
D I P L O M A R B E I T

Hardware-Accelerated Rendering of
Unprocessed Point Clouds

ausgeführt am Institut für

Computergraphik und Algorithmen

der Technischen Universität Wien

unter Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Werner Purgathofer,

und Univ.Ass. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

als verantwortlich mitwirkendem Assistenten

durch

Claus Scheiblauer

Spratzerner Kirchenweg 71

3100 St.Pölten

October 16, 2006

Datum Unterschrift

Abstract

In this diploma thesis a fast rendering algorithm for very large point clouds is de-

scribed. A point cloud is simply a set of unconnected 3D coordinates in cartesian

space. Each coordinate of such a set is interpreted as a point in space. A point

cloud is the result of a sampling process, where either a laser scanner samples a

real environment, or the data structure of some already existing graphical model

is point sampled. During rendering it is attempted to reconstruct the sampled

model from the given point cloud. The algorithm presented in this thesis builds

on two new data structures, namely Memory Optimized Sequential Point Trees

and Nested Octrees. It includes an out-of-core part, which means that it is also

possible to render models that do not fit in the main memory of the computer, and

an occlusion-culling part, which means that objects, which are hidden by objects

closer to the viewer, do not have to be rendered. The algorithm is developed pri-

marily for the fast rendering of point clouds, i.e., with a high frame rate, whereas

the visual quality of the rendered point clouds is not in the focus of this work. The

algorithm does not need any additional attributes at a point besides the position.

Zusammenfassung

In dieser Diplomarbeit wird ein schneller Renderingalgorithmus für Punktwolken

beschrieben. Eine Punktwolke ist einfach eine Menge von unzusammenhängen-

den 3D Koordinaten im Kartesischen Raum. Jede Koordinate einer solchen Menge

wird als Punkt im Raum interpretiert. Eine Punktwolke ist das Resultat eines Ab-

tastprozesses, bei dem entweder ein Laserscanner eine reale Umgebung abtastet,

oder bei dem die Datenstruktur eines bereits existierenden graphischen Modells in

eine Punktwoke umgewandelt wird. Während des Renderings wird versucht das

abgetastete Modell aus der gegebenen Punktwolke zu rekonstruieren. Der Algo-

rithmus, der in dieser Diplomarbeit vorgestellt wird, basiert auf zwei neuen Da-

tenstrukturen, nämlich auf Memory Optimized Sequential Point Trees und Nested

Octrees. Er enthält einen Out-of-Core Teil und ist dadurch in der Lage Modelle zu

rendern, die nicht komplett in den Hauptspeicher des Computers passen. Er ent-

hält auch einen Occlusion Culling Teil, wodurch es möglich wird Objekte nicht zu

rendern, die durch andere Objekte, welche näher beim Betrachter sind, verdeckt

werden. Der Algorithmus wurde hauptsächlich für die schnelle Darstellung von

Punktwolken entwickelt, das heißt für eine hohe Bildwiederholfrequenz, wohin-

gegen der visuellen Qualität der gerenderten Punktwolken weniger Aufmerksam-

keit geschenkt wurde. Der Algorithmus benötigt keine zusätzlichen Informationen

zu einem Punkt ausser dessen Position.

Contents

1. Introduction . 6

1.1 Point Definition . 6

1.2 Why Use Points for Rendering? 7

1.3 Application Areas of Points as Rendering Primitives 7

1.3.1 Visualization of Range Scans 8

1.3.2 Scientific Visualization 9

1.3.3 Rendering Models on Handheld Devices 11

1.4 Contribution . 11

1.5 Overview . 12

2. Previous Work . 13

2.1 High-Quality Point Rendering Algorithms 13

2.2 Fast Point Rendering Algorithms 15

2.2.1 QSplat . 17

2.2.2 ρ-grids . 20

2.2.3 Sequential Point Trees 21

2.2.4 Layered Point Clouds . 24

2.2.5 XSplat . 26

2.3 Summary . 29

3. Memory Optimized Sequential Point Trees 30

3.1 Motivation . 30

3.2 Build Up . 31

3.3 LOD selection . 33

3.4 Memory Requirements . 35

3.5 Sequentialization . 35

3.6 Rendering . 35

3.7 Comparison MOSPT with SPT 36

3.8 Summary . 41

Contents 5

4. Nested Octree . 42

4.1 Motivation . 42

4.2 Build Up . 44

4.3 LOD selection . 46

4.4 Rendering . 47

4.5 Occlusion Culling . 49

4.6 Comparison Nested Octree with Layered Point Clouds 50

4.7 Comparison Nested Octree with XSplat 51

4.8 Summary . 51

5. Implementation of the System 53

5.1 Maximizing the Rendering Speed Using VBOs 53

5.2 View-Frustum Culling in Clip Space 56

5.3 Alignment of Point Clouds . 58

5.4 Summary . 61

6. Results . 62

6.1 The Test System . 62

6.2 Rendering a Small Point Cloud 62

6.3 Rendering a Huge Point Cloud 67

6.4 Summary . 77

7. Conclusion and Summary . 82

7.1 Features . 82

7.2 Conclusion . 83

7.3 Possible Enhancements . 84

7.4 Summary . 86

A. Class Diagram . 87

Chapter 1

Introduction

This diploma thesis describes an algorithm for rendering point-based objects as

fast as possible. The geometry of a point-based object is completely defined by

points. As fast as possible means at interactive frame rates, which is anything

between 1 frame per second (FPS) to 60 FPS. Real-time frame rates above 60 FPS

are possible for models which do not need the out-of-core part of the algorithm.

Points are not the only means for modeling objects, because geometrical models

can be defined in various ways. They can either be constructed from a set of

geometric primitives that can be rendered directly, e.g., triangles and lines, or they

can be defined implicitly by mathematical equations, e.g., quadrics and splines.

As Levoy and Whitted have shown, any geometrical model can be converted to a

point-based model and can be rendered as a continuous object to screen [LW85].

So points can be seen as the most basic rendering primitive, and converting a

geometrical model to a point-based model is always possible. The other way,

which is converting a point-based model to a representation consisting of more

complex primitives, is not straight forward, as it can be difficult to find the surfaces

that were sampled for a point-based model. Various techniques exist that can be

used to reconstruct a connected model from a point-based one [SS05].

1.1 Point Definition

A point in the mathematical sense is the intersection of two straight lines. It can

be interpreted as a zero-dimensional entity which has only a position. It has no

extent and would therefore be invisible. Since an object consisting of points as

defined above would be rendered invisibly, a different definition is given.

A point used for rendering has a position and optionally other attributes, and

has an extent of at least one pixel on screen when visible from the current camera

position.

The word point in this diploma thesis always means “a point used for render-

ing”, and is described at the minimum by a 3-tupel,

Chapter 1. Introduction 7

Point = (x, y, z), (1.1)

where x, y and z are coordinates in a cartesian coordinate system. If the point

is colored, it is described by a 6-tupel,

Point with Color = (x, y, z, r, g, b), (1.2)

where r, g, and b are the values of the red, green, and blue color channel

respectively. Note that no alpha value is used, as only solid point samples are

used.

1.2 Why Use Points for Rendering?

Any geometrical model that should be rendered must first be converted to some

rendering primitive, that is a geometrical primitive which can be sent through the

rendering pipeline. When using a software-based rendering pipeline, every stage

is under the control of the programmer and can be optimized to the needs of the

available models. One advantage of point-based models is that the setup process

for triangles can be skipped during rendering. The setup process for triangles

includes for example polygon clipping, scan conversion, and texture mapping.

These things are time consuming considering a software-only implementation of

the rendering pipeline. Today consumer graphics cards are ubiquitous, and they

provide hardware accelerated rendering pipelines. This means that the setup pro-

cess for triangles is handled in hardware, and the pure rendering-speed advantage

of point-based models is therefore fading away. In fact, the number of point prim-

itives that can be rendered per second on the current generation of graphics cards

is the same as the number of triangles that can be rendered per second. From the

original idea of Levoy and Whitted [LW85] of using points as some kind of 3D

texture by converting all geometrical models to points, the application areas of

points as rendering primitives have shifted.

1.3 Application Areas of Points as Rendering Primitives

Today with the wide availability of the hardware-accelerated rendering pipeline on

graphics cards, the conversion from triangle-based models to point-based models

does not promise much of an advantage, since the graphics cards are tuned to

rendering triangle-based models as fast as possible. The application areas for

point-based models are where the geometric models originally consist of points, or

where scientific data can easily be converted to points, or where still no hardware-

accelerated rendering pipeline exists, like on low-end handheld devices.

Chapter 1. Introduction 8

Fig. 1.1: An example of a terrestial laser scanner. Here a Riegl LMS z420i is shown.

The range measuring laser is situated behind the blue windows in the scanner’s casing.

After taking range samples from the environment, the camera on top of the scanner takes

photographs of the scanned environment.

1.3.1 Visualization of Range Scans

One area where the rendering of point-based models is of interest is the visualiza-

tion of point-sampled environments. Point-sampled environments are becoming

more common due to the increased availability and usage of range-scanning de-

vices. Range scanners scan a real environment, and the output of a range scanner

is a set of 3D coordinates. These coordinates are the surface points of the scanned

environment. A point viewer, which is a program to visualize the coordinates on

screen, interprets these 3D coordinates as points for rendering. The interpreted

3D coordinates are referred to as point cloud. If the scanning resolution is high

enough, the point viewer can reconstruct the environment from the output of the

range scanner.

The difficulty when rendering the point clouds directly from a range scanner

is the lack of information between the points. The geometry of the model is only

Chapter 1. Introduction 9

known at the sampled points. Admittedly the color, coming from the photographs

taken by the camera mounted on top of the scanner, is also available for the area

between the samples. Apart from converting the whole model into a triangle mesh,

which is tedious and time consuming, it is theoretically possible to apply a texture

to each point, but then the points would have to be defined with a radius to describe

their extent in space. Furthermore a normal would also be required, to orient

neighboring points along the surface they describe. But if no normal is available,

the texture cannot be utilized in a meaningful way. Today point clouds from a

range scanner usually store only one color per point.

When the camera of the point viewer is in some distance to the point cloud,

then the projected points will probably result in a continuous image of the scanned

model on the viewplane. The continuous image becomes undersampled when the

viewpoint moves away from the model. To accommodate for this, either the image

in screen space could be filtered, or the points could be rendered with filtered

textures to avoid aliasing. When the camera moves towards the point cloud and

the resolution of the scanned model does not allow for a continuous image on

the viewplane any more, a gap-filling strategy has to be used to simulate a solid

model.

In Figure 1.1 a range scanner is shown. The mode of operation of a range

scanner is described in the following: The distance to obstacles in the environment

is measured by the time of flight of a laser pulse. Figure 1.2 depicts a situation

where a scanner is situated in the environment. The laser scanner takes discrete

samples on one vertical line, then rotates around its vertical axis and scans another

line. The angle between two consecutive samples taken in both directions can be

chosen by the user. The scanner is able to scan a 360 degrees vertical frustum

around it in one run, and afterwards it takes pictures from the scanned environment

with the camera mounted on top of the scanner’s casing. The pictures are later

used to colorize the taken samples. The point clouds are not colorized by the

scanner automatically, but by an external program.

1.3.2 Scientific Visualization

Another area where point-based models are of interest is the visualization of sci-

entific datasets. In such cases like volume rendering, points are well suited to

represent the data. Isosurfaces can be extracted from volume datasets, and the

measured or simulated values at the positions in space can be represented with

points. An example is shown in Figure 1.3, where an isosurface is extracted from

a dataset and then rendered as a point cloud.

Chapter 1. Introduction 10

Fig. 1.2: A laser scanner scanning the environment. The total angel of rotation can be up

to 360 degrees. The scan area depicts the limitation of the laser measurements in vertical

direction. After the range scan, photographs of the scanned environment are taken by the

camera on top of the scanner’s casing.

Fig. 1.3: Closeup view of an isosurface feature in the mixing interface of two gases for

a simulation of a Richtmyer-Meshkov instability in a shock tube [MCC+99] as rendered

with the Layered Point Clouds algorithm [GM04].

Chapter 1. Introduction 11

1.3.3 Rendering Models on Handheld Devices

The third area where point-based models are useful, are handheld devices like

PDAs, which do not have a dedicated graphics processor. Such devices mostly

have screens with about 240x320 pixels resolution and have to use a software-

based rendering pipeline. Due to the low screen resolution, triangles will often be

projected to only one pixel, so the gain of triangle-based models that can take ad-

vantage of rasterization coherence is not existent. Triangles also need to be set up

for rendering, which needs time. Such devices also have only limited memory, and

a point-based model can be efficiently compressed. All these things make point-

based models very well suited for handheld devices. Efficient algorithms exist

that can render point-based models at interactive frame rates on PDAs [DD04].

1.4 Contribution

Most point-rendering algorithms have certain requirements to work properly. Nor-

mals are always assumed to be available, and the models should also be uniformly

sampled. There exists no dedicated algorithm for rendering unprocessed point

clouds. This is where the contribution of this diploma thesis comes in, as we

present the first point rendering system with minimal requirements, and which

does not demand for postprocessing of point clouds and at the same time ren-

ders enormous amounts of unprocessed points at interactive rates with negligible

preprocessing. With unprocessed point clouds we mean point clouds that are not

interpreted in any way, i.e., no triangulation or normal estimation has been per-

formed. A point in an unprocessed point cloud is only defined by a 3D position.

It can optionally have an RGB color, if the color is available from the scanning

process.

Having only a limited amount of attributes available per point, the visual qual-

ity of the rendered models cannot compete with models that are postprocessed

and rendered with a high-quality splatting algorithm. So the main contribution of

this thesis is to show how to trade this reduced image quality against significantly

increased visualization speed and improved memory requirements. We introduce

two new data structures, which are

• Memory Optimized Sequential Point Trees and

• Nested Octrees.

The Memory Optimized Sequential Point Trees (MOSPTs) build on the Se-

quential Point Trees (SPT) [DVS03]. A MOSPT is a sequentialized hierarchy that

can be traversed completely on the GPU and requires only the original points for

Chapter 1. Introduction 12

providing a level-of-detail mechanism. The memory requirements are decreased

by more than 50% compared to the SPT data structure.

The Nested Octree data structure is used as an outer hierarchy, which holds a

MOSPT at each node. The build up algorithm of the Nested Octree is especially

well suited for the processing of many point clouds which come directly from a

range scanner. The only thing the user has to do for each point cloud, is to define

the region where the important points are. From then on the build up process is

automated. The rendering includes view frustum culling and an out-of-core part,

so models that do not fit completely in the main memory of the computer can be

shown. During rendering, also occlusion culling is performed, which tries to find

areas in the model that are hidden, and then these hidden areas do not have to be

rendered. The system maintains interactive framerates at any time, and the user

can set a limit for the minimum rendered frames per second.

1.5 Overview

This is the overview of the content of the following chapters.

• Chapter 2 gives an overview of existing rendering algorithms for point

clouds. The algorithms reviewed here concentrate on fast rendering or out-

of-core rendering of point clouds.

• Chapter 3 explains the Memory Optimized Sequential Point Tree data struc-

ture, which is needed for rendering point clouds as fast as possible. The pre-

sented data structures are effective for point clouds that fit in the memory of

the graphics card.

• Chapter 4 explains the Nested Octree data structure, needed for out-of-core

rendering of point clouds. With this data structure it is possible to render

point clouds that do not fit in the main memory of a PC.

• Chapter 5 describes special problems that occurred during the implementa-

tion of the rendering algorithm and the build up algorithm.

• Chapter 6 shows the results of the point-rendering algorithm on large and

small models and demonstrates the effect of the out-of-core strategy.

• Chapter 7 finally summarizes the presented data structures and algorithms,

and also gives an outlook to possible future enhancements.

Chapter 2

Previous Work

In recent years points have become increasingly popular as rendering primitives.

From the seminal work of Levoy and Whitted [LW85] on points as rendering

primitives, it took more than ten years until Grossman and Dally presented their

implementation of a point-rendering system [GD98]. Levoy and Whitted sug-

gested to use points as a universal meta primitive. Their idea was to convert all

geometric objects to points, so that the rendering pipeline could be the same for all

geometric objects, independent of the way the objects were modeled. They also

proved that it is possible to render any geometry consisting of points as a continu-

ous object on screen. The point-rendering system of Grossman and Dally showed,

that arbitrary models consisting only of points can be rendered in real time. They

also introduced visibility cones for testing the visibility of several points at once,

and they introduced incremental block warping, which means that blocks of points

are warped to image space using incremental calculations.

The development of point-based rendering algorithms can be divided in two

different areas. In one area the development leads towards ever higher quality

surface rendering algorithms, and in the other area the development is more con-

centrated on the fast rendering of point clouds but there exists no definite distinc-

tion between the two areas. The main focus of this thesis is on the fast rendering

of point clouds, whereas the visual quality of the rendered models will not be

considered as important.

2.1 High-Quality Point Rendering Algorithms

In the year 2000 Pfister et al. [PZvBG00] presented an algorithm which im-

proves the rendering quality of point-based models compared to previous meth-

ods [LW85, GD98], by introducing visibility splatting and surfel mipmapping.

They give the definition of a surfel as a zero-dimensional n-tuple with shape and

shade attributes that locally approximates an object surface. The additional in-

formations, like normal and radius, that are stored at a surfel, are necessary for

aligning the surfels during rendering along the surface they describe. With visibil-

Chapter 2. Previous Work 14

Fig. 2.1: A continuous texture function is locally approximated by basis func-

tions [ZPvBG01].

ity splatting the depth buffer is established in a separate rendering pass before the

color buffer, so that visibility calculations are separated from the lighting calcula-

tions. The points then receive colors which are the result of a linear interpolation

of the appropriate texture samples, similar to texture mipmapping, therefore this

process is called surfel mipmapping. The texture samples store only one color

at each mipmap level. The surfels algorithm is a fast and high-quality rendering

algorithm for point-based models.

In 2001 Zwicker et al. [ZPvBG01] formulated a screen space Elliptical

Weighted Average (EWA) filter [Hec89], which makes EWA texture filtering

available to point-based rendering techniques. The difference to previous ap-

proaches for texturing point-based models is, that EWA filtering actually recon-

structs, bandlimits, and resamples the texture during rendering, which results in

superior antialiasing. Previous point rendering systems used prefiltered textures,

and antialiasing could be done with supersampling or filtering the already ren-

dered images. In their paper they present the mathematical formulation of screen

space EWA texture filtering for irregular point data. To make EWA texture fil-

tering possible, each surfel needs a position and normal and is associated with

a radially symmetric basis function. Further it needs coefficients that represent

continuous functions for red, green, and blue color components. As basis func-

tions they use elliptical Gaussian functions. The coefficients are computed during

a preprocess by sampling a continuous texture. Any point on the surface of a

point-sampled object can then be textured by summing up the contributions of the

weighted basis functions of a small neighborhood around the point. Figure 2.1

shows the contributions of different basis functions for a point Q on a surface. In

Figure 2.2 a one-dimensional signal reconstruction is shown, as it is used by EWA

texture filtering.

After warping the basis functions to screen space and then bandlimiting them,

they are referred to as reconstruction kernels. The functions used for the ban-

Chapter 2. Previous Work 15

Fig. 2.2: Here in the one-dimensional case the warping, bandlimiting, and resampling of

a continuous function from basis functions is shown [ZPvBG01].

dlimiting filter and the basis functions are both elliptical Gaussian functions, so it

is possible to express the resampling kernel as a single Gaussian function. Dur-

ing rendering the reconstruction kernels are evaluated, and their contributions are

added up for each pixel and normalized, which finally results in an antialiased

texture for the point-sampled model. This method is called surface splatting. It

provides high-quality texture mapping for point-based models.

Several papers from then on improved high-quality point rendering based on

the ideas of Pfister et al. [PZvBG00] and Zwicker et al. [ZPvBG01]. With the ad-

vent of vertex- and pixel shaders and the hardware accelerated rendering pipeline,

EWA-filtered rendering techniques are now able to achieve over 20 million ren-

dered splats on a 512x512 pixel viewport [BHZK05]. Figure 2.3 shows the dif-

ferent rendering passes for the algorithm presented by Botsch et al. [BHZK05].

The use of several rendering passes is necessary for high-quality splatting algo-

rithms, but this also means that they cannot provide the maximum throughput in

terms of vertices per second (VPS). The high-quality splatting algorithms need

additional attributes at each point, especially normals. These additional attributes

also prevent them to achieve maximum rendering rates.

2.2 Fast Point Rendering Algorithms

Rendering algorithms which try to render as many points as possible per second

trade visual quality against the number of rendered points.

Chapter 2. Previous Work 16

Fig. 2.3: The deferred shading pipeline for GPU-based splatting as presented by Botsch

et al. [BHZK05]. The visibility pass fills the z-buffer, such that the attribute pass can

correctly accumulate surface attributes, like color values and normal vectors, in separate

render targets. The final shading pass computes the actual color value for each image

pixel based on the information stored in these render targets.

This can be useful if the models do not provide all informations that are nec-

essary for high quality rendering, e.g., a normal for each point, or if the sam-

pling density is highly varying. There are several efficient methods to estimate

the normal vectors required for point rendering techniques directly from the point

cloud [TKDS05]. However, normal estimation assumes that the points represent

sufficiently dense samples of an underlying surface, which cannot be assumed for

all models, e.g., long range scans, where the data is simply too sparse in many

regions. Figure 2.4 shows the result of a range scan, where the area around the

scanner’s position is sampled densely. For areas further away, the distance be-

tween neighboring points increases. This is due to the sampling process, where

the laser takes samples in discrete steps. The angle between consecutive shots

of the laser remains constant, and so the distance between two consecutive taken

samples is larger if the samples are at a greater distance to the scanner.

To enable normal estimation, lengthy manual postprocessing is inevitable,

where the geometry is reconstructed from the available scan data, and the noise

within the scan data has to be removed. Then a surface can be approximated to the

available points, and from the surface the normals can be assigned to the points.

It can also be useful to maximize the number of rendered points for large mod-

els in a real-time application like a walkthrough. In this case it is more important

to render many frames per second than to render them in high quality. There ex-

ist algorithms which approximate parts of the point-based models with textures

like Wahl et al. [WGK05] did, or with normal-mapped polygons as shown by

Boubekeur et al. [BDS05], but they have to resample the original point cloud, and

so not all original points are preserved. To render very large models, an out-of-

core part in the algorithm seems inevitable. An alternative is to use compression.

Krüger et al. [KSW05] presented a very effective data structure for resampling

Chapter 2. Previous Work 17

Fig. 2.4: A range scan as seen from above.

the original point cloud and managed to store models with more than 160 mil-

lion points in 256MB of graphics memory. The graphics card can then be used to

decompress the compact representation on the fly and store the vertices in vertex

buffer objects (VBOs). In OpenGL, VBOs are used to store information in the

graphics card memory. If the information is needed during rendering, e.g., the

coordinates of a vertex, the GPU has fast access to it, as the information does

not have to be sent over the system bus (in DirectX the VBOs are called vertex

buffers). By using VBOs, they achieve 50 million VPS, which includes decoding

and rendering of the vertices. It is a lossy compression algorithm, but because of

this the compression is also very effective. Compression and is not yet part of the

system presented in this thesis.

The following algorithms are discussed in greater detail, as they are closely

related to the rendering system that was developed for this diploma thesis.

2.2.1 QSplat

The QSplat algorithm uses a very compact data structure for storing and render-

ing point clouds. The input for the algorithm are either point samples from a

laser scanner, or models consisting of polygons which are then sampled and rep-

resented as a point cloud in a preprocessing step. The layout of the data structure

is a bounding sphere hierarchy. Every child bounding sphere is completely sur-

Chapter 2. Previous Work 18

rounded by its parent. The build up of the structure includes finding normals and

assigning a bounding sphere to each point. If polygon models are used, it is easy

to compute the normals. The radii of the bounding spheres can be derived from

the distance between neighboring vertices such that no holes are left during ren-

dering. If point samples are used as input, first a plane has to be fit to the vertices

in a small neighborhood to find the normals. Then the whole model is surrounded

by a bounding box, from which the bounding sphere hierarchy can be built up by

further subdividing the bounding box and splitting up the contained point samples.

The result of this is a binary tree which contains successively smaller bounding

spheres for each level, down to the original points. A higher branching factor at

the interior nodes will reduce the number of interior nodes. For better memory

efficiency, interior nodes are combined to increase the average branching factor to

approximately 4. The points within the hierarchy contain averaged informations,

like colors and normals, from their children. So an intermediate node represents

all informations from its children. These intermediate nodes are used during ren-

dering for a level-of-detail (LOD) mechanism, where the recursion only steps

down a level in the hierarchy if the projected size of the bounding sphere of the

current intermediate node covers more of the screen then a certain threshold. If

it falls short of the threshold, then the following levels of the hierarchy will cer-

tainly not contribute to the appearance of the model, and so the traversal of the

following levels can be skipped. Instead a splat with the attributes of the current

intermediate node is drawn.

After the bounding sphere hierarchy has been built, the attributes of the nodes

are quantized. In the bounding sphere hierarchy, it is possible to encode the po-

sition and the radius of a bounding sphere relative to its parent sphere. QSplat

uses 13 different values for the radius of a sphere, which express the size relative

to the parent’s sphere radius. So it is possible to have a radius that is 1

13
up to

13

13
of the parent’s radius. Similar the position of the bounding sphere’s center is

described, only that then the distance on the X, Y, and Z axis are quantized to parts

of 13. This would give 134 possible combinations for the attributes of a bounding

sphere, but in reality only 7621 combinations are valid [RL00]. Other ones result

in bounding spheres which are not completely covered by the parent sphere. The

valid combinations can be encoded in 13 bits, and these are the first 13 bits for

the description of a QSplat node. The normals are also quantized. Instead of sav-

ing coordinates of a normal vector, the possible directions of a normal vector are

given by a 52x52 grid for each of the six sides of a cube around the point sample.

This quantization suffices to produce no visible artifacts during rendering due to

errors in the shading calculations. This way a normal vector can be encoded in 14

bits, and the direction can be decoded during rendering by a single table lookup.

The color of a node is quantized to a 5-6-5 format, therefore it can be saved in

16 bits. The size of a cone of normals for a node is encoded in just 2 bits. The

Chapter 2. Previous Work 19

Fig. 2.5: The file and node layout of QSplat. (a) The tree is stored in breadth-first order.

(b) The link from parent to child nodes is established by a single pointer from a group

of parents to the first child. At leaf nodes the pointer is not present. (c) A single node

occupies 48 bits.

bits describe half angles, whose sines are 1

16
, 4

16
, 9

16
, and 16

16
. The cone of normals

is used for backface culling, and despite its quantization, 90 percent of the nodes

which would be culled using exact normal cone widths are discarded.

The quantized hierarchy is written to disk. For rendering, the hierarchy is read

into memory. At first, only visible parts are read in. This can lead to lags when

the user turns to a part of the scene which is not already in memory, since then

it has to be loaded from a disk. In this case, QSplat does not draw the scene

to its entire detail level. This is possible because the bounding sphere hierarchy

is laid out in breadth-first order. This means that the scene is represented as a

whole at a certain LOD once this level has been read into memory. So if the user

zooms into the scene, the next level has to be loaded, and in the meantime, the

last available level in memory is drawn to the screen only with larger splats. If the

user waits, the rendering will refine to the highest available detail level, as soon

as it has been transferred to memory. QSplat uses splats to draw the nodes of the

bounding sphere hierarchy. They are correctly sized and oriented elliptical splats.

On average, the QSplat data structure with quantization applied uses 50 bits per

node, and includes node position, bounding sphere radius, normal, color, cone of

normals, and 3 bits of information for the traversal. To minimize the number of

pointers needed for hierarchy traversal, QSplat uses at each node only one pointer

to the children of this node. Furthermore, the pointer is not needed if all of the

children are leaf nodes. The average branching factor for a node in the bounding

Chapter 2. Previous Work 20

sphere hierarchy is 3.5, which means the total number of nodes will be 1.4 times

the number of leaf nodes. The storage requirements for the whole tree equals

approximately 9 bytes times the number of leaf nodes. A deficiency of QSplat is

that the encoding of the position and radius and the hierarchical traversal require

it to use the CPU for decoding the information.

2.2.2 ρ-grids

An octree can be described as a recursive grid, with a regular and uniform subdivi-

sion at each level. One octree node is subdivided into 2 x 2 x 2 = 8 sub cells at the

next octree level, such that the original cube is regularly and uniformly subdivided

by the cells of the next octree level. ρ-grids are a generalization of this idea. They

subdivide each node into ρ x ρ x ρ sub cells.

Duguet et al. showed that a ρ-grid with ρ = 3 is the best compromise in terms

of rendering cost and memory cost if the attributes per node do not exceed 16

bits [DD04]. Duguet et al. use a quantized normal encoded in 13 bits similar

to [RL00], and 3 bits for a material index. For ρ = 3 a ρ-grid is dubbed trigrid.

To get the actual position of a splat, the information which is implicitly encoded

by the position of a cell in the trigrid is decoded. The position of the root cell

is known. It is projected to window coordinates, which yields homogeneous co-

ordinates before viewport transformation. To get the position of the child cells,

their displacement vectors relative to the parent cell are precomputed, projected

to window coordinates, and stored in a table. This is done for each trigrid level.

Then during rendering the trigrid is traversed in depth-first order, and the positions

of the child cells can be computed from the position of their parent cell with just

three additions. What remains to be done is the viewport transformation.

The trigrid is a hierarchical rendering algorithm. The decision if an interme-

diate node can be rendered or the recursion has to step down a level is done by

projecting a screen bounding rectangle. This is a conservative approximation of

the projection of the bounding box of a cell. If the rectangle is larger then a certain

threshold, for example larger than a pixel, then the recursion continues. Otherwise

the recursion stops, and a splat is drawn with the size of the projected rectangle.

This screen bounding rectangle can also be used for view frustum culling. The

shading of materials is precomputed for every value of the quantized normal.

This means that for every angle that can be represented by a quantized normal,

the shading is available in a table. So shading can be done by a table lookup. The

total bitcount for a node in the trigrid is composed of 16 bits for the attributes, and

27 bits for the childhood information. This totals 43 bits per node. The branch-

ing factor of the intermediate nodes is approximately 9, which is very efficient.

Including 32 bits per intermediate node for a pointer to the node’s children, the

memory consumption per leaf node is approximately 4 bytes [DD04].

Chapter 2. Previous Work 21

Fig. 2.6: The left image shows a ρ-grid rendering a model consisting of 1.3M points at 2.1

FPS on a 200MHz Compaq IPAQ. The model in the right image is rendered at 2.3 FPS.

We must mention though, that a trigrid is only efficient if the coordinates of

the encoded point samples are clustered in three dimensions around a small area,

because then the trigrid is massively occupied. If the point samples are spread

over some larger area, so that the resulting trigrid is sparsely occupied, then the

amount of intermediate nodes becomes dominant, and can reach up to 70 percent

of the whole trigrid structure. This is not only inefficient for storage but also for

rendering. A shortcoming of the structure which prevents it from using hardware

acceleration is that the decoding has to be done on the CPU, since positions of the

splats are dependent on the position calculation of their parent cells in the trigrid.

2.2.3 Sequential Point Trees

The SPT algorithm [DVS03] uses a hierarchical data structure, which is sequen-

tialized so that it can be processed on the GPU. A GPU cannot resolve the hierar-

chical dependencies of a data structure like the CPU can, because the GPU does

not have access to the whole data structure. So a restructuring is needed.

At first the points are inserted into an octree. Each point stores its center posi-

tion p, an average normal n and the diameter d of a bounding sphere surrounding

p. The leaf nodes are the original points, and diameters for bounding spheres

around leaves should be roughly equal. The inner nodes of the octree represent

Chapter 2. Previous Work 22

Fig. 2.7: As perpendicular error for a disk the distance between the two planes parallel to

the disk enclosing all children is used.

Fig. 2.8: The tangential error measures how well a parent disk approximates the children’s

disks in the tangent plane.

the averaged informations of their children. The points will be visualized as splats,

and to calculate the informations for the inner nodes, a splat is computed that cov-

ers the splats of its child nodes [DVS03]. This results in two error measures,

namely a so called perpendicular error and a tangential error. The perpendicular

error measures the error when looking at the silhouette edges of an object (see

Figure 2.7), and the tangential error measures how exact the parent splat covers

the child splats when looking along the −n direction of the parent splat onto the

child splats (see Figure 2.8). The errors can be combined to a geometric error ẽg.

This geometric error is projected to screen space during rendering, resulting in the

image error ẽ. If ẽ exceeds a user defined error threshold ε, which is measured

in pixels, then the recursion steps one level down the hierarchy. If an acceptable

level is reached, a splat is drawn with size d̃ = d/r.

The data structure so far can only be processed by the CPU. A processing by

the GPU requires a different error measure. When traversing a hierarchy, it is im-

plicitly known if an ancestor node has been rendered, because then the dependent

Chapter 2. Previous Work 23

Fig. 2.9: The same nodes as hierarchical point tree and as sequential point tree. Left

column: Nodes a. . .m with [rmin . . . rmax] as point tree in the upper row and as SPT

sorted by rmax in the lower row. Other columns: In the upper row the black line shows the

tree cuts for different view distances. In the lower row the cut in the SPT representation.

The process bar shows which nodes are sent to the GPU, and the empty bars in the process

range show, which nodes are culled by the GPU.

subtree will not even be processed. If the data structure is sequentialized, it is not

known if an ancestor has already be rendered, so the algorithm has to check for

this case as well. The SPT algorithm uses two simple error measures for the two

cases. It calculates an rmin and an rmax for each splat, which is the minimum and

maximum distance to the viewpoint for which the splat will be used. If the dis-

tance lies within, the splat will be rendered. The test in the hierarchical traversal

is whether ẽ = ẽg/r < ε, which can be rewritten as rmin = ẽg/ε. The error ẽ is

independent of the viewpoint. The value rmin is stored at each node. The value

for rmax is calculated by taking rmin of the parent node and adding the distance

between the two nodes, which will result in a display with no holes in it. These

error measures can be checked by a vertex program on the graphics card.

The rmax value allows for another optimization. In the left column Figure 2.9

depicts how a hierarchical point tree is represented as SPT. If the SPT is sorted

by rmax, then the CPU can cull the nodes whose rmax value is too small for the

current viewpoint, so that they will not be rendered. It then sends all points from

the first one in the rmax ordered list to the last one that will not be culled to

the GPU (this situation is shown for three different distances to the viewpoint in

the bottom row on the right side of Figure 2.9). So the GPU is relieved to cull

fewer nodes. The SPT is sorted by rmax only once in a preprocessing step. All

other computations can be done directly by the GPU. The average CPU usage is

only 0.4 percent during rendering, and an average of 60 Million rendered splats is

achieved [DVS03]. A disadvantage of the SPT algorithm is that within an SPT, no

Chapter 2. Previous Work 24

Fig. 2.10: Hierarchical rendering with layered point clouds. The figure is built from an

accumulation of different point clouds. From left to right: level 0 rendered with 2 clusters

and 4K splats, level 0+1 rendered with 6 clusters and 12K splats, and finally the whole

model rendered with a pixel tolerance of 1 with 1720 clusters and 3435K splats.

view-frustum culling can be applied. Another disadvantage is that it is limited to

objects that fit completely into the memory of the graphics card, since the VBOs

it uses to draw the models are stored in graphics card memory. Finally it needs a

global LOD selection, so even if parts of the model could be rendered at a coarser

LOD, the LOD is the same for all parts. Therefore more points than necessary

have to be processed.

2.2.4 Layered Point Clouds

Layered point clouds [GM04] use a quite different data structure for hierarchical

rendering compared to the two afore-mentioned algorithms. Instead of creating

new points which average the contributions of their children in the hierarchy, no

new points have to be created for hierarchical rendering. This is a consequence of

the data storage used by layered point clouds.

The input is a set of evenly sampled points which are surrounded by a bound-

ing box. Then a subset of these points is extracted by a heuristic method, such

that the points in the resulting subset are again evenly distributed. This means

that the distance between two points of the subset is close to an average value r.

Chapter 2. Previous Work 25

This average value will then be used in the rendering stage (see below). The re-

maining points are divided in two groups at the midpoint of the longest axis of the

bounding box. The two groups are then recursively subdivided, until only a few

points < M are left, in which case a leaf node is produced. This means that the

sum of all levels of this point cloud’s hierarchy, starting at the root node, repre-

sents the whole model at a certain level without producing new nodes. Each level

refines the representation from the upper levels. Figure 2.10 shows how different

point clouds contribute to the appearance of the final model. For each level in the

hierarchy, the mean distance r between two neighbouring points is known, so a

minimum distance between points for the projected point clouds can be given as

a matching criterion. If the minimum distance is reached, then the traversal of the

hierarchy stops and the model should be completed. The minimum distance also

serves as the splat size that will be rendered. As a second memory saving method,

the attributes of one sample are quantized, delta encoded and then compressed

with the free available LZO compression library. The position is quantized such

that the quantization error is inferior to half of the input sampling distance. This

results in 13 to 15 bit for each of the X, Y, and Z axis. The normal is quantized

to 16 bits. Delta encoding is then applied, which means that for two given values,

not both values will be saved, but only the value of the first one, and then the dif-

ference to the next one is saved. This can be done for several values, and it is done

as a sort of preprocessing for the final step, the entropy encoding with the LZO

algorithm. This results in a sample size of 40 bits or less, which is quite good, but

no color is saved, compared to the QSplat algorithm. The entropy decoding can

be done in real-time with the LZO algorithm.

The hierarchical structure is split in two parts, namely an index tree and a

cloud repository. The index tree is used for traversing the structure. One node of

the index tree references its associated point cloud with a 32 bit index. A node

contains information that is needed for traversal, that is a bounding sphere, the

sample spacing, a cone of normals, and the index of the two children. The index

tree does not need very much memory, since each node represents M points. M
is user defined and can range from 1 to several millions, but this is dependent on

the memory of the graphics hardware (see below). The compressed point clouds

are stored in a repository, which is accessed by the rendering algorithm through

a data access layer. If a point cloud is needed for display, the access layer will

fetch it, and decompress it. Since the access layer masks the location of the repos-

itory, it can also be on a remote site. Through the use of the data access layer,

models can be rendered that do not fit as a whole in the memory of the rendering

client. Another benefit of this data structure is that it supports a representation of

point clouds that is amenable to hardware acceleration. A disadvantage is that the

build up process needs uniformly sampled point clouds as input. So actually only

postprocessed models can be used with this algorithm. The visual quality of the

Chapter 2. Previous Work 26

rendered models cannot compete with high-quality rendering algorithms, as only

non anti-aliased point primitives are used for rendering.

2.2.5 XSplat

In XSplat [PSL05] Pajarola et al. took the idea of the SPT algorithm [DVS03] one

step further, and developed a data structure that allows points to be stored not only

in graphics memory, but also in main memory and virtual memory. Therefore

they use a block-based sequentialized multiresolution hierarchy. The input is a

level-of-detail (LOD) hierarchy H , where the original points are at the leaf cells,

and the interior nodes average the information of their children. In this hierarchy

each node represents a surfel and stores several attributes, i.e., the position p,

color ~c, normal ~n, and bounding sphere radius r. For each node an rmin and

an rmax value are calculated, which are the minimum and maximum distance to

the viewpoint for which the splat will be used. This is done similar to [DVS03],

but Pajarola et al. use a simpler screen-space error metric which only takes into

account the projected size of the bounding sphere. This means, that with XSplat it

is not possible to adjust the point size according to the local curvature of the object

or to changes in the geometry, like surface edges. In the sequentialized hierarchy

the rmin and rmax values are used as a substitute to the hierarchical traversal.

This is possible because the two distances can be used to decide if a point should

be rendered without the knowledge if the parent cell or the children cells will be

rendered as well. For each node also a layer index l is calculated, which is the

length of the longest path from that node to a leaf node in the subtree below it.

The length is expressed in the number of nodes the path consists of. And finally

a z-index is calculated for each node, which is a linear index on the leaf nodes

that can be generated by a proper traversal of the hierarchy H . An inner node

gets the z-index that is the smallest of one of its children. In Figure 2.11 a tree is

shown where the layer index and the z-index are already generated, and each node

is assigned an index-pair (li, zi).
After all nodes in the hierarchy have the necessary indices, the hierarchy is

sequentialized. The sequentialized hierarchy S is then sorted according to the

index pairs in lexicographical order, with decreasing layer index and increasing z-

index. Figure 2.12 shows the sequentialized and ordered hierarchy of Figure 2.11.

The sorting according to the previously found indices causes nodes which are

likely to be rendered at the same LOD to be close together in the hierarchy S.

This hierarchy S could be used for rendering models that fit in the memory of

the graphics cards. To allow the rendering of larger models, the hierarchy is sub-

divided into blocks, as depicted in Figure 2.13. The number of blocks is an order

of magnitude smaller [PSL05] than the number of points within the hierarchy, and

therefore the list of blocks B can be managed in main memory. Each block in B

Chapter 2. Previous Work 27

Fig. 2.11: Hierarchical layer-based LOD classification for the nodes. The leaf nodes are

linear ordered in z-index.

Fig. 2.12: Final ordering of nodes in the sequentialized hierarchy S.

Fig. 2.13: The hierarchy S is subdivided into blocks. Empty spaces in the blocks are

padded with NULL points.

Chapter 2. Previous Work 28

Fig. 2.14: Ordering of blocks in B with respect to the block’s rmax values and selection

of range.

averages the attributes of the nodes contained within. To enable rendering from

the sequentialized representation, it also stores values rmin and rmax, which are

calculated by rmin = min(rmini) and rmax = max(rmaxi) from the nodes i
contained in the block. The list of blocks B is then ordered by decreasing rmax
which can be seen in Figure 2.14.

The rendering in the XSplat algorithm is now as follows. For the current

viewpoint v and a user-defined screen-space error tolerance ε, a block Bi is only

rendered, if the blocks rmini < dmin and rmaxi > dmax, where dmin =√
ε × (|~p0 − ~v| + r0) and dmax =

√
ε × (|~p0 − ~v| − r0). The values p0 and r0

are the position and bounding sphere radius of the block with the largest bounding

sphere in B. An example is shown in Figure 2.14, where only some blocks of the

hierarchy are selected for rendering. The blocks can be cached in the memory of

the graphics card to increase the rendering performance. The arrays of S and B
are accessed with memory mapped files. The blocks can be swapped in and out

of graphics card memory, depending on the coarse LOD block selection for the

current viewpoint. The fine-grain LOD selection of single points is accomplished

as described in [DVS03].

The XSplat system has the advantage that large models which do not fit into

the main memory of the computer can be rendered. For rendering the points can

be cached on the graphics card, so hardware-accelerated rendering is possible.

Nevertheless Pajarola et al. report only 1.2 FPS for rendering a model consisting

of 14M points, which includes the out-of-core processing. The disadvantage of the

XSplat system are the requirements of the proposed data structure. The memory

requirements for models encoded with the XSplat algorithm are similar to models

encoded with the SPT algorithm, and both systems use additionally created points

to represent the inner nodes of the original point hierarchy. These additionally

created points prevent the systems to reach the maximum number of rendered

points per second that a graphics card is capable of, because some inner points

Chapter 2. Previous Work 29

will always be culled by a vertex shader, but they have to be processed as well.

2.3 Summary

From the original idea of using points as rendering primitives [LW85], the further

development of point-rendering algorithms can be divided in two areas. In one

area the main focus is on rendering the point-based models with high visual qual-

ity. In the other area the main focus is on rendering as many points as possible

within a given time period. High-quality rendering needs more information per

point and uses several rendering passes to create images, therefore the number

of vertices per second is not as high as possible. Algorithms developed for the

fast rendering of points usually set the visual quality aside in order to be able to

render more points per second, which is advantageous for interactive applications.

But none of the algorithms is designed to get by with only minimal information

available at the points, i.e., the position without a normal associated to it. With

minimal information per point the visual quality will not be as good as of any

of the aforementioned algorithms, but on the other hand all point clouds can be

rendered, even if only a position per point is available.

Chapter 3

Memory Optimized Sequential Point

Trees

The main contribution of this thesis is a new algorithm [WS06] which renders

point-based models as fast as possible. The vertices per second (VPS) that the

algorithm can render are close to the theoretical limit of the graphics card (see

also Chapter 6). The data structures that were developed for the algorithm are

used for two different purposes. The Memory Optimized Sequential Point Trees

(MOSPTs) described in this chapter are used for holding the actual points the

model consists of, whereas the Nested Octree described in Chapter 4 is used to

organize the MOSPTs in a way that allows for out-of-core rendering of a model.

A smaller point cloud that fits entirely in the memory of the graphics card can be

converted to a MOSPT, without using the Nested Octree structure.

Both data structures were developed for rendering point clouds that have only

minimal attributes. Such point clouds are typical for the output of range scanners.

With only position and sometimes color available at a point sample, the presented

algorithm can be used for fast reviewing of the scans coming directly from the

scanner without the need for postprocessing.

3.1 Motivation

A MOSPT is a new sequentialized hierarchy which is optimized for usage in the

memory of the graphics card. The points and associated colors within the hi-

erarchy are stored in arrays in the memory of the graphics card, and therefore

the graphics processing unit (GPU) can access and process them very fast dur-

ing rendering. A MOSPT uses only the points of the original point cloud, and

it does not create any additional points for the inner nodes. This is much in

the sense of vertex clustering algorithms, as described by Luebke [LE97] and

Rossignac [RB93], where one vertex is taken from the input vertices to repre-

sent all vertices in a hierarchy node. A MOSPT only needs the positions of

points to work properly, and there is no need for normals per point. This can

Chapter 3. Memory Optimized Sequential Point Trees 31

Fig. 3.1: A binary MOSPT after all points have been inserted. Only leaf nodes contain

points. The leaf nodes at the maximum recursion level can contain more than one point,

if leaf node strategy 3.a is used.

be of importance if the raw data from a range scan is used as the original point

cloud. Raw data from range scanners usually cannot provide a normal for each

point. Instead the normals would have to be estimated in a postprocess, which

is a time-consuming and especially error-prone procedure. Using a MOSPT as

data structure, an efficient LOD algorithm can be used which does not need any

additionally created points, and this is in contrast to many other point-based LOD

algorithms [RL00, PZvBG00, DD04, DVS03], where one level in the hierarchy

represents the model at a certain LOD as a whole.

3.2 Build Up

The input for a MOSPT is a set of points P = {P1, P2, . . . , Pi, . . . , Pn}. The only

necessary attribute for one point is the coordinate of the point. Other attributes are

not necessary, but if a color is available, it can be used as well. It is not necessary

to provide a normal for each point, because the rendering algorithm also works

without normals. The downside of not having normals is that no advanced lighting

or backface culling is possible.

The points are then inserted into an octree one after another. There are three

possibilities when a point reaches a leaf cell:

1. If the leaf cell is empty, the point is stored there.

Chapter 3. Memory Optimized Sequential Point Trees 32

2. If there is already a point in the leaf cell, then the leaf is split, and both

points are filtered down in the hierarchy. The leaf node so becomes an inner

node.

3. If the leaf node is at the maximum recursion level for the hierarchy and

already contains a point, then there are two different strategies:

(a) Add the point to the node.

(b) Reject the new point and write it to disc in the proper rejection file,

because it does not add any new information.

The leaf node strategy 3.a is used either if only one MOSPT will be built up,

or if a Nested Octree will be built up, and the number of points is below a certain

threshold (see Chapter 4.2).

After inserting the points in the octree, only leaf nodes will hold points. In a

second phase, a bottom-up strategy is used to choose a point for all inner nodes

that were created during inserting the points. For this, each leaf node chooses a

representative. Different criteria could be used here, and we decided to choose

the point which has the least distance to the averaged color of the points in the

leaf node. The distance between colors is calculated by a formula which takes

into account the perceptual color distance [Com06]. The representative is then

pulled up the hierarchy, and put into the parent node. The procedure is repeated

recursively, until the root node of the MOSPT gets a point. In Figure 3.2 a MOSPT

with 4 levels is shown. Note that not all inner nodes hold points. This is a result

of the LOD mechanism used by the MOSPT, where each LOD is assembled from

the points of a level in the hierarchy together with all points that reside in levels

above the chosen level. Each additionally rendered level refines the geometry of

the levels above it.

Figure 3.3 shows how the different LOD levels look when using the MOSPT

of Figure 3.2. At LOD level 0 the hole MOSPT is represented by only one point.

At LOD level 1 the one point of LOD level 0 is used to represent the left part of the

MOSPT and the only one point stored at level 1 in the hierarchy (see Figure 3.2)

is used for the right part. At level 2 already 4 points are needed to represent the

whole MOSPT, but again the points from the upper two levels of detail can be

used to represent parts of the LOD. At level 3 finally all points from the original

hierarchy (see Figure 3.1) are used. At any LOD only the points of the original

hierarchy are used.

The LOD algorithm of the MOSPT relies on the fact that all points that are

within the bounding box of a node in the hierarchy are projected to the same

pixel on screen if the node appears as large as or smaller than a pixel on screen.

Utilizing this property, it does not matter which point to choose, e.g., for the root

Chapter 3. Memory Optimized Sequential Point Trees 33

Fig. 3.2: In the second phase a bottom-up algorithm is used that pulls up one represen-

tative of the children to the parent nodes. The numbers beside the arrows indicate the

iteration step at which the pull-up occurs.

node of the MOSPT. Any point in the hierarchy can be chosen, as they would all

be projected to that same pixel.

This is convenient for the build up of the LOD hierarchy, but it also means that

aliasing will occur at the higher levels of detail, due to undersampling of the point

cloud. For better results the color contributions of the points should be filtered

some way to avoid aliasing.

3.3 LOD selection

The points which represent a level of detail in a MOSPT are assembled from all

levels above a certain level in the hierarchy. This level is chosen by a screen space

error metric. For this, each node in the MOSPT is associated with an error e, and

we choose e to be the bounding sphere diameter d of the node. When a node is

projected to screen, the error becomes e/r. The value r is the distance from the

camera position to the vertex of the object’s bounding box that is closest to the

camera (see Figure 3.4). This is the same bounding box as for the root node of the

MOSPT.

Let ε be the error threshold which should not be exceeded by the LOD, e.g.,

1 pixel. This means that the projected length of the bounding sphere diameter of

the appropriate LOD should not exceed the size of 1 pixel on screen. The test for

finding the appropriate LOD can then be written as e/r < ε.
The bounding sphere diameters for the levels in the hierarchy are stored in an

array, sorted by level number in the hierarchy, beginning with the highest level.

Chapter 3. Memory Optimized Sequential Point Trees 34

Fig. 3.3: The points of the MOSPT that are used for the different levels of detail.

Fig. 3.4: The value of r measures the distance between the camera and the bounding box

of the object.

Chapter 3. Memory Optimized Sequential Point Trees 35

Attribute size

position p 12 bytes

color c 4 bytes

Tab. 3.1: Attributes of a point in the MOSPT data structure.

For each level the diameter is projected to screen space for the current value of r,

and it is calculated how many pixels the diameter takes on screen. The appropriate

LOD is then found by simply comparing the projected diameters to the threshold

ε, beginning at the highest level in the hierarchy. The first level where e/r < ε can

then be used for rendering.

3.4 Memory Requirements

A point must store only its position and color. The bounding sphere radii for

the different levels are stored outside the MOSPT. Therefore the MOSPT data

structure uses only 16 bytes per point (see Table 3.1). Because the bounding

sphere radii are not stored with the points, the whole MOSPT can use only one

LOD at a time. This means that more points than necessary are rendered. Since

a model usually has some extent, not all areas in a model have the same distance

to the viewpoint. Some areas could be rendered at a coarser LOD if they are

further away from the viewpoint, but when only one LOD can be used, they will

be rendered at a LOD that is too fine for their distance to the viewpoint.

3.5 Sequentialization

The hierarchy described so far can be processed by the CPU, but for fast rendering

it is preferable to store the geometry on the graphics card. For this the hierarchy

has to be transformed into a representation that can be processed by the GPU.

Similar to the SPT data structure [DVS03], the hierarchy is sequentialized into an

array, with the root node being at the first position. The sequentialization can be

achieved with a simple level order traversal of the hierarchy. In the resulting array

the points are already sorted by decreasing recursion level, and all points of one

level are within a continuous block. In Figure 3.5 the hierarchy of Figure 3.2 is

represented in the sequentialized form. The sorting by decreasing recursion level

is an optimization that allows the selection of the appropriate LOD by simply

rendering a prefix of the array. The optimized speed of the SPT is a result of this

selection, not because of the culling of unnecessary vertices in the vertex shader.

Chapter 3. Memory Optimized Sequential Point Trees 36

Fig. 3.5: The MOSPT of Figure 3.2 in the sequentialized representation. For each LOD

only a prefix of the array has to be rendered. The upper levels of the hierarchy are also

used for the lower levels of detail.

3.6 Rendering

The rendering of a MOSPT requires three steps:

1. Find the first hierarchy level at which e/r < ε. This is the level which

represents the appropriate LOD together with all levels above it in the hier-

archy. The viewing distance r is measured at the position of the model that

is closest to the camera, e.g., at the closest vertex of the bounding box of

the model.

2. Get the number of points i that have to be rendered for this level. This is

then the index into the array where the sequentialized hierarchy is stored.

3. Instruct the GPU to render the first i points of the MOSPT.

For rendering no vertex program is needed to process the points of the MO-

SPT, but it could be useful to implement a simple point size attenuation vertex

program for view distance dependent point sizes. There exists the OpenGL com-

mand glPointParameters which can be used to attenuate the point sizes

according to the view distance, but this command slows down rendering speed by

some 30%.

3.7 Comparison MOSPT with SPT

The MOSPT data structure is developed starting from the SPT data struc-

ture [DVS03]. An SPT is a sequentialized hierarchy (see Chapter 2.2.3), which

uses the inner nodes in the hierarchy for a level of detail (LOD) representation of

Chapter 3. Memory Optimized Sequential Point Trees 37

the model. With this it is possible to render the model with fewer points if the

viewpoint of the user is in some distance to the model. The attributes of one inner

node of the hierarchy are the averaged values of the attributes of the children of

the inner node. This means that an SPT does not only contain the points of the

original model in the leaf nodes, but it also contains additionally created points

in the inner nodes. These additionally created points have to be processed during

rendering, even if some of them are culled by a vertex shader. So the number of

processed points always exceeds the number of rendered points when using the

SPT data structure. The overhead of the SPT data structure can be described as

a combination of a structural overhead Os and a memory overhead Om per leaf

node. The structural overhead Os can be computed as [DD04]

Os ∼
1

α − 1
,

and is dependent on the average branching factor α of the inner nodes. The

branching factor of an inner node refers to the number of children that the inner

node has. If a plane is sampled with a range scanner and the points are then sorted

into an octree, the branching factor will be approximately 4. Therefore a plane in

the SPT data structure has a structural overhead Os of 33%. A higher branching

factor is better, because it results in less inner nodes, whereas a lower branching

factor results in more inner nodes. For long range scans the branching factor is

around 3, which results in an Os of 50%.

Each point has to store additional attributes that are needed during rendering

the sequentialized hierarchy. These attributes can be thought of as memory over-

head, as they are not necessary for rendering the point, when it is not inserted

into a hierarchy. Table 3.2 shows the attributes of the points in the sequentialized

hierarchy of an SPT. The bounding sphere radius d has to be stored at every point,

although the nodes at one level all have the same bounding sphere radius. This

is necessary because a node in the sequentialized hierarchy has no information at

which level it resides. Alternatively an index to an array of bounding sphere radii

could be used as attribute, and the bounding sphere radii are passed as uniform

variables to the vertex shader.

The bounding sphere radius together with the split- and merge distance ac-

count to an 12 bytes increase in memory for each point, which is 75% of the

memory of the original attributes and shall be called the memory overhead Om of

a point. Together with the structural overhead, the total overhead O of the SPT

structure can be calculated. Let M be the memory requirements without any over-

head, let MO be the memory requirements including the total overhead, and let N
be the number of the original points in the model. Then if a Point with Color
equals 16 bytes, the structural overhead Os is 50%, and the memory overhead Om

is 75%, so

Chapter 3. Memory Optimized Sequential Point Trees 38

Attribute size

position p 12 bytes

color c 4 bytes

bounding sphere radius d 4 bytes

split distance rmin 4 bytes

merge distance rmax 4 bytes

Tab. 3.2: Attributes of a point in the SPT data structure.

M = N × Point with Color,

MO = (N + N × Os) × (Point with Color + Point with Color × Om),

O =
MO − M

M
= 162.5%,

which indicates that the memory requirements of an SPT are more than double

the memory requirements of the original point cloud! The MOSPT data structure

is able to avoid the structural overhead as well as the memory overhead, while

still providing an efficient LOD selection. The SPT data structure needs the addi-

tionally created points for the inner nodes, to render the model at a coarser level

of detail. The MOSPT data structure only uses the points of the original point

cloud and can avoid the additionally created points. Therefore it can render the

same model with more FPS. In Figure 3.6 the SPT hierarchy is shown that results

from the hierarchy created in 3.1. Compared to the MOSPT hierarchy shown in

Figure 3.2, the SPT hierarchy has to create additionally points for the inner nodes.

The error metric for a MOSPT is the projected size of the bounding sphere di-

ameter in screen space. The test for the appropriate LOD is to find the level in the

hierarchy where e/r < ε with r being the distance of the model to the viewpoint,

e being the error associated with the node, and ε being the error threshold. This

error metric can only be evaluated on the CPU. To be able to evaluate this error

metric on the GPU, the test could be rewritten by defining rmax = e/ε, and then

assigning each level in the hierarchy a distance rmax at which it should be ren-

dered first. The test for the appropriate LOD would then need to find the last level

in the hierarchy where r > rmax and render it. Additionally a value rmin has to

be defined, which is the distance at which a level in the hierarchy is rendered last,

given the case that the viewpoint is approaching the model (see also Chapter 2.2.3

and [DVS03]). This conversion is only necessary if the LOD is selected for each

point by a vertex shader [DVS03], it is not necessary when using MOSPTs. A

MOSPT renders only one LOD, and there is no LOD selection at the points.

Chapter 3. Memory Optimized Sequential Point Trees 39

Fig. 3.6: The SPT that results from the hierarchy created in 3.1. The points in the inner

nodes average the information of their children.

The SPT actually uses a more sophisticated error metric that tries to estimate

the correct splat size depending on the local curvature of the model, as well as

on how well a splat covers its children. This is possible because they assume a

normal n for each point (see also 2.2.3). The error metric they use results in values

for rmin and rmax that are varying even for nodes at the same hierarchy level.

In an SPT the LOD is really chosen at each node, i.e., regions closer to the

viewpoint will be rendered at a finer LOD as regions further away. This is pos-

sible, because the bounding sphere radius of each node is stored at the node (see

Table 3.2). But there is no advantage to this behaviour, because the number of

points that have to be processed remains the same. The nodes that have to be pro-

cessed by the GPU are selected by the CPU, and for the regions further away from

the viewpoint also the points for the finer levels of detail are chosen, even if they

are later culled by the vertex program. In Figure 3.7 the left part shows the cut

through the hierarchy, where the r is in a fuzzy zone between min(r) and max(r),
where min(r) is the viewing distance to the part of the model that is closest to

the viewpoint. In contrast, for a MOSPT the LOD is chosen only once, and it is

determined for the part of the model that is closest to the viewpoint (see 3.4), so

r = const in the right part of Figure 3.7. The model is then rendered using only

one LOD.

The rendering of the SPT is also different than the rendering of the MOSPT.

Both data structures store their sequentialized hierarchy in an array. Within the

sequentialized SPT hierarchy, the points are sorted by the rmax value, within the

sequentialized MOSPT hierarchy, the points are sorted by the hierarchy level. In

Chapter 3. Memory Optimized Sequential Point Trees 40

Fig. 3.7: Left: In an SPT, r = const selects different levels of the hierarchy. Furthermore,

nodes above and below r need to be culled. Right: In an MOSPT, r = const selects

exactly one level in a hierarchy from an MOSPT due to the screen splat error metric.

Figure 3.8 the difference can be seen for the viewpoint at r = 25. The MOSPT

only selects points from the original point cloud and also renders all of the selected

points, while the SPT has to select and process the additionally created points from

the upper levels of detail. They are then culled by a vertex program. The MOSPT

in contrast does not need a vertex program. Both data structures cannot use view

frustum culling, so for viewpoints in the center of the model all points of the data

structures have to be rendered. In the case of the SPT, the total number of points

is larger than the number of original points, and therefore the rendering of the

SPT is even slower than rendering all original points in an unsorted VBO, if the

viewpoint is in the center of the model.

Note that the SPT in Figure 3.8 is built up using a different error metric as

described by Dachsbacher et al. in [DVS03]. The SPT in Figure 3.8 uses an error

metric where only the projected size of the bounding sphere diameter is used to

determine the values for rmin and rmax. The result of this error metric is that all

nodes of one hierarchy level have the same values for rmin and rmax.

The levels of detail for the SPT average the information from the children,

therefore the colors in the coarser levels of detail are similar to a low pass filtered

image of the model. The MOSPT shows more aliasing, and this is due to the

undersampling of the model for the coarser levels of detail (see Figure 6.5).

3.8 Summary

The MOSPT data structure is based on the SPT data structure and tries to retain the

speed of the SPT algorithm while reducing its memory requirements. A MOSPT

uses only the points of the original model, and only needs to store the position

and color of each point, which cuts the memory requirements by more than 50%

compared to an SPT. A MOSPT provides an efficient LOD algorithm, and does

not require the models to have a normal at each point. It uses a simpler error

Chapter 3. Memory Optimized Sequential Point Trees 41

Fig. 3.8: The left side shows the MOSPT resulting from the hierarchy in 3.1, the right side

shows the SPT resulting from the same hierarchy. The SPT has to process more points for

the camera distance at r = 25, but the number of rendered points is the same as with the

MOSPT.

metric than the SPT algorithm, so only one LOD can be chosen for the whole

model. Finally the hierarchy is sequentialized and can be stored in the graphics

card memory, where it can be directly accessed by the GPU for fast rendering.

The selection of the appropriate LOD is done on the CPU, which can be done

fast. The MOSPT does not allow for view-frustum culling. The size of a MOSPT

is limited to the memory of the graphics card. For this, smaller MOSPTs can be

embedded into an outer hierarchy, e.g., a Nested Octree (see Chapter 4).

Chapter 4

Nested Octree

Point clouds of large objects can consist of several 100 Million points, and for such

huge point clouds special data structures are necessary, since they usually do not fit

in the memory of a computer. For rendering such huge models, an efficient out-of-

core strategy has to be used, where only the part of the model which is currently

visible is loaded into memory. It is also preferable to find a data structure that

allows for using the hardware acceleration of current graphics cards. This is not

possible if just a simple octree with a single point per node is used. The traversal

of the octree does not allow for an appropriate usage of the graphics API. With

the hardware-accelerated pipeline, it is preferable to divide a model into blocks

that can be stored in the memory of the graphics card, so that many vertices are

passed to the GPU in one call. It is not so important that the GPU processes only

vertices that are actually rendered. If the selection of the vertices is good enough,

processing more points than necessary is faster than exactly selecting only visible

points for rendering. This problem is similar to rendering large triangle meshes

at different levels of detail. GeoMipMaps introduced by deBoer [dB00] use a

quadtree to divide a triangle mesh into blocks, and successively refine the blocks

depending on the distance to the viewpoint. Geometry clipmaps introduced by

Losasso and Hoppe [LH04] center the levels of detail about the viewer, use nested

regular grids for the levels of detail, and allow for compression and synthesis of

the terrain. Although these two algorithms do not contain an out-of-core part, they

take advantage of the hardware-accelerated rendering pipeline.

For the rendering system presented in this thesis, the Nested Octree data struc-

ture is used to divide huge point-based models into smaller parts, which can then

be rendered using the hardware-accelerated rendering pipeline.

4.1 Motivation

The Nested Octree is a new data structure, that allows to render models that do not

fit entirely in the memory of the graphics card. It consists of an outer hierarchy

where at each node a MOSPT is stored. The outer hierarchy is an octree, and a

Chapter 4. Nested Octree 43

Fig. 4.1: In the one-dimensional case a nested bintree is created. The inner bintrees have

a depth of 3. The outer bintree could have more levels as well.

MOSPT is the sequentialized version of an octree (see Chapter 3), which leads

to an interesting distribution of points in space, as each MOSPT has cells that

overlap with the cells of other MOSPTs. This can be seen in Figure 4.2, where

the leaf nodes of the red MOSPT share the same space as the root nodes of the

other four MOSPTs. If all nodes would have bounding boxes, than the leftmost

leaf node of the red MOSPT, the root node of the green MOSPT, and the leftmost

node of the second level of the Nested Octree would all have the same bounding

box, because they share the same cell in space.

The MOSPTs in a Nested Octree all have the same number of levels. Let lmax

be the maximum number of levels per MOSPT, then the maximum number of

points that a cell in space can be associated with, is simply lmax. This can be seen

in Figure 4.1, where lmax = 3. In the third level, called level 2, there are 3 nodes

at each cell in space, and the MOSPT of the Nested Octree’s root node ends at

this level. A new MOSPT can only be created at the next level, so the maximum

number of nodes that share a cell in space cannot increase any more.

In a Nested Octree each point of a cell in space is part of another MOSPT.

This can be used for an effective LOD algorithm, because during rendering each

added MOSPT of a lower level causes a refinement in the geometry. The Nested

Octree also allows for view-frustum culling and out-of-core rendering, which is

not possible if the points are stored only in a MOSPT. It would be possible to store

all points in an octree, and convert only the lower levels of the octree to SPTs or

MOSPTs. The problem with this approach is that the upper levels of the octree

also hold a lot of points. They would either have to be view-frustum culled one

by one with inappropriate usage of the graphics API, or stored in another data

structure. The Nested Octree with MOSPTs included provides a fully integrated

solution, from build up to rendering, where the coarsest and finest levels of detail

Chapter 4. Nested Octree 44

Fig. 4.2: In the two-dimensional case a nested quadtree is created. The inner quadtrees

have a depth of 2. In the bottom row the left square shows all available points. The other

squares show the points used at the different levels.

are all stored in the same data structure. This is similar to the Layered Point

Clouds [GM04], but the build up process for the Nested Octree is simpler and

does not rely on a uniform sampling density.

In Figure 4.1 a nested bintree is shown. Each node of the outer bintree holds

an inner bintree, which in turn holds the actual points. The cells of bintrees that

start at different levels share the same space when the bintrees overlap. The inner

bintrees have a depth of 3, whereas the outer bintree could be continued as well.

Figure 4.2 shows the two-dimensional case with a nested quadtree. The inner

quadtrees have a depth of 2.

4.2 Build Up

The input for a Nested Octree is a set of points, which do not need any attributes,

especially they do not need normals. A color value for each point is preferable, or

else the shape of the model will not be easily visible. The input point set is first

processed to determine the bounding box of the model. The bounding box is then

inflated to a cube, which is then also used for the root node of the outer octree.

The set of input points may be distributed over several files, e.g., the output files of

a range scanner, and can then be composed during build up. The points are sorted

into the inner octrees, which later become the MOSPTs. The number of maximum

levels lmax should not be too small, as this would result in too many files on disc,

and lmax should not be too large, as this would cause the view frustum culling to

become less efficient, because the nodes on the edges of the view frustum will

always render all points in it.

Chapter 4. Nested Octree 45

Then the root node of the outer octree is created with the bounding box found

earlier, and starting with the root node, the following algorithm is performed until

all points are sorted into the nested octree.

1. Create an empty MOSPT for the current node.

2. Set the MOSPT leaf-node strategy to reject (see Chapter 3.2).

3. Create a rejection file for each child node of the current node in the outer

octree, using a unique identifier (see below).

4. Process the input file for this node, and write each rejected point into one of

the 8 rejection files.

5. Delete the input file.

6. Set the MOSPT leaf-node strategy to add.

7. Check for each rejection file fi of the current node if the number of points

in fi is below a certain threshold. If fi is that small, process the rejection

file fi and add all points to the current MOSPT.

8. Pull up the representatives in the MOSPT. After the pull up is finished, the

creation of this inner MOSPT is completed (see Chapter 3.2).

9. Write the current MOSPT to disc.

10. Create a new child of the current node in a recursive traversal, and check if

a rejection file exists for that child. If yes, make the child node the current

node and start another pass of this algorithm.

The unique identifier for each rejection file is created by encoding the path

which is needed to reach the node the rejection file is associated with, from the

root node of the outer octree. The children of each node in the outer octree are

identified with the numbers 1 . . . 8, and the root node of the outer octree has the

identifier r. Examples for such encoded paths are r0184 and r342. The identifiers

are used as the filenames of the rejection files, so it is easy to check if a rejection

file for the current node exists.

The MOSPTs are written to disc in such a format that they can be streamed

directly to the graphics card memory and used by the GPU when needed for ren-

dering (see Chapter 4.4).

After all points have been inserted into MOSPTs, the outer octree is written

to disc as one file. The outer octree is small enough that it can be held in main

memory during the whole build up process. When using an out-of-core build up

Chapter 4. Nested Octree 46

algorithm, the number of disc accesses should be kept as low as possible. The

described build up algorithm has a theoretical O(log n) time complexity, but this

can be alleviated by holding some levels of the inner octrees in memory. If then

a point is rejected by a MOSPT, it is possible to try to sort it into the MOSPT of

the next hierarchy level. The rejection files are only needed at those levels where

the MOSPTs for the following level are not held in memory. After all points have

been sorted into the MOSPTs that are held in memory, a rejection file is opened,

and new MOSPTs for the necessary levels are created in memory. With the 1GB

machine that we used for testing, we were able to hold 3 consecutive levels of

inner octrees in memory, which reduces the number of necessary file accesses

also by a factor of 3.

4.3 LOD selection

The LOD selection is based on finding the “best” image at any given time. For

this we select the point clouds to render in a way similar to Funkhouser and

Séquin [FS93], where the geometry at different levels of detail is associated

with a benefit and a cost value, and the LODs are selected according to their

Benefit/Cost ratio. The benefit is dependent on qualitative and quantitative fac-

tors, e.g., the size of the object, or the position of the object in the scene. Then the

cost of rendering the geometry at the different levels of detail is evaluated, and the

geometry will be rendered at a LOD where the benefit is maximized and the cost

does not surpass a user defined threshold.

In our system the cost for all point clouds is assumed to be the same, as we do

not use different rendering algorithms at different levels of detail. The benefit of

rendering a point cloud is used to sort the point clouds within the traversal queue.

The traversal queue is a priority queue, and the first entry of the queue will be

rendered first. The calculation of the benefit value is described below.

Let ~pcell be the center of the cell, let ~pviewpoint be the position of the viewpoint,

and let ~vcell = ~pcell − ~pviewpoint be the vector of the viewpoint to the center of the

cell. The benefit is dependent on the angle α between the view vector ~v and ~vcell,

and the projected size s̃ of the cell on the screen.

α = arccos(
~vcell · ~v

|~vcell| × |~v|).

The projected size s̃ has to be a monotone function. This is important for cells

which are partly behind the near plane of the view frustum. Let znearplane be the

z-distance of the near plane to the viewpoint in eye coordinates, let s be the size of

the cell on the near plane , and let r be the smallest z-value of a vertex of the cell’s

bounding box in eye space. Then if a cell holding a point cloud is completely in

front of the near plane,

Chapter 4. Nested Octree 47

s̃ = s/r.

If a cell is partly behind the near plane then r̃ = r − znearplane, and

s̃ = s ×−r̃.

The benefit of a cell is then calculated as

Benefit =
s̃

α
.

This benefit is used to refine the LOD for cells in the center of the screen first.

This is supposed to be the region the user looks at most of the time, so it is better

to refine the cells there first. The benefit is calculated and stored at a cell before it

is put into the traversal queue. The higher the benefit, the earlier it will be popped

from the traversal queue and put into the rendering queue.

It is possible to select the cells in this quite arbitrary order because the Nested

Octree algorithm has random access to the point clouds stored on the harddisk.

For this we rely on the fast access to files, which is provided by modern filesys-

tems, e.g., the NTFS filesystem uses B-Trees to index the files in large directo-

ries [Mic03]. Each point cloud is stored in a separate file (see Section 4.2) and

loaded into memory as decided by the LOD selection algorithm, and the files are

not memory mapped. Apart from the root node, which is always traversed first, the

traversal of the Nested Octree is only based on the LOD selection of the currently

available nodes in the traversal queue.

4.4 Rendering

For rendering the Nested Octree, the outer octree is traversed with the help of a

traversal queue. The outer octree is small and can be kept in memory at all time.

Within the traversal queue the nodes are sorted by their benefit (see Chaper 4.3).

The traversal always starts at the root node. For the current node that is being

processed, the following steps are performed:

1. Check if the node is inside the view frustum. If not, skip the node.

2. Check if the projected size of a cell in the lowest level of the MOSPT that is

associated with the node is above a certain threshold. If not, skip the node.

This can be done because only the lowest level of a MOSPT refines the

geometry of the upper levels (see Figure 4.1). So it is possible to omit the

rendering of point clouds whose points would appear too small on screen

Chapter 4. Nested Octree 48

and not contribute to the appearance of the model. The threshold can be

set by the user, and usually is 1 pixel or 2 pixels. The threshold means the

length of one side of the splat that will be rasterized on the screen when

rendering a point.

3. Calculate the benefit of the node according to Chapter 4.3.

4. Put the node into the traversal queue.

Within the traversal queue the node will then be ranked according to its pri-

ority, and eventually be popped from the traversal queue for further processing.

After leaving the traversal queue, the setup calculations for rendering are per-

formed, and the node is finally put into the rendering queue, which is a simple

FIFO queue:

1. Check if the MOSPT associated with the current outer octree node is avail-

able in graphics card memory. If not, request the MOSPT from disk, do not

render the node in the current frame, and continue with the next node in the

traversal queue.

2. Calculate the level down to which the MOSPT has to be rendered, depend-

ing on the view distance r.

3. Put the node into the rendering queue.

The rendering queue is necessary because the calculation of the splat size is

dependent on the children of each node. If no children of a node will be rendered,

than the splat size calculated for that node will be used. But if children of the node

are also rendered, than the splat size of the child that is at the lowest level will be

used. In Figure 4.3 an outer octree is shown. The splat size from the leaf nodes

is pulled up to the nodes in the higher levels. The root node is then rendered with

the splat size from the node, that is furthest down the hierarchy. The splat size

is described as the length and width of the splat in pixels. So a splat size of 2 is

rasterized with 2 × 2 pixels.

The splat size of the children will only be used if all children that are visible

from the current viewpoint will also be rendered. It can happen that not all chil-

dren of a node are available, for example if a child is just loaded, or if a child was

skipped because it would not contribute to the model. So if this is the case, then

the parent node has to render the points with its own splat size.

The user can select the number of points, a budget, that will be rendered at

most. This can be coordinated with a target frame rate, so that interactive naviga-

tion through the model is kept up at any time.

Chapter 4. Nested Octree 49

Fig. 4.3: An outer octree, with the splat sizes that will be used for rendering the points

of the associated MOSPTs. The splat sizes of the hierarchy levels change with the view

distance r.

The requests for the nodes from disk are handled by a separate thread, so that

rendering can continue without waiting for the points to be loaded. The points are

then streamed directly to the graphics card. On the graphics card a least recently

used (LRU) cache is used to determine the point clouds that can be swapped to

main memory when a new point cloud is loaded. In main memory another LRU

cache is held, and this LRU cache is managed by the second thread which also

loads the points from disk. So if a point cloud is requested, it is first searched for

in the main memory, and if it is not available, it has to be loaded from disk. The

effect of the LRU cache in main memory is that a point cloud which is currently

not needed will only be deleted if graphics card memory and main memory are

full.

4.5 Occlusion Culling

Instead of simply rendering all nodes that are in the rendering queue, it is possible

to add occlusion culling to the algorithm. With occlusion culling, it is possible to

avoid rendering nodes that are hidden by nodes in front of them with respect to the

current viewpoint. We implemented the occlusion culling algorithm proposed by

Gobbetti and Marton [GM04], which uses the hardware occlusion queries that are

available on modern graphics cards. The algorithm consists of four steps, outlined

below:

1. Find a potentially visible set (PVS) of MOSPTs. This is the usual hierarchy

Chapter 4. Nested Octree 50

traversal, but the point clouds are only stored at the rendering queue, and

not rendered yet. In the Nested Octree the MOSPTs are stored in the outer

octree nodes.

2. Render all outer octree nodes of the PVS that were visible in the previous

frame.

3. Issue an occlusion query for all outer octree nodes in the PVS, regardless if

they were visible in the last frame or not.

4. Get the result of the occlusion queries. If a visible outer octree node was not

already rendered, render it now. All visible outer octree nodes are marked,

so they can be identified in the next frame.

The algorithm uses four different queues to store the nodes during the dif-

ferent stages of the algorithm. First the nodes are stored in the traversal queue

as described in Chapter 4.3. Then they are put into the rendering queue. When a

node is popped from the rendering queue, it is only rendered if it was visible in the

last frame. After this all nodes are put into a FIFO occlusion query start queue.

When a node is popped from this queue, an occlusion query is issued. Finally

each node is stored in a FIFO occlusion query result queue, from where the nodes

are then processed after the query results are available.

For the occlusion queries a node of the outer octree is approximated by the

bounding box of that node. For bounding boxes that are completely in front of

the viewplane, backface culling is activated. The occlusion culling is effective for

large models which use out-of-core rendering, as the results in Chapter 6 show.

For small models that completely fit into the graphics card memory, the latency

due to the occlusion queries is noticeable. The implemented occlusion culling

algorithm is the same as used in the Layered Point Clouds system [GM04], ex-

cept that with the Nested Octree an additional rendering queue is necessary (see

Chapter 4.4). The backface culling is an optimization to the Layered Point Clouds

occlusion culling algorithm and reduces the number of rasterized pixels, but the

framerate did not increase due to this optimization.

4.6 Comparison Nested Octree with Layered Point

Clouds

The Layered Point Clouds algorithm described in [GM04] is a fast point-rendering

system. It is similar to the Nested Octree algorithm, as it uses a refinement of

points to display different levels of detail. One difference is that the points of

the input set for build up should be uniformly distributed for the Layered Point

Chapter 4. Nested Octree 51

Clouds, because this is important during rendering also. The build up process

relies on the uniform distribution of points to select points in a heuristic manner,

and during rendering the splat size is derived from the average distance between

points. The Nested Octree does not rely on a uniformly distributed input set of

points, neither for build up, nor for rendering. The advantage of one method or

the other is dependent on the use case.

As Pajarola et al. mention in [PSL05], the results for the LPC algorithm were

acquired with models that completely fit in main memory, as the test machine

was equipped with 2GB memory, and all models could be stored in there, because

they were compressed. So the reported 40 million splats per second [GM04] were

actually measured for a model, that did not use the out-of-core part of the LPC

algorithm.

The LPC algorithm orders the point clouds so that point clouds that are close

by in space are also close by in the point cloud repository. For access, the file

holding the point cloud is memory mapped, and so the coherency pays off. The

Nested Octree in contrast relies on the fast access to files in modern file systems,

and stores each point cloud in a separate file.

4.7 Comparison Nested Octree with XSplat

The XSplat algorithm described in [PSL05] constructs a block-based sequential-

ized hierarchy which can be used for out-of-core rendering. The point clouds

stored at each block are rendered with the SPT [DVS03] algorithm. This is also

the biggest difference to the Nested Octree, as XSplat needs additionally created

points to represent the different levels of detail. The memory requirements are

similar to the SPT algorithm [PSL05], and therefore the total memory require-

ments are more than doubled compared to the original point cloud (see also Chap-

ter 3.7). The additional memory is used to render models at a higher quality than

it is possible with the Nested Octree, assuming models provide the necessary in-

formations.

Although the XSplat algorithm orders the point clouds differently than the

LPC algorithm, the purpose of the ordering is also to store point clouds that are

close by in space on disk in close by regions. For access, the file holding the

point clouds is also memory mapped, and so the coherency pays off. As already

mentioned before, the Nested Octree relies instead on the fast access to files in

modern filesystems, and stores each point cloud in a separate file.

Chapter 4. Nested Octree 52

4.8 Summary

The Nested Octree is a data structure that consists of an outer hierarchy where at

each node an inner hierarchy is stored. The outer hierarchy and the inner hierar-

chies all share the same space, and overlap each other. With this it is possible to

incrementally refine the model for different levels of detail. The build up of the

Nested Octree has a time complexity which is below O(log n) and can use the

data files that are coming directly from a range scanner. The rendering includes

an out-of-core part, and it uses the hardware-accelerated rendering pipeline. The

points used for rendering are stored in the memory of the graphics card. Occlusion

culling can be used to further speed up the rendering.

Chapter 5

Implementation of the System

In this chapter some implementation specific aspects of the Nested Octree algo-

rithm are discussed. At first the optimal memory layout for vertex attributes is

described. We used OpenGL as graphics API, and the results might be specific for

OpenGL. The second implementation specific case is to do view-frustum culling

in clip space. The third one is the alignment of point clouds to form a large model

when the point clouds come from different scan positions.

5.1 Maximizing the Rendering Speed Using VBOs

A vertex buffer object (VBO) is used to store the vertices of a geometric object

and their attributes in the memory of the graphics card. As mentioned above,

this is advantageous during rendering, because if the information is needed, e.g.,

the coordinates of a vertex, the GPU has fast access to it. With the information

stored in graphics card memory, it does not have to be sent over the system bus (in

DirectX the VBOs are called vertex buffers). From the VBO each vertex together

with its attributes is processed one by one by a vertex program. The difficulty

is, however, to find out how to store the vertices and their attributes so that the

graphics card driver and the hardware on the graphics card can access them as fast

as possible. For this purpose we wrote a simple C# application where we could

change the rendering parameters quickly. Figure 5.1 shows the user interface of

the application with the different options.

During the development of the MOSPT (see Chapter 3) data structure, we also

implemented the SPT [DVS03] algorithm, although with a simpler error metric.

Therefore we had to store at most 3 vertex attributes.

1. The position, in 3 floats, using 4 bytes per float.

2. The color, in 4 bytes.

3. A texture coordinate representing the minimum and maximum index to the

recursion level at which a point will be rendered, in 2 short integers, using

Chapter 5. Implementation of the System 54

Fig. 5.1: A simple OpenGL application for testing different layouts of vertices in memory.

Fig. 5.2: Each vertex attribute is stored in its own array.

Fig. 5.3: All vertex attributes are stored in one array interleaved, at different offsets.

Fig. 5.4: Position and color are stored in one array interleaved, and texture coordinates

are stored in their own array.

Chapter 5. Implementation of the System 55

layout VPS

3 attribs. in different arrays (Figure 5.2) 103

3 attribs. in one interleaved array (Figure 5.3) 107

2 attribs. in one interleaved array, 1 attrib. in an extra array (Figure 5.4) 116

Tab. 5.1: The results for the different memory layouts.

2 bytes per short integer. Note that the texture coordinate is not used with

the MOSPT data structure.

The position and color together need 16 bytes, and if the texture coordinates

are also used, then all attributes together need 20 bytes. The different memory

layouts are shown in figures 5.2 to 5.4. Independent of the memory layout, there

is the possibility to store all arrays in one large VBO at different offsets. This is

something different than an interleaved array, where the attributes within an array

are stored at different offsets from the corresponding vertex. Using only one VBO

for the different arrays has the advantage that the number of VBOs that have to

be bound during rendering is reduced. During development we faced the situation

that we needed some 10,000 arrays with vertex attributes, and all of them were

stored in different VBOs. This finally resulted in a large CPU overhead just for

binding the VBOs for rendering.

In the test program 5 Million points are rendered. They are divided into 5

VBOs, each containing 1 Million points. In the user interface the different mem-

ory layouts can be selected with buttons. The grid around the 5M points is only

rendered for better orientation, because it is possible to move through the world.

In the tests we used a GeForce 6800GTO, which has a theoretical maximum of

116.67M processed vertices per second (VPS). This is because of a hardware lim-

itation, as the hardware has a clock speed of 350MHz and requires 3 clock cycles

to rasterize a primitive, according to a staff member of NVIDIA. This limitation

also means that the maximum number of point primitives per second that can be

processed is the same as the maximum number of triangle primitives per second.

In Table 5.1 the results from the tests are shown. Clearly the memory layout

from Figure 5.4 is the optimum, as points from it can be rendered at maximum

speed. The reason for this seems to be that the position and color attributes for

one vertex are together 16 bytes long, and that this alignment to 16 bytes can be

processed most efficiently by the hardware. In this case even a third attribute can

be processed at no cost. Because of these results, in the light of possible future

enhancements, we store the color and position of a vertex in the memory layout

of Figure 5.4. We do not need the texture coordinates array at the moment, but if

it becomes necessary, we could add one more attribute at no processing cost.

Chapter 5. Implementation of the System 56

5.2 View-Frustum Culling in Clip Space

We evaluated different view-frustum culling algorithms during research. At first

we implemented the point-rendering system of the ρ-grids [DD04] algorithm, and

used a view-frustum culling algorithm in clip space. With the ρ-grids algorithm,

a complete hierarchy is stored in a compressed form, and decoded during render-

ing. The coordinates of the cell’s centers are not stored to save memory. With

this algorithm view-frustum culling in clip space is easier to do, because the cell’s

centers are calculated incrementally in clip space. This method of view-frustum

culling worked well also with other algorithms, so we had no reason to exchange

it. In the current rendering system this is not a requirement, because the coordi-

nates of the cell’s centers do not have to be calculated in clip space. They could

be stored at the cells of the Nested Octree as well.

In the rendering pipeline, the clip space is the coordinate system that the ver-

tices reach after the projective transformation, but before the perspective division.

For view-frustum culling, an approximation of the cell is needed, and we use the

axis-aligned bounding box (AABB) of an outer octree node (see Chapter 4) for

this. We do not store the positions of the AABB vertices in the nodes, but instead

we store the displacement vectors to the corners of an AABB at each hierarchy

level. For reconstructing an AABB on the fly, the center of an outer octree node

has to be available. The center of a node also does not have to be stored at the

node, only the center of the root node has to be stored. Instead of the centers the

displacement vectors are stored at each level. By adding the displacement vectors

to the centers of the different levels during rendering, the center of a node can

be reconstructed. In Figure 5.5 the right cube shows an octree node with its 8

children. The displacement vectors are used to reach the centers of the children,

starting from the center of the parent node.

The sum of the displacement vectors to the centers and to the AABB vertices

is calculated in clip coordinates. Only the displacement vectors have to be mul-

tiplied with the combined modelview-projection matrix, and then the projected

displacement vectors are added. The center of the root node of the outer octree is

the only center directly projected to clip space. For this it is multiplied with the

combined modelview-projection matrix, a 4x4 matrix,












X̃C

ỸC

Z̃C

W̃C













= MV P ×











XC

YC

ZC

1











and for each level of the outer octree, the displacement vectors are also pro-

jected to clip space, by multiplying them with the combined modelview-projection

matrix,

Chapter 5. Implementation of the System 57

Fig. 5.5: On the left side the displacement vectors from the center of a cell to the centers

of its children are depicted. On the right side the displacement vectors from the center of

a cell to the vertices of the AABB are depicted.













X̃d

Ỹd

Z̃d

W̃d













= MV P ×











Xd

Yd

Zd

0











.

Note that the displacement vectors have a w-coordinate of 0, because they do

not describe a position but a direction in homogeneous coordinates. Then for each

level the proper displacement vector is added to the already calculated center of

the parent cell, to find the centers of the children in clip space, with













X̃c

Ỹc

Z̃c

W̃c













=













X̃C

ỸC

Z̃C

W̃C













+













X̃d

Ỹd

Z̃d

W̃d













.

The vertices of the AABB of a cell can be calculated similarly, by projecting

the displacement vectors from the center of a cell to the vertices of the AABB,

and then adding them to the center of the cell in clip coordinates. Having the

vertices of the AABBs in clip space, view-frustum culling is done as described by

Bloomenthal and Rokne [BR93]. The test is for the maximum and minimum x,

y, and w values of the AABB lying either completely outside or inside the view

frustum. There are 3 possible outcomes of the test:

1. If they are completely outside or behind the viewpoint, the node is invisible.

Chapter 5. Implementation of the System 58

2. If they are completely inside, the node and all of its children nodes are

visible.

3. If the node is neither completely outside nor inside, the node is rendered,

and all children have to be checked against the view frustum as well.

The test requires 10 comparisons at most. View-frustum culling in clip space

trades lower memory requirements for extra additions to calculate the AABB ver-

tex positions on the fly.

5.3 Alignment of Point Clouds

When building up a point cloud that consists of several different scan positions,

the point clouds usually do not fit together. One problem is that there are er-

roneous points in the raw data of the scans, which do not belong to the model

at all (see Figure 6.7). Another problem is, that the point clouds overlap each

other, and the overlapping region should be kept small. If the overlapping regions

are not trimmed, then too many points have to be rendered. If the point cloud is

scanned indoors, then the lighting of points too far away from the scanner position

is wrong. In Figure 6.6 the scans were not trimmed, resulting in black spots all

over the model.

Because of this, we try to trim the raw data of the scanner as well as possible,

by defining an oriented bounding box (OBB) for each point cloud so that the

model only uses points that actually contribute to the appearance of the model.

There is no information about the bounding box contained in the raw data from

the scanner, therefore it is necessary to measure the extent and the alignment of

the OBB directly within the point cloud. The information about the measured

OBB is then stored in a text file with each point cloud, and used during the build

up of the model.

Figure 5.7 shows an OBB and the possible parameters. The alignment of an

OBB can be defined in two different ways, either by giving the orientation of the

OBB in angles, or by giving the orientation as normals. They are defined with the

keywords “OBB-ANGLES” and “OBB-NORMALS” in the point cloud list, and

after the keywords the parameters are given.

The parameters given with OBB-ANGLES are used to set up a rotation matrix.

The x-value is used to find the rotation matrix for the x-axis, the y- and z-value

are used to find the rotation matrices for the y- and the z-axis respectively. These

matrices are then multiplied, and first the rotation matrix for the x-axis is multi-

plied with the rotation matrix for the y-axis, then the result is multiplied with the

rotation matrix for the z-axis. When using this method, the order of rotations has

to be respected.

Chapter 5. Implementation of the System 59

Fig. 5.6: At each scanner position the SOCS coordinate system is in a different orientation

relative to the PRCS coordinate system.

Fig. 5.7: An oriented bounding box is used to cut out the useful part of a raw point cloud.

The OBB is defined by bu, bv, and bw, which are the normalized vectors for the local

coordinate system of the OBB. Further by hu, hv, and hw, which are the length of the

half-vectors of the OBB in direction of the base-vectors. And also by the center of the

OBB, relative to a superior coordinate system.

Chapter 5. Implementation of the System 60

OBB-ANGLES parameter Data

Center of the OBB 3 floats

Half-length for side u 1 float

Half-length for side v 1 float

Half-length for side w 1 float

Angle to axis x of SOCS (PRCS) 1 float

Angle to axis y of SOCS (PRCS) 1 float

Angle to axis z of SOCS (PRCS) 1 float

Tab. 5.2: The center and the angles a, b, and c are all relative to SOCS (PRCS) coordinate

system (e.g., the center / angle as seen from the SOCS (PRCS) coordinate system).

OBB-NORMALS parameter Data

Center of the OBB 3 floats

Half-length for side u 1 float

Half-length for side v 1 float

Half-length for side w 1 float

Orientation of side u 3 floats

Orientation of side v 3 floats

Orientation of side w 3 floats

Tab. 5.3: The center and the normals u, v, and w are all relative to SOCS (PRCS) co-

ordinate system (e.g., the center / orientation as seen from the SOCS (PRCS) coordinate

system).

The parameters given with OBB-NORMALS are also used to set up a rotation

matrix. With the given vectors an orthonormal basis can be defined, which can

then be used as a rotation matrix. The vectors have to be noncoplanar, i.e., when

they are written as columns in a 3x3 matrix, their determinant must not be 0.

Besides the orientation of the OBB, the coordinate system in which the OBB

is defined has to be given as well. The possible values are “SOCS” for “Scanners

Own Coordinate System” and “PRCS” for “PRoject Coordinate System”. SOCS

is the coordinate system in which the scanner delivers the raw data. PRCS is a

coordinate system which is defined by the user, which is for example an already

existing coordinate system at the scan site, e.g., a facility coordinate system. The

connection between the PRCS and the SOCS coordinate system is depicted in

Figure 5.6. At each scanner position the SOCS coordinate system is in a different

relative position to the PRCS coordinate system.

During build up the bounding boxes are applied to the points of a scan. If a

point is within its bounding box, then the coordinates of the point are transformed

to the PRCS coordinate system.

Chapter 5. Implementation of the System 61

5.4 Summary

Implementation-specific issues can be dealt with in various ways. The presented

solutions work for our implementation, and the memory layout for the fast ren-

dering of VBOs even seems to be the optimal solution. To find the OBBs for all

point clouds is a quite time-consuming work, and it would be certainly easier to

have a program where the alignment of the OBBs could be done visually.

Chapter 6

Results

The results are divided in two parts. First the Nested Octree and the MOSPT

algorithms are compared to the SPT algorithm, with a point cloud that completely

fits in the memory of the graphics card, and second the performance of the Nested

Octree with a huge point cloud is tested.

6.1 The Test System

For testing we used a Dell Pentium4 3.2GHz computer with hyperthreading en-

abled, which had a NVIDIA GeForce 6800GTO with 256MB installed. The

GeForce has 5 vertex shaders, and a theoretical limit of 116,67 million trans-

formed primitives per second. This is because of a hardware limitation, as the

hardware has a clock speed of 350MHz and requires 3 clock cycles to rasterize

a primitive, according to a staff member of NVIDIA. In the computer 2 Western

Digital Raptor drives were installed as RAID 0 array, each of the drives spinning

at 10.000 RPM. The OpenGL viewport has a size of 640x640 pixels, unless oth-

erwise noted.

6.2 Rendering a Small Point Cloud

At first we implemented the SPT algorithm with a simpler error metric than de-

scribed in [DVS03], because we wanted to have a benchmark for the rendering

speed of our new algorithm. For the error metric we only used the projected size

of the cell on the screen, due to the lack of normals for our model. We also used a

second benchmark, which was a point cloud rendered as a VBO. Both benchmarks

do not use view-frustum culling. The model is a range scan from the Stephans-

dom scanning project, consisting of 6,609,305 points. It is not resampled and fits

completely into the memory of the graphics card. In table 6.1 the memory re-

quirements on the graphics card for the different algorithms are shown. Note that

the SPT requires less memory than calculated in Capter 3.7, which is due to the

simpler error metric. With the simpler error metric it is not necessary to store a

Chapter 6. Results 63

Algorithm Memory Requirements on the Graphics Card in Bytes

VBO 105,748,880

SPT 200,414,120

MOSPT 105,748,880

Nested Octree 105,748,880

Tab. 6.1: The memory requirements for the different algorithms.

bounding volume at each node. The Nested Octree stores only the MOSPTs on

the graphics card, so the memory requirements are the same as for the MOSPT

and VBO algorithms. The outer octree of the Nested Octree needs about 500KB

in main memory.

We compared the Nested Octree and the MOSPT to the two benchmarks, and

chose three different locations for the viewpoint to document the behavior of the

algorithms in different situations. In Figure 6.1 the three viewpoint positions rel-

ative to the model are drawn in the picture, together with the viewing direction.

Figure 6.2 shows the model as seen from the different viewing positions. Note

that the visual quality of all algorithms is essentially the same. They all render the

model as seen in Figure 6.2. The only difference is that the Nested Octree requests

the parts of the point cloud one by one, whereas the VBO, SPT, and MOSPT algo-

rithms store all points on the graphics card before rendering. All algorithms used

a constant point size of 1 for the tests. The difference in the LOD algorithms is

shown in figures 6.3 to 6.5. The VBO algorithm always renders all points, so it is

the benchmark for the visual quality. The difference between the Nested Octree

and the VBO rendered image is a bit larger than the difference between the SPT

and VBO rendered image, as can be seen in the difference images. The best qual-

ity is achieved with the MOSPT algorithm, as can be seen in the difference image

in Figure 6.5.

The Nested Octree uses undersampling to represent the different levels of de-

tail. As can be seen in Table 6.3, the Nested Octree is able to choose a coarser

LOD when the viewpoint is at the border of the model than the other algorithms,

so it renders the model with fewer points. This also means that not all points of the

original model are available, and the appearance is only approximated. Therefore

the visual quality is a bit worse compared to the other algorithms.

The SPT uses the averaged color of the original points to represent different

levels of detail. The SPT can also choose the LOD within the model. Points that

are further away are rendered at a coarser LOD. The points in the middle of the

screen are furthest away from the viewpoint, and exhibit some error because they

are rendered at a coarser LOD than the other points in the image. The points not in

the middle of the screen are rendered at the finest LOD. This means that original

points are rendered, so there is no difference in the VBO rendered image.

Chapter 6. Results 64

Fig. 6.1: The different viewpositions as seen from above. The model consists of 1 point

cloud.

The MOSPT uses the finest LOD for the viewpoint at the border of the model.

The whole model is rendered at the same LOD, so all points of the original point

cloud are shown. Therefore the errors in the difference image are very small,

theoretically there should be no differences at all. But the order in which the

points are rasterized is different to the VBO algorithm, so is is possible that the

depth buffer is filled in a different order, and if some points have the same distance

to the viewpoint, different points may be used to represent the same pixel.

In Table 6.2 the resulting FPS are shown. The model stored in the VBO al-

ready gives an interesting result, because the FPS vary, although always the same

number of points is processed by the GPU. At the first view position all points are

visible and the model is rasterized quite small (see Figure 6.2), so many pixels

have to be overdrawn during rendering. This slows down rendering, because due

to overdraw many pixels in the depth buffer have then to use a read-modify-write

cycle. It is especially slow if a pixel modifies its value several times during render-

ing a frame. When the viewpoint gets to the center of the model, almost no pixel

has to be overdrawn, and therefore the peak FPS is reached at that position. The

SPT algorithm shows quite a different behavior. At the viewpoint in the distance

the FPS reach their peak. Here the LOD algorithm of the SPT works efficiently.

For the viewpoints at the border and at the center, the FPS fall off, and eventually

become even lower than the FPS of the VBO algorithm. So an SPT alone shows

Chapter 6. Results 65

Fig. 6.2: The model as seen from different viewpositions. In the left picture the viewpoint

is 300 meters from the center, in the middle picture 50 meters, and in the right picture the

viewpoint is at the center of the model.

Algorithm Distance Border Center

VBO 15 17 18

SPT 240 12 12

MOSPT 308 17 18

Nested Octree 722 49 122

Nested Octree with occlusion culling 428 44 100

Tab. 6.2: The Frames per Second for the different algorithms at different viewpoint posi-

tions.

deficiencies if the user wants to walk through the model. The MOSPT is the com-

bination of the VBO and SPT algorithm, and is always faster than the SPT and

never slower than the VBO. The Nested Octree is the algorithm with the highest

FPS at all positions, because it can use view-frustum culling and a LOD selection

within the model. It gets even close to real-time performance (where 60 FPS are

minimum). The Nested Octree was also tested with occlusion culling enabled,

and here the latency due to the occlusion queries is noticeable. The latency is

especially high for the viewpoint positions at the distance and at the center.

Table 6.3 charts the number of processed points at the different viewing po-

sitions. Here the efficiency of the different LOD algorithms can be seen, for ex-

ample between the MOSPT and SPT level-of-detail algorithm. The MOSPT uses

only original points, whereas the SPT has to process additionally created points

in addition, although some of them are culled by the vertex shader. The VBO

algorithm always processes all points of the model, and at the border and center

positions it achieves even more FPS than the SPT algorithm. Both Nested Octree

algorithms use the same number of points to render the model, which indicates

that the occlusion culling is not able to cull anything, since the depth complexity

is too low for the viewpoints.

Chapter 6. Results 66

Algorithm Distance Border Center

VBO 6,609,305 6,609,305 6,609,305

SPT 456,974 10,021,473 10,021,473

MOSPT 336,869 6,609,305 6,609,305

Nested Octree 122,357 2,335,790 908,295

Nested Octree with occlusion culling 122,357 2,335,790 908,295

Tab. 6.3: The number of rendered points for the different algorithms at different viewpoint

positions.

Algorithm Distance Border Center

VBO 101M 108M 116.1M

SPT 109M 116M 116M

MOSPT 104M 112M 116.1M

Nested Octree 88M 114M 111M

Nested Octree with occlusion culling 52M 102M 91M

Tab. 6.4: The vertices per second (VPS) for the different algorithms at different viewpoint

positions. The VPS were measured with performance counters, available on the graphics

card.

In Table 6.4 the vertices per second (VPS) are charted. The numbers are read

from the performance counters on the GPU. Performance counters make it possi-

ble to monitor and analyze the behavior of a physical component such as the GPU.

Different performance counters exist, like the number of vertices processed each

second, or the number of pixels shaded per second. They can be read with a pro-

gram during rendering. For this we used the NVIDIA Developer Control Panel,

and an instrumented driver for the graphics card. This makes it easy to compare

the performance of different algorithms.

The read numbers for the vertices per second are only exact within a range

of ±1%, but they give good indications of how efficiently the GPU is used. The

maximum throughput is 116,67 MVPS, which is never achieved in any test. The

VBO and the MOSPT algorithms are the fastest of all, with 116,1 MVPS, when

the viewpoint is at the center of the model. Here the SPT algorithm shows that

it uses the GPU very efficiently with 116 MVPS. The Nested Octree algorithm

without occlusion culling shows similar results as the VBO, SPT, and MOSPT

algorithms, only for the viewpoint position in the distance the VPS fall off. This

is due to the small number of points that are selected by the Nested Octree LOD

algorithm at this position. Here the rendering loop on the CPU is the bottle neck.

When occlusion culling is enabled, the Nested Octree algorithm performs quite

badly, because the latency for waiting on the occlusion query results restricts the

achievable VPS.

Chapter 6. Results 67

Fig. 6.3: Quality comparison of Nested Octree (left) and VBO (middle) rendering. The

VBO represents the original model. The Nested Octree uses an LOD algorithm which is

able to select an LOD level for the model, so that the model is not rendered at the finest

resolution. There is a difference (right) between the VBO and Nested Octree rendered

images.

The Nested Octree algorithm without occlusion culling can be used for small

models that completely fit in the graphics card memory. It outperforms the VBO,

SPT, and MOSPT algorithms by far at any position that was tested. Only for

viewpoint positions that are further away, the VPS fall off compared to the afore-

mentioned algorithms, but this is due to the effective LOD selection of the Nested

Octree which renders only few points at this position. When small models are ren-

dered, it is not usefull to enable occlusion culling, because the depth complexity

of the model is too low, and so no points can be culled.

6.3 Rendering a Huge Point Cloud

The Nested Octree is a data structure tailored to the requirements of rendering

huge point clouds with 100M points and more. The model we used for this was a

scan of the Vienna Stephansdom, the largest cathedral in Vienna, and a landmark.

The Stephansdom was point sampled during a campaign that lasted a week. Scan-

ning was always performed at night, where no visitors would disturb the work.

The range scanner used during the campaign belongs to the TUW-ILScan center

of competence, and the campaign was also planned and accomplished by TUW-

ILScan. TUW-ILScan is a group of scientists and institutes of the Vienna Uni-

versity of Technology that seeks to improve the Image Laser Scanning (ILScan)

technology and also to develop application-oriented implementations for it. The

ILScan technology is developed by Riegl LMS, a company which produces range

scanners. They are also a cooperation partner of TUW-ILScan. With the ILScan

technology it is possible to colorize range scans from photos taken during scan-

ning (see Chapter 1.3.1). This is the technology that was used for scanning the

Chapter 6. Results 68

Fig. 6.4: Quality comparison of SPT (left) and VBO (middle) rendering. The VBO rep-

resents the original model. The SPT uses an LOD algorithm that is effective in the center

of the model. In the other areas, the model is rendered at the finest resolution. There is a

difference (right) between the VBO and SPT rendered images.

Fig. 6.5: Quality comparison of MOSPT (left) and VBO (middle) rendering. The VBO

represents the original model. The MOSPT uses an LOD algorithm, but the whole model

is rendered at the finest resolution. There is nearly no difference (right) between the VBO

and SPT rendered images.

Chapter 6. Results 69

Fig. 6.6: On the left side the model without trimming the scans. The points in the distance

do not receive enough light, and appear very dark or even black. On the right side, the

size of the OBB relative to the raw data from a scan as seen from above.

Stephansdom.

For lighting the Stephansdom, spotlights were necessary. This causes an un-

even illumination at the different scan positions. The other effect of the working at

night is that point samples in some distance received less light than the samples at

the scanner position, or none at all. Due to this, the color of the point samples be-

comes darker the further away they are from the scanner position. This is visible

in Figure 6.1, which is the result of one point scan. The scan is actually done for

the piling directly above the scanner, so the useable part of the scan measures only

10x10 meters on the floor, and 25 meters in height. The result of not removing

enough points can be seen in Figure 6.6, where the black points make the model

look ugly.

For sampling the whole cathedral, more than 200 different scanner positions

were necessary, but in the model we actually used only 77 scan positions, because

this is enough to render a somewhat complete model of the Stephansdom. The

other scan positions could be used to refine the geometry. The point clouds from

the different scan positions overlap, and so it is necessary to cut out the useful parts

of the point scans to achieve a somewhat uniform model when the point clouds of

different scanner positions are composed. In the raw data of the scans, there also

existed point samples in areas far off the actual model, as can be seen in Figure 6.7.

These points are the result of measurement errors, caused by specular surfaces,

where the laser from the scanner is reflected. If the reflection recurses over some

stations, the error becomes very large and results in a “jet” like structure, as can

Chapter 6. Results 70

Fig. 6.7: Points at weired positions in space. The Stephansdom was scanned from the

inside. These erroneous points have to be culled in a postprocess, to get a somewhat clean

model. The cleanup process can be automated. The “jet” in the left image should be cut,

and the “flying windows” in the right image are undesired as well.

be seen in the left image of Figure 6.7.

To trim the point clouds, an oriented bounding box (OBB) is defined for each

point cloud as described in Chapter 5.3. The OBBs of neighboring point clouds

should overlap a bit, so that there is no gap between the point clouds. On average,

50% of the points in the scans can be removed. The measurement of the OBB

was done for each point cloud individually, as the different point scans differ with

respect to position and alignment relative to the scanned case bay. The different

relative positions are a result of the interior design of the Stephansdom, and the

case bays do not always have the same measurements. So it was necessary to

measure all OBBs by hand. The trimming of the point clouds was then performed

during build up, so that an intermediate storage of the trimmed point clouds was

not necessary. The complete build up of the model, which finally consisted of

262M points, took about 2 hours and 30 minutes, which includes the initial step

of finding a bounding box for the model. The model needs 4.2GB on disk for the

37,232 MOSPTs, and 14MB for the outer octree.

In Figure 6.8 the complete model of the Stephansdom is shown. The scans

were taken from inside the cathedral, so the arches can be seen as if the roof is

missing. Figure 6.9 shows the model from the south-east corner. Figure 6.10

shows the Stephansdom from inside, after moving very fast. The incremental re-

finement cannot keep up with the motion, and therefore a coarse LOD is rendered.

Due to missing points, the LOD is rendered with large splats. The geometry of

Chapter 6. Results 71

Fig. 6.8: The Stephansdom as seen from above. All 77 scan positions are visible. At the

top is the main entrance, and at the bottom the Albertinian choir.

the interior design is nearly unrecognizable.

After 5 seconds the necessary point clouds are streamed in from harddisk to the

graphics card memory. Figure 6.11 shows the same position as Figure 6.10 after

loading has completed. The minimum size for MOSPT leaf nodes projected to

screen is 2 pixels. This resolution is very reasonable for moving quickly through

the model, and not waiting too long for the point clouds to load. After waiting

another 16 seconds, or 21 seconds overall, the model is refined further, and the

minimum size for MOSPT leaf nodes projected to screen is then 1 pixel. This is

the highest achievable visual quality, but it takes considerably longer to load.

The reason for the long loading can be seen in figures 6.13 and 6.14. The

number of MOSPTs that have to be loaded is way smaller for a projected cell size

of 2 pixels than for a projected cell size of 1 pixel. When using a threshold of 2

pixels only 252 MOSPTs have to be loaded, whereas when using a threshold of

1 pixel, 559 MOSPTs have to be loaded. In the figures, each MOSPT is shown

with its bounding box. The magenta bounding boxes mean that not all children

of that outer octree node are rendered, although they are inside the view frustum.

The reason they are not rendered is that the projected size of the child nodes is too

small, so they would not contribute to the appearance (see Chapter 4.4). The more

saturated the magenta is, the more children are skipped rendering. The number

of bounding boxes that are visible is the same, no matter if occlusion culling is

Chapter 6. Results 72

Fig. 6.9: The Stephansdom from outside, looking from south-east to the north-west.

Along the right border and below the Albertinian choir still some erroneous points can

be seen, which were not cut by OBBs.

Fig. 6.10: The inside of the Stephansdom. After the user has moved very fast through the

model, the interior design is rendered very blocky.

Chapter 6. Results 73

Fig. 6.11: The inside of the Stephansdom rendered with a minimum projected size for the

MOSPT leaf nodes of 2 pixels. This is a very reasonable compromise between rendering

speed and visual quality.

Fig. 6.12: The inside of the Stephansdom rendered with a minimum projected size for the

MOSPT leaf nodes of 1 pixel. This is the highest available visual quality.

Chapter 6. Results 74

Fig. 6.13: Only relative few and large bounding boxes are visible, approximately 208.

Almost all bounding boxes are in some shade of magenta, indicating that not all children

nodes of these cells are rendered, because the projected sizes of the leaf nodes of the

children are too small.

enabled or not. Occlusion culling uses the bounding boxes of the nodes to check

if an MOSPT is occluded, so hidden bounding boxes will not be visible anyway.

In Table 6.5 the number of rendered cells and points are charted, when us-

ing different minimum projected sizes for the MOSPT leaf nodes. The maximum

number of points that were allowed to be rendered was 12M, and 15M were al-

lowed to be loaded to graphics card memory. In the first row this limit is almost

reached. The loading was complete, because no better approximation to the final

image was found with the available amount of points. When occlusion culling

was enabled, the number of rendered points is about 1.5M smaller, but the num-

ber of points in the memory is the same. The decision if a point cloud is occluded

is independent of the decision if the point cloud is loaded to memory. When the

minimum projected size for the MOSPT leaf nodes is increased to 2 pixels, then

the number of points loaded to memory is cut in half, for both situations, whether

occlusion culling is enabled or not.

In Table 6.6 the values of some GPU performance counters are charted. The

performance counters were read out using the NVIDIA Developer Control Panel,

and an instrumented driver for the graphics card. Occlusion culling decreases the

number of processed vertices per second (VPS) due to the latency when waiting

for the occlusion query results. The number of points in relation to the number

Chapter 6. Results 75

Fig. 6.14: Many bounding boxes are visible, approximately 499. About 50% of them are

also white, which means all children nodes of these cells are rendered.

Parameters Rendered Cells Rendered Points

Min. proj. size 1 pixel 559 11,999,872

Min. proj. size 1 pixel, with OC 499 10,530,638

Min. proj. size 2 pixels 252 6,101,295

Min. proj. size 2 pixels, with OC 208 5,007,273

Tab. 6.5: The number of rendered cells and points. OC means occlusion culling. A

decreased visual quality is traded for rendering fewer points.

Chapter 6. Results 76

Parameters VPS GPU idle FPS

Min. proj. size 1 pixel 112M 0.04% 9

Min. proj. size 1 pixel, with OC 109M 0.20% 10

Min. proj. size 2 pixels 108M 0.06% 18

Min. proj. size 2 pixels, with OC 102M 0.50% 20

Tab. 6.6: The evaluation of performance counters on the GPU. Occlusion culling increases

the latency when waiting for the results of the occlusion queries.

of pixels, used for the occlusion queries, is higher for a large model, so here the

framerate for rendering the model with occlusion queries is above the framerate

for rendering the model without occlusion queries. This is in contrast to the results

for rendering a small model (see Table 6.2) where occlusion queries lowered the

framerate. When using a threshold of 2 pixels for rendering, only half of the

points are necessary as when using 1 pixel as threshold (see Table 6.5), and the

CPU processing time during the rendering loop is too long to feed enough points.

This is similar to Table 6.4, but when using a large model, the number of points

that have to be rendered is much higher, so the GPU is better used to full capacity.

The following images from Figure 6.15 to Figure 6.20 were all taken with

modified parameters. The resolution of the viewport was set to 1600x1200, the

OpenGL field-of-view was set to 80 degrees, the number of points that were al-

lowed to be rendered in one frame was set to 14M, and the minimum projected

size for the MOSPT leaf nodes was set to 1. This results in a kind of “hi-res” im-

ages. From a blocky representation to the fully loaded model it took 35 seconds

on the average.

In Figure 6.16 many empty regions are visible. The rhombus-like holes are at

the places where the scanner was installed. At each of these places two scans were

taken. The empty regions between the benches lie within the occluder shadow

volume of the benches for the scanner position from which the point samples

were taken. In the image the lighting can be seen in the regions where the point

clouds of two scan positions overlap. The color of the floor is very dark, as the

intensity of the light is falling off toward the border of the scanning area. The light

intensity is also falling off toward the arches, so they appear too dark anyway.

Figure 6.17 is kind of a worst case scenario for the point rendering system, as

many objects are visible near the viewpoint, and the model is stretching far into

the distance. The maximum number of rendered points, 14M, is easily hit, and

still some regions are not fully refined, as can be seen on the right side of the

fence, where the LOD is too coarse for the distance to the viewpoint.

Figure 6.18 shows the lighting problems which appear when merging several

different scan positions to one model. The altar on the right side in front of the

benches is brighter than the altar on the left side. The lighting situation is not only

Chapter 6. Results 77

Fig. 6.15: A look through the Stephansdom from the main entrance.

changing within one scan, but especially between different scans.

Figure 6.19 the lighting problems are also visible. The altar in the left center of

the image is lit very brightly, whereas the benches right in front of the altar appear

very dark, because they were sampled from a different scan position. The statues

in the upper regions of the columns are also sampled from different scan positions,

and here the bright and dark samples overlap, giving the statues a spotted surface.

6.4 Summary

We tested the Nested Octree with a model consisting of 262M points. The model

is built up from 77 different scan positions, where from each scan position only

the contributing points were selected. The selection is done by oriented bounding

boxes, which have to be defined by the user. The rendering system can achieve a

high vertex throughput when using large models. Occlusion culling can be used

to increase the framerate. When using small models that fit in the memory of the

graphics card, also a high vertex throughput can be achieved, but occlusion culling

should then be disabled. Interactivity is maintained at any time, even during load-

ing new point clouds from the harddisk. The memory requirements of the outer

octree are minimal compared to the size of the model, and so it can be kept in

Chapter 6. Results 78

Fig. 6.16: Hovering inside the Stephansdom just below the arches.

Fig. 6.17: The inside of the Stephansdom as seen from the eye level of a visitor.

Chapter 6. Results 79

Fig. 6.18: The view from the center of the Albertinian choir to the high altar.

Fig. 6.19: Three altars in the northern part of the Stephansdom’s nave.

Chapter 6. Results 80

main memory. The visual quality provided by the LOD algorithm is quite good,

although undersampling occurs at the coarser levels of detail. If it is assumed that

only minimal attributes are available for each point in the original point cloud, i.e.,

position and color, then the model can be rendered with good visual quality.

Chapter 6. Results 81

Fig. 6.20: The Leopold altar as seen from the scanner. Therefore the geometry in the

image does not show large holes. On the right side of the floor the overlap of two scanning

positions can be seen, where dark pixels from each of the two scan positions are in the

direct neighborhood of bright pixels respectively from the other scan position.

Chapter 7

Conclusion and Summary

In this diploma thesis a new rendering system for point-based models was pre-

sented, which includes hardware-accelerated rendering, occlusion culling, and an

out-of-core rendering algorithm. It is especially well suited to build up and ren-

der unprocessed point clouds, where only the position and optionally a color are

available at each point.

7.1 Features

The rendering system takes point clouds as input. The only attribute that is neces-

sary per point is its position in space. Using also color is however advisable. The

point clouds can come directly from the output of a range scanner. Using oriented

bounding boxes (OBBs), it is possible to compose a large point-based model from

the point samples of several different scan positions.

The points from the original point clouds are then sorted into a novel data

structure called Nested Octree (see Chapter 4). A Nested Octree is an octree

where each node has an MOSPT associated with. An MOSPT (see Chapter 3)

is a sequentialized hierarchy that can be processed completely on the GPU, and

which uses only original points to provide a LOD mechanism. For rendering one

LOD, all points from the upper levels are rendered down to the required level, and

together the levels represent a certain LOD. All points that are processed and sent

to the GPU are also rendered. The MOSPT alone allows for selecting one LOD at

a time, but it does not allow for view-frustum culling.

The Nested Octree is used to provide view-frustum culling and out-of-core

rendering. Each node in the Nested Octree contains the necessary information to

render the associated MOSPT, like the number of hierarchy levels and the bound-

ing box of the MOSPT. The MOSPTs from different nodes in the Nested Octree

can overlap in space. The nodes to render are chosen by a benefit value, which

depends on the relative position of the node to the viewpoint. If a node is cho-

sen for rendering, than a request is sent to a second thread, which manages the

loading of point clouds into memory. The point size that is used for rasterizing

Chapter 7. Conclusion and Summary 83

a point on screen depends on the projected size of cells at the lowest level in the

MOSPT. The same point size is also used by all parents of the node, if the node is

at the lowest level in the hierarchy that is actually rendered. This ensures, that the

point size is always as large as the finest available LOD for a branch in the Nested

Octree hierarchy.

The rendering system is mainly focused on the fast rendering of point clouds,

and not on rendering high-quality images of point-based models. This is on the

one hand necessary, because we do not assume normals for the models, on the

other hand it is intended as a fast reviewing algorithm for sampled point clouds,

where the models can be reviewed at lower visual quality, but soon after the scan-

ning.

7.2 Conclusion

Having implemented a point-rendering system from the ground up, one of the

most important parts was to find out about the characteristics of the graphics card

and driver. We were not sure how to achieve to highest vertex throughput, be-

cause we could not reach the number of vertices per second that was advertised

by NVIDIA. We finally asked NVIDIA what the theoretical performance is. So

testing the graphics card is certainly a good idea to find out about the limits of

the hardware. The testing for the memory layout of the VBOs took some time.

We finally came up with the MOSPT data structure which seems to be the fastest

way to render small point clouds. The MOSPTs have to be inserted into an outer

hierarchy to allow for view-frustum culling.

In Figure 7.1, three alternatives of how to place MOSPTs within a hierarchy,

e.g., an octree, are shown. The placement in the left hierarchy would seem straight

forward, but it has the problem that the granularity of the LOD selection is too

coarse, and so too many points are stored on the graphics card which are not

needed for rendering. The granularity of view-frustum culling is also too coarse,

so too many points have to be processed. Another possibility to place the MOSPTs

is shown in the middle. Here the lower levels of the hierarchy are converted into

MOSPTs. This works well for point clouds that fit completely in the memory of

the graphics card. For larger models this cannot be done. The problem is that

the upper levels of the hierarchy are still within a conventional hierarchy, and

how should they be traversed? They could be traversed point by point, but for

really large models the upper levels will contain many points, so this will be slow.

Finally the third alternative shows the idea we developed further, where MOSPTs,

which are stored in VBOs, overlap each other. Here the LOD selection is fine

enough, so that most of the points that are stored on the graphics card are also

rendered, and the view-frustum culling is good enough, so that most processed

Chapter 7. Conclusion and Summary 84

Fig. 7.1: Three alternatives how to convert an octree hierarchy to MOSPTs. Each MOSPT

is stored in a VBO. The bar to the right of each hierarchy indicates the levels where the

MOSPTs are placed.

points are actually inside the view frustum.

The next challenge was the out-of-core rendering and build up. The design

and implementation of the system was not that hard, but the insight that the build

up of the model and the rendering of the model, i.e., the loading of VBOs from

disk to graphics card memory, takes much longer as when not dealing with out-

of-core algorithms was striking. Theoretically the system can handle point clouds

with 231 points, but if we cannot find some optimizations for the build up pro-

cess, testing this will be infeasible. The fewer data the out-of-core system has to

process, the better. For even larger models than the Stephansdom, a compression

algorithm would certainly be advantageous. The time necessary for compressing

and decompressing the point attributes is probably less than the time it takes to

store and fetch the uncompressed data from disk.

7.3 Possible Enhancements

The problems when rendering large point clouds are manifold. The amount of

data that has to be processed during build up and rendering, the selection of points

from the raw scanner data, the organization in a LOD hierarchy, the parameters

during scanning, the selection of points for rendering, and so on.

For out-of-core rendering the number of disk accesses is the main performance

criterion, since it takes an order of magnitude longer to fetch data from disk than to

have it in main memory or even graphics memory ready for rendering. The time to

load the point clouds from disk is not going to decrease soon, although the main

memory and graphics memory are certain to increase on the average computer

every year. So the number of points that can be stored in memory is going to

increase, which will result in an improved quality for the rendered images. On

the other hand, the models will continue to grow, consisting of 1 billion points

Chapter 7. Conclusion and Summary 85

or more, so there is likely always the need for a fast out-of-core point rendering

algorithm.

When composing models from several different scan positions, the lighting

of the scans can vary widely, resulting in heterogeneously lit models, where the

different scanning positions can be easily identified. One possibility to address

this problem is the use of high dynamic range imaging (HDRI) during the sam-

pling process. HDRI was first introduced by Ward in the Radiance rendering sys-

tem [War94]. Debevec [DM97] developed it further, showing how HDR images

can be created from several photographs of the same scene, where each photo-

graph is taken with different exposure settings. The difference between HDR im-

ages and normal photographs is that HDR images store physical luminance values,

whereas normal photographs only store a color value. If the lighting situation is

known when taking HDR images, it might be possible to calculate a uniform light-

ing for the model, or to re-light each point to simulate different lighting situations.

The current rendering system is completely point based. This is the fastest

method when converting raw data from range scanners to viewable models. To

increase the rendering speed further, some more postprocessing of the raw data

is necessary. Taking the model of the Stephansdom as example, there are some

regions that could be very well approximated by polygons. Obvious choices are

the floor as a whole, and the walls in part, as they are intersected by columns. The

floor could even be textured by only one pattern. It is also scanned very densely,

as it is close to the scanning positions. The speedup for using polygons instead of

points should be quite noticeable. Even when using polygons, a LOD will have

to be considered. To optimize the selection of the areas that should be replaced

could be done interactively, although automatized systems already provide good

results [WGK05]. The rendering system would then be implemented as hybrid

rendering system, where models can consist of only points, only polygons, or

both, similar to the rendering system of Chen and Nguyen [CN01].

The build up process is automated, after the user has defined an appropri-

ate OBB for each scan position. Nevertheless, the build up process is time-

consuming, so a possible enhancement could be an incremental build up of the

Nested Octree. This means that a new scanning position can be included in an

already existing Nested Octree, and the new points are filled into the hierarchy.

The problem is that the leaf nodes of the Nested Octree can contain more points

than necessary, so they should be re-opened and their points should be inserted

again.

When scanning the environment, there will likely be areas that cannot be seen

by the scanner’s laser, because they are occluded by some other object. Another

problem are areas where the sampling density varies due to the different number

of scans that sampled the areas. A very densely sampled area can be adjacent to

a poorly sampled area. A possibility is to reconstruct the model in these areas,

Chapter 7. Conclusion and Summary 86

which could be done by a set of tools that interactively change the model. It will

certainly be interesting to see whether editing can be done with really large models

that do not fit completely in main memory.

Since the models are ever increasing in size, a possibility is to compress the

point attributes, like position and color. There are two different methods of com-

pressing, lossy and lossless compression. Higher compression rates are achieved

with lossy compression, but this also requires the models to be resampled. Loss-

less compression on the other hand preserves the original points. Considering the

increasing size of models, a compression of the attributes would be very interest-

ing, especially if the decoding can be implemented directly on the GPU [KSW05].

7.4 Summary

The newly developed point-rendering system is well suited for building up mod-

els directly from the raw data of range scanners and rendering them fast, using the

hardware-accelerated rendering pipeline. The only thing the user has to do is to

define an OBB for each scan position, which is needed to find the desired points

from the raw data of the scanner. Future enhancements could include an incre-

mental build up of the hierarchy, compression of point attributes, reconstruction

of the model, or a hybrid rendering system for using polygons.

Appendix A

Class Diagram

The point rendering system is implemented in the Yare Rendering Engine, which

was developed by the real-time rendering group at the Institute of Computer

Graphics and Algorithms at the Vienna University of Technology. The point ren-

dering system includes several different algorithms, i.e., the ρ-grid, the SPT, the

SPTs in an octree hierarchy, the MOSPT, the MOSPTs in an octree hierarchy, and

the Nested Octree algorithm. For accessing the raw data of the point scans, the

riscanlib from Riegl is used. The programming language for the implementation

is C++.

The class layout for the Nested Octree algorithm is mainly aimed to support

the outer and inner octrees. The main classes are:

• GraphicsLruCache manages the point clouds in graphics card memory. The

LRU strategy is very simple, as all point clouds can be replaced, only the

point clouds that were needed for rendering in the last frame cannot be

replaced.

• LruCache manages the point clouds in main memory. The cache is simply a

list where new elements are appended to the back. The first entry in the list

is the oldest one. Elements can also be requested directly from the list. The

second thread asks at first if a point cloud is stored in the LRU cache, and

only if the point cloud is not available there, it loads the point cloud from

the harddisk.

• NestedTrigrid builds up the runtime structure of the Nested Octree, and

manages the rendering. The name Nested Trigrid is referencing some of the

ideas we had during development.

• NestedTrigridFile handles the build up of the MOSPTs and the outer octree

structure. For this it needs a stream of points, which is provided by the

ScannerFileConverter class.

Appendix A. Class Diagram 88

• NestedTrigridSecondThread is responsible for delivering point clouds from

the harddisk or main memory cache to the graphics card memory. The com-

munication between the threads is accomplished by a message interface. If

the rendering thread needs a new point cloud, the necessary information

is dispatched in a message. After loading the point cloud from harddisk,

the second thread sends the information where the point cloud is stored in

memory back to the rendering thread. But also other messages can be sent,

like the number of points contained in the main memory cache.

• ScannerFileConverter can read a list of scanner files, and then provide them

as a stream of points, which can then be processed by the NestedTrigridFile

class.

• TestApp, which is an application that instances the scenegraph. The Nested

Octree is attached to the scenegraph as a geometric object.

In Figure A.1 the UML class diagram of the Nested Octree point-rendering

system is shown.

Appendix A. Class Diagram 89

Fig. A.1: The UML class diagram of the implemented Nested Octree.

List of Figures

1.1 An example of a terrestial laser scanner. Here a Riegl LMS z420i

is shown. The range measuring laser is situated behind the blue

windows in the scanner’s casing. After taking range samples from

the environment, the camera on top of the scanner takes photogra-

phs of the scanned environment. 8

1.2 A laser scanner scanning the environment. The total angel of rota-

tion can be up to 360 degrees. The scan area depicts the limitation

of the laser measurements in vertical direction. After the range

scan, photographs of the scanned environment are taken by the

camera on top of the scanner’s casing. 10

1.3 Closeup view of an isosurface feature in the mixing interface of

two gases for a simulation of a Richtmyer-Meshkov instability in a

shock tube [MCC+99] as rendered with the Layered Point Clouds

algorithm [GM04]. 10

2.1 A continuous texture function is locally approximated by basis

functions [ZPvBG01]. 14

2.2 Here in the one-dimensional case the warping, bandlimiting,

and resampling of a continuous function from basis functions is

shown [ZPvBG01]. 15

2.3 The deferred shading pipeline for GPU-based splatting as pre-

sented by Botsch et al. [BHZK05]. The visibility pass fills the

z-buffer, such that the attribute pass can correctly accumulate sur-

face attributes, like color values and normal vectors, in separate

render targets. The final shading pass computes the actual color

value for each image pixel based on the information stored in the-

se render targets. 16

2.4 A range scan as seen from above. 17

2.5 The file and node layout of QSplat. (a) The tree is stored in

breadth-first order. (b) The link from parent to child nodes is esta-

blished by a single pointer from a group of parents to the first

child. At leaf nodes the pointer is not present. (c) A single node

occupies 48 bits. 19

List of Figures 91

2.6 The left image shows a ρ-grid rendering a model consisting of

1.3M points at 2.1 FPS on a 200MHz Compaq IPAQ. The model

in the right image is rendered at 2.3 FPS. 21

2.7 As perpendicular error for a disk the distance between the two

planes parallel to the disk enclosing all children is used. 22

2.8 The tangential error measures how well a parent disk approxima-

tes the children’s disks in the tangent plane. 22

2.9 The same nodes as hierarchical point tree and as sequential point

tree. Left column: Nodes a. . .m with [rmin . . . rmax] as point tree

in the upper row and as SPT sorted by rmax in the lower row.

Other columns: In the upper row the black line shows the tree cuts

for different view distances. In the lower row the cut in the SPT

representation. The process bar shows which nodes are sent to the

GPU, and the empty bars in the process range show, which nodes

are culled by the GPU. 23

2.10 Hierarchical rendering with layered point clouds. The figure is

built from an accumulation of different point clouds. From left to

right: level 0 rendered with 2 clusters and 4K splats, level 0+1

rendered with 6 clusters and 12K splats, and finally the whole

model rendered with a pixel tolerance of 1 with 1720 clusters and

3435K splats. 24

2.11 Hierarchical layer-based LOD classification for the nodes. The

leaf nodes are linear ordered in z-index. 27

2.12 Final ordering of nodes in the sequentialized hierarchy S. 27

2.13 The hierarchy S is subdivided into blocks. Empty spaces in the

blocks are padded with NULL points. 27

2.14 Ordering of blocks in B with respect to the block’s rmax values

and selection of range. 28

3.1 A binary MOSPT after all points have been inserted. Only leaf

nodes contain points. The leaf nodes at the maximum recursion

level can contain more than one point, if leaf node strategy 3.a is

used. 31

3.2 In the second phase a bottom-up algorithm is used that pulls up

one representative of the children to the parent nodes. The num-

bers beside the arrows indicate the iteration step at which the pull-

up occurs. 33

3.3 The points of the MOSPT that are used for the different levels of

detail. 34

3.4 The value of r measures the distance between the camera and the

bounding box of the object. 34

List of Figures 92

3.5 The MOSPT of Figure 3.2 in the sequentialized representation.

For each LOD only a prefix of the array has to be rendered. The

upper levels of the hierarchy are also used for the lower levels of

detail. 36

3.6 The SPT that results from the hierarchy created in 3.1. The points

in the inner nodes average the information of their children. 38

3.7 Left: In an SPT, r = const selects different levels of the hierarchy.

Furthermore, nodes above and below r need to be culled. Right:

In an MOSPT, r = const selects exactly one level in a hierarchy

from an MOSPT due to the screen splat error metric. 40

3.8 The left side shows the MOSPT resulting from the hierarchy

in 3.1, the right side shows the SPT resulting from the same hier-

archy. The SPT has to process more points for the camera distance

at r = 25, but the number of rendered points is the same as with

the MOSPT. 40

4.1 In the one-dimensional case a nested bintree is created. The inner

bintrees have a depth of 3. The outer bintree could have more

levels as well. 43

4.2 In the two-dimensional case a nested quadtree is created. The in-

ner quadtrees have a depth of 2. In the bottom row the left square

shows all available points. The other squares show the points used

at the different levels. 44

4.3 An outer octree, with the splat sizes that will be used for rende-

ring the points of the associated MOSPTs. The splat sizes of the

hierarchy levels change with the view distance r. 49

5.1 A simple OpenGL application for testing different layouts of ver-

tices in memory. 54

5.2 Each vertex attribute is stored in its own array. 54

5.3 All vertex attributes are stored in one array interleaved, at different

offsets. 54

5.4 Position and color are stored in one array interleaved, and texture

coordinates are stored in their own array. 54

5.5 On the left side the displacement vectors from the center of a cell

to the centers of its children are depicted. On the right side the

displacement vectors from the center of a cell to the vertices of

the AABB are depicted. 57

5.6 At each scanner position the SOCS coordinate system is in a dif-

ferent orientation relative to the PRCS coordinate system. 59

List of Figures 93

5.7 An oriented bounding box is used to cut out the useful part of

a raw point cloud. The OBB is defined by bu, bv, and bw, which

are the normalized vectors for the local coordinate system of the

OBB. Further by hu, hv, and hw, which are the length of the half-

vectors of the OBB in direction of the base-vectors. And also by

the center of the OBB, relative to a superior coordinate system. . . 59

6.1 The different viewpositions as seen from above. The model con-

sists of 1 point cloud. 64

6.2 The model as seen from different viewpositions. In the left picture

the viewpoint is 300 meters from the center, in the middle picture

50 meters, and in the right picture the viewpoint is at the center of

the model. 65

6.3 Quality comparison of Nested Octree (left) and VBO (middle)

rendering. The VBO represents the original model. The Nested

Octree uses an LOD algorithm which is able to select an LOD le-

vel for the model, so that the model is not rendered at the finest

resolution. There is a difference (right) between the VBO and Ne-

sted Octree rendered images. 67

6.4 Quality comparison of SPT (left) and VBO (middle) rendering.

The VBO represents the original model. The SPT uses an LOD

algorithm that is effective in the center of the model. In the other

areas, the model is rendered at the finest resolution. There is a

difference (right) between the VBO and SPT rendered images. . . 68

6.5 Quality comparison of MOSPT (left) and VBO (middle) rende-

ring. The VBO represents the original model. The MOSPT uses

an LOD algorithm, but the whole model is rendered at the finest

resolution. There is nearly no difference (right) between the VBO

and SPT rendered images. 68

6.6 On the left side the model without trimming the scans. The points

in the distance do not receive enough light, and appear very dark

or even black. On the right side, the size of the OBB relative to

the raw data from a scan as seen from above. 69

6.7 Points at weired positions in space. The Stephansdom was scan-

ned from the inside. These erroneous points have to be culled in a

postprocess, to get a somewhat clean model. The cleanup process

can be automated. The “jet” in the left image should be cut, and

the “flying windows” in the right image are undesired as well. . . 70

6.8 The Stephansdom as seen from above. All 77 scan positions are

visible. At the top is the main entrance, and at the bottom the

Albertinian choir. 71

List of Figures 94

6.9 The Stephansdom from outside, looking from south-east to the

north-west. Along the right border and below the Albertinian

choir still some erroneous points can be seen, which were not cut

by OBBs. 72

6.10 The inside of the Stephansdom. After the user has moved very fast

through the model, the interior design is rendered very blocky. . . 72

6.11 The inside of the Stephansdom rendered with a minimum pro-

jected size for the MOSPT leaf nodes of 2 pixels. This is a very

reasonable compromise between rendering speed and visual qua-

lity. 73

6.12 The inside of the Stephansdom rendered with a minimum projec-

ted size for the MOSPT leaf nodes of 1 pixel. This is the highest

available visual quality. 73

6.13 Only relative few and large bounding boxes are visible, appro-

ximately 208. Almost all bounding boxes are in some shade of

magenta, indicating that not all children nodes of these cells are

rendered, because the projected sizes of the leaf nodes of the

children are too small. 74

6.14 Many bounding boxes are visible, approximately 499. About 50%

of them are also white, which means all children nodes of these

cells are rendered. 75

6.15 A look through the Stephansdom from the main entrance. 77

6.16 Hovering inside the Stephansdom just below the arches. 78

6.17 The inside of the Stephansdom as seen from the eye level of a visitor. 78

6.18 The view from the center of the Albertinian choir to the high altar. 79

6.19 Three altars in the northern part of the Stephansdom’s nave. 79

6.20 The Leopold altar as seen from the scanner. Therefore the geo-

metry in the image does not show large holes. On the right side

of the floor the overlap of two scanning positions can be seen,

where dark pixels from each of the two scan positions are in the

direct neighborhood of bright pixels respectively from the other

scan position. 81

7.1 Three alternatives how to convert an octree hierarchy to MOSPTs.

Each MOSPT is stored in a VBO. The bar to the right of each

hierarchy indicates the levels where the MOSPTs are placed. . . . 84

A.1 The UML class diagram of the implemented Nested Octree. . . . 89

List of Tables

3.1 Attributes of a point in the MOSPT data structure. 35

3.2 Attributes of a point in the SPT data structure. 37

5.1 The results for the different memory layouts. 55

5.2 The center and the angles a, b, and c are all relative to SOCS

(PRCS) coordinate system (e.g., the center / angle as seen from

the SOCS (PRCS) coordinate system). 60

5.3 The center and the normals u, v, and w are all relative to SOCS

(PRCS) coordinate system (e.g., the center / orientation as seen

from the SOCS (PRCS) coordinate system). 60

6.1 The memory requirements for the different algorithms. 63

6.2 The Frames per Second for the different algorithms at different

viewpoint positions. 65

6.3 The number of rendered points for the different algorithms at dif-

ferent viewpoint positions. 66

6.4 The vertices per second (VPS) for the different algorithms at dif-

ferent viewpoint positions. The VPS were measured with perfor-

mance counters, available on the graphics card. 66

6.5 The number of rendered cells and points. OC means occlusion

culling. A decreased visual quality is traded for rendering fewer

points. 75

6.6 The evaluation of performance counters on the GPU. Occlusion

culling increases the latency when waiting for the results of the

occlusion queries. 76

Bibliography

[BDS05] T. Boubekeur, F. Duguet, and C. Schlick. Rapid visualization of large

point-based surfaces. In Proceedings of VAST 2005, pages 75–82,

2005.

[BHZK05] Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif

Kobbelt. High-quality surface splatting on today’s GPUs. In Marc

Alexa, Szymon Rusinkiewicz, Mark Pauly, and Matthias Zwicker,

editors, Symposium on Point-Based Graphics, pages 17–24, Stony

Brook, NY, 2005. Eurographics Association.

[BR93] Jules Bloomenthal and Jon Rokne. HOMOGENEOUS COORDI-

NATES. Technical Report 93/516/21, University of Calgary, March

1993.

[CN01] Baoquan Chen and Minh Xuan Nguyen. POP: a hybrid point and

polygon rendering system for large data. In Thomas Ertl, Ken Joy,

and Amitabh Varshney, editors, Proceedings of the Conference on

Visualization 2001 (VIS-01), pages 45–52, Piscataway, NJ, October

21–26 2001. IEEE Computer Society.

[Com06] CompuPhase. Colour metric. http:// www.compuphase.com/ cmet-

ric.htm, 2006.

[dB00] W. de Boer. Fast terrain rendering using geometrical mipmapping,

October 31 2000.

[DD04] F. Duguet and G. Drettakis. Flexible point-based rendering on mo-

bile devices. Computer Graphics and Applications, 24(4):57–63,

July-Aug 2004.

[DM97] P. E. Debevec and J. Malik. Recovering high dynamic range radiance

maps from photographs. In SIGGraph-97, pages 369–378, 1997.

[DVS03] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger.

Sequential point trees. ACM Trans. on Graphics, 22(3):657–662,

2003.

Bibliography 97

[FS93] T. A. Funkhouser and C. H. Sequin. Adaptive display algorithm

for interactive frame rates during visualisation of complex virtual

environments. Proceedings of SIGGRAPH’93, pages 247–254, 1993.

[GD98] J. P. Grossman and William J. Dally. Point sample rendering. In

George Drettakis and Nelson Max, editors, Rendering Techniques

’98, Eurographics, pages 181–192. Springer-Verlag Wien New York,

1998.

[GM04] Enrico Gobbetti and Fabio Marton. Layered point clouds. In Eu-

rographics Symposium on Point-Based Graphics, pages 113–120,

2004.

[Hec89] Paul S. Heckbert. Fundamentals of texture mapping and image warp-

ing. Master’s thesis, CS Dept, UC Berkeley, May 1989.

[KSW05] Jens Krüger, Jens Schneider, and Rüdiger Westermann. Duodecim -

a structure for point scan compression and rendering. In Eurograph-

ics Symposium on Point-Based Graphics, pages 99–107, 2005.

[LE97] David Luebke and Carl Erikson. View-dependent simplification of

arbitrary polygonal environments. In SIGGRAPH 97 Conference

Proceedings, pages 199–208, 1997.

[LH04] Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain

rendering using nested regular grids. ACM Trans. on Graphics,

23(3):769–776, 2004.

[LW85] Mark Levoy and Turner Whitted. The use of points as a display

primitive. Technical Report TR 85-022, 1985. The University of

North Carolina at Chapel Hill, Department of Computer Science.

[MCC+99] A. A. Mirin, R. H. Cohen, B. C. Curtis, W. P. Dannevik, A. M. Dim-

its, M. A. Duchauneau, D. E. Eliason, D. R. Schikore, S. E. Ander-

son, D. H. Porter, P. R. Woodward, L. J. Shieh, and S. W. White.

Very high resolution simulation of compressible turbulence on the

IBM-SP system. In Proceedings of Supercomputing’99 (CD-ROM),

Portland, OR, November 1999. ACM SIGARCH and IEEE.

[Mic03] Microsoft. How NTFS works. Microsoft TechNet Webpage, 2003.

[PSL05] Renato Pajarola, Miguel Sainz, and Roberto Lario. Xsplat: External

memory multiresolution point visualization. In Proceedings IASTED

Invernational Conference on Visualization, Imaging and Image Pro-

cessing, pages 628–633, 2005.

Bibliography 98

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus

Gross. Surfels: Surface elements as rendering primitives. In Proc.

ACM SIGGRAPH 2000, pages 335–342, 2000.

[RB93] Jarek Rossignac and Paul Borrel. Multi-resolution 3D approxima-

tions for rendering complex scenes. In 2nd Conf. on Geometric Mod-

elling in Computer Graphics, pages 455–465, 1993.

[RL00] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution

point rendering system for large meshes. In Proc. ACM SIGGRAPH

2000, pages 343–352, 2000.

[SS05] Oliver Schall and Marie Samozino. Surface from scattered points:

A brief survey of recent developments. In Bianca Falcidieno and

Nadia Magnenat-Thalmann, editors, 1st International Workshop on

Semantic Virtual Environments, pages 138–147, Villars, Switzerland,

2005. MIRALab.

[TKDS05] G. Li T. K. Dey and J. Sun. Normal estimation for point clouds :

A comparison study for a voronoi based method. In Eurographics

Symposium on Point-Based Graphics, pages 39–46, 2005.

[War94] Gregory J. Ward. The RADIANCE lighting simulation and rendering

system. In SIGGRAPH, pages 459–472. ACM, 1994.

[WGK05] R. Wahl, M. Guthe, and R. Klein. Identifying planes in point-clouds

for efficient hybrid rendering. In 13th Pacific Conference on Com-

puter Graphics and Applications, 2005.

[WS06] Michael Wimmer and Claus Scheiblauer. Instant points. In Proceed-

ings Symposium on Point-Based Graphics 2006, pages

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus

Gross. Surface splatting. In SIGGRAPH ’01: Proceedings of the 28th

annual conference on Computer graphics and interactive techniques,

pages 371–378, New York, NY, USA, 2001. ACM Press.

