have been normalized for display purposes. So we arrive in the conclusion 

that in order to apply successfully D-LDA we have to train classes with some 

constituent differences. 

 

Fig 2.6: Eigenvectors resultant that will be used in the D-LDA dimension projection 

The performance of this algorithm depends critically in the choosing of the 

regularization parameter and the number of the selected eigenvectors. It has been 

observed that the optimal regularization parameter decreases monotonously as the 

number of training samples per object increase. It seems that the relationship is not 

linear. In addition in the experiments executed the η value increases as the number of 

subjects increase. 

2.5 Comparison between Linear Projection Algorithms 

It is helpful to make comparisons among these linear projection algorithms. In all the 

projection algorithms, classification is performed by projecting the input x into a 

subspace via a projection/basis matrix W in the form Ty W x=  comparing the 

projection coefficient vector y of the input to all the prestored projection vectors of 
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labeled classes to determine the input class label. The vector comparison varies in 

different implementations and can influence the system’s performance dramatically. 

For example, PCA algorithms can use either the angle or the Euclidean distance 

(weighted or unweighted) between two projection vectors. For LDA algorithms, the 

distance can also be unweighted or weighted.  

Furthermore PCA requires only one picture for individual while LDA-based methods 

require at least 2. As we showed in the previous example if the classes’ variance is 

not prominent then there will no much difference between PCA and LDA projection 

matrix. In the extreme case where only one sample per class is available the LDA 

method is roughly transformed in plain PCA. We have to say that the PCA-based 

method is optimal in terms of image reconstruction, thereby provides some insight on 

the original image structure or image distribution, which is highly complex and non-

separable. In spite of that D-LDA methods greatly increase the separability of 

subjects.  
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3. IMAGE SYNTHESIS BASED ON QUOTIENT IMAGE 

Face Recognition Systems’ performance is strongly related with the databases on 

which these systems are based for training or learning. This fact becomes even more 

important when class-based discrimination methods are used. As we said for the 

LDA method in the previous chapter many samples per class have to be provided in 

order to successfully obtain the high results of this method. Unfortunately in many 

FRS only one image per person is provided and the use of LDA-based methods 

becomes impossible. In order to surpass this difficult obstacle many proposals have 

been done. Following, we will introduce some successful techniques [14, 19] in 

image synthesis and re-rendering. These approaches make possible the synthesis of 

the image space of a given input image being based on small bootstrap of images 

(training database). 

Nearly all approaches to view synthesis or image-based rendering take a set of 

images gathered from multiple viewpoints and apply techniques related to structure 

from motion, stereopsis, image transfer, image warping, or image morphing. Each of 

these methods requires the establishment of correspondence between image data (e.g. 

pixels) across the set. Since dense correspondence is difficult to obtain, most 

methods extract sparse image features (e.g. corners, lines), and may use multi-view 

geometric constraints or scene-dependent geometric constraints to reduce the search 

process and constrain the estimates. By using a sequence of images taken at nearby 

viewpoints, incremental tracking can further simplify the process, particularly when 

features are sparse.  

For these approaches to be effective, there must be sufficient texture or viewpoint-

independent scene features, such as albedo discontinuities or surface normal 

discontinuities. From sparse correspondence, the epipolar geometry can be 

established and stereo techniques can be used to provide dense reconstruction. 

Underlying nearly all such stereo algorithms is a constant brightness assumption, that 

is, the intensity (irradiance) of corresponding pixels should be the same. In turn, 

constant brightness implies two seldom stated assumptions: (1) The scene is 
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Lambertian, and (2) the lighting is static with respect to the scene – only the 

viewpoint is changing. 

3.1 Image Synthesis using Illumination Cone [19] 

In this illumination-based approach, it is assumed that the surface is Lambertian, 

although this assumption is very explicit. Geometric correspondence is trivially 

established, and so the method can be applied to scenes where it is difficult to 

establish multi-viewpoint correspondence, namely scenes that are highly textured 

(i.e. where image features are not sparse) or scenes that completely lack texture (i.e. 

where there are insufficient image features).  

At the core of this approach for generating novel viewpoints is a variant of 

photometric stereo which simultaneously estimates geometry and albedo across the 

scene. However, the main limitation of classical photometric stereo is that the light 

source positions must be accurately known, and this necessitates a fixed lighting rig 

as might be possible in an industrial setting. Instead, the proposed method does not 

require knowledge of light source locations, and so illumination could be varied by 

simply waiving a light around the scene. In fact, this method derives from work by 

Belhumeur and Kriegman in [20] where they showed that a small set of images with 

unknown light source directions can be used to generate a representation, the  

illumination cone, which  models the complete set of images of an object (in fixed 

pose) under all possible illumination. 

Generated images from the illumination cone representation accurately depict 

shading and attached shadows under extreme lighting. Furthermore the cone 

representation was extended to include cast shadows (shadows the object casts on 

itself) for objects with non-convex shapes. Unlike attached shadows, cast shadows 

are global effects, and their prediction requires the reconstruction of the object's 

surface. In generating the geometric structure, multi-viewpoint methods typically 

estimate depth directly from corresponding image points. It is well known that 

without sub-pixel correspondence, stereopsis provides a modest number of 

disparities over the effective operating range, and so smoothness or regularization 

constraints are used to interpolate and provide smooth surfaces. This illumination-

based method estimates surface normals which are then integrated to generate a 

surface. 
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3.1.1 Illumination Modeling 

In [20] it is shown that, for a convex object with a Lambertian reflectance function, 

the set of all images under an arbitrary combination of point light sources forms a 

convex polyhedral cone in the image space n which can be constructed with as few 

as three images.  

Let nx∈ denote an image with n pixels of a convex object with a Lambertian 

reflectance function illuminated by a single point source at infinity. Let 3nB ×∈ be a 

matrix where each row in B is the product of the albedo with the inward pointing unit 

normal for a point on the surface projecting to a particular pixel in the image. A point 

light source at infinity can be represented by 3s∈ signifying the product of the 

light source intensity with a unit vector in the direction of the light source. A convex 

Lambertian surface with normals and albedo given by B, illuminated by s, produces 

an image x given by: 

max( ,0)x Bs=                  (3.1) 

where max(Bs,0) sets to zero all negative components of the vector Bs. The pixels set 

to zero correspond to the surface points lying in an attached shadow. By firstly 

assuming that objects are convex it is noted that when no part of the surface is 

shadowed, x lies in the 3-D subspace L given by the span of the columns of B. If an 

object is illuminated by k different light sources, then the image is given by the 

superposition of the images which would have been produced by the individual 

sources: 

1
max( ,0)

k

i
i

x Bs
=

=∑                  (3.2) 

where si is a single  light source. Due to the inherent superposition, it follows that the 

set of all possible images C of a convex Lambertian surface created by varying the 

direction and strength of an arbitrary number of point light sources at infinity is a 

convex cone. It is also evident from Equation (3.2) that this convex cone is 

completely described by matrix B.  

So to construct the illumination model for an individual: gather three or more images 

of the face without shadowing illuminated by a single light source at unknown 

locations but viewed under fixed pose, and use them to estimate the three-
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dimensional illumination subspace L. This can be done by first normalizing the 

images to unit length and then estimating the best three-dimensional orthogonal basis 

B* using a least-squares minimization technique such as singular value 

decomposition (SVD).  

Unfortunately, using SVD in the above procedure leads to an inaccurate estimate of 

B*. For even a convex object whose Gaussian image covers the Gauss sphere, there 

is only one light source direction (the viewing direction) for which no point on the 

surface is in shadow. For any other light source direction, shadows will be present. If 

the object is non-convex, such as a face, then shadowing in the modeling images is 

likely to be more pronounced. When SVD is used to find B* from images with 

shadows, these systematic errors bias its estimate significantly. In [19] an alternative 

way has been proposed to find B taking into account the fact that some data values 

should not be used in the estimation and finds a basis B* for the 3-D linear subspace 

L from image data with missing elements. 

3.1.2 Surface Reconstruction and Image Synthesis 

After estimating B* the next step followed in this approach is the generation of the 

object’s surface with the condition of integrability constraints. Then the 

corresponding surface ˆ( , )z x y is estimated by fitting it to the given components of the 

gradient p and q by minimizing the functional  

2 2ˆ ˆ( ) ( )x yz p z q dxdy
Ω

− + −∫∫                  (3.3) 

the Euler equation of which reduces to 2
x yz p q∇ = + . By enforcing the right natural 

boundary conditions and employing an iterative scheme that uses a discrete 

approximation of the Laplacian, the desired surface ˆ( , )z x y  is obtained.  

The estimated surface can now be used to generate images of an object under novel 

illumination conditions. To determine cast shadows ray-tracing is employed. 

Specifically, a point on the surface is in cast shadow if, for a given light source 

direction, a ray emanating from that point parallel to the light source direction 

intersects the surface at some other point. With this extended image formation 

model, the generated images exhibit realistic shading and have strong attached and 

cast shadows. 
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3.2 Ideal Class Assumption and Image Re-rendering 

This approach is based on a recent result showing that the set of all images generated 

by varying lighting conditions on a collection of Lambertian objects all having the 

same shape but differing in their surface texture (albedo) can be characterized 

analytically using images of a prototype object and a (illumination invariant) 

“signature” image per object of the class. The Cartesian product between the 

signature image of an object y and the linear subspace determined by the images of 

the prototype object generates the image space of y. The second result is on how to 

obtain the signature image from a data base of example images of several objects 

while proving that the signature image obtained is invariant to illumination 

conditions. 

In this approach the consideration will be restricted to objects with a Lambertian 

reflectance function, i.e., the image can be described by the product of the albedo 

(texture) and the cosine angle between a point light source and the surface normal: 

( , ) ( , ) ( , )TI x y x y n x y sρ=                  (3.4) 

where 0 ( , ) 1x yρ≤ ≤  is the surface reflectance associated with point (x, y) in the 

image, n(x, y) is the surface normal direction associated with point (x, y) in the 

image, and s is the (white) light source direction (point light source) and whose 

magnitude is the light source intensity. 

The basic result that is used in this approach is that the image space generated by 

varying the light source vector s lives in a three-dimensional linear subspace [15]. To 

see why this is so consider three images I1, I2, I3 of the same object (ρ, n are fixed) 

taken under linearly independent light source vectors s1, s2, s3, respectively. The 

linear combination j jj
Iα∑  is an image TI n sρ= , where j jj

s sα=∑ . Thus, 

ignoring shadows, three images are sufficient for generating the image space of the 

object. The basic principle can be extended to deal with shadows, color images, 

nonwhite light sources, and non-Lambertian surfaces.  

Next will be given two definitions related with what is meant an “ideal class” of 

objects and the main aim of this approach – the image synthesis. 
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Definition 1(Ideal Class of objects): An ideal class is a collection of 3D objects that 

have the same shape but differ in the surface albedo function. The image 

space of such a class is represented by: 

      ( , ) ( , )T
i jx y n x y sρ                    (3.5) 

      where ρi(x, y) is the albedo (surface texture) of object I of the class, n(x, y) is 

the surface normal (shape) of the object (the same for all objects of the class), 

and sj is the point light source direction, which can vary arbitrarily. 

Definition 2(Synthesis (Re-rendering) Problem): Given 3N ×  images of N objects 

of the same class, illuminated under three distinct lighting conditions and a 

single image of a novel object of the class illuminated by some arbitrary 

lighting condition, synthesize new images of the object under new lighting 

conditions. 

In practice, objects of a class do have shape variations, although to some coarse level 

the shape is similar. The ideal class could be satisfied if we perform pixel-wise dense 

correspondence between images (say frontal images) of the class. The dense 

correspondence compensates for the shape variation and leaves only the texture 

variation.  By far, the goal of the second definition is to expand linear subspace of 

images space Tn sρ , where only s varies, to the case where both ρ and s vary. 

3.2.1 The Quotient Image 

Given two objects y; a, we define the quotient image Q by the ratio of their albedo 

functions ρy/ρa. Clearly, Q is illumination invariant. In the absence of any direct 

access to the albedo functions, we show that Q can nevertheless be recovered, 

analytically, given a bootstrap set of images. Once Q is recovered, the entire image 

space (under varying lighting conditions) of object a can be generated by Q and three 

images of object a.  

( , )
( , )

( , )
y

y
a

u v
Q u v

u v
ρ
ρ

=                  (3.6) 

where u,v changes over the image. Thus the image Qy depends only on the relative 

surface texture information and is independent of illumination. The importance of 

this ratio becomes clear by the following statement which can be proven very easily: 
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• Given three images a1, a2, a3 of object a illuminated by any three linearly 

independent lighting conditions and an image ys of y illuminated by some light 

source s, then there exists coefficients x1, x2, x3 that satisfy 

( )s j j y
j

y x a Q= ⊗∑                 (3.7) 

where ⊗  denotes the Cartesian product (pixel by pixel multiplication). 

Moreover, the image space of object y is spanned by varying the coefficients. 

We see that once Qy is given, we can generate ys (the novel image) and all other 

images of the image space of y. The key is obtaining the quotient image Qy. Given ys, 

if somehow we were also given the coefficients xj that satisfy j jj
s x s=∑ , then Qy 

readily follows: ( )y s j jj
Q y x a= ∑ , thus the key is to obtain the correct coefficients 

xj. For that reason, and that reason only, we need the bootstrap set. Otherwise, a 

single object a would suffice. 

Let the bootstrap set of 3N pictures be taken from three fixed (linearly independent) 

light sources s1, s2, s3 (the light sources are not necessarily known). Let Ai, i = 1,...,N 

, be a matrix whose columns are the three pictures of object ai with albedo function 

ρi. Thus, A1,..., AN represent the bootstrap set of N matrices, each is a 3m×  matrix, 

where m is the number of pixels of the image (assuming that all images are of the 

same size). Let ys be an image of some novel object y (not part of the bootstrap set) 

illuminated by some light source j jj
s x s=∑ .We wish to recover 1 2 3( , , )x x x x=  

given the N matrices A1,..., AN and the vector ys. Therefore we have to solve a bilinear 

problem in the N+3 unknowns x and αi: 

2

, 1
min

i

N

s i ix i
y A x

α
α

=

−∑                  (3.8) 

This problem can be rearranged in order to simplify transformations in the form of 

function in which the minimum is at x, i.e: ˆarg min ( )x f x= : 

2

1

1

2
ˆ ˆ( )

N

i i s
i

f x A x yα
=

= −∑                 (3.9) 
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In order to find the desired global minima we apply the Euler-Lagrange equation 

according the two variables and ix α  and we get the following relations: 

0
1

N

i i
i

x vα
=

=∑                 (3.10) 

1

1
( )

N
T T

i r i s
r

v A Ar A y−

=

= ∑                (3.11) 

where the coefficients αi are determined up to a uniform scale as the solution of the 

symmetric homogeneous linear system of equations derived from 0if α∂ ∂ = : 

1
0

TN
T T

i s s r r i s
r

y y v A yα α
=

 − = 
 
∑              (3.12) 

The energy function ( )ˆf x  in (3.9) consists of a simultaneous projection of ys onto 

the subspaces spanned by the columns of A1, columns of A2, and so on. In addition, 

during the simultaneous projection there is a choice of overall scale per subspace, 

these choices of scale, the αi, are directly related to the scaling of the axes 

represented by such that the albedos of the bootstrap set span the albedo of the novel 

object. When (N=1), the minimum of ( )ˆf x coincides with x iff the albedo of the 

novel object is equal (up to scale) to the albedo of bootstrap object. The more objects 

in the bootstrap set, the more freedom we have in representing novel objects. If the 

albedos of the class of objects are random signals, then at the limit a bootstrap set of 

m objects (3m images) would be required to represent all novel objects of the class. 

In practice, the difference in the albedo functions do not cover a large spectrum and 

instead occupy a relatively small subspace of m, therefore, a relatively small size 

(N<<m) is required. The algorithm for the synthesizing the image space of a novel 

object y, given the bootstrap set and a single image ys of y is as follows: 

1. We are given N matrices, A1,...,AN, where each matrix contains three images (as 

its columns). This is the bootstrap set. We are also given a novel image ys 

(represented as a vector of size m, where m is the number of pixels in the image). 

For good results, we make sure that the objects in the images are roughly aligned  

2.  Compute N vectors (of size 3) using the equation (3.11): 
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3. Solve the homogeneous system of linear equations in N described by (3.12) and 

scale the solution such that ii
Nα =∑ . 

4. Compute i ii
x vα=∑ . 

5. Compute the quotient image Qy=ys/Ax, where A is the average of A1,..., AN.  

6. The image space created by the novel object, under varying illumination, is 

spanned by the product of images Qy and Az for all choices of z. 

In order to test the successful results of this approach I conducted a wide range of 

experiments. The algorithm was tested using a bootstrap as in Fig. 2.5. The novel 

images were not part of that database but member of the staff in the Computer 

Engineering Department of ITU. 

 

Fig 3.1 Example 1 of the image synthesis. The input image in upper leftmost position  

 

Fig 3.2 Example 2 of the image synthesis. The input image in upper leftmost position  
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Fig 3.3 Example 3 of the image synthesis. The input image in upper leftmost position  

As we see the results of this algorithm are quite satisfactory creating the possibility 

to use LDA-based methods even when only one image per person is provided during 

the learning phase. An inherent assumption throughout the algorithm is that for a 

given pixel (x, y), n(x, y) is the same for all the images- the bootstrap set as well as 

the test images. The performance degrades when dominant features between the 

bootstrap set and the test are misaligned. This could arise in a variety of situations 

such as: 1) the class is of non-smooth objects like objects with sharp corners (chairs, 

for instance), 2) objects are seen from varying viewing positions , and 3) the class of 

objects is smooth (like human faces) but gross misalignment is caused by facial 

expressions, mustache, eye-glasses, etc. As this step will occur after the face 

detection it is supposed that dominant features will have been depicted by successful 

approaches such Active Appearance Model [6]. 
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4. ILLUMINATION RESTORATION AND IMAGE RECONSTRUCTION 

Illumination is a difficult problem in FRS. In order to overcome this obstacle up to 

now we have offered two methods for reducing the effects of illumination during the 

learning and also for dimensionality reduction. In front of us comes the problem of 

many input images under arbitrary illumination condition that, given without any 

preprocessing, are object to failure of the system. This is why illumination 

restoration becomes a prerequisite in creating a robust face recognition system 

toward illumination. In this chapter we will first introduce a conglomerate method 

[21, 22, 24] of some successful techniques related with illumination restoration and 

after that a reconstructionist method for illumination [23] will be introduced. Both 

methods aim to restore a face image illuminated with arbitrary illumination to having 

frontal illumination. Therefore these methods belong to the second category of 

illumination solution approaches, and they do not need calculating the estimation of 

face normal surface direction and albedos.  

4.1 Light Fields 

This approach is an appearance based algorithm for face recognition. The algorithm 

operates by creating a representation of light-fields of the subject’s head. It has been 

firstly used in algorithms regarding pose variable face recognition, but can be 

extended also to illumination variation [21]. The plenoptic function or light-field is a 

function which specifies the radiance or light in free space. It is a 5D function of 

position (3D) and orientation (2D). In 2D, the light-field of a 2D object is also 2D. 

Light field L(θ,φ), is a function of each pixel of an image that can be estimated by 

knowing the pixel intensity and the camera intrinsics as well as the relative 

orientation of the camera to the object.  It has been proposed that we can use Light-

Fields as a better space presentation in dealing with varying illumination. In this 

subsection we will give two different approaches that apply Light-Fields in face 

recognition. 
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4.1.1 Fisher Light-Fields 

Suppose we are given a set of light-fields Li,j(θ,φ), i = 1,…,N, j = 1,…,M where each 

of N faces is imaged under M different illumination conditions. We can use Fisher’s 

Linear Discriminant to compute a projection that can be applied to the discriminant 

task.  So we have to find the least square solution of the set of equations: 

1
( , ) ( , ) 0

m

i i
i

L Wθ φ λ θ φ
=

− =∑                  (4.1) 

where Wi, i=1,…,m are the generalized eigenvectors computed by LDA. After 

estimating the λ coefficients we do the recognition task of each incoming image by 

calculating it light-fields, projecting it in an F-LDA space and then applying a 

nearest neighbor’s technique.   

4.1.2 Illumination Invariant Bayesian Face Subregions 

An image can be regarded as a product ( , ) ( , ) ( , )I x y R x y L x y=  where R(x, y) is the 

reflectance map and L(x, y) is the illuminance at each point (x, y). Computing the 

reflectance and the illuminance fields from real images is, in general, an ill-posed 

problem. This approach uses two widely accepted assumptions about human vision 

to solve the problem: 1) human vision is mostly sensitive to scene reflectance and 

mostly insensitive to the illumination conditions, and 2) human vision responds to 

local changes in contrast rather than to global brightness levels. This algorithm 

computes an estimate of L(x, y) such that when it divides I(x, y) it produces R(x, y) 

in which the local contrast is appropriately enhanced. The solution for L(x, y) is 

found by minimizing: 

2 2 2( ) ( , )( ) ( )x yJ L x y L I dxdy L L dxdyρ λ
Ω Ω

= − + +∫∫ ∫∫             (4.2) 

Here Ω refers to the image. The parameter λ controls the relative importance of the 

two terms. The space varying permeability weight ρ(x; y) controls the anisotropic 

nature of the smoothing constraint. According to the authors this algorithm increases 

the rate of recognition over the CMU PIE database from 37.3% to 44%.   
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4.2 Block based Histogram Equalization Illumination Compensation [22] 

A simple yet effective local contrast enhancement method, namely block-based 

histogram equalization (BHE), is firstly introduced. The resulting image processed 

using BHE is then compared with the original face image processed using histogram 

equalization (HE) to estimate the category of its light source. In this scheme, the light 

source for a human face is divided into 65 categories. Based on the category 

identified, a corresponding lighting compensation model is used to reconstruct an 

image that will visually be under normal illumination. In order to eliminate the 

influence of uneven illumination while retaining the shape information about a 

human face, a 2D face shape model is used. 

4.2.1 Block based histogram equalization method 

A light source has a different effect on different regions of a human face. Therefore, 

to determine the type of light source, one effective method is to compare the face 

images enhanced locally and globally. In this approach, an image is divided into a 

number of small blocks, and histogram equalization is performed within each of the 

image blocks. The pixel intensities in each image block are altered such that the 

resulting block has a histogram of constant intensity. Histogram equalization can 

increase the contrast in an image block, and the detailed information such as textures 

and edges weakened by varying illumination can be strengthened. However, this 

equalization process will increase the difference between the pixels at the borders of 

adjacent blocks. In order to avoid the discontinuity between adjacent blocks, they are 

overlapped by half with each other. Weighted averaging is then applied to smooth 

the boundaries, i.e.: 

 1
( , ) ( , )* ( , )N

i ii
f x y x y f x yω

=
=∑               (4.3) 

where fi(x, y) and f(x, y) are the intensity values at (x, y) of block i and the smoothed 

image, respectively, N is the number of overlapping blocks involved in computing 

the value at (x, y), and ωi(x, y), where i = 1,…, N, is a weighting function for block i. 

The value of N depends on the position of the image block under consideration, 

which is 4 when the block is not at the border, and 2 or 1 when it is located at the 
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border or at one of the four corners of an image. The weighting function ωi(x, y) is 

simply a product of individual weighting functions in the x and y directions:  

( , ) ( )* ( )i x y x yω ω ω′ ′=                 (4.4) 

where ( )ω′ ⋅  is a triangle function as shown below: 

2( ) 1
2

B

B

x Sx
S

ω −′ = −                (4.5) 

Where SB is the length of a block, and x is the relative x-coordinate in the block. 

BHE is simple and computation required is much lower than that of AHE (Adaptive 

Histogram Equalization).  

4.2.2 A varying illumination compensation algorithm 

A face is supposed to be a Lambertian surface which can be described by the product 

of the albedo and the cosine angle between the point light source and the surface 

normal. Shashua [14] proposed that different people have the same surface normal 

but with different albedo. However, in most natural images, albedo change is the 

predominant factor that causes the gradient intensity and the geometric influence can 

not be neglected. In this approach is tried to divide the lighting conditions to 65 

categories according to the YaleB database. Each of these categories has different 

azimuth and elevation angles of the lighting.  

An image processed by BHE is considered as a reference image. This BHE-

processed image is then compared to the same image processed by HE to obtain a 

pixelwise difference between the two images. This difference image, which is called 

an illumination map, reflects the effect of the light source on different locations on 

the face image, and can therefore be used to estimate the illumination category. To 

determine the illumination category of a query image, its illumination map is first 

computed. Then, linear discriminant analysis (LDA) is used to determine the 

illumination category of the image. In this approach, the training images are divided 

into 65 different categories, and each category includes 9 images that are under the 

same lighting condition and belong to different people in the YaleB database. 
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4.2.3 Illumination Compensation 

For each point (x, y) in an image the effect of illumination can be written as follows: 

1,..., 65( , ) ( , ) ( , ) ( , ),i if x y A x y f x y B x y i′ = ⋅ + =             (4.6) 

where f (x, y) and f’(x, y) represent the intensity values of the image under normal 

lighting condition and the image under a certain kind of illumination, respectively. 

Ai(x, y) denotes the multiplication noise and Bi(x, y) is the additive noise for the 

illumination mode i. These two functions depend on the lighting category, and we 

assume that they are more or less the same for images under the same illumination 

condition. Based on the training images in the YaleB database, we can estimate the 

optimal values for Ai(x, y) and Bi(x, y) for each illumination category by means of 

the least-squared method. 

Based on the A-map and B-map of a category, the corresponding image f(x, y) which 

is under normal lighting can be computed from f’(x, y): 

1,..., 65
( , ) ( , )( , ) ,

( , )
i

i

f x y B x yf x y i
A x y

′ −
= =              (4.7) 

In order to avoid overflowing, all the intensity values of f(x, y) are restricted to the 

range of [0,255], so Eq. 5 can be rewritten as follows: 

1,..., 65
0, ( , ) 0

( , ) 255, ( , ) 255,
( , ) ( , ) otherwise

( , )
i

i

f x y
f x y f x y i

f x y B x y
A x y


 <= > =
 ′ −


           (4.8) 

The block size for the BHE process will affect the performance in determining the 

lighting category, as well as so the performance in compensating for the illumination 

effect and the rate for face recognition. Table 1 shows the recognition rates with 

different block sizes used in BHE. The PCA was used in the experiment. The block 

size to be used should be proportional to the size of the face under consideration. In 

this scheme, the block size is set based on the distance between the two eyes of a 
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face. The block size SB is therefore set at (α ∗ DisEye), where α is a coefficient and 

DisEye denotes the distance between the two eyes. If the block size increases to the 

width of the whole image, BHE will be the same as HE. This result is shown in the 

last column of Table 4.1. From the experimental results, a block size of 

(0.5∗DisEye) will give the best performance level. Therefore, in the rest of the 

experiments, the block size for BHE is also set at (0.5 ∗ DisEye). 

Table 4.1: BHE with different block sizes 

α   0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 HE 

Recognition Rate (%) 52.7 62.7 66.7 60.7 62.0 60.0 60.7 56.7      54.0 

 

We understand from the result of this paper HE and BHE is an important 

preprocessing step which influences greatly the recognition performance. We also 

noted that a better sophisticated HE method, called Adaptive Histogram Equalization 

(AHE), in which the interpolation between methods is more complex has even better 

effect. The influence of these two methods on the face images (Fig 4.1) can be seen 

in Fig 4.2(HE) and in Fig 4.3(AHE). 

 

Fig 4.1: Face examples under different lighting conditions 
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Fig 4.2: Face examples under different lighting conditions after HE preprocessing 

As we will see in the results section the HE or AHE are necessary steps and they 

improve the recognition rate. However, these methods can often lead to noise 

amplification in “flat” regions, and “ring” artifacts at strong edges. 

 

Fig 4.3: Face examples under different lighting conditions after AHE preprocessing 

4.3 New Approach: Iterative Method in Illumination Restoration 

The major advantages of this algorithm [23] are that no facial feature extraction is 

needed and the generated face images will be visually natural. This method is a based 

on a general idea that the ratio of two images of the same person is simpler to deal 

with than directly comparing the different images of persons. It uses a ratio-image, 

which is the quotient between a face image whose lighting condition is to be 

normalized and a reference face image. The two images are blurred using a Gaussian 
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filter, and the reference image is then updated by an iterative strategy in order to 

further improve the quality of the restored face image. With this algorithm, a face 

image with arbitrary illumination can be restored to having frontal illumination. This 

algorithm has several advantages over those previous algorithms: 

• In the training, only a single face image under frontal lighting is required. 

• It does not need either to estimate the face surface normals and light source 

directions, or to know in advance the face surface normals and albedos. 

• It does not need to perform image warping, as in the relighting method. 

Generally, it is difficult to detect the accurate positions of the feature points, 

especially when a face is under a poor lighting condition. 

• The reconstructed face image with frontal illumination that is restored from an 

arbitrary illumination can be used by all the successful face recognition 

algorithms developed previously, while some approaches in the third category are 

possibly limited to a few specific methods. 

• From human perception, the restored face image with frontal illumination has a 

good visual effect so that we can further inspect and discriminate different faces. 

4.3.1 Algorithm Outline 

In this approach all the assumptions are done by considering objects (faces) with 

Lambertian reflection: 

( , ) ( , ) ( , )TI x y x y n x y sα=               (4.9) 

where as stated before, where I(x, y) is the image intensity of the pixel at (x, y), 

α(x,y) the albedo of the surface at (x, y), n(x, y) the unit inward normal vector to the 

surface at (x, y), and s a column vector signifying the product of the light source 

intensity with the unit vector for the light source direction. Let Iik denote a face image 

of the ith person captured under the skth light source direction, where a light source is 

classified according to its direction. Ir0 represents a face image of another person 

captured under the frontal light source (s0) and is used as a reference image. Let F be 

a Gaussian low-pass filter with x yσ σ σ= =  given by the following formula: 

2 2 2 2( ) 2
2

1( , )
2

x yF x y e σ

πσ
+=               (4.10) 
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Then, we give the two blurred images of Iik and Ir0 denoted as Bik and Br0 respectively 

as follows: 

( ) ( )T T
ik ik i i k i i kB F I F n s F n sα α= ∗ = ∗ = ∗                       (4.11) 

0 0( ) ( )T T
ro ro r r r rB F I F n s F n sα α= ∗ = ∗ = ∗               (4.12) 

where (*) the convolution operation. As the shape and albedos of all faces are 

similar, if the size of F in (4.10) is big enough we have that 0 0i rB B≈ . This means 

that two faces under the same lighting conditions will be similar to each other after 

blurring. Therefore, we have: 

T T
i i r rF a n F a n∗ ≈ ∗               (4.13) 

By using the formulas (4.11) – (4.13), we can obtain the face image under frontal 

illumination for the ith person from Iik captured under an arbitrary lighting direction 

sk as follows: 

( )
( )

0
0

*

*

T
r rT T ro

io i i i i k ikT
iki i k

F n s BH n s n s I
BF n s

α
α α

α
≈= =            (4.14) 

Hi0 is an estimation of Ii0 or a restored image of Iik. Instead of selecting randomly a 

face image as the initial reference image, the initial reference image is selected as the 

mean image of a number of face images captured under the frontal light source (i.e. 

the set of training images). By formulas (4.11) and (4.12), the larger the value of r 

(the size of the Gaussian filter) is, the truer appearance the restored face image will 

have. However, the edges caused by the shading in the face image will also be 

magnified. Moreover, as the filter size increases, the noise in the shading is also 

magnified and appears more in the restored image. A smaller initial filter size will 

require more iterations, while a larger initial filter size leads to a worse restored 

image if the face images have shading. 

The eigenspace ΦS introduced in section 2.2 is computed according and is used to 

remove some noise points in the initial restored image, as computed by Eq. (4.14). 

This initial restored image is projected onto the eigenspace using Eq. (2.5), and then 

a corresponding reconstructed image can be obtained using Eq. (2.6). Obviously, the 
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adverse effect from the noise points and edges from shading in the reconstructed 

image can be largely reduced. 

 

Altogether this approach has been developed according to the following algorithm: 

1. A mean face image and an eigenspace are computed by PCA based on a set of 

training images, which are all captured under frontal light source 

2. An initial restored image can be calculated using Eq. (4.9)-(4.14), where the 

mean face image is used as the initial reference image and the size of the initial 

Gaussian filter F is 5. A reconstructed image is obtained from the initial restored 

image based on the eigenspace computed in step (1), and should have a smaller 

number of noise points. 

3. An iterative procedure is used to obtain a final restored image with frontal 

illumination. During the iterative procedure, the reference image and the raw 

image are adaptively filtered based on the edge image obtained in step (4), and 

the reference image is also updated with the new reconstructed image so as to 

obtain a visually better restored image.  

4. The iterative procedure continues until a stopping criterion is met. In this 

approach the stopping criteria is ( ) ( 1)D t D t ε− − < , or the exceeding of the 

maximum iterations number. The measure D(t) is calculated as follows: 

( ) ( ) ( )
( ) ( )

1
, 2

1
io io

io io

H t H t
D t t

H t H t

− −
= ≥

⋅ −
             (4.13) 

Some examples of the outputs of this iterative are given in the Fig 4.4, Fig 4.5 and 

Fig 4.5. As we see the results are quite satisfactory and the images have been 

restored to having frontal illumination. This will be also examined further during the 

experiments done on different illumination angles. 
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Fig 4.4: Illumination restoration steps with iterative procedure for person #1 

 

 

Fig 4.5: Illumination restoration steps with iterative procedure for person #2 
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Fig 4.6: Illumination restoration steps with iterative procedure for person #3 

In all these examples before the illumination restoration process, image 

normalization has been done in order to change the images to zero mean and unit 

standard deviation. This preprocessing step has a visually effect on the images and in 

the same time improves the performance of the PCA projection. 
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5. STUDY OVERVIEW AND EXPERIMENTAL RESULTS 

In the previous sections we give the approaches that all standing alone provide 

performance improvement when integrated in FRS. Now we will make these parts 

interact altogether in order to create a robust system against varying illumination. All 

the experiments have been applied using the YaleB database and also a part of 

database of the Computer Engineering Department at Istanbul Technical University. 

5.1 System Overview 

As we said in the introduction section, the main aim of this work is to guarantee a 

successful recognition system when only one image per person is available during 

the training (learning) phase. For these PCA is a natural approach, but it has an 

important drawback: recognition of an object (or face) under a particular lighting can 

be performed reliably provided that object has been previously seen under similar 

circumstance. In other words, this method in its original form has no way of 

extrapolating to novel viewing conditions.  

In order to surpass this problem, it has been shown that LDA-based approaches offer 

more sensitivity to recognizing of novel viewing conditions. But they create a new 

problem: it is needed more than one image per person during the training phase. To 

solve this problem we have introduced the Quotient Image for image synthesis. By 

using this method we can create the image space of any input image making possible 

the application of LDA even if there are offered “de facto” only one image per 

person.  Furthermore we used a variant between F-LDA and D-LDA that exploits the 

best part of these two approaches and in the same time gives solution to the SSS 

problem without eliminating the null space of the image database.  

As the last step of this we do the recognition process to any new input image by 

projecting to a dimension presented by the algorithm in section 2 and Euclidian 

distance is then used as distance classifier. In order to improve the performance any 

input image is preprocessed in order to restore the illumination to a frontal one.   
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5.2 Experimental Results 

Most of the experiments have been done using the YaleB database. The YaleB 

database consists of 10 distinct persons. 45 images of each of these people were 

divided into four subsets. The first subset includes 70 images captured under light 

source directions within a span of 12◦ (only the first image is captured under a frontal 

light source). The second and third subsets have respectively 120 images and 140 

images each, which were captured under light source directions within 25◦ and 

within 50◦, respectively. The fourth subset contains 140 images captured under light 

source directions within 75◦. 

 

 

 

 

Fig. 5.1: Some cropped images from the Yale B database. The images are divided 
into four subsets according to the angle between the light source direction and the 
camera axis: (a) Subset1 (up to 12◦); (b)  Subset2 (up to 25◦);(c)  Subset3 (up to 
50◦);(d) and Subset4 (up to 75◦) 

(a) 

(b) 

(c) 

(d) 
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In all the images the position of the two eyes of each face were located and translated 

to the same position. The images were cropped to a size of 180x190. Some images of 

these four subsets are illustrated in Fig. 5.1(images belonging to test person #5). In 

order to improve the performance of dimensionality reduction steps and recognition 

all the images were normalized to zero mean and unit variance. After that the 

algorithms were tested for both HE and AHE as a further preprocessing, with the 

second having a best performance. The images after normalization and AHE are 

shown in Fig 5.2. 

 

 

 

 

Fig. 5.2: Some cropped images from the Yale B database after being normalized and 

AHE-processed 

(a) 

(b) 

(c) 

(d) 
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We continued our experiments to check whether these two preprocessing steps 

influences or not the recognition rate and we verified that they improve in a 

significant way the recognition when PCA was used for initially testing purpose. The 

results are given in Table 5.1. 

Table 5.1: Results over the YaleB database (PCA used) 

 No Preprocessing HE AHE 

Recognition Rate (%) 43.4 74 81.5 

In order to understand the way class based methods are affected by the size of the 

databases used during training we have tested various combinations under different 

circumstances. In all the cases the images used in training were left outside during 

recognition. We checked the results of both Fisher LDA and D-LDA with the second 

method having slightly better performance. As we from Table 5.2 the size of the 

database has a crucial impact on the performance of these methods. Despite this 

relation we have to admit that it is very uncasual that do many images would be 

available during the training phase. So image synthesis comes in front of us as a 

necessary step. 

Table 5.2: D-LDA results for different size databases  

 Subset 1 Subset 1 Subset 1 Subset 1 Total 

30 images(%) 100 100 78.57 47.5 79.33 

70 images(%) 100 100 90.71 51.66 84.22 

270 images(%) 100 100 92.88 93.33 96.0 

5.2.1 Quotient Image Results 

In order to better understand the effectiveness of the algorithm a wide range of 

experiments have been conducted on the Quotient Image algorithm. Firstly it has 

been dealt with synthesizing new images from any arbitrary illuminated input image 

outside the YaleB database where the bootstrap consisted of 30 pictures of 10 

persons of YaleB. Some of these results were previously shown in chapter 3.  

Furthermore we were interested in checking the algorithm performance when the 

bootstrap size was reduced. We checked for the performance when only 15 images 
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were available in the bootstrap (5 persons) with two different bootstrap combinations 

(Fig 5.3 (a) and (b)). In addition we also checked for the cases when 9 (3 person) 

images, 6 images (2 persons) and finally 3 images (1 person) were provided. 

Table 5.3: Coefficient results for different bootstrap combinations 

Coeff / Person # 5 5 3 2 1 

X1 0.11302 0.036265 0.23729 0.099189 0.15915 

X2 0.386478 0.42984 0.31587 0.39592 0.45989 

X3 0.41526 0.47669 0.353122 0.44 0.29723 

In all the cases after calculating the Quotient Image by the formula Qy=ys/Ax we than 

create the image space of the novel image by the product of product of Qy and Az for 

all choices of z. The values of the calculated X variable are given in Table 5.3. 

 
(a) 

 
(b) 

 
(c) 

 
(d)

 
(e) 
Fig 5.3: Image Re-rendering results for different bootstrap combinations: (a) 5 
person; (b) 5 person; (c) 3 person; (d)2 person (e)1 person. The shown nine pictures 
have been reconstructed under the following conditions from left to right, original, 
original reconstructed(Table 5.2), [1 0 0], [0 1 0], [0 0 1], [-0.1 0.9 0.1], [-0.4 0.7 
0.6], [-0.8 0.8 0.9], [0.5 -0.6 1]  
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According to these values we can create the image space of the input image by given 

values the z variable randomly or by some normal distribution around them. From 

Fig. 5.3 we can understand that a bootstrap consisting of 10 persons is quite 

consistent. Even when we reduce it by a half, the results are quite satisfactory. This is 

because as we reported before the albedos of possible faces occupy only a small part 

of the dimension in which they are spanned. Of course the larger the bootstrap size 

the more accurate will be the recovery of X and the Quotient. For small bootstrap 

sizes some noise points and changes in appearance features become visible. In order 

to eliminate this problem surface reconstruction can be thought as a possible 

solution.  

In order to prepare the training set for the LDA process we create the image space of 

all 10 persons of the YaleB database, where 10 images per person were synthesized. 

For these we have used 15 images bootstraps where the object being reconstructed 

has been left outside. The results of using D-LDA with this artificially created 

database are given in Table 5.4. 

Table 5.4: LDA Results with synthesized faces 

 LDA HE + LDA AHE + LDA 

Recognition Rate (%) 78.66 81.77 85.75 

5.2.2 Reconstruction and System Results 

The final step of this work is that any incoming image will be reconstructed in order 

to restore frontal illumination. Some output examples were shown previously in 

section 4. In the experiments over the YaleB database subsets, the results were 

almost identical to the frontal illuminated image for the first and second subset. The 

next two subsets, where the illumination conditions are worse, have also high 

performance but it has to be noted that some noise points and feature corruption 

became visible. This can be visible seen in Fig. 5.4 and Fig 5.5 where input and 

output has been given for the third and forth subset belonging to person no. 5. We 

see the upper-leftmost image shows signs of “aging” which is considered a feature 

corruption and is related with bad illumination conditions. In order to improve the 

visual appearance smaller values were given to controller of the iteration loop. This 

improved the appearance but in the same time increased greatly the iterations 
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number. One further point to observe is that even though some of the examples are 

corrupted an important factor is the convergence of the pictures to their belonging 

identity in the PCA space (also LDA) during the iteration steps.  

 

 
Fig 5.4: Illumination restoration for images of subset 3(up to 50◦) (a) Before 
preprocessing and illumination restoration (b) After illumination restoration 

 

 

 

Fig 5.5: Illumination restoration for images of subset 4(up to 70◦) (a) Before 
preprocessing and illumination restoration (b) After illumination restoration 

(a) 
 

(b) 
 

(b) 
 

(a) 
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After the illumination restoration process the results of the whole approach were 

tested with 450 input images. Different distance measurements were experimented: 

• Manhattan Distance (L1- norm) 

• Cosine angle between two vector representations 

• Euclidian Distance (L2 - norm) 

Euclidian Distance gives the best results for this classification purpose. The general 

results of the new method are given in Table 55 (HE as preprocessing step) and 

Table 5.6 (AHE as preprocessing step). 

   Table 5.5: System Results with Histogram Equalization preprocessing 

 Subset1 Subset2 Subset3 Subset4 Subset5 

HE + PCA (%) 100 97.5 66.42 44.16 74 

HE + New (%) 100 100 92.8 91.66 95.56 

    Table 5.6: System Results with Adaptive Histogram Equalization preprocessing 

 Subset1 Subset2 Subset3 Subset4 Subset5 

AHE +PCA (%) 

 

100 100 83.57 50 81.55 

AHE +New (%) 

 

100 100 100 95 98.66 

In order to further increase the recognition rate several combinations during the 

training phase have been applied. For the LDA step the best performance was 

achieved when 10 synthesized images per object were available during the training 

and all the discriminatory feature vectors of the LDA - projection matrix were used 

(9 features). In all the experiments the results were compared with PCA because it is 

the most important discriminatory technique used when only one image per person is 

available. Obviously this proposed work can significantly improve the recognition 

rates. Other methods that have acclaimed high recognition rates on the YaleB 

database, but either their computation burden is large or they require a large number 

of images per person. 
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6. CONCLUSION 

A complex system for dealing with illumination was introduced. In this work was 

aimed the solution of SSS problem of class-based discrimination problems. For this a 

image space synthesis method was explained and the image space of the each image 

of the training set was created. In order to eliminate excessive noise points, 

application of surface reconstruction can be thought as a future work for the 

improvement of the system performance.  After creating the image space of each 

training image a hybrid variant of F-LDA and D-LDA was applied in order to best 

use the discriminatory features of the system. The transformation projection matrix 

was applied to each image in the training set and 30 vectors (size 9x1 – all feature 

vectors used) were calculated.  

Every incoming image was processed with illumination restoration algorithm and 

then projection was made in order to extract the discriminatory features.  The general 

result over the YaleB database, consisting of 450 images, was 98.66% which can be 

considered very successful when comparing to existing methods. Another approach 

[16] achieved 100% recognition rates with all the data subsets, but seven images of 

each person in subset 1 has to be used to obtain the shape and albedo of a face, which 

in their own have computationally burden if to be considered the integration in a real 

time system.  

As a conclusion, this three step study offers an innovative approach for creating a 

robust Face Recognition System under varying illumination. This study offers 

possibility of creating a real time system because it is not computationally complex. 

In future works, this study will be extended to dealing not only with upright frontal 

views but also with different poses. One possible solution based on this study is to 

apply multiple reference subspaces for different poses. 



 50 

7. REFERENCES 

[1] Kelly, M. D. 1970. “Visual identification of people by computer.” Tech. rep. AI-  

130, Stanford AI Project, Stanford, CA. 

[2] Kanade, T. 1973. Computer recognition of human faces. Birkhauser, Basel, 

Switzerland, and Stuttgart, Germany. 

[3] Turk, M., Pentland, A., 1991. “Eigenfaces for Recognition” Journal of 

Cognitive Neuroscience, Vol. 3, Num. 1, pp. 71-86. 

[4] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, 1997."Eigenfaces vs. 

Fisherfaces: Recognition Using Class Specific Linear Projection"  

IEEE Trans. On PAMI, Vol. 19, No. 7. 

[5] B.Moghaddam and A.Pentland, 1995. Probabilistic Visual Learning for Object 

Detection, Proc. Int'l Conf. Computer Vision, pp. 786-793. 

[6] T.F.Cootes, G.J.Edwards, C.J.Taylor, 1998. “Active Appearance Models”, 

ECCV, vol.2, pp. 484-498. 

[7] G. Edwards, T. Cootes, and C. Taylor, 1999. Advances in Active Appearance 

Models, Proc. Int'l Conf. Computer Vision, pp.137-142. 

[8] P.Penev and J.Atick, 1996. “Local Feature Analysis: A General Statistical 

Theory for Object Representation,” Network: Computation in Neural 

Systems, vol.7, pp. 477-500. 

[9] L.Wiskott, J.M.Fellous, N.Kruger and C.V.D.Malsburg, 1997. “Face 

Recogniton by Elastic Bunch Graph Matching”, IEEE Trans. On 

PAMI, 19(7), pp. 775-779. 

[10] P.J.Phillips, H.Moon, 2000. “The FERET Evaluation Methodology for Face-

Recognition Algorithms”, IEEE TPAMI, Vol.22, No.10, pp. 1090-

1104. 

[11] G.Guo, S.Z.Li and K.Chan, 2000. “Face Recognition by Support Vector 

Machines”, FG’02, pp. 196-201. 

[12] Y. Adini, Y. Moses, and S. Ullman, 1997. Face recognition: The problem of 

compensating for changes in illumination direction. PAMI, 19(7), pp. 

721–732. 



 51 

[13] W. Zhao, R. Chellappa, 2000. SFS based view synthesis for robust face 

recognition, Proceedings of the 4th Conference on Automatic Face 

and Gesture Recognition. 

[14] A. Shashua, R.R. Tammy, 2001. The quotient image: class-based rerendering 

and recognition with varying illuminations, IEEE Trans. Pattern Anal. 

Mach. Intell. 23 (2), pp. 129–139. 

[15] A. Shashua, 1997. On Photometric Issues in 3D Visual Recognition from a 

Single 2D Image, Int. J. Computer Vision 21 (1–2), pp. 99–122. 

[16] A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, 2001. From few to many: 

illumination cone models for face recognition under variable lighting 

and pose, IEEE Pattern Anal. Mach. Intell. 23 (2), pp. 643–660. 

 [17] Yale University, the YaleB database: http://cvc.yale.edu/projects/yalefacesB. 

[18] Juwei Lu, K.N. Plataniotis, A.N. Venetsanopoulos, 2002. "Regularization 

Studies of Linear Discriminant Analysis in Small Sample Size 

Scenarios with Application to Face Recognition", Pattern Recognition 

Letter, in press. 

[19] A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, 2003. Illumination-based 

Image Synthesis: Creating Novel Images of Human Faces Under 

Differing Pose and Lighting. Pattern Recognition. 

[20] P.N. Belhumeur, D.J. Kriegman, 1997. What is the set of imagesof an object 

under all possible lighting conditions? In Proc. IEEE Conf. On Comp. 

Vision and Patt. Recog., pp 1040-1046. 

[21] R. Gross, S. Baker, I. Matthews, T. Kanade, 2003. Face Recognition across 

pose and illumination. 

[22] Xie, K. M. Lam, 2005. Face recognition under varying illumination based on a 

2D face shape model , Pattern Recognition, Vol. 38, No 10, pp. 1705-

1716. 

[23] D. H. Liu, K. M. Lam, L. S. Shen, 2005. Illumination invariant face 

recognition,  Pattern Recognition, Vol.38, No 2, pp. 221-230. 



 52 

8. BIOGRAPHY 

Erald VUÇINI has received his B.Sc in Computer Engineering from Yildiz 

Technical University , Istanbul, Turkey in June 2004 with highest honour and as the 

first of the departement of Computer Engineering. He has received his M.Sc. in 

Computer Engineering from Istanbul Technical University with high honours.  

He has a continous interests in topics related with mathematics. He has winned for 

two years consecutively the Albanian National Mathematical Olympiad. He has 

participated in many international activities being also awarded the Bronze Medal in 

the Balkan Mathematical Olympiad. Due to his excellent results he has been awarded 

the Golden Medal of Albania and a scholarship for studies in Turkey.  

Currently, he has been admitted as a Ph.D. student in Vienna Technical University, 

Vienna, Austria. 

 


	PREFACE
	CONTENTS
	ABBREVIATIONS
	TABLE LIST
	FIGURE LIST
	SYMBOL LIST
	ÖZET
	SUMMARY
	1. INTRODUCTION
	1.1 Application Areas
	1.2 Configuration of a Generic FRS
	1.3 Face Recognition Research Survey
	1.4 Outline of proposed approach

	2. Face Space and Dimensionality Reduction
	2.1 Image space vs. face space
	2.2 Principal Component Analysis
	2.3 Fisher’s Linear Discriminant and Fisher Faces
	2.4 A variant of Direct LDA
	2.5 Comparison between Linear Projection Algorithms

	3. Image Synthesis baseD on Quotient Image
	3.1 Image Synthesis using Illumination Cone [19]
	3.1.1 Illumination Modeling
	3.1.2 Surface Reconstruction and Image Synthesis

	3.2 Ideal Class Assumption and Image Re-rendering
	3.2.1 The Quotient Image


	4. Illumination Restoration and Image Reconstruction
	4.1 Light Fields
	4.1.1 Fisher Light-Fields
	4.1.2 Illumination Invariant Bayesian Face Subregions

	4.2 Block based Histogram Equalization Illumination Compensation [22]
	4.2.1 Block based histogram equalization method
	4.2.2 A varying illumination compensation algorithm
	4.2.3 Illumination Compensation

	4.3 New Approach: Iterative Method in Illumination Restoration
	4.3.1 Algorithm Outline


	5. STUDY OVERVIEW AND EXPERIMENTAL RESULTS
	5.1 System Overview
	5.2 Experimental Results
	In order to understand the way class based methods are affected by the size of the databases used during training we have tested various combinations under different circumstances. In all the cases the images used in training were left outside during ...
	Table 5.2: D-LDA results for different size databases
	5.2.1 Quotient Image Results
	5.2.2 Reconstruction and System Results


	6. CONCLUSION
	7. REFERENCES
	8. BIOGRAPHY

