
Institut für Computergraphik und

Algorithmen

Technische Universität Wien

Karlsplatz 13/186/2

A-1040 Wien

AUSTRIA

Tel: +43 (1) 58801-18601

Fax: +43 (1) 58801-18698

Institute of Computer Graphics and

Algorithms

Vienna University of Technology

email:

technical-report@cg.tuwien.ac.at

other services:
http://www.cg.tuwien.ac.at/

ftp://ftp.cg.tuwien.ac.at/

TECHNICAL REPORT

Exploded Views for Volume Data

Stefan Bruckner M. Eduard Gröller
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Figure 1: Interactive exploded-view illustration with increasing degrees-of-explosion.

Abstract

Exploded views are an illustration technique in which an

object is partitioned into several segments. These seg-

ments are displaced to reveal otherwise hidden detail. In

this paper we apply this concept to volumetric data in or-

der to solve the general problem of occlusion. In many

cases an object of interest is occluded by other struc-

tures which nonetheless provide important context in-

formation. While transparency or cutaways can be used

to reveal a focus object, the problem of these techniques

is that they remove parts of the information. Exploded

views, on the other hand, do not suffer from this draw-

back. Our approach employs a force-based model: the

volume is divided into a part configuration controlled

by a number of forces and constraints. The focus ob-

ject exerts an explosion force causing the parts to ar-

range according to the given constraints. We show that

this novel and flexible approach allows for a wide va-

riety of explosion-based visualizations including view-

dependent explosions. Furthermore, we present a high-

quality GPU-based volume ray casting algorithm for ex-

ploded views which allows rendering and interaction at

several frames per second.
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Viewing algorithms
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1 Introduction

When rendering truly three-dimensional information in

scientific visualization, such as, for example, medical

data acquired from computer tomography, an important

problem is to deal with occlusion. Because of occlu-

sion, normally not all of the data can be shown concur-

rently. Frequently, the user wants to examine an object

of interest within the volumetric data set. In many cases

depicting this focus object on its own is not sufficient –

the user is interested in exploring it within the context

of the whole data set. To solve the problem of occlusion

the context can be assigned a different - more sparse - vi-

sual representation, for example by reducing its opacity.

This adjustment can even be performed locally, so the

representation only changes for those parts of the con-

text which actually occlude the focus [29, 2]. In illustra-

tion, cutaways and ghosting techniques are used for this

purpose. However, the drawback of these approaches is

that parts of the context information are still removed or

suppressed. If it is instructive to retain the context even

when it occludes the focus structure, illustrators often

employ exploded views.

Basically, in an exploded view the object is decom-

posed into several segments which are moved apart so

that internal details are visible (see Figure 2). This
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2 2 RELATED WORK

Figure 2: An early example of exploded views by

Leonardo da Vinci – also note the smaller depictions

which show the use of different explosion setups (”The

babe in the womb”, c.1511).

does not only give a free view on the focus but also

potentially reveals other interesting information, such

as cross-sections of the split object. The advantage of

exploded views is that they simultaneously convey the

global structure of the depicted object, the details of in-

dividual components, and the local relationships among

them. In this paper we want to explore the power of ex-

ploded views for illustrative focus+context volume vi-

sualization. We present an approach that is capable of

producing high quality exploded depictions of volume

data at interactive frame rates. One application of our

framework is the generation of highly detailed anatomic

illustrations from scanned data (see Figure 3).

The paper is structured as follows: In Section 2 we dis-

cuss related work. Section 3 presents our approach for

the generation of exploded views from volumetric data

sets. In Section 4 we detail our rendering algorithm. The

paper is concluded in Section 5.

(a)

(b)

Figure 3: (a) Plastinated anatomic model in Gunther

von Hangens’ ”Bodyworlds” exhibition (image courtesy

of http://www.bodyworlds.com). (b) Interactive

exploded-view illustration generated with our frame-

work.

2 Related Work

The concept of cutting away parts of the volume to re-

veal internal structures is quite common in volume visu-

alization. Nearly every volume renderer features simple

clipping operations. Wang et al. [30] introduced volume

sculpting as a more flexible approach for exploring vol-

ume data. The work of Weiskopf et al. [31] focuses on

interactive clipping operations using arbitrary geometry

to overcome the limitations of common clipping planes.

Konrad-Verse et al. [20] use a deformable cutting plane

for virtual resection. The work of Dietrich et al. [10]

consists of clipping tools for the examination of medical

volume data. Owada et al. [24, 25] present a system for

modeling and illustrating volumetric objects using arti-

ficial cutting textures based on surface models. Chen et

al. [7] introduced the concept of spatial transfer func-

tions as a theoretical foundation for modeling deforma-

tions in volumetric data sets. Islam et al. [19] extend

this work by using discontinuities (i.e., splitting of the

volume).

Some approaches employ a curve-skeleton [8]. The

curve-skeleton is a reduced representation of a volu-

http://www.bodyworlds.com
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metric object which can be generated using techniques

such as volume thinning [14]. Gagvani et al. [15] ani-

mate volume data sets using a skeleton-based approach.

The interactive system presented by Singh et al. [27] al-

lows manual editing of volume deformations based on

a skeleton. They extend this work by introducing se-

lective rendering of components for improved visualiza-

tion [26]. Correa et al. [9] use traversal of the skeleton

tree to illustrate properties such as blood flow.

Exploded views have been investigated in the context of

architectural visualization by Niedauer et al. [23]. Fi-

nally, McGuffin et al. [22] were the first to thoroughly

investigate the use of automated exploded views for vol-

ume visualization. Their approach features several wid-

gets for the interactive exploration of volume data. The

drawback of their work, however, is that they rely on an

existing decomposition of the volume into layers. Their

approach is also limited to cuberille [18] rendering.

One of the main contributions of this paper is that it

presents an approach for the automated generation of

exploded views from volume data which does not rely

on extensive object information. We distinguish be-

tween focus and context using a fuzzy degree-of-interest

function. Rather than manually specifying a transforma-

tion for each part of the context, we present an automatic

technique which produces a three-dimensional layout of

the parts. Our approach is also capable of re-arranging

the parts dynamically based on the viewpoint. We fur-

ther employ a simple interaction metaphor for specify-

ing part geometry. Finally, we present a high-quality

GPU-based volume ray casting approach for the render-

ing of exploded views at interactive frame rates.

3 Generating Exploded Views

from Volume Data

Our approach distinguishes between two basic objects

derived from the volumetric data set. The selection (see

Figure 4a) is the current focus object specified by a se-

lection volume. The selection volume defines a real-

valued degree-of-interest function [11]. A sample of the

selection volume at any position indicates the degree-of-

interest for the corresponding data sample, where one

means most interesting and zero means least interest-

ing. Thus, the selection object comprises all data sam-

ples with non-zero degree-of-interest. The advantage of

this definition is that it allows smooth transition between

focus and context.

Everything that is not selected is part of the background

(see Figure 4b) which represents the context. We want

to achieve that segments of the background object can

(a) (b) (c)

Figure 4: Object setup for exploded views. (a) selection

object. (b) background object. (c) background object

decomposed into parts.

undergo a transformation while the selection remains

unaffected. Thus, we divide the space covered by the

background into an arbitrary number of non-intersecting

parts Pi (see Figure 4c). Each part is defined by its ge-

ometry GPi
and its transformation TPi

. For simplicity, we

introduce the restriction that each part is convex – con-

cave objects can be formed by grouping together several

convex parts. In general, the geometry of a part does not

correspond to the shape of the actual object contained in

the part (which is determined by the selection volume,

the data volume, and the specified transfer function) but

merely bounds the space that can be occupied by this

object. It is therefore sufficient to represent the part ge-

ometry by a bounding polygonal mesh.

Using this setup we can generate exploded views where

the parts are moved away to reveal the selection. How-

ever, it can be very tedious and time-consuming to man-

ually specify the transformation for each part. We want

a simple global mechanism to specify how ”exploded”

a view should be. Therefore, we introduce a degree-of-

explosion parameter. When the degree-of-explosion is

zero all parts remain untransformed. By increasing the

degree-of-explosion, the user can control how much of

the selection is revealed.

While it would be possible to use an ad-hoc method for

displacing parts according to the degree-of-explosion,

we choose to employ a force-based approach. In graph

drawing, force-directed layout techniques model con-

nectivity information through physical forces which can

be simulated [12, 13]. Because of the underlying anal-

ogy to a physical system, force-directed layout methods

tend to meet various aesthetic standards, such as effi-

cient space filling, uniform edge lengths, and symmetry.

They also have the advantage of enabling the visualiza-

tion of the layout process with smooth animations. For

these reasons, we control our explosion using a rigid-
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body physics engine [1]. Our goal is not to simulate

physical reality which would require a far more sophis-

ticated model including tissue properties, deformation,

and many other aspects. We rather want to supply the

user with a simple and intuitive interface to interactively

generate exploded visualizations of volumetric data sets.

New types of explosions can be generated just by adding

additional forces and constraints. Furthermore, the laws

of Newtonian physics are generally well understood by

humans resulting in a behavior that ”feels right”.

3.1 Part Geometry

An important step in generating an exploded view is

specifying the part geometry. We provide a simple in-

terface for rapid interactive decomposition of a volu-

metric data set. Our approach is based on the splitting

metaphor: the user starts out with a single part which

corresponds to the bounding box of the background ob-

ject. By interactive splitting of this part along arbitrary

planes as well as grouping and hiding parts the user can

define complex part geometries with immediate feed-

back. Our interface provides three simple tools to split

parts:

Axis splitter. By clicking on a point on screen, the user

splits the first part that is intersected by the cor-

responding viewing ray. The part is split along a

plane which passes through the intersection point.

Its normal is the cross product between the viewing

direction and the horizontal or vertical axis of the

projection plane.

Depth splitter. The user clicks on a point. A viewing

ray is cast which records the first intersection with

the background object. The corresponding part is

then split along a plane at the depth of the intersec-

tion point. The plane is parallel to the projection

plane.

Line splitter. The user can draw a line segment. For

each part it is determined if the projection of the

part intersects the line segment. All parts which

intersect the line segment are split along a plane

which projects to the line.

As exploded views frequently employ splits based on

object symmetry, these tools provide an intuitive way

of specifying and refining part geometry. Despite the

small set of operations, the concept is quite powerful

as it operates in a view-dependent manner. The user

can interactively rotate the volume and partition it in a

natural way. In addition to this interface, our approach

(a) (b)

Figure 5: View-dependent exploded views. (a) Ex-

ploded view without viewing force – a part occludes the

selection (dark blue). (b) Exploded view with viewing

force – the occlusion is resolved.

could straight-forwardly employ automatically defined

part geometry, for example by using a pre-computed

curve-skeleton.

3.2 Force Configuration

Force-directed layout approaches arrange elements such

as the nodes of a graph by translating the layout require-

ments into physical forces. A simple setup uses repul-

sive forces between all nodes and attractive forces be-

tween nodes which are connected by an edge. A sim-

ulation is performed until the system reaches a state of

minimal energy. The corresponding node positions con-

stitute the layout.

Our problem is similar. We want to arrange three-

dimensional objects in such a way that they reveal an-

other object, but with as little displacement as possible.

Like in an atomic nucleus or a planetary system we want

to achieve a steady state where the attractive forces and

the repulsive forces are in equilibrium. For this reason

we need to define a number of forces based on our re-

quirements:

Return force. This attractive force tries to move the

parts towards their original location. Each vertex

of the part geometry is connected with its original

(i.e. untransformed) position. The force Fr is real-

ized as a logarithmic spring:

Fr = cr ln(‖r‖) ·
r

‖r‖
(1)

where r is the vector from the vertex’s current po-

sition to its original location and cr is a constant

factor. The reason for using the logarithmic rela-

tionship of the force’s magnitude to the distance is

that this mapping tends to produce less oscillation
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Figure 6: Exploded view of a turtle with increasing degree-of-explosion from left to right.

than the linear relationship of Hook’s law. The to-

tal return force for a part is normalized by dividing

it by the number of vertices.

Explosion force. We want to generate a force that

drives the specified parts away from our selection

object. Our idea is to generate a force field which

describes the characteristics of our selection ob-

ject. Each point of the selection exerts a distance-

based force on every part. In order to keep the

number of points low, we use an octree-based ap-

proach. We generate two min-max octrees; one

for the data volume and one for the selection vol-

ume. Each node stores the minimum and maxi-

mum data values respectively selection values of

the represented region. We traverse the two octrees

simultaneously and generate an explosion point for

each homogeneous octree node that contains both

visible data values under the current transfer func-

tion and nonzero selection values. We add a small

random bias to the position to prevent any artifacts

caused by the regular structure of the octree. The

explosion point is also weighted according to the

size of the region corresponding to the octree node.

Each explosion point in this point set exerts a force

Fe on every part Pi:

Fe =
ce

e‖r‖
·

r

‖r‖
(2)

where r is the vector from the point to the closest

point of the part geometry of Pi and ce is a scaling

factor. The force is applied to the closest point of

the part geometry and can therefore also generate a

torque. The exponential fall-off is chosen to limit

the force’s influence to a region nearby the point.

The total explosion force is normalized by dividing

it by the number of explosion points.

Viewing force. So far we have only considered view-

independent explosions, i.e., the movement of parts

does not consider the current viewpoint. In tradi-

tional illustration this problem typically does not

occur as the viewpoint is fixed and the exploded

view is specifically generated to be most appropri-

ate for this single viewpoint. In an interactive sys-

tem, however, we must consider that the user can

rotate the camera arbitrarily. For this reason we

introduce a view-dependent force which attempts

to arrange parts so that they do not occlude the

selection for the current viewing transformation.

We follow the work of Carpendale et al. [5, 6]

who use similar techniques for the layout of three-

dimensional graphs.

We project each of the explosion points to the im-

age plane. For a part Pi we determine the point

along the viewing ray corresponding to the projec-

tion which is closest to the center of Pi. The force

Fv is then:

Fv =
cv

‖r‖
·

r

‖r‖
(3)

where r is the vector from the closest point along

the viewing ray to the center of the body and cv is

a scaling factor. The total force for a part is nor-

malized by dividing it by the number of explosion

points.

Figure 5 shows an example for the influence of the

viewing force. In 5a the explosion force displaces

the parts but disregards the viewpoint. The occlu-

sion is resolved in 5b by adding the viewing force.

Spacing force. In order to prevent clustering of parts,

we also add a repulsive force Fs. For a part Pi, the

spacing force exerted by another part Pj is:
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Fs =
cs

‖r‖2
·

r

‖r‖
(4)

where r is the vector from the center of Pj to the

center of Pi and cs is a constant scaling factor. The

total spacing force for a part is normalized by di-

viding it by the number of parts.

The scaling factors of explosion force, viewing force,

and spacing force, ce, cv, and cs, are scaled with the

global degree-of-explosion parameter. The return force

remains constant. Additionally, the contribution of the

three forces to the total degree-of-explosion can be mod-

ified, e.g., the user can reduce view dependency or in-

crease spacing. In general, however, the user mostly

interacts with the degree-of-explosion. Figure 6 shows

a simple part configuration for different degrees-of-

explosion.

3.3 Constraints

While the force configuration discussed in the previ-

ous section can be used to generate expressive exploded

view visualizations, it is sometimes useful to constrain

the movement of parts. Therefore, our approach allows

the interactive addition of joints which restrict the rela-

tive movement of parts. Available joints include sliders,

hinges, ball joints, and universal joints. Additionally,

the user can provide an importance for individual parts

by modifying their mass. Parts with higher masses will

be less affected by the individual forces. Thus, these

parts will be less affected by the explosion. The user

can restrict a part from being displaced by assigning an

infinite mass. This is particularly useful to easily create

break-away illustrations where typically only one sec-

tion of the object is moved away.

An example for the use of constraints is shown in Fig-

ure 1 where two hinges are used. In Figure 7 the left part

of the face has been assigned infinite mass. The right

part of the face is divided into several parts which are

connected by a slider joint. As the degree-of-explosion

is increased these parts move along the free axis to re-

veal the skull.

By specifying constraints the user can effectively add

structural information that is missing from the raw data

set. It is easily possible to generate interactive illus-

trations which allow exploration within the limits of

the constraints specified by the designer. An inter-

esting component in this context is the viewing force.

Although the movement of a part is constrained, it is

still affected by the viewing force and therefore moves

Figure 9: Modulating transparency by the viewing

force. As the two lower parts move away, their trans-

parency reduces since the viewing force gets weaker.

The upper part stays transparent because it is static –

therefore the viewing force remains constant.

within the given limits to reveal the selection. An exam-

ples is shown in Figure 8 where two parts are connected

by a hinge joint. As the camera rotates the effect of the

viewing forces causes the parts to orient themselves to-

wards the viewer.

Constraining part movements may result in arrange-

ments with partial occlusions of the selection object.

Different visual representations can be employed to re-

solve these conflicts. Based on the viewing force that

acts on a part we can modify the sparseness of the rep-

resentation, for example by modifying its transparency.

An example of this behavior is show in Figure 9.

4 Interactive Exploded View Ren-

dering

Fast rendering is a key requirement for an interaction-

based approach like the one presented in this paper. In

this section, we describe the implementation of a high-

quality GPU-based ray casting algorithm for exploded

views. Until recently, volume rendering on the graph-

ics hardware was only possible using a multi-pass ap-

proach [21].

This has changed with the advent of conditional loops

and dynamic branching in shaders. Now it is possi-

ble to implement a fragment program which completely

traverses a ray [28]. Apart from the quality improve-

ments, this allows for common acceleration techniques

like early ray termination.

For rendering an exploded view we need to be able to

render a volumetric data set consisting of a background

and a selection object. The background object is decom-

posed into several non-intersecting convex parts which

can have arbitrary affine transformations. The selec-

tion object also has its assigned transformation and can
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Figure 7: Exploded view using constrains to limit part movement. The skull is selected. The left part of the face

is static, the remaining parts are connected by a slider joint which limits their movement to a translation along one

axis.

Figure 8: Interaction between constraints and viewing force. All parts except the two upper parts of the leg are

static. These two parts are connected by hinges similar to a swing door. As the camera rotates the viewing force

causes the parts to orient towards the viewer.

intersect any part. Furthermore, we want to support

empty space skipping and early ray termination. There-

fore we assume that we have geometry enclosing the

visible volume under the current transfer function for

both background and selection object. The use of this

kind of bounding structures for empty space skipping is

very common in volume rendering. They are frequently

based on hierarchical data structures. In our implemen-

tation, we use min-max octrees for both data volume and

selection volume.

We have developed a GPU-based ray casting algorithm

which meets all of the above requirements. Our ap-

proach makes use of conditional loops and dynamic

branching available in Shader Model 3.0 GPUs. It was

implemented in C++ and OpenGL/GLSL.

An overview of our basic rendering algorithm is given in

Algorithm 1. We start by performing a visibility sort of

the parts. Next, we generate the entry and exit points for

Algorithm 1 Basic rendering algorithm

perform visibility sorting of the parts

generate initial entry and exit points

perform initial ray casting

for all parts Pi in front-to-back order do

generate entry and exit point for Pi (see Section 4.1)

perform ray casting for Pi (see Section 4.2)

end for

the segments of the selection located in front of any part

and perform the ray casting step for these regions. These

two steps are actually simplified cases of the general it-

eration steps described in Sections 4.1 and 4.2. Then we

iterate through the parts in front-to-back order. For each

part Pi we first establish the entry and exit points of the

viewing rays for both background and selection object.

Then we use this information for performing ray casting

of the part. Figure 10 illustrates the algorithm.
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image plane

part bounding geometry

object bounding geometry

background

selection

N

1
2

3

4

5

processing order

skipped empty space

potential sample points

Figure 10: Example of our exploded-view ray casting

approach. The parts are processed in front-to-back or-

der, empty space skipping is performed based on object

and part bounding geometries. The potential sample po-

sitions (not taking into account any early ray termina-

tion) are shown for each part.

4.1 Entry and Exit Point Generation

Generally, the background entry and exit buffers always

contain the entry and exit points of the viewing rays for

the intersection between background bounding geom-

etry and the part geometry. Essentially, we are using

the depth buffer to perform a CSG intersection between

these objects which can be simplified since the part ge-

ometry is always convex. As parts of the selection can

be located in regions which are not contained in any

part, the entry and exit buffers for the selection need to

be generated in a slightly different way.

At startup, we generate four off-screen buffers which

can be bound to a texture. For this purpose, we use

the recently introduced framebuffer object extension. In

these buffers we store the ray entry and exit points for

both background and selection. A fragment program is

bound which writes out the volume texture coordinates

under the current object transformation to the red, green,

and blue components and the fragment depth in viewing

coordinates to the alpha component. The volume texture

coordinates are later used for computing the ray direc-

tion while the depth is used in order to optimize com-

positing. We then perform the following operations to

setup the entry and exit buffers for selection and back-

ground:

Background. For the exit points the depth buffer is

cleared to one and the alpha component of the color

buffer is cleared to zero. Color writes are dis-

abled. The depth test is set to ALWAYS and the

front faces of the part geometry are rendered. Then

color writes are enabled again, the depth test is set

to GREATER, and the background object’s bound-

ing geometry is rendered. Finally, the depth test is

set to LESS and the part’s back faces are rendered.

For the entry points, we clear the depth buffer to

zero and the alpha component of the color buffer to

one, disable color writes, and set the depth test to

ALWAYS. Then the back faces of the part geom-

etry are rendered. Next, color writes are enabled

again, the depth test is set to LESS and the back-

ground object’s bounding geometry is rendered.

Finally, the depth test is set to GREATER and the

front faces of the part geometry are rendered.

Selection. For the exit points the depth buffer is cleared

to zero. Then the selection’s bounding geometry is

rendered with the depth test set to GREATER. As

it is possible that parts of the selection are not in-

cluded in any part, we then set the depth test to

LESS and render all parts located behind the cur-

rent part.

For the entry points the depth buffer is cleared to

one. The depth test is set to LESS and the bound-

ing geometry of the selection is rendered. Then the

depth test is set to GREATER and the part’s bound-

ing geometry is rendered.

We also need to handle the case when parts of the se-

lection are located in front of all parts. This is done

analogously to the iteration with the only difference that

the background does not have to be taken into account

for both the entry point determination and the ray cast-

ing step. Thus, the selection entry points do not need to

be clipped. The selection exit points are clipped against

all part geometries.
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4.2 Multi-Object Ray Casting

The ray casting pass uses the entry and exits points for

rendering the volumetric object contained in the cur-

rent part. The volume texture coordinates stored in the

red, green, and blue components of the entry and exit

point buffers are used to compute the ray direction. The

depth value stored in the alpha component is used to

determine which objects need to be composited. If the

intervals of background and selection do not overlap,

they can be composited sequentially. If they overlap,

however, multi-object compositing must be performed

in the intersection region, i.e., two rays have to be tra-

versed simultaneously. The contributions of both ob-

jects at a sample point can be combined using fusion

functions [4], intersection transfer functions [3], or al-

ternating sampling [17].

The pseudocode given in Algorithm 2 shows the de-

termination of the intervals from the entry and exit

points. CompositeBackground and CompositeSelec-

tion perform single volume ray casting for background

and selection, respectively, and CompositeBackground-

Selection performs multi-volume compositing. The

functions BackgroundToSelection and SelectionToBack-

ground transform between the background and the se-

lection coordinate systems. This is necessary as the

background and selection entry and exit points are given

for the respective object transformation.

To perform the ray casting for a part Pi we bind a frag-

ment program which implements Algorithm 2 and ren-

der the front faces of the part geometry. The result is

blended into a framebuffer object for subsequent dis-

play.

4.3 Performance

As the parts are non-intersecting, the visibility sorting

can be performed at object level rather than at primitive

level. Since the number of parts will be relatively low,

this step introduces practically no overhead. We use a

GPU-based visibility sorting approach which employs

occlusion queries [16].

For fast rendering of the object and part bounding geom-

etry, we employ vertex buffer objects, i.e., the geometry

is uploaded to GPU memory whenever it is modified

(e.g., transfer function change) and can be subsequently

rendered at very high frame rates.

Our ray casting shader contains dynamic branching and

conditional loops which could have a significant over-

head. In our benchmarks, however, we have noticed

that the impact of these operations is comparably low.

number of parts frames/second percent of reference

1 8.53 96%

2 7.95 89%

4 6.83 76%

8 5.57 62%

16 4.89 55%

32 3.68 41%

64 2.41 27%

Table 1: This table gives the frame rates (middle col-

umn) and the performance as compared to a reference

ray caster (right column) of our exploded view renderer

for different numbers of parts (left column). The view-

port size was 512× 512 and the object sample distance

was 1.0. The data set dimensions were 256×256×166.

Transfer function and selection were specified as in Fig-

ure 4. The reference ray caster disregards the part con-

figuration and selection but otherwise uses the same rou-

tines. This renderer achieved 8.97 frames/second. Test

system: Intel Pentium 4, 3.4 GHz CPU, NVidia GeForce

6800 GT GPU.

This might be due to the fact that there is high coher-

ence in the branches taken between fragments and the

approach therefore benefits from branch prediction. To

verify this, we have compared our exploded-view ren-

derer with a reference implementation of a conventional

single-pass GPU ray caster. Both implementations use

identical compositing and shading routines, but the stan-

dard ray caster ignores part transformations and the se-

lection object. The selection object is placed inside the

background object (see Figure 4a), the transfer function

is set to a steep ramp (see Figure 4b), and the part trans-

formations are set to identity. Thus, the image generated

by both implementations is the same and we only mea-

sure the overhead of our exploded-view rendering. The

results of this comparison are given in Table 1. We see

that our approach scales well – the frame rate drops sub-

linearly with the number of parts and the performance

for a single part is almost identical. Considering the

greatly increased flexibility of our rendering approach,

we believe that these results are quite promising.

5 Conclusion

Exploded views are a powerful concept for illustrating

complex structures. In this paper we have presented

a novel approach for generating exploded views from

volumetric data sets. Our method attempts to make as

little assumptions as possible while still automating la-

borious tasks. Instead of manually displacing parts, the
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user defines constraints which control the part arrange-

ment. View-dependent explosions result in a dynamic

part arrangement within the specified constraints while

the user explores the object. Coupled with fast high-

quality rendering, our framework for exploded view vol-

ume visualization features an intuitive direct manipula-

tion interface.

In future work we plan to investigate the integration

of our interactive approach with methods for auto-

mated skeleton extraction. One could imagine a system

where the user can design illustration templates includ-

ing joints and other constraints. This structure could

then be matches with the skeleton extracted from an-

other data set.
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[3] S. Bruckner and M. E. Gröller. VolumeShop: An interactive system for

direct volume illustration. In Proceedings of IEEE Visualization 2005,

pages 671–678, 2005.

[4] W. Cai and G. Sakas. Data intermixing and multi-volume rendering. Com-

puter Graphics Forum, 18(3):359–368, 1999.

[5] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. Distortion

viewing techniques for 3-dimensional data. In Proceeding of the IEEE

Symposium on Information Visualization 1996, pages 46–53, 1996.

[6] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. Extending

distortion viewing from 2D to 3D. IEEE Computer Graphics and Appli-

cations, 17(4):42–51, 1997.

[7] M. Chen, D. Silver, A. S. Winter, V. Singh, and N. Cornea. Spatial transfer

functions: a unified approach to specifying deformation in volume mod-

eling and animation. In Proceedings of the International Workshop on

Volume Graphics 2003, pages 35–44, 2003.

[8] N. Cornea, D. Silver, and P. Min. Curve-skeleton applications. In Pro-

ceedings of IEEE Visualization 05, pages 95–102, 2005.

[9] C. D. Correa and D. Silver. Dataset traversal with motion-controlled trans-

fer functions. In Proceedings of IEEE Visualization 2005, pages 359–366,

2005.

[10] C. A. Dietrich, L. P. Nedel, S. D. Olabarriaga, J. L. D. Comba, D. J.

Zanchet, A. M. Marques da Silva, and E. F. de Souza Montero. Real-

time interactive visualization and manipulation of the volumetric data us-

ing GPU-based methods. In Proceedings of Medical Imaging 2004, pages

181–192, 2004.

[11] H. Doleisch and H. Hauser. Smooth brushing for focus+context visualiza-

tion of simulation data in 3D. Journal of WSCG, 10(1):147–154, 2002.

[12] P. Eades. A heuristic for graph drawing. Congressus Numerantium,

42:149–160, 1984.

[13] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-

directed placement. Software - Practice and Experience, 21(11):1129–

1164, 1991.

[14] N. Gagvani and D. Silver. Parameter-controlled volume thinning. Graph-

ical Models and Image Processing, 61(3):149–164, 1999.

[15] N. Gagvani and D. Silver. Animating volumetric models. Graphical Mod-

els and Image Processing, 63(6):443–458, 2001.

[16] N. K. Govindaraju, M. Henson, M. Lin, and D. Manocha. Interactive

visibility ordering and transparency computations among geometric prim-

itives in complex environments. In Proceedings of the ACM Symposium

on Interactive 3D Graphics and Games 2005, pages 49–56, 2005.

[17] S. Grimm, S. Bruckner, A. Kanitsar, and M. E. Gröller. Flexible direct
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hancement in volume visualization. IEEE Transactions on Visualization

and Computer Graphics, 11(4):408–418, 2005.

[30] S. W. Wang and A. E. Kaufman. Volume sculpting. In Proceedings of the

Symposium on Interactive 3D Graphics 1995, pages 151–156, 1995.

[31] D. Weiskopf, K. Engel, and T. Ertl. Interactive clipping techniques for

texture-based volume visualization and volume shading. IEEE Transac-

tions on Visualization and Computer Graphics, 9(3):298–312, 2003.

http://www.cg.tuwien.ac.at/research/vis/exvisation
http://www.newtondynamics.com


REFERENCES 11

Algorithm 2 Multi-Object Ray Casting: fB and bB are

the ray’s entry and exit points for the background object,

fS and bS for the selection object

if bB.depth < fB.depth ∧ bS .depth < fS .depth then

if bS .depth < fS.depth then

CompositeBackground( fB , bB)

else if bB.depth < fB.depth then

CompositeSelection( fS , bS)

else

if fB.depth < fS.depth then

if bB.depth < fS .depth then

CompositeBackground( fB , bB)

CompositeSelection( fS , bS)

else

f ′S = SelectionToBackground( fS )

CompositeBackground( fB , f ′S)

if bB.depth < bS .depth then

b′B = BackgroundToSelection(bB )

CompositeBackgroundSelection( f ′S , bB, fS, b′B)

CompositeSelection(b′B , bS)

else

b′S = SelectionToBackground(bS )

CompositeBackgroundSelection( f ′S , b′S, fS, bS)

CompositeBackground(b′S , bB)

end if

end if

else

if bS .depth < fB.depth then

CompositeSelection( fS , bS)

CompositeBackground( fB , bB)

else

f ′B = BackgroundToSelection( fB )

CompositeSelection( fS , f ′B)

if bB.depth < bS .depth then

b′B = BackgroundToSelection(bB )

CompositeBackgroundSelection( fB , bB, f ′B, b′B)

CompositeSelection(b′B , bS)

else

b′S = SelectionToBackground(bS )

CompositeBackgroundSelection( fB , b′S, f ′B, bS)

CompositeBackground(b′S , bB)

end if

end if

end if

end if

end if
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