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Abstract

Over the last 10 years, significant progress has been made in the field of computer
graphics, especially in real-time rendering. Most noteworthy, the use of dedicated
graphics accelerator hardware has found its way from the professional to the con-
sumer market, and their ever increasing power has allowed for rendering almost
photorealistic virtual environments while still maintaining interactive framerates.

Despite this rapid development, a significant element of computer graphics has been
neglected for a long time. Shadows do not only provide more realistic-looking scenes,
but also aid the viewer in perceiving spatial relationships. However, due to the addi-
tional computational requirements, it has been impossible for graphics accelerators
to render shadows and keep framerates high enough to maintain the feeling of im-
mersion for a long time. Although there are several approaches to realize shadows,
dynamic environments with a multitude of light sources and complex objects still
make high demands on the hardware.

In this thesis, a technique is presented to improve the performance of shadow volumes
in complex scenes that consist of a large number of individual objects. Several
optimization techniques have already been proposed that target applications where
the rasterization of the shadow volume polygons is the main bottleneck. However,
these optimizations usually assume that the number of individual objects in the
scene is rather small compared to the number of geometric primitives (triangles). In
such scenes, calculations can be accelerated by using low-polygon approximations
of the actual geometry. Most of these existing optimization techniques relieve the
graphics hardware at the cost of increased CPU load. If the CPU is already at peak
load, these techniques do not achieve any performance gain, but rather worsen the
bottleneck in the CPU stage, resulting in an even lower performance.

This thesis first presents an overview of current state-of-the-art shadowing tech-
niques that are based on standard shadow volumes. Then, we will try to adapt
parts of these techniques to work in complex scenes. Specifically, we will improve
visibility determination for shadow volume culling in GPU-demanding scenes with
lots of individual objects, as well as present a method for the fast creation of seg-
mented (clamped) shadow volumes that tightly fit the shadow-receiving geometry
using vertex programs (shaders).
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Kurzfassung

Während der letzten 10 Jahre wurden auf dem Gebiet der Computergraphik und
insbesondere dem Echtzeit-Rendering bedeutende Fortschritte erzielt. Nicht nur griff
die Verwendung von dedizierter Hardware zur Berechnung dreidimensionaler Bilder
vom Profi- nun auch ins Consumer-Segment über, auch die Leistungsfähigkeit der
Grafikbeschleuniger ist in einen Bereich gestiegen, der es ermöglicht, nahezu foto-
realistische virtuelle Umgebungen bei dennoch interaktiven Bildwiederholraten zu
erzeugen.

Trotz dieser rasanten Entwicklung wurde ein wesentliches Element der Computer-
graphik lange Zeit vernachlässigt. Schatten sorgen nicht nur für realistischere Szenen,
sondern unterstützen den Betrachter auch beim Erfassen räumlicher Zusammenhän-
ge. Allerdings war die Grafikhardware lange Zeit nicht in der Lage, die zusätzlichen
Berechnungen ohne signifikante Leistungseinbußen durchzuführen. Obwohl es mitt-
lerweile mehrere Ansätze zur Realisierung von Schatten gibt, stellen auch heute noch
dynamische Umgebungen mit vielen Lichtquellen und komplexen Objekten hohe An-
forderungen an die verwendete Hardware.

Diese Diplomarbeit untersucht Methoden, um die Leistung des traditionellen shadow
volume Algorithmus in komplexen Szenen zu verbessern. In diesem Zusammenhang
nennen wir eine Szene komplex, wenn sie nicht nur eine hohe Anzahl an Geometrie
beinhaltet, sondern diese auch auf viele individuelle Objekte verteilt ist. Es existieren
bereits eine Reihe von Optimierungen, die auf Anwendungen abzielen, in denen die
Rasterisierung der Schattenpolygone der Hauptflaschenhals ist. Diese Optimierun-
gen gehen jedoch überwiegend davon aus, dass die Szene eine begrenzte Anzahl an
individuellen Objekten enthält, die ihrerseits durchaus komplex sein können (d.h.
aus vielen Dreiecken zusammengesetzt sind). In diesem Fall können viele Berech-
nungen vereinfacht werden, in dem anstelle der tatsächlichen Geometrie einfachere
Annäherungen verwendet werden. Die meisten existierenden Optimierungen entla-
sten die Grafikhardware zulasten der CPU, weswegen sie stark von approximierter
Geometrie profitieren. Wenn jedoch die CPU bereits stark ausgelastet ist, versagen
diese Methoden, da sie den Flaschenhals in der CPU noch verstärken und somit
sogar eine Verschlechterung der Performance bewirken.

Diese Diplomarbeit beschreibt zunächst den aktuellen state-of-the-art bei shadow
volumes. Daran anschliessend werden Teile dieser optimierten Methoden genauer
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untersucht und für die Verwendung in komplexen Szenen mit vielen Objekten ange-
passt. Wir präsentieren eine Verbesserung bei der Visibility-Bestimmung für Shadow
Volume Culling bei anspruchsvollen Szenen mit vielen individuellen Objekten und
präsentieren weiters Methoden zur schnellen Erstellung von segmentierten Shadow
Volumes (Clamping).
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1 Introduction

1.1 Real-Time Rendering

Like photorealistic rendering, real-time rendering is a part of the field of computer
graphics. While photorealistic rendering deals with the appearance of the generated
images, real-time rendering mainly focuses on creating those images fast enough to
keep the viewer immersed in the scene. To achieve this goal, the images must be
created at a rate that does not permit the viewer to distinguish individual frames.
This requirement imposes a natural limit on the quality of the generated images. In
many cases, a trade-off must be found between the visual acuity of the images and
the speed at which the images can be generated (rendered).

The term framerate is used to describe the rate at which images are displayed on the
screen. Its unit is frames per second (fps). Haines and Akenine-Möller [6] classify an
application as real-time if its framerate is at least 15 fps. The individual perception
of interactivity, however, greatly depends on the scene. While a slow walkthrough in
a static scene may create a somewhat interactive feeling at as little as 6 frames per
second, computer games with a lot of movement in a highly dynamic environment
should provide at least 60 fps to avoid disturbing visual artifacts [52]. Generally,
the framerate should not exceed monitor refresh rates to avoid ghosting.

Real-time rendering mainly deals with the creation of three-dimensional virtual en-
vironments. A few years ago, the task of creating those environments was performed
entirely by the computer’s main processor (CPU). With the exception of professional
solutions like workstations manufactured by SGI (also known as Silicon Graphics),
dedicated graphics hardware was practically nonexistent. In recent years, however,
ever-increasing demands of computer graphic’s killer application - computer games
- have sponsored an amazing development in the consumer segment. With the in-
troduction of the 3Dfx Voodoo 1 in 1996 [31], more and more of the 3D rendering
process was shifted to dedicated graphics accelerators, also called GPUs, relieving
the main processor from the demanding task of computing three-dimensional im-
ages. Henceforth, GPUs have increased dramatically both in power and complexity,
allowing for realistic images while providing the necessary framerates for an interac-
tive experience (Figure 1.1). While not absolutely required for real-time rendering,
graphics accelerator hardware has become a necessity for almost all of today’s real-
time applications.
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1 Introduction

Figure 1.1: Luna, NVIDIA’s new mascot character. Rendered in real-time with multi-layered and
translucent clothing, reflections, displacement mapping. (Image courtesy of NVIDIA Corp.)

1.2 Shadows in Real-Time Rendering

Shadows play an important role in computer graphics. First of all, scenes that lack
any kind of shadow don’t create the impression of being realistic. A viewer will
notice the absence of shadows immediately, which prevents the viewer from getting
immersed in the scene. In a time of ever-increasing realism in virtual environments
– be they computer games or architectural walk-throughs - , shadows have become
practically a necessity to sustain the illusion of the artificial world. Perhaps even
more important is the role of shadows in the viewer’s perception of the scene. With-
out any shadows at all, the placement of objects relative to each other is often not
clear [91]. A shadow serves as an anchor for an object, tying it to the ground or a
certain spot in the air. For example, imagine a plate sitting on top of a table. If the
plate does not cast a shadow onto the table, we cannot discern whether the plate is
on the table or hovers slightly above it (see Figure 2.19).

Another property with shadow that is important with real-time rendering is the fact
that they need not be physically accurate to create the correct impression. Similar
to reflections, the human eye is rather forgiving and does not immediately recognize
shadows that have a wrong shape. Wanger concludes that it is usually better to
have incorrect shadows than not having any shadows at all [91]. This fact has been
exploited especially in computer games for a long time (see Figure 1.2). Quite often,
a dark circle beneath the feet of a person or a dark rectangle beneath a car is sufficient
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1.3 Goals of this work

Figure 1.2: Left: A character from the game Deus Ex (2001) with a simple circle as a shadow.
Right: A garage with cars that cast fake shadows.

to create the illusion of a shadow and enhance the perceived realism of the scene.
These“fake shadows”can be easily implemented using texturing, multitexturing and
blending even on older graphics hardware.

However, with the rapid development of consumer graphics hardware, the demand
for realistic scenes has risen just as fast, if not faster. With the capabilities of
today’s state-of-the-art graphics hardware, fake shadows are no longer satisfactory
(especially in the gaming industry). Several techniques for rendering physically
accurate shadows, even soft shadows, have existed for quite some time. These have
become feasible only recently, made possible by the power that is provided on modern
graphics hardware. One of them, namely stencil shadow volumes, is the main focus
of this work.

1.3 Goals of this work

Together with shadow mapping, the shadow volume technique is among the most
prominent ones for doing shadows in real-time rendering. In the last years, they have
become increasingly popular with computer games, given the rapid development of
consumer graphics accelerators. However, though they produce good-looking results,
shadow volumes are still problematic in large scenes that contain a lot of geometry.
They increase the number of polygons in the scene as well as burden the rasterizer
stage, because shadow volumes tend to extend to infinity and thus cover a large
portion of the screen. The goal of this work was to implement shadow volumes
in a way that ensures interactive framerates in large urban scenes. To this end,
we improve the standard shadow volume algorithm as well as reduce the number of
shadow volume by culling irrelevant shadow casters (i. e., casters that do not occlude
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1 Introduction

Figure 1.3: This figure shows a typical view of the city model that was the basis for this thesis.

any visible object) and prevent shadow volumes from being drawn over empty space
by clamping them to tightly fit around the shadow receiving geometry.

1.4 Main Contributions

The research done for this master thesis is based on the application of the shadow
volumes algorithm in large environments, where the standard algorithm fails due
to the increased overhead and load on the graphics hardware. As such, we use
an existing optimization technique as a starting point and perform an in-depth
analysis of its shortcomings, followed by several improvements to achieve interactive
framerates in our target scenes.

The cornerstones of this work are as follows:

• First, we analyse several existing shadow volume optimization techniques (sec-
tion 3.2). We also examine the interaction between different techniques and
their behavior in different circumstances (scenes). Specifically, we analyse the
CC Shadow Volumes algorithm described by Lloyd et al. [69] and the steps
involved - shadow volume culling and clamping. Though designed to work in
scenes that are comprised of many triangles, this technique does not provide
acceptable performance in our target scenes. Therefore, we adapt and improve
several steps involved in the original technique.
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1.5 Structure of this document

• Since the original algorithm does not yield acceptable performance, we de-
velop a new, optimized technique to perform the culling of shadow volumes
(section 4.3). This technique is based on the Coherent Hierarchical Culling
visibility determination algorithm presented by Bittner et al. [13].

• To further increase both performance and accuracy of the algorithm, we ap-
ply an effective way to focus the light’s view of the scene, which is needed
for shadow volume culling (subsection 4.3.1). The focussing uses geometric
intersection calculations that execute fast on the CPU and results in a highly
improved culling speed without introducing much additional computational
overhead.

• To speed up the computation of segmented (clamped) shadow volumes, we
present a technique that uses the stencil buffer to compute occupied intervals
and then uses a vertex shader to create multiple shadow volume segments
(subsection 4.4.3).

Together, these contributions enable the interactive rendering of complex scenes that
not only consist of many triangles, but also of a large amount of individual scene
objects.

1.5 Structure of this document

This thesis is structured as follows. In chapter 2, we will cover concepts that are
necessary to fully comprehend the remainder of this work, such as the rendering
pipeline, programmable capabilities of recent graphics hardware, and theoretical
concepts like scene graphs, visibility, and an overview of the most prominent shad-
owing techniques. The shadow volume algorithm is described in chapter 3, followed
by an overview of the current state-of-the-art optimization techniques. chapter 4
first defines what makes a scene complex in this context, then closely examines key
parts of the optimization techniques. First, we will explain the specific problems,
then try to adress some of these deficiencies and improve them to work with com-
plex scenes. Finally, in chapter 5 we will further discuss the pros and cons of the
optimization techniques and closely examine their influence on their performance
with two examples of complex scenes (the city scene1 and a “light” version of the
PowerPlant model2). Finally, chapter 6 briefly recaps the introduced algorithms
and gives an outline of “open issues” and what can be improved in future work. The
appendix contains an overview of the rendering engine that was used in this work
as well as provide implementation-specific details.

1http://www.cg.tuwien.ac.at/research/vr/urbanmodels/index.html
2http://www.cs.unc.edu/˜geom/Powerplant/
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2 Related Work

2.1 3D Graphics Packages

Graphics packages contain a number of convenience functions for tasks common in
computer graphics, like clearing a display screen, initializing parameters, or draw-
ing primitives on a screen [47]. A primary goal in standardized graphics software
is portability. Standardizing graphics software allows software to be easily moved
between different hardware systems and be used in different applications and im-
plementations. The lack of standards would complicate the transfer of programs
designed for a specific hardware platform to another by requiring extensive rewrit-
ing of the programs.

In the following sections, we will examine two of the most prominent graphics
libraries that are used for current real-time applications: Microsoft DirectX and
OpenGL.

2.1.1 Microsoft DirectX

DirectX is a multimedia API that provides a standard interface to interact with
graphics and sound cards, input devices and more. The first version appeared in
1995 and was then called ”GameSDK”. In its original form, it was targeted at
developers using C and C++. Only with the release of its first managed offspring,
DirectX 9.0, it has become possible to use C# or VB.NET with DirectX.

Virtually every modern graphics accelerator supports DirectX functions directly in
hardware.

2.1.2 OpenGL

Like DirectX, OpenGL is a software interface for graphics applications. It was intro-
duced by Silicon Graphics in 1992 and has come a far way since then. In 2000, SGI
released its OpenGL implementation as open source, simplifying the development
of hardware-accelerated drivers for many different operating systems.
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Today, OpenGL is the best choice for developing portable, interactive 2D and 3D ap-
plications. Its specification is governed by the OpenGL Architecture Review Board
(ARB), which consists of many of industry’s leading graphics vendors (specifically
NVIDIA and ATI) as well as a number of other companies (e. g., Microsoft) and
is responsible for defining conformance tests and approving the latest OpenGL en-
hancements. Since there is a standard procedure for new extensions being incorpo-
rated into the OpenGL standard, the library evolves, though slower than DirectX,
in a controlled manner.

Most OpenGL functions are executed in hardware on practically every modern
graphics accelerator.

2.2 The Graphics Rendering Pipeline

The graphics rendering pipeline (or simply the pipeline) represents the core of real-
time graphics. Its main function is to generate (render) a two-dimensional image
that is then displayed on a viewing device. Specifically, it takes a viewpoint (or
virtual camera), three-dimensional objects, their textures, light sources, lighting
models and possibly more as input and outputs a two-dimensional array of pixels.
The pipeline performs tasks like transforming vertices between different coordinate
systems, lighting, clipping, texturing, and antialiasing.

In the real world, pipelines appear in many different functions, places, and physical
forms. Possibly the most prominent representatives are ski lifts, oil pipelines, and
assembly lines. A pipeline’s main characteristic is its segmentation into several
interconnected stages. Entities (skiers, assembly parts, oil) can move from one stage
to the next only when the subsequent stage has been vacated (that is, has finished its
task). Hence, the overall speed of the pipeline is determined by its slowest element,
no matter how fast the other stages may be. Ideally, using a pipeline with n stages
should result in a speed-up of a factor n with respect to a non-pipelined construction.
For example, the overall throughput of a ski lift is proportional to the number of
chairs or bars it contains.

Each pipeline stage is executed parallel to all the others, but it is stalled until the
subsequent stage has finished its task. For example, if the seat attachment stage of a
car assembly line takes three minutes, and every other stage takes two minutes, the
fastest rate that can be achieved is still one car every three minutes. All other stages
are idle for one minute until the seat attachment stage has completed its task. The
slowest stage in a pipeline is called the bottleneck, because it determines the speed
of the complete construction. One of the most challenging problems in designing an
efficient pipeline is the distribution of tasks in several smaller, equally-sized subtasks,
to keep stage idle times as low as possible.
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Figure 2.1: The traditional 3D rendering pipeline.

In the context of real-time rendering, the very same pipelining architecture can be
found. At a coarse level, this pipeline can be subdivided into the three conceptional
stages application, geometry, and rasterization. The pipeline can also be subdivided
into functional stages. A functional stage performs a given task, but does not specify
how this task is accomplished. From a low-level point of view, the pipeline consists
of multiple pipeline stages. Each pipeline stage is executed simultaneously with all
other pipeline stages. Pipeline stages may also be parallelized to achieve higher
throughput (and higher rendering performance).

2.2.1 Application Stage

The application stage always executes in software. Hence, it is totally up to the de-
veloper to change the implementation. Common tasks for the application stages are
input processing, collision detection and artificial intelligence (important for com-
puter games). At the end of the application stage, it produces rendering primitives
(points, lines, triangles, textures, ...) that are then fed into the subsequent stages
of the pipeline. This implies that an important task of the application stage is to
apply acceleration techniques like hierarchical view frustum culling (section 2.4) to
reduce the number of primitives, which decreases the load on the following stages,
thus increasing overall performance.

2.2.2 Geometry Stage

The geometry stage performs per-polygon and per-vertex operations. First, model-
and viewing transformations are applied to all vertices. Depending on the chosen
lighting model, the lighting equation is evaluated at each vertex. After lighting, the
geometry stage performs a projection onto the viewing plane. The two most common
kinds of projections are orthographic projection and perspective projection, which is
a closer approximation to how human vision works. Primitives that lie partly within
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2 Related Work

the viewing volume are then clipped, so that each outside vertex is replaced by a
vertex that is located directly at the intersection with the viewing volume. The
clipped primitives are finally mapped to two-dimensional screen coordinates. The
z coordinate is stored as well and later used in the z-buffer for visibility determi-
nation. Screen coordinates together with the z coordinate are also called window
coordinates.

Obviously, the geometry stage performs a very demanding task: even for a single
light source, each vertex requires approximately 100 floating point operations in the
fixed-function pipeline[4].

2.2.3 Rasterizer Stage

Where the geometry stage operates mainly on vertices, the main task of the ras-
terizer stage is to compute the colors of individual pixels, given the transformed
and projected vertices, colors and texture coordinates. The process of converting
primitives to pixels is called rasterization or scan conversion. The information for
each individual pixel is stored in a two-dimensional, rectangular array of colors called
color buffer. The rasterizer operates on fragments, which is a data structure contain-
ing color, alpha, and z values. The number of fragments that can be processed in the
rasterizer per second is called fill rate. Current state-of-the-art graphics hardware
has a typical fill rate of several gigapixels per second.

Visibility is resolved in this stage as well. This means that while the whole scene has
been rendered, the color buffer should ultimately contain only the colors of prim-
itives that are visible from the point of view. Most graphics accelerator hardware
accomplishes this with the z-buffer (also called depth buffer) algorithm. In addition
to the color buffer, a second array (the z buffer) is used with the same dimensions.
For each pixel, it stores the z-value from the viewpoint to the currently closest prim-
itive. Whenever a primitive is rendered to a certain pixel, its color information is
written to the color buffer only if the new z value is nearer than the value stored in
the z buffer (which means that the new primitive occludes the previous primitive at
this point). This algorithm allows the primitives to be rendered in any order, which
is another reason for its popularity (however, to keep the number of z-writes low
and increase performance, primitives should be rendered in a front-to-back order).
This does not apply to (partially) transparent objects, these must be rendered after
all fully opaque primitives and in back-to-front order.

Aside from the z and color buffers, there are a number of other common buffers.
The stencil buffer which is a part of OpenGL usually holds one to eight bits per
pixel. Primitives can be rendered into the stencil buffer just like into the color buffer
using various functions that modify the stencil value. This value can then be used
to control rendering into the color and z buffer. The stencil buffer is a powerful and
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flexible tool to create special effects. The sum of all buffers available on a system is
usually called framebuffer.

More information on rasterization can be found in [5] and [81].

2.3 Programmable Graphics Hardware

Since the release of the first dedicated consumer graphics hardware, the 3Dfx Voodoo
1, in 1995, graphics accelerator hardware for PCs have come a far way. With the
introduction of the NVIDIA GeForce 256 in 1999, an important part of the rendering
pipeline (section 2.2) was moved from software to the graphics hardware. Called
Hardware Transform & Lighting (T&L), this hard-wired unit transforms vertices
according to the supplied model- and viewport transformations and evaluats the
basic Phong lighting model at each vertex [37]. Hardware T&L has paved the
way for virtual worlds with higher polygon counts, making the scenes look more
realistic.

While preserving CPU power for other tasks, hardware T&L came at the cost of
decreased flexibility: the advantage of software T&L is its free programmability.
Developers are free to chose their own lighting models, if they wish to do so, whereas
with hardware T&L, they are stuck with per-vertex Phong lighting, which, though
fast, does not offer the best image quality. To alleviate these disadvantages and still
keep transformations and lighting in hardware, vertex shaders were introduced.

In general terms, a vertex shader is a freely programmable unit incorporated on the
graphics hardware. It can modify per-vertex properties such as its color, normal,
texture coordinate, and position. When the vertex shader is enabled, the hard-
wired transform and lighting unit (sometimes also referred to as the fixed-function
pipeline) is bypassed and no longer available. Its place in the pipeline is replaced
by the programmable shader, which executes a series of commands specified by the
user to accomplish its task. Vertex shader programs are usually stored in a form
of assembly language. However, several high-level languages exist to create shader
programs (often referred to simply as shaders) very similar to computer programs.
A compiler then creates the assembly output. Applications that use vertex shaders
work on all systems that support the API. This means that if the graphics hardware
does not support the shader directly, the API emulates the program in software. Of
course, hardware shaders perform much faster than the software emulation does.

A vertex shader program processes each vertex passed in. For each entering vertex,
an output is generated. The shader can neither create vertices, nor destroy them.
Furthermore, there is no mechanism to pass results from one vertex on to another
one. In the first version of the vertex shader specification, the assembly language
contained 17 different instructions, and shader programs (often called just shaders),
were limited to 128 commands. These instructions are tailored towards graphics
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Figure 2.2: The geometry stage with a vertex shader. The vertex shader can be enabled to
circumvent the fixed-function transform and lighting unit.

applications and include operations like three- and four-element dot products, inverse
square root, reciprocal, and lighting operations. All these instructions execute in a
single clock cycle. However, there are no early return statements, so a vertex program
is always executed in constant time, regardless of any conditions encountered during
the course of the program. This means that shorter shaders execute faster than
longer, more complex, shaders. With newer hardware, newer specifications support
longer programs and provide more sophisticated instructions, like loop and branch
instructions (see [32, 72] for more information about vertex shader instructions).

Freely programmable units can also be found in the rasterizer stage. Unlike vertex
shaders, which operate on a per-vertex basis, pixel shaders, also called fragment
shaders, take place on a per-pixel basis during a rendering pass (Figure 2.3). The
idea is the same as with vertex shaders: a series of instructions written by the
user operate on a given data set (constants, interpolated values from the rasterizer,
texture lookup values) and compute the color for this fragment. Pixel shaders can
perform dependent texture reads, modify the z value of the fragment, and even
a number of many other operations that do not exactly fit into the texture stage
concept, thus providing a flexible way to create realistic-looking illumination models
and effects.

Vertex and pixel shaders can be used to create many different effects. A number of
examples are listed below.

• Object deformation (twist, bend, taper, procedural, page curls, water ripples,
...)

• Lens effects (making objects on the screen appear fish-eyed, underwater, ...)
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Figure 2.3: A fragment shader is a programmable hardware unit that can replace the traditional
multitexture pipeline and operates on fragments.

• Creation of primitives by sending degenerate meshes down the pipeline and
extruding them as needed

• Sophisticated lighting models (Phong, per-pixel, ...)

• Bump mapping

• Reflections and refractions

2.4 Scene Graphs

A scene graph (SG) is a high-level tree structure that represents a given scene.
Unlike other hierarchical spatial data structures like BSP trees or bounding volume
hierarchies (BVH), a scene graph usually contains more than just the geometry: it
may contain the scene’s geometry, textures, transformations, levels-of-detail (LODs),
rendering properties, light sources and many other entities. When the scene is
rendered, the tree is traversed in depth-first order. For example, transformations
can be put in an internal node and then be applied to all objects contained in its
sub-tree. Further examples for internal nodes are light sources and materials. Leaf
nodes often contain geometry (Figure 2.5).

When nodes are allowed to have multiple parent nodes (i. e., nodes may share their
children), the tree structure is called Directed Acyclic Graph (DAG) [24]. Scene
graphs are often DAGs, because they permit instantiation. Instantiation allows
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Figure 2.4: Two effects created using programmable shaders. On the left, the teapot is rendered
using displacement mapping, which simulates surface structures without adding geometry. On the
right, simple bumpmapping is used. Note how the illusion of the ripples is lost at the silhouette of
the right teapot, whereas displacement mapping distorts the silhouette as well.

having several copies (instances) of the same object without having to replicate its
geometry.

Each node in the scene graph is usually associated with a bounding volume (BV)
which encloses its subtree. The bounding volume can be boxes, spheres, or even
more complicated representations like k-DOPs. A k-DOP (discrete oriented poly-
tope) is the volume formed by the intersection of a set of slabs [57] and often used
for fast intersection tests [63]. These bounding volumes can then be used for acceler-
ation techniques like hierarchical view frustum culling [22], where each node with a
bounding volume is tested against the view frustum. If the bounding volumes inter-
sects or lies completely inside the frustum, scene graph traversal continues and the
child nodes are tested. If the bounding volume is completely outside the frustum,
the node is not processed further (Figure 2.6).

In dynamic scenes with moving objects, the SG, specifically BVs and transforma-
tions, has to be updated. This can be done recursively on the tree structure. DAGs
can overly complicate this process and are hence often avoided, or used in a limited
form that allows only leaf nodes to be shared [30].

Prominent examples for SG-based graphic engines are Open Inventor [92] and Java3D
[75].
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Figure 2.5: A scene graph with internal nodes, leaf nodes, and a single shared leaf node.

2.5 Visibility

In computer graphics, shadowing is closely tied to visibility determination, because
the problem is quite similar. A shadow occurs whenever an object (the shadow
receiver) is occluded from the light source (by a shadow caster). In this section,
we will examine the visibility problems and explore several solutions. Later on,
we will take this understanding and apply it to shadowing to filter out redundant
and unnecessary shadow casters (section 4.3). A in-depth analysis of visibility in
computer graphics can be found in [14].

Visibility is a hot topic in computer graphics. In a typical scene, only a fraction of
all objects that make up the world is visible for a given viewpoint. In this context,
we call an object that is hidden from view by another object an occludee, while the
occluding object is called the occluder. As we have seen previously (section 2.2), a
hardware construction called the z buffer is responsible for resolving visibility in the
final image by keeping track of the distance for the currently nearest object. The
z values of any incoming fragment that maps to the same screen-space location is
compared to the value stored in the z buffer and written to the color buffer only if
the new fragment’s depth is lower. Otherwise, the new fragment is discarded.

Even though it correctly solves visibility, the z buffer is not the smartest mecha-
nism in all respects. First and foremost, its location is at the end of the rendering
pipeline. This means that objects that are occluded still have to pass through the
complete geometry stage (undergoing transformations, lighting, clipping, ...) and
the rasterizer. The final image will be correct, but for the graphics hardware, hid-
den objects impose as much processing work as do visible objects. Moreover, if the
objects in the scene are not rendered in front-to-back order, the values in the color
and z buffers are written multiple times. Because buffer writes are expensive and
limit the performance of the rasterizer stage, ideally all objects in a scene should
be rendered in front-to-back order, which usually requires the use of proper spatial
data structures (e. g., a k-D tree).
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Figure 2.6: Hierarchical View Frustum Culling is performed on a BVH or scene graph (shown to
the right). Intersection tests are only performed as long as the parent node’s status is intersected.

Basically, we can distinguish between three different circumstances that cause ob-
jects to be invisible from the eye (Figure 2.8). A camera never covers the whole
world. Rather, its viewing volume can be defined by six border planes (near, far,
left, right, top, and bottom). The exact shape of the viewing volume (henceforth
called frustum) depends on the kind of projection used. For orthographic projec-
tions, it is a cuboid, whereas for perspective projections, it is a truncated pyramid.
Objects are visible only if they lie at least partly within the frustum. It is relatively
easy for an application to identify objects that lie completely outside the view frus-
tum by using geometric intersection tests with some kind of bounding volume that
is associated with every object. Preventing objects that lie fully outside the view
frustum from being sent through the pipeline is called view frustum culling [22].
If an object lies completely within the view frustum, it is not necessarily visible.
Depending on the placement of objects in the world, several objects are completely
occluded by other objects. The process of identifying these objects in the application
before sending them down to the pipeline is called occlusion culling. Finally, even
objects that passed view frustum culling and occlusion culling may contain triangles
that are not visible. For any closed (and opaque) object, only those triangles can be
seen that face toward the viewer (front-facing). The object’s back side is completely
hidden by the front side, and all triangles that comprise the back side can be culled.
This process is called backface culling and usually performed by the graphics hard-
ware, but can be turned on and off using appropriate API calls. The GPU detects
back-facing triangles by testing the vertex order of the projected triangle.

The remaining objects are those that are at least partially visible in the final image.
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eye

view frustum

Figure 2.7: An illustration of occlusion. Several spheres are placed in a straight line exactly behind
one another. From the viewpoint of the eye, all spheres except the first one are completely hidden.
Nonetheless, all spheres have to pass through the complete rendering pipeline. Depending on the
order in which the spheres are drawn, the z value is modified up to seven times (if rendering
back-to-front), resulting in a high depth complexity and high fill costs.

The set of these objects is called Exact Visible Set (EVS). The process of preventing
presumably invisible objects from entering the pipeline is called visibility culling.
Back-face culling, view-frustum culling and occlusion culling are all different forms
of visibility culling. Ideally, the result of visibility culling should be exactly the
set of visible objects in the final image (EVS). In a sense, this is exactly what
the z buffer does, but not without having to send every object through most of
the rendering pipeline. The idea behind efficient occlusion culling algorithms is to
perform visibility tests as early as possible and so avoid sending data through much
of the pipeline. In practice, methods that perform exact visibility detection are
generally not feasible because of their complexity and the additional computational
overhead. Therefore, most visibility algorithms compute an approximation of the
EVS, called Potentially Visible Set (PVS), rather than the EVS itself. The quality
of these algorithms can be defined as how closely the generated PVS matches the
EVS. Depending on how the PVS relates to the EVS, different kinds of visibility
algorithms can be distinguished. Conservative algorithms generate a visible set so
that PV S ⊇ EV S. This means that the PVS usually contains some objects that
are intrinsically invisible. Image quality, however, does not suffer, and the small
overhead is mostly acceptable. Conservative algorithms are generally preferred.
Aggressive methods compute the PVS so that PV S ⊆ EV S. Ideally, the PVS is
identical to the EVS, but occasionally some visible objects are incorrectly classified
as hidden. This can lead to noticeable visual artifacts. Approximate algorithms are
those for whom neither assumption holds. Sometimes hidden objects stay in the
PVS, in other cases some visible objects are lost. Approximate algorithms are the
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viewpoint

view frustum

Figure 2.8: Visibility circumstances. Objects with a solid blue outline are visible. Objects with a
dashed brown outline lie outside the view frustum and are invisible (the leftmost object is in front
of the frustum near plane and hence invisible, too). Objects with a dashed green outline are within
the view frustum, but occluded from the eye by other objects. A dashed, black outline indicates
polygons that face away from the viewer (backfaces) and are not visible, either.

least desirable because their results are often difficult to predict.

Visibility algorithms can be categorized as those that operate in object space, image
space, and line space. Object-space algorithms operate in the three-dimensional
world and usually use geometric computations. Image-space algorithms perform
visibility testing in two dimensions after some kind of projection. Line space methods
operate in dual space [12, 15, 66]. Every point of interest maps to a ray in this
space. The idea behind this technique is that the visibility tests are simpler or can
be performed more efficiently in this space.

An important property with visibility detection is the fact that the cumulative oc-
clusion of multiple objects can be greater than the sum of what each object would
be able to occlude on its own (Figure 2.9). This implies that it is not sufficient to
determine visibility by testing against every occluder separately. Rather, the union
of all occluding objects must be computed before testing. The merging of several
occluders is referred to as occluder fusion [100]. Another important observation with
occlusion culling is that the size of the assumed occluder is in no way related to the
number of objects it can occlude. Even small objects can be excellent occluders,
depending on their distance to the viewpoint as well as to the hidden objects [1].

On a coarse level, all occlusion culling algorithms can be classified as either from-
point or from-region (see Figure 2.10). When from-point visibility is used, the
visibility is calculated for any given point in space. From-region visibility, on the

18



2.5 Visibility
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Figure 2.9: Occluder fusion. With occluder A alone, object C would be visible. The same holds for
occluder B. However, with both occluders, object C is completely hidden. To correctly determine
visibility, occluder fusion must be performed on A and B by creating the convex hull, resulting in
occluder D.

other hand, is computed for a cell, which is a well-defined region in space, usually
a box or a sphere. With from-region visibility, an object can only be classified as
invisible when it can not be seen from any point within the viewing cell. Basically,
the advantage of from-region over from-point visibility is that once it is computed
for a certain cell, the results can usually be used for several frames, as long as the
viewpoint stays within the cell. However, this advantage comes with the cost that
it is often more time-consuming to compute than from-point visibility. Therefore,
rather than being computed online, from-region visibility is often precalculated in a
preprocessing step. This is in fact the main reason that this type of algorithm was
developed. With from-region algorithms, occluder fusion is even more important,
because the occluded space for from-region algorithms is smaller.

2.5.1 From-Point Visibility

From-point occclusion culling determines visible objects from a given point in space
(normally the viewpoint) in a certain viewing direction. At any given point in time
an object is either visible or hidden. The tests are view-dependant and usually
performed online (at runtime) for every new frame. Hence, a main design criterion
for from-point algorithms is speed and scalability. Speed is always an issue in real-
time rendering, and even more so for routines that have to be executed every frame.
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Figure 2.10: From-point versus from-region visibility. From-point visibility is depicted on the
left. Here, the left- and rightmost objects can be discarded, since they are not visible from the
viewpoint. With from-region visibility, shown on the right, all objects must be rendered because
they are (partly) visible from some location within the view cell.

Without sufficient scalability, an algorithm that operates well on simple scenes may
severely break down performance in more complex scenes. Developing algorithms
that satisfy these criteria while still being as exact as possible is a challenging task.

Algorithm 2.1 describes a generic occlusion culling algorithm that takes cumulative
occlusion into account [99]. The central part of the algorithm is the function isOc-

cluded(), which is often called the visibility test. Its task is to check whether an
object is visible from a given viewpoint or not. G is the set of geometric primi-
tives that are to be rendered. The algorithm distinguishes between an occlusion
representation OR and a set of (potential) occluders, P . If an object is found to be
hidden, it is not processed further, because we know that it will not contribute to
the final image. Otherwise, the object becomes an occluder itself. However, updat-
ing OR involves geometric computations (computing the convex hull of all objects
contained in OR) and is expensive. Therefore, new occluders are first moved to the
temporary holding area P . If P is considered complex enough by some heuristic,
the occluding power of all objects in P is used to update OR. This process is usually
called multi-pass occlusion culling. The rate at which OR is updated is significant
in determining the overall behavior of the algorithm. Some update OR with every
new occluder, skipping P completely. This technique is called progressive occlusion
culling. Other algorithms just select a few large occluders in advance and do not
update OR at all. For this algorithm, as well as many others, the order in which the
objects are drawn is important. To improve performance, the objects should first
be sorted roughly front-to-back according to their distance from the viewpoint, then
rendered in this order.
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OR = empty;
P = empty;
for all objects g ∈ G do

if isOccluded(g, OR) then
Skip(g)

else
Render(g);
Add(g, P);
if LargeEnough(P) then
Update(OR, P);
P = empty;

end if
end if

end for

Algorithm 2.1: Pseudocode for a general occlusion culling algorithm after Zhang. G contains all
the objects in the scene, and OR is the occlusion representation. P is a set of potential occluders
that are merged into OR when it contains a sufficient number of objects.

A conceptually interesting technique for from-point occlusion culling was developed
by Greene et al. and is called Hierarchical Z-Buffering (HZB) [44, 42]. The algorithm
operates in image space and organizes the z buffer as an image pyramid, which is
called z pyramid. The base level of the pyramid is the standard z buffer. This is
the finest level and has the highest resolution. At all other levels, each z value is
the farthest value in the corresponding 2x2 window of the adjacent finer level. The
top level consists of a single value, which is the farthest distance in the complete
scene. Visibility testing is performed in a hierarchical way, starting at the top of the
pyramid. If the nearest depth of an object is greater than the value on top of the
pyramid (the farthest point in the scene), the whole object must be entirely hidden
and can be skipped. Otherwise, testing continues down the pyramid until an area
is found to be occluded, or until the bottom of the pyramid is reached. If a z value
in the final image has been modified, the changes are propagated up through the
coarser levels of the pyramid. To make this technique useful in real-time rendering,
Greene suggested modifying the hardware z-buffer to support HZB, which requires
the use of a z pyramid instead of the z buffer. More recently, Greene came up with
an even more streamlined hardware implementation [43]. This system enables the
application to read the top of the pyramid from the hardware, which can be used to
perform culling at the very beginning of the rendering pipeline. In the absence of
this kind of hardware support, existing z buffer hardware can be used to accelerate
the HZB algorithm by exploiting temporal coherency [44].

Another visibility algorithm that operates in image space is the Hierarchical Occlu-
sion Map (HOM) [100, 99]. Similar to the HZB, this algorithm work in a hierarchical
way and can even take advantage of existing graphics hardware capabilities. This
technique is characterized by dividing the occlusion test into a two-dimensional over-
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lap test in the xy-plane and a comparison of depth extents in the z direction. The
occlusion maps that are used for the overlap tests are obtained by reading back the
contents of the color buffer after the occluders have been rendered with a white
color on a black background. By doing this, occluder fusion is achieved automat-
ically (similar to the HZB algorithm). A hierarchical pyramid of occlusion maps
(the HOM) is then created by subsequently averaging over 2x2 pixel blocks. For any
given level, a bright value (near white) indicates that most of the pixel it represents
are occluded. The two-dimensional overlap tests are done in a similar way as the
test for the HZB algorithm described above. After the overlap tests, the depth test
decides whether a potential occludee is actually behind the occluders. One of the
techniques originally described by Zhang utilizes a software z buffer with a coarser
resolution than the final image which stores the farthest z value for each region
(unlike the standard z buffer, which stores the nearest z value).

An interesting algorithm that focuses on speeding up the rendering of urban environ-
ments, like cities and villages, uses Occlusion Horizons [96, 95, 28]. This technique is
based on horizons in image space. The observation that is exploited in urban scenes
is that the majority of occluders are solid buildings through which the observer can-
not see, and that the buildings are connected to the ground. Scenes that fulfill these
requirements are called 21

2
D, meaning that the depth complexity along any axis is

never greater than one. 21
2
D scenes can still contain arbitrary three-dimensional

objects. The idea behind this algorithm is to move a plane that is parallel to the
viewer’s near plane away from the viewer through the scene. As the plane cuts
through objects (e. g., buildings), the occlusion horizon is created. Objects that lie
completely below the horizon can be culled conservatively (see Figure 2.11). A nice
feature of this method is the fact that it automatically accumulates the occluding
power of all encountered occluders (occluder fusion).

The occlusion techniques presented so far suffer from a distinct disadvantage. With
the exception of some suggestions by Greene [43], they all rely primarily on the
CPU. The cost of executing the occlusion testing can often outweigh the perfor-
mance gain by reducing the number of primitives that have to be processed by the
graphics hardware, especially if the CPU is already the bottleneck of the application.
Hardware occlusion queries aim at solving this problem by exploiting the graphics
hardware not only for rendering the final image, but also for supporting occlusion
culling by utilizing the speed of the rasterizer unit. They operate in image space and
intend to determine the occlusion of a certain object by scan-converting its primi-
tives and comparing the resulting fragments against the values in the z buffer. The
return value of the query indicates whether any fragments passed the z test or not.
Hence, hardware occlusion queries can be seen as a possible implementation for the
isOccluded() function in the general occlusion culling algorithm (algorithm 2.1).
Hewlett-Packard was the first to implement a hardware-based occlusion culling unit
in the VISUALIZE fx graphics hardware [84], usually referred to as the HP-occlusion
test. HP’s OpenGL implementation used this technique automatically by querying
bounding volumes for sufficiently large display lists [26]. This culling method is only
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Figure 2.11: The occlusion horizon for an urban scene.

worthwile for bounding volumes that contain a large number of primitives, because
the latency of individual queries can be a relatively long time, in which hundreds or
thousands of triangles could be displayed.

Occlusion queries are usually used in conjunction with bounding volumes that are
associated with the scene objects. For every object in the scene, its bounding volume
is rendered with an occlusion query. If the bounding volume is found to be visible, the
object is rendered. This technique works particularly well with hierarchical spatial
data structures like BVHs and scene graphs. For internal nodes whose bounding
volume is hidden, the entire subtree can be culled away.

An OpenGL extension that models the behavior of the original HP-occlusion test ex-
ists with the name HP_occlusion_test. Beginning with the GeForce 3 graphics ac-
celerator, NVIDIA supports an extension for a similar occlusion query, NV_occlusion_query,
often called NV query. The NV Query improves upon the HP test in that multiple
queries can be issued in parallel without needing to wait for the result of the query,
which extends the possibilities when used in an algorithm. Furthermore, the NV
query returns the number of fragments n that actually passed the z test, as op-
posed to a boolean flag that merely indicates whether any of the fragments passed.
Therefore, if n = 0, the entire bounding volume is hidden, and the contained objects
can be safely discarded. If n > 0, at least some of the fragments passed the depth
test, and the object must be considered visible. An application generally compares
n with some threshold value to determine if the object is actually rendered. The
threshold value is a measure of the aggressiveness of the occlusion culling. Recently,
the OpenGL ARB approved a vendor independent extension for occlusion queries,
ARB_occlusion_query, which behaves very similarly to the NV query.
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Figure 2.12: CPU stalls and GPU starvation. The Ri denote rendering tasks, Qi occlusion queries.
Object 3 is found visible and then rendered, whereas object 5 is determined hidden and skipped.

An advantage of hardware occlusion queries is their easy integration into existing
graphics hardware. They do not require any fundamental changes to the underlying
architecture, except some way to report the query result back to the application. A
second advantage is the fact that during the time span between issuing the query
and the availability of its result (which can take a considerable amount of time), the
CPU is free to perform other tasks. The CPU is only stalled if it asks for the query
result too early, before it is actually available. This implies that applications that
employ hardware occlusion queries must be designed accordingly to distribute the
tasks on the CPU to avoid stalls as much as possible. Simply replacing the occlusion
test (isOccluded() in algorithm 2.1) is usually not sufficient.

As mentioned briefly in the previous paragraph, the main problem with hardware
occlusion queries is the latency between issuing the query and the availability of the
result. This latency is mainly due to the time it takes the pipeline to process the
geometry, but also the time it takes the graphics hardware to report the result back
to the host CPU. Problems that arise from the query latency are CPU stalls and
GPU starvation [13]. CPU stalls are caused by the CPU waiting for the availability
of the query result. During this time, it does not feed new data to the GPU, which
can lead to an empty pipeline after the query is finally finished (starvation), see
Figure 2.12 for an illustration. GPU starvation should generally be avoided as much
as possible, since it is a waste of resources and mostly a sign of a poorly designed
application. Therefore, the main challenge when designing applications that use
hardware occlusion queries is to avoid the CPU stalls by using the query latency
time to execute other, independent tasks.

Hardware occlusion queries are particularly useful in conjunction with hierarchical
spatial data structures. They allow for efficient culling of large blocks of the scene
with few queries, thereby exploiting spatial coherence. The following algorithms
work particularly well with kD-trees, but are general enough to work with other
data structures as well.
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A simple method that exploits hierarchical data structures is called the hierarchical
stop-and-wait method [13]. Basically, this algorithm tests every tree node that passes
view frustum culling with a hardware occlusion query, then waits for the result.
For internal nodes that are found visible, the algorithm recursively traverses the
node’s subtree, ideally in front-to-back order. If the node is a leaf, its contents
are rendered. Nodes that are determined hidden are not processed further. Simple
as this technique is, a big disadvantage is that it has to wait for the result of the
occlusion query before tree traversal can continue. Whenever the result is not yet
available, the CPU is stalled, which usually leads to GPU stalls as well and results
in a significant performance penalty. Therefore, this algorithm is not the best choice
in all respects. The individual tasks are distributed poorly, resulting in a waste
of resources. Together with the overhead of the occlusion queries themselves, the
sum of all these penalties can even result in a performance loss, compared to an
implementation using pure view frustum culling.

Coherent hierarchical culling (CHC), presented by Bittner et al. in 2004 [13], is de-
signed to improve the stop-and-wait method in several ways. This is accomplished
mainly by exploiting the temporal coherence of visibility classification, i. e., it is
assumed that the visibility changes little between successive frames. Moreover, oc-
clusion queries are issued without waiting for their result. Rather, they are stored in
a queue until they are known to have been carried out by the GPU. The algorithm
distinguishes between different kinds of tree nodes. In this context, leaf nodes and
nodes that were classified as hidden in the previous frames are called termination
nodes. Similarly, internal nodes that were previously classified as visible are called
open nodes. For every frame i, the set of termination nodes is denoted as Ti, and
the set of open nodes Oi. In practice, the sets of opened and termination nodes are
not stored separately, but kept as flag values within the node data structure.

To render the scene, the algorithm proceeds as follows. In a frame i, the tree is
traversed in front-to-back order until a termination node is encountered (a node
n ∈ Ti−1). If the termination node is a leaf node, n must have been visible in the
previous frame. The algorithm issues an occlusion query, which is stored in the query
queue. Then, the associated geometry is rendered immediately, without waiting for
the result of the query. If the node is not a leaf node, it must have been invisible in
the previous frame. In this case, an occlusion query is issued, but the algorithm does
not immediately traverse the subtree. Whenever the visibility classification changes
for a node in the tree, this information must be propagated upwards. In this case,
the CHC algorithm performs a visibility pull up. This means that an interior node
is classified as invisible if and only if all of its children are invisible. Even if a single
child node is visible, the node remains opened. Similarly, if an internal node changes
from invisible to visible, this information is passed on to its child nodes (pull down).
However, a child node that ’inherited’ a visibility change is not automatically visible.
See Figure 2.13 for an illustration.

Listing 2.1 on page 39 shows a sample implementation for CHC. To prevent the
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Figure 2.13: Visibility classification with CHC in a tree structure in two successive frames. V nodes
are visible, I nodes are invisible. Nodes on which occlusion queries were performed in the frame
are shown with a solid outline. The right figure also illustrates visibility pull-up and pull-down.
(Image courtesy of J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer [13])

multiple rendering of leaf nodes in the same frame, the renderer stores the frame
number in which the node was rendered last and compares it to the current frame.

Coherent hierarchical culling increases the performance of visibility determination
by reducing the total number of issued occlusion queries as well as balancing the
traversal of the data structure to prevent the CPU from having to wait for the result
of a single query. The number of queries is reduced mainly due to the hierarchical
approach: by testing internal nodes, entire subtrees can often be discarded without
the need to test any further nodes. Plus, the algorithm avoids testing previously
opened nodes by assuming that nodes that are classified as visible in one frame
stay visible for a certain number of frames. In addition to reducing the number of
occlusion queries, CHC also reduces CPU stalls and GPU starvation by interleaving
the issuing of occlusion queries with the rendering of geometry that is known to be
visible. Ideally, the results of the queries become available in between the traversal
of subtrees and CPU stalls are eliminated altogether. This also implies that the tree
is not rendered in a strict depth-first order anymore. Instead, subtrees are traversed
as the result for their respective occlusion queries become available. Therefore, care
has to be taken to keep track of the rendering state and perform as little state
changes as possible.

2.5.2 From-Region Visibility

From-region visibility tests attempt to solve the visibility problem for a region of
space, as opposed to a single point. Objects are classified as occluded if and only if
they are hidden from all points within the region of interest (the viewing cell). The
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idea behind such techniques is that the visibility information usually stays valid for
several frames, as long as the viewpoint stays within the viewing cell. The drawback
is that from-region visibility computations are much more complex than from-point
techniques. Therefore, they are often performed offline in a preprocessing step.
Then, at runtime, the precomputed visibility information is used, usually resulting in
a negligible overhead compared to from-point approaches. Naturally, precalculating
visibility offline is of little use in dynamic scenes where objects are moved or modified
in any other way.

Maybe one of the most renowned techniques for from-region visibility culling is portal
culling. Designed specifically for interior walkthroughs of architectural models, this
technique was first introduced by Airey [3, 2] and later improved by Teller, Séquin
and Hanrahan [88, 87, 89]. The motivation for all portal culling algorithms is the fact
that the high number of walls in indoor scenes make for excellent occluders. Portal
culling algorithms divide the scene into cells that usually correspond to rooms in a
building. The doors and windows that connect individual cells are called portals.
This decomposition is usually done in a preprocessing step, either from hand or
automatically. In every frame, the algorithm then iteratively fits a frustum through
each visible portal (e. g., door or window) and performs a variant of view frustum
culling (Figure 2.14). The viewer is located in cell A, which is rendered as usual
together with its contents. Cells B, C, and D directly connect to cell A. The portal
to cell B, however, is outside the original view frustum and therefore ommitted from
further consideration. The portals to cells C and D are visible. The view frustum
is therefore diminished so that it passes straight through the connecting portals.
The contents of C and D are then rendered with these diminished frusta. In the
next step, the neighboring cells of C and D are examined. E is visible through the
reduced frustum through D, so a new frustum is fit through the portal connecting E
to D and the contents of E rendered according to this new frustum. Now, no more
portals are visible through any of the frusta, and rendering stops. The algorithm
discards cells F and G because they are not visible from the viewer.

Objects that are located within a certain cell are stored in a data structure associated
with the specific cell. For each cell, this data structure also stores the adjacent cells
and the portals through which they are connected in an adjacency graph, which is
usually created manually (though Teller proposed a way to automatically generate
it [87]).

Portals can be used in many other ways as well [6]. They can be used to create
mirror reflections by reflecting the viewer’s position and direction in the plane of a
specific portal that is to act as the mirror. Other transformations can be used to
create simple refraction effects.

Another technique, developed by Wonka et al., is called occluder shrinking and can
use a from-point occlusion algorithm to generate from-region visibility [97]. The
algorithm tries to extend the validity of from-point visibility from a given point p
to a region in space by shrinking all occluders in the scene by a given distance d.
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Figure 2.14: Portal culling. Cells are labeled from A to H and are connected by portals. The figure
depicts how the original view frustum is extended into the cells B, C, D, and E. Cells G and H are
hidden, they can be discarded. Geometry is rendered only if it is contained in one of the frusta.
(after T. Möller [6])

This is a conservative approximation of from-region visibility within a viewing cell
that is centered around p with a radius of d (Figure 2.15) [97]. The optimal value
for d varies from scene to scene. It should be adjusted so that the spheres with
radius d are small compared to the size of the average occluder. This is important
to keep the visibility solution using shrunk occluders similar to the solution using
regular occluders, for any given viewpoint. However, as d gets smaller, the number
of spheres needed to cover the view cell increases, and the visibility calculation
takes more time. Therefore, the choice for d affects the ratio between speed and
efficiency.

To use this technique for on-the-fly visibility determination, occluder shrinking is
often used in conjunctio with another technique known as frustum growing [98].
This means that the original frustum must be grown to make up for changes in the
viewer’s position and view direction. Let’s assume that the movement rate of the
viewer is restricted to a certain speed, v. Then the visibility for the view cell d
is valid for t = d

v
seconds. These parameters should be chosen so that the time t

spans at least a few frames. This way, visibility calculations need not be performed
every new frame, exploiting temporal coherence. Further methods based on occluder
shrinking and frustum growing include an algorithm called instant visibility [98], as
well as virtual occluders [65].
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d
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p

Figure 2.15: An illustration of occluder shrinking. The left image shows the viewpoint p and
the original occluder. On the right, the occluder is shrunk by a factor d, which mathematically
equivalent to an expansion of the viewpoint p to a sphere with the radius d.

light source

shadow caster
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shadow

Figure 2.16: Terminology used throughout this document.

2.6 Shadows in Computer Graphics

Shadows are the result of the interaction between three components: light sources,
shadow receivers and shadow casters (Figure 2.16).

A light source is an object that models a primary source of light, i. e., some physical
entity that produces light. Light sources in the real world emit energetic particles
(photons) that travel through space and may encounter physical obstacles. Depend-
ing on the obstacle’s surface, they are either absorbed or reflected. Humans “see”
an object whenever a photon that bounced from that object’s surface hits the cone
cells in the eye.

All real-world light sources are area light sources (Figure 2.17), which means that
they have a physical extent. In computer graphics, however, point light sources
(Figure 2.18) are often used to approximate area light sources. They have no physical
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shadow caster (occluder)

shadow receiver (occludee)

area light source

umbrapenumbra penumbra

Figure 2.17: Umbra and penumbra regions of an area light source.

point light source

shadow caster (occluder)

shadow receiver (occludee)umbra region

Figure 2.18: Umbra region of a point light source.

area, but can be described mathematically as a singularity (a point in space). Area
lights can be simulated by using a number of point lights sampling the original light
source area.

A shadow receiver is an object that can receive light from a light source. Usually,
all objects in a scene are shadow receivers. Each surface point of a shadow receiver
fulfills one of three conditions. If the point is visible from the light source, it is lit.
If it is totally hidden from the light source by other objects, it is in shadow and not
lit at all. The sum of all points totally hidden from the light is called the umbra
region of the shadow. Other points may be hidden only partially from the light
source, receiving some light from a part of the light source. Those partially-lit points
form the penumbra region of the shadow. Together, umbra and penumbra compose
the shadow. Obviously, with point light sources, each point is either totally lit or
totally invisible. Hence, shadows cast by a point light source don’t have a penumbra
region.

Objects that partially or completely block photons from reaching a shadow receiver
are called shadow casters, since they cast shadows on the shadow receivers. If an
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Figure 2.19: This figure demonstrates the importance of shadows in perceiving spatial placements.

Figure 2.20: Hard shadows (left) versus soft shadows (right). (Image courtesy of ARTIS, Labora-
toire GRAVIR)

object casts a shadow onto itself, self shadowing occurs.

2.6.1 The Role of Shadows in Virtual Environments

Shadows have been neglected in real-time applications for a long time. Shadows
require a significant amount of processing power, and it was simply not possible to
perform shadowing while keeping the applications real-time. Nonetheless, shadows
are an important part of computer graphics. They make scenes appear more realistic,
and a user will immediately notice if a scene lacks shadows, which prevents him
from becoming immersed in the virtual environment. Secondly, perhaps even more
important, they are crucial to the correct spatial perception of the scene [91]. In
many situations, shadows are the anchors that tie objects to a certain position
in space. Without the shadow, the object’s exact location is often unclear. See
Figure 2.19 for an illustration.

2.6.2 Hard shadows vs. soft shadows

As explained above, real shadows are composed of an umbra region and a penumbra
region. Points that lie within the umbra receive no light from that light source
source at all, whereas points in the penumbra region are partially lit. The partially
lit penumbra region produces a soft edge in the shadow, with the lighting increasing
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toward the rim of the shadow. Shadows that consist of both an umbra and an
penumbra region are called soft shadows and cast by area light sources.

In the real world, all light sources are area light sources; point light sources do not
exist. Therefore, the human eye is used to seeing soft shadows. The use of hard
shadows in computer graphic is sub-optimal, because they may be mistaken for real
geometry. Nonetheless, point light sources are often preferred over area light sources
because of their simplicity. Point light sources do not generate penumbra regions.
Their shadows are hard-edged and consequently called hard shadows. In this thesis,
we will focus on hard shadows only.

2.6.3 Traditional Shadow Algorithms

On a coarse level, algorithms for computing real-time shadows can be classified as
either object-precision or image-space algorithms. Object-precision methods, also re-
ferred to as object-precision algorithms, operate in the three-dimensional world space
and generate exact shadow boundaries mostly using geometric computations. Ex-
amples for object-space shadowing algorithms are projection shadows, which are de-
scribed below, and shadow volumes (chapter 3). In contrast to object-precision tech-
niques, image-precision shadowing algorithms operate in a two-dimensional space,
typically after some kind of projection has been applied. Image-precision methods
are generally faster, but the quality of the final image depends on the resolution of
the two-dimensional image and is often lower than object-space shadows. The most
renowned image-space shadowing technique are shadow maps.

Polygon Shadows

In 1978, Atherton, Weiler, and Greenberg presented a general purpose method for
generating shadows using an object-space polygon clipping algorithm [8, 7]. Their
algorithm relies on the fact that no shadows can be seen from the light’s point of
view. First, a camera is positioned at the location of the light source. All polygons
are then clipped in a way so that all visible polygons are separate from all non-
visible polygons (if necessary, triangle subdivision can be performed during this step
as well). After this step, the visible polygons correspond to non-shadow polygons,
whereas the non-visible polygons are shadow polygons. Turning a light source on and
off simply changes the way the shadow polygons are displayed - illuminated or not.
As long as the objects in the scene and the light source keep their relative distance,
this shadow information need not be recreated, even if the viewpoint changes, which
made this approach attractive for architectural walkthroughs. Furthermore, the
method can be easily extended for multiple light sources by repeating the clipping
stage for each light source and marking each shadow polygon with the responsible
light source.
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Figure 2.21: Left: a correct projected shadow. Middle: If the light source is below the topmost
point on the object, an antishadow is generated. Right: Objects below the far side of the surface
plane produce false shadows.

A severe disadvantage with this technique is the fact that its performance scales
linearly with the number of triangles in the scene, making it practically impossible
to use in larger scenes without some kind of optimization to reduce the number of
triangles that take part in the clipping process.

Projection Shadows

Shadows that are created by projecting a three-dimensional object onto a two-
dimensional surface (left of Figure 2.21) are called projection shadows. This pro-
jection can be easily achieved by multiplying the object’s coordinates with a special
4x4 matrix [16, 90].

To create an object’s shadow, the object is transformed with the projection matrix
and rendered a second time with a dark color and no illumination. However, because
the matrix will project the vertices exactly onto the surface plane, surface points
may poke through the shadow due to floating point errors. One simple workaround
is to add an offset to the plane the object is projected upon so that shadow polygons
are always a bit “above” the surface polygons. Getting this bias right can be tricky:
if the shadow is too high, the illusion of the shadow will be lost, if the shadow is
too low, some pixels of the surface may still shine through. Furthermore, the bias
depends on the angle of the surface normal toward the viewer. If this angle increases,
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the bias must also increase. OpenGL, provides a function glPolygonOffset that
performs exactly this task. It takes a constant bias parameter and computes the final
offset by taking the polygon orientation into account. This way, the offset increases
together with the surface’s angle. Another method that does not need any offset is
to draw the surface polygons first, then draw the projected shadow polygons with
the z-test off, and finally render the rest of the geometry as usual. This way, the
projected polygons always superimpose the surface polygons.

Though they are very easy to understand conceptually, in practice projection shad-
ows have several flaws and disadvantages. The first issue concerns the borders of
the surface plane: the projected shadows may easily fall outside the plane poly-
gons. This problem can be solved by using the stencil buffer. In a first step, the
surface polygons are drawn both to the screen and the stencil buffer. Then, with
z-tests disabled and doing stencil tests, the projected shadow polygons are drawn
only where the receiving polygons were draw previously. Finally, the rest of the
scene is rendered. This way of rendering projected shadow polygons works only if
the shadows are fully opaque. Transparent shadows, where the material of the un-
derlying surface shines through, require more care. Simply rendering the projected
polygons as semi-transparent works only for convex objects, because with concave
objects, more than two points on the object may be projected to the same point on
the plane. Again, the stencil buffer can be used to solve the problem by ensuring
that each pixel is covered once at most [62].

Another drawback with this method is that the projected shadow polygons have
to be recreated every frame, even if the scene has not changed at all. An im-
provement that works well in practice takes advantage of the fact that shadows are
view-independent, i. e., they don’t depend on the location of the viewpoint. Here,
the shadows are rendered into a texture that is then applied to the surface plane.
The shadow texture is recreated only when the light source or any shadow casting
or receiving object moves.

An important aspect with projected shadows is the relative position of light source,
shadow caster and shadow receiver. If caster and light source are on opposite sides
of the shadow receiver plane, false shadows are generated, because objects beyond
the surface plane would not cast any shadows (Figure 2.21, right). Light sources
that lie between the shadow caster and receiver produce antishadows (Figure 2.21,
middle).

Several techniques exist to use projective shadows to generate soft shadows, e. g., by
sampling the area light source with a number of point light sources [53, 49].

Shadow Maps

Shadow maps were proposed by Lance Williams in 1978 [93]. The idea behind
this technique is to render in a first step the scene from the position of the light
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Figure 2.22: The concept of shadow mapping. On the left, a depth map (the shadow map) is
created from the light’s view. On the right, the scene is rendered from the position of the eye.
After projecting point a to the light’s view, its depth value is found to be significantly greater than
the value stored in the map (which is the depth of the corresponding point on the sphere). Hence,
the lighting equation is not evaluated at point a. Point b on the sphere projects back to a depth
value that is approximately the same as the value stored in the shadow map - point a was visible
from the light, and so is not in shadow.

source that is to cast shadows into the z-buffer. For each pixel, the z-buffer now
contains the distance of the closest object to the light source. In this context, the
depth map, essentially a 2D function, is usually called shadow map. To make use
of the shadow map, the scene is rendered in a second step from the position of the
viewpoint. However, before displaying a rasterized fragment, it is projected back
into the light view, and its depth is compared to the value stored in the depth map.
If the fragment is farther away from the light source than the value in the shadow
map, it is in shadow; otherwise, it is not. Figure 2.22 depicts the two rendering
steps.

Standard texture mapping hardware can be used to implement shadow maps. First,
the shadow map is generated. Then the scene is rendered using only ambient light-
ing, creating a depth map to resolve visibility. In practice, the depth map is copied
back from the z-buffer into a 2D texture, where it is stored as a 8-bit color channel
(which is often not enough to produce pleasing results). In the next step, shadow
testing is performed: the value in the depth map is compared to the value in the
shadow map, after it has been transformed from the coordinate system of the light to
the coordinate system of the viewpoint. This transformation can be accomplished by
using eye-linear texture coordinate generation, e. g., OpenGL’s GL_EYE_LINEAR tex-
gen [59], which relies on projective texturing [48, 85], or by using multi-texturing and
OpenGL’s texture combiner extension (EXT_texture_env_combine) as suggested by
Heidrich [51]. Depending on the outcome of this comparison, an additional flag value
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Figure 2.23: Aliasing problems in shadow mapping. On the left, the shadow map is shown. On
the right, the limited resolution of the depth map causes severe aliasing artifacts, amplified by the
close proximity of the viewpoint to the object. (Images courtesy of Marc Stamminger and George
Drettakis)

is set for each pixel. If the two z values are approximately identical, the flag value
is set to 1, otherwise, it is set to 0. Finally, the whole scene is rendered again, this
time using diffuse lighting. The final color of each pixel is computed by additive
blending the color from the full rendering pass, multiplied by the flag value, over
the ambient color.

In 2002, the OpenGL ARB approved two extensions that simplify the use of shadow
maps. The shadow test can now be performed simply by using a texture filter-
ing operation (ARB_shadow), which performs the texture lookup and sets an in-
ternal flag value, which is then used to modulate the color in the color buffer.
ARB_depth_texture incorporates new internal texture formats which allow for higher-
precision shadow maps. With the advance of programmable graphics hardware,
shadow mapping can be implemented using vertex and pixel programs.

The shadow map itself has to be recreated only if the scene changes, i. e., the light
source or any object has moved. An advantage of this method is that it is well
supported on graphics hardware, and that it scales well with respect to the scene
complexity.

As an algorithm operating in image space, shadow maps are prone to aliasing prob-
lems. This happens when multiple screen texels map to a single texel in the shadow
map (due to shadow map undersampling), resulting in jagged shadow edges (Fig-
ure 2.23). Crucial for obtaining good-looking results is the setup of the light frus-
tum: it should be limited to fit tightly to the shadow-casting objects. However,
whenever the viewpoint can move arbitrarily close to a shadow edge, aliasing al-
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Figure 2.24: A perspective shadow map, shown to the left. Perspective shadow maps can improve
shadow quality, compared to standard shadow maps, by concentrating the map resolution where
appropriate. (Images courtesy of Marc Stamminger and George Drettakis.)

ways occurs. This is particularly evident in scenes with a high depth range, because
nearby shadows need a high resolution, whereas for distant shadows, a lower shadow
map resolution would be sufficient. Fernando et al. propose a hierarchical caching
scheme using a combination of hardware and software to provide shadow maps with
arbitrarily high resolutions (adaptive shadow maps) [34]. A different solution to re-
duce aliasing artifacts, called percentage closer filtering (PCF), was introduced by
Reeves et al. [79]. In contrast to blending depth map values, which can lead to
pixels being wrongly in shadow [59], PCF averages the boolean comparison results
within the extents of the filter kernel, smoothing the jagged shadow edges.

A technique introduced by Drettakis and Stamminger [29] creates a single perspective
shadow map by using a non-uniform parameterization. This distorted shadow map
provides increased resolution for near objects and decreased resolution for objects
that are farther away, the idea being to first map the scene to eye post-perspective
space, and only then create the shadow map (Figure 2.24). A problem with this
method is that the perspective transformation changes the light source and may in-
troduce singularities. Light space perspective shadow maps use a variable perspective
mapping specified in light space [94], which eliminates singularities, thus avoiding
most of the problems of perspective shadow mapping.

Other problems may occur due to the limited numerical precision of the z-buffer.
When transforming surface points that are not in shadow from the eye’s point of
view to the light’s coordinate system, the value should ideally be identical to the
value stored in the shadow map. However, in practice, the projected value will be
slightly above or below the shadow map value. If the value is larger, then the point
will be considered as in shadow, even though it should be lit. This phenomenon is
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called self-shadow aliasing. To counter this problem, Williams simply subtracts a
constant bias from the z-values after they have been transformed to light space [93].
Kilgard uses OpenGL’s glPolygonOffset to offset the depth value in the shadow
map back and compensate for the slope of the polygon [59].

A limitation common to most shadow mapping techniques is that the light source
is assumed to be located somwhere outside of the scene. This is because the light
looks at the scene through a single frustum, just like the eye does. Point lights inside
the bounds of a scene cannot render the whole scene into a single shadow map, but
must use a six-sided cube, similar to what is used in cubic environment mapping
[41]. However, even then it can be problematic to get the shadows to join properly
along the seams of the cube, because parameters (like bias) can be different along
such edges than they are on the rest of the surfaces. Brabec et al. suggest using
parabolic projections for use with hemispherical and omnidirectional light sources
[18].
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TraversalStack.push(kDTree.Root);

while (!TraversalStack.empty() || !QueryQueue.Empty()) {

// 1st part: process query queue

while (!QueryQueue.empty() &&

(queryResultAvailable(QueryQueue.front()) || TraversalStack.empty())) {

N = QueryQueue.pop();

nVisiblePixels = queryResult(N);

if (nVisiblePixels > visibilityThreshold) {

pullUpVisibility(N);

Traverse(N);

}

}

// 2nd part: traverse tree

if (!TraversalStack.empty()) {

N = TraversalStack.pop();

if (isInsideViewFrustum(N)) {

// identify previously visible nodes

wasVisible = N.isVisible && !isLeaf(N);

// identify previously opened nodes

opened = wasVisible && !isLeaf(N);

// reset node data

N.isVisible = false;

N.lastVisited = currentFrame;

// do not test previously opened nodes

if (!opened) {

issueQuery(N);

QueryQueue.push(N);

}

// traverse visible nodes

if (wasVisible)

TraverseNode(N);

}

}

}

Listing 2.1: C++-like pseudocode for coherent hierarchical culling (CHC).
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Shadow volumes were first introduced by Franklin Crow in 1977 [25]. Let’s imagine
a point and a triangle. Drawing lines from the point through the vertices of the
triangle, we obtain an infinite pyramid. Considering only the part of the pyramid
below the triangle yields a truncated infinite pyramid. Let’s further imagine the
point is actually a point light source. Then, all points outside the truncated pyramid
are visible from the light (they are lit), while all points within the pyramid are not
visible and in shadow. Hence, the truncated infinite pyramid is usually called the
shadow volume (SV) of the point light source (Figure 3.1).

Rather than performing computationally expensive geometric intersection tests on
all objects in the scene to find out which parts of an object are within the shadow
volume of any other object, a ray-casting method can be used instead to determine
if a given part of an object (a pixel, to be exact) is in shadow or not. For a given
scene and viewpoint, we shoot a ray through each pixel until it hits the object that
is displayed on the screen and keep track of the number of shadow volumes the ray
enters and leaves. Each time the ray crosses a polygon of a shadow volume that is
oriented towards the viewer (front-facing), we increment a counter (the ray enters a
SV). When the ray crosses a shadow volume polygon that is oriented away from the
viewer (back-facing), the counter value is decremented (the ray leaves a SV). Then,
a pixel is in shadow if its counter value is greater than zero, otherwise, it is not. This
principle works with an arbitrary number of shadow-casting polygons (Figure 3.2)

3.1 Stencil Shadow Volumes

Performing ray-casting geometrically is expensive and time-consuming. In 1991,
Tim Heidmann presented a much smarter solution that cleverly utilizes the stencil
buffer to do the counting [50]. Initially, the stencil buffer is cleared to zero. Then
the algorithm proceeds in three steps. First, the whole scene is drawn into the
frame- and z-buffers, using only ambient lighting. The z-buffer now contains a depth
representation of the scene. Second, with z-buffer writes disabled (but still doing z-
tests), front- and back-facing shadow volume polygons are drawn separately. When
front-facing shadow volume polygons are drawn, the stencil value is incremented
for this pixel if the z-test succeeds, indicating that this shadow volume pixel is
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point light source

triangle

shadow volume

Figure 3.1: Shadow Volumes are formed by extruding an object’s vertices away from a (point) light
source to infinity.

visible from the eye. In our geometric interpretation (Figure 3.2), this is identical to
the situation where the ray is entering a shadow volume. For drawing back-facing
shadow volume polygons, the stencil value is decremented for this pixel if the z-test
succeeds. Geometrically, this situation occurs when the ray from the eye leaves a
shadow volume before hitting the object. After these two passes, regions in shadow
are tagged by a non-zero stencil value. Recent graphics hardware (beginning with
NVIDIA’s GeForce FX) supports a special “two-sided” stencil test, where front- and
back-facing polygons can be tested simultaneously in a single pass. Finally, the
whole scene is rendered again, this time only with the diffuse lighting component,
and displayed only where the value in the stencil buffer is zero. This value indicates
that the ray has gone out of shadow volumes exactly as many times as it has entered
them - i. e., this location is illuminated by the light. Because the stencil value is
modified only if the z-test passes, this method is called zpass algorithm.

If the near plane of the view frustum intersects any of the shadow volumes, the zpass
algorithm can produce incorrect results (Figure 3.3). The traditional way to solve
the near clipping problem is to close the shadow volumes at the intersecting frustum
plane by introducing additional geometry (capping) [10, 58, 74]. However, there
are many different situations and special cases, so these methods are mostly not
robust and general. In 1999, John Carmack from id software presented an alternate
approach to avoid the clipping problem [58]; Bilodeau and Songy independently
discovered the same method [11]. Logically equivalent to the zpass algorithm, the
idea in this method, which is sometimes called Carmack’s reverse, is to reverse the
direction of the ray from infinity towards the eye. Instead of counting the number
of shadow volume polygons in front of the object of interest, the number of shadow
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Figure 3.2: A two-dimensional view of counting shadow volume crossings. A ray is cast from
the eye through each screen pixel. At point a, the ray has entered and left two shadow volumes.
The counter value is zero, the point is not in shadow. Point b lies in the shadow volume of both
polygons, the counter value is 2. Point c lies in a single shadow volume, the counter value is 1.

volume polygons behind the object are counted. Hence, in the first stencil pass, back-
facing shadow volume polygons are rendered and the stencil value is incremented if
the z-test fails. In the second stencil pass, front-facing shadow volume polygons are
drawn and the stencil value is decremented if the z-test fails. Because the stencil
value is modified only if the z-test fails, this algorithm is usually called zfail. By
rendering only the hidden shadow volumes, the clipping problem at the near plane
is avoided. However, the same problem now exists at the far plane: to properly
maintain the count of entry/exit events, the shadow volumes must be closed at their
far ends, and these far ends must be inside the far plane. With zpass, shadow
volumes may intersect the view frustum’s near plane. With zfail, shadow volumes
can potentially intersect the far plane and cause similar shadowing errors. Another
point worth mentioning is that the shadow volumes need not be closed at their near
end for zpass, because these closing polygons are always made invisible by the scene
geometry rendered in the ambient pass. With zfail, both near and far caps of the
shadow volumes must be rendered.

Everitt and Kilgard discovered two solutions to the far clipping problem. The first,
called depth clamping, is available as a hardware extension NV_depth_clamp since
the NVIDIA GeForce 3 graphics accelerator. When using this extension, objects
beyond the far plane are no longer clipped, but rather drawn on the far plane with
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Figure 3.3: This figure depicts two cases where the zpass algorithm will fail. On the left, the
shadow volume is clipped by the near plane of the view frustum. The pixel’s stencil value is 0,
although it should lie in the shadow. On the right, the shadow volume is clipped by the top plane,
leading to a similar problem.

a maximum z depth. Both shadow volume edge and capping edges can be extruded
out arbitrarily far, and will still be handled properly by the hardware.

The second solution Everitt and Kilgard presented is a pure software solution and
does not require any hardware extensions at all. It exploits an important trait of
four-dimensional homogenous coordinates commonly used in computer graphics. A
three-dimensional point p can be represented in homogenous coordinates as the
quadrupel (px · w, py · w, pz · w, w). To obtain the original, three-dimensional point
p, the x-, y-, and z-coordinates are divided by the fourth coordinate, w. Therefore,
points can be projected to infinity (along their position vector) by setting the w
coordinate to zero. It is mathematically valid to think of points at infinity this way,
and this fact is used in projecting a shadow volume’s far cap vertices to infinity.
Projecting shadow volume vertices to infinity this way does not yet solve the prob-
lem, because the far plane will still clip the shadow volume. The second key part of
the solution is that the far plane itself is set to infinity, just like the far cap vertices
of the shadow volume are. With the far plane at infinity, the zfail method works
flawlessly. The shadow volume cap will be correctly rendered at infinity, and nothing
will be clipped.

3.2 Shadow Volume Optimizations

Shadow volumes are created in object space and produce shadows with sharp, crisp
edges. They do not suffer from any of the aliasing problems that are inherent
in image-based algorithms (see page 2.6.3) and can be used on general-purpose
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Figure 3.4: An illustration of the zfail algorithm. Rays are cast from infinity towards the eye, until
an object is hit. The stencil value at each pixel is calculated as the difference between shadow
volume entries and exits behind the object.

hardware, the only requirement being a stencil buffer (though Roettger et al. discuss
a number of strategies for using color and alpha buffers to take the place of the
stencil buffer [80]). However, there is a number of limitations and drawbacks. In
this section, we will examine most of the shortcomings with shadow volumes and
discuss techniques that try to alleviate some of these problems.

An obvious problem with the shadow volume algorithm is that they add significantly
to the number of triangles in the scene - for each light, each occluding triangle intro-
duces three additional quadrilaterals that must be properly extended and rendered
into the stencil buffer. The problem is even more distinct with the zfail algorithm
because the shadow volumes have to be closed both at the near and far ends. A
commonly used technique to reduce the number of triangles is to determine silhou-
ette edges and extrude only those. This works for all manifold objects (section 4.1).
Several methods exist for silhouette detection (section 4.2).

Another area of concern is the fact that shadow volumes extend to infinity and
often cover a large area on the screen, stressing the rasterizer unit of the graphics
accelerator and burning fill rate. Several solutions have been proposed recently that
adress this problem by trying to limit shadow volume polygons to those that are
absolutely necessary for the correctness of the final image (see sections 3.2.3, 3.2.5
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Figure 3.5: Shadow volumes (yellow gradient) in a scene with several objects. The point light is
located directly above the quad.

and 4).

3.2.1 The zp+ Algorithm

Section 3.1 described two different techniques for stencil shadow volumes. Both
first initialize the stencil buffer to zero and create a depth representation of the
scene in the z buffer, then rasterize the shadow volumes. For every visible shadow
volume pixel (i. e., fragment that passes the depth test), the zpass method increments
the stencil value if the shadow volume is front-facing and decrements the stencil
value if the shadow volume is back-facing. Finally, shadow regions are those with a
stencil value greater than zero. This method fails when shadow volumes are partially
clipped by the view frustum planes, which was the motivation for the development
of the zfail method. Zfail moves the problem from the near clipping plane to the
far clipping plane by processing only shadow volume fragments that fail (hence the
name) the z test. The clipping problems at the far plane can be circumvented by
extending the view frustum to homogenous infinity. However, this robustness comes
at the cost of speed, because the shadow volumes must be closed, which requires
the rendering of additional cap geometry. Furthermore, zfail cannot utilize early z
culling, an optimization available in state-of-the-art graphics hardware that prevents
occluded fragments from processing far into the pipeline.

A closer examination of the zpass algorithm reveals that the clipping problems are
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Figure 3.6: zpass vs. zfail vs. zp+. The zp+ algorithm initializes the stencil buffer to the proper
values ordinarily clipped by zpass. Therefore it can process shadow volumes with the depth-culled
speed of zpass and the robustness of zfail. (Image courtesy of Hornus, Hoberock, Lefebvre, and
Hart)

due to the scene geometry within the pyramid-shaped volume between the viewer’s
near plane and the light source. Any occluder lying at least partly within this
region casts a shadow volume that intersects with the near plane and causes zpass
to produce incorrect results. A technique aimed at resolving this deficiency is the
zp+ algorithm, presented by Hornus et al. in 2005 [56]. This algorithm provides
the robustness of the zfail technique while staying close to the speed of the zpass
technique. ZP+ constructs in a separate pass a sheared frustum that extends from
the light’s position to the view frustum’s near plane (Figure 3.6, right). Because
the far clipping plane of this shared frustum coincides with the viewer’s near plane,
the frustum contains those parts of the scene geometry that would be clipped by
the viewer’s near plane. Rasterizing this geometry projects its fragments onto the
original near clipping plane where it can be used to properly and robustly initialize
the stencil buffer.

ZP+ involves the following steps:

1. Position a frustum at the position of the light source.

2. If viewer and light are on the same side of the viewer’s near plane,

a) then orient the light frustum parallel to the viewer’s frustum

b) otherwise, rotate the light frustum 180 degrees around the y axis.

3. Align the light frustum’s far plane onto the viewer’s near plane.

4. Rasterize front-facing (with respect to the light source) geometry, accumulat-
ing fragment counts in the stencil buffer

5. Perform standard zpass shadow computation, initialied with the values in the
stencil buffer.
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Figure 3.7: This figure illustrates how the parameters for the light frustum can be calculated.
(Image courtesy of Hornus, Hoberock, Lefebvre, and Hart)

The light’s modelview matrix M can be seen as a frame with origin at the light’s
position. It is setup so as to have the same up vector (y) as the viewer. The viewing
direction (−z) is parallel to the viewer’s direction and oriented towards the viewer’s
near plane. Therefore, the transformation from the viewer’s modelview matrix to
the light’s modelview matrix involves a translation and, if the viewer and the light
source are on opposite sides of the viewer’s near plane, a rotation of 180 degrees
around the up vector.

The light’s projection matrix P is an off-centered, sheared perspective transforma-
tion with its far plane aligned with the viewer’s near plane. The light’s near plane
should be placed as far away as possible to attain the highest possible precision. It
can be computed using a simple procedure [56]. If the distance d from the light to
the nearest occluder is known, lfar is the distance of the light’s far plane, and dmax

is the farthest distance from the light to the viewer’s near plane, then the distance
of the light’s near plane can be computed as

lnear =
lfar · d
dmax

(3.1)

P can be setup using an API call like glFrustum as illustrated in Figure 3.7. How-
ever, due to numerical errors, it is often preferrable to setup P directly.

After the transformation matrices have been set up, the scene geometry is sent to the
graphics pipeline to rasterize the near cap. To count the number of shadow volume
entries for every pixel, the API states are set to cull either back- or front-facing faces
(depending on whether the viewer and light source are on the same side of the near
plane), increment the stencil value for every passing fragment and disable the z test.
The rest of the algorithm is identical to the zpass method.

Rendering shadow volumes this way may lead to visual artifacts due to numerical
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computation errors. When the viewer’s near plane lies both in light and shadow,
several lit pixels that should be dark or vice versa can be observed. These incorrect
pixels lie exactly on the boundary of the near cap, along the edges where the shadow
volume’s sides and near-cap meet on the near plane. The screen-space coordinates
of these edges are computed in two different ways. First, when rendering the near
cap, they are the result of some silhouette edges’ projection with the zp+ modelview
matrix M and projection matrix P . Later, when the sides are rendered the usual
way, they are the coordinates of some clipped shadow volume side edges. Because of
non-exact arithmetic precision, the results of the two transformations differ slightly,
and those edges are no longer rasterized identical. The resulting artifacts can be
eliminated by manually clipping the shadow volume edges on the viewer’s near plane,
e. g., by using a vertex program. The exact procedure is described in detail in [56]. In
many cases, the artifacts are not disturbing enough to justify the additional effort.

3.2.2 Shadow Volume Reconstruction from Depth Maps

Michael McCool was the first to propose a hybrid algorithm combining shadow maps
and shadow volumes. He introduced his algorithm for reconstructing shadow vol-
umes from a depth map in 2000 [73]. It does not require a polygonal representation
of the scene. Instead, somewhat similar to the shadow map method, it requires a
depth map rendered from the light source location. The shadow map information is
then used to reconstruct a polygonal shadow volume boundary that can be combined
with an eye-view depth map using only a one-bit stencil buffer. Reconstruction is
based on edge detection in the shadow map. The identified silhouette edges are then
used to build a polygonal mesh representing the important shadow volume bound-
aries. This algorithm does not need any hardware extensions, hence it can be used
with any hardware that generates a correct depth map.

The algorithm’s key observation is the fact that depth samples in the shadow map,
in conjunction with their pixel coordinates, describe scene points relative to the light
position in an orthogonal device coordinate system. These points can be joined into
a polygonal mesh and then transformed back into world space, using the inverse of
the shadow map projection. Surfaces that are constructed in this way define the
boundaries between shadow and light in the scene.

In the pure shadow volume algorithm, shadow volume boundaries may be nested,
hence the need to sum front-facing polygons and subtract back-facing polygons.
With McCool’s technique, shadow volume boundaries consist of a single star-shaped
surface. In this case, it is only necessary to keep track of the parity of the number
of shadow volume polygons in front of the surface at each pixel. If the number of
shadow volume boundary intersections along a ray from the eye to the first surface
point at a pixel is odd, the pixel is in shadow. Otherwise, it is illuminated. To keep
track of the parity, a single bit in the stencil buffer is sufficient. This bit is simply
inverted whenever a shadow polygon fragment is drawn on top of it.
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Figure 3.8: Shadow volumes reconstruction from depth maps. From left to right and up to down:
scene, depth map created from the light position, edges detected in depth map, reconstructed
shadow volumes, shadow volumes created from geometry of occluders (using potential silhouette
edges), wire model of reconstructed shadow volumes in detail. (Images courtesy of David Ambrož,
CGG Prague)

The algorithm inherits all of the advantages of the shadow map algorithm. In par-
ticular, since the shadows depend only on the values left in the depth buffer, it is
non-intrusive - adding shadows to a scene will not require modification of the base
rendering engine. Another advantage of this hybrid approach is that the generated
shadow volumes are minimal in size. They extend from the shadow caster’s surface
to the shadow receiver’s surface, but no further, whereas Crow’s original shadow vol-
umes extend outwards to the view far plane after clipping, stressing the rasterization
hardware. However, the hybrid method also inherits some of the disadvantages of
the shadow map algorithm. Aliasing is still a problem, being literally magnified
when the shadow is projected, as is the precision problem of the z buffer and the
shadow map. Another disadvantage is the large number of shadow polygons, which
is inherited from the basic shadow volume algorithm.

Since this technique still suffers from the same problems as shadow mapping and
only offers the advantage of a somewhat reduced number of shadow volume polygons,
it is not often used in practice.

3.2.3 An Efficient Hybrid Shadow Rendering Algorithm

It can be shown that shadow map aliasing is only noticeable at the discontinuities
between shadowed and illuminated regions, i. e., at shadow silhouettes [86]. Then
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Figure 3.9: Comparison of image quality using a shadow map (left), shadow volumes (middle), and
Chan/Durand’s hybrid technique (right). A shadow map resolution of 1024x1024 pixels was used
for the shadow map and hybrid algorithms. (Image courtesy of Eric Chan and Frédo Durand)

again, shadow volumes compute shadows accurately at every pixel, but this accu-
racy is in fact only needed at the shadow silhouettes. This observation suggests a
hybrid algorithm that uses the exact shadow volume algorithm only at the shadow
silhouettes and the faster shadow map algorithm everywhere else in the scene. In
fact, this approach avoids not only aliasing problems with shadow maps, but also
the high fill costs of the standard shadow volume algorithm by Crow.

The technique presented in this section was developed by Eric Chan and Frédo
Durand [21]. In the first step, an ordinary shadow map is created, as described on
page 34. This shadow map serves to identify shadow silhouette pixels and compute
shadows for non-silhouette pixels. In the second step, the scene is rendered from the
eye’s viewpoint. Each fragment is transformed back to light space, where its depth
is compared against the four nearest depth samples from the shadow map [86]. If
the comparison results agree, the fragment is a non-silhouette pixel and is shaded
according to the depth comparison result. Otherwise, the fragment is classified as
silhouette. During this step, standard z-buffering is performed as well, to create
the depth map needed for drawing the shadow volumes in the next step. After
silhouette pixels have been identified, shadow volumes are drawn according to the
standard shadow volume algorithm explained in section 3.1. The key difference in
this technique, however, is that shadow volumes are rasterized only at silhouette
pixels. Last, the shaded scene is rendered only at pixels with a stencil value of 0,
thereby avoiding the shadowed regions in the scene.

This technique relies heavily on the graphics hardware to discard unnecessary shadow
volume fragments as early as possible in the pipeline. To restrict rasterization of
shadow volumes and stencil updates to regions containing silhouette pixels, Chan
and Durand propose using computation masks. A computation mask is a device
that allows masking of specific framebuffer addresses, so that the hardware can avoid
processing pixels at those locations [21]. Current graphics hardware does not directly
expose computation masks. However, the OpenGL extension EXT_depth_bounds_test

can be used to simulate the behavior. The idea is to use a pixel shader to mask
pixels by setting their depth values to a constant value outside the depth bounds.
By enabling depth bounds in the subsequent steps, rasterized pixels with an outside
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depth value can be discarded early in the pipeline.

3.2.4 Interactive Shadow Generation in Complex Environments

To address the problem of interactive shadow volume generation in static environ-
ments with a large number of geometric primitives, Lloyd et al. present a distributed
method that utilizes a cluster of several workstations [39].

The algorithm uses a scene graph representation which is augmented with a sub-
object hierarchy (that is, large individual objects that contain a high number of
triangles are broken down into sub-objects with only a few triangles). The decom-
position into sub-objects is done using a combination of partitioning and cluster-
ing algorithms to ensure that they have roughly the same size. Furthermore, the
algorithm precomputes LODs for leaf nodes and HLODs (hierarchical LODs) for
intermediate node. The HLOD that is associated with an internal node represents
a simplification of all objects contained in the subtree of that node.

In the first step, the algorithm interactively computes the potentially visible set
(PVS) for both the eye-view and the light-view. The PVS for the eye is denoted
PV Se, the PVS for the light view PV Sl. Levels-of-detail are used to accelerate
this step by selecting the appropriate LODs for each view. First, an occlusion
representation of the scene is generated. Then, scene graph culling is performed
using hardware occlusion queries (subsection 2.5.1). The overall performance of this
step is affected by two factors. The first factor is whether culling is performed on
sub-object level or not. Sub-object culling takes more time because of the additional
occlusion queries, but can result in a smaller PVS. The second factor is the number
of triangles per primitive k. If k is large, the number of sub-objects per object is
reduced, thereby fewer occlusion queries have to be issued. Low values for k result
in a much smaller PVS. The smallest PVS for any given scene can be obtained using
a k value of 1.

Every triangle in PV Sl is a potential shadow caster, and every triangle in PV Se a
potential shadow receiver. However, not all triangles in PV Sl actually cast shadows
that are necessary for the correctness of the final image. To filter out unnecessary
shadow casters in PV Sl, cross culling is performed between PV Se and PV Sl. Cross
culling first checks the visibility of the triangles in PV Se with respect to PV Sl, then
uses this information to obtain the set of actual shadow casters (SC). Therefore,
the triangles in PV Se are partitioned into three subsets:

• Fully-lighted (FV): These triangles are fully visible from the light view and
are drawn completely lit.

• Fully-shadowed (SRF): The exact opposite of FV , these triangles are com-
pletely occluded from the light view and therefore are fully in shadow.
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• Partially-shadowed (SRP): These triangles are only partially visible from
the light and must be considered for shadowing.

After partitioning PV Se, SC is computed as the set of triangles in PV Sl that occlude
SRP .

Shadowing is done in the final step. Only triangles in SRP and SC are consid-
ered. The algorithm to create shadows is a variation of the classic polygon shadow
technique by Atherton et al. (page 32). All triangles in SRP are clipped against
the shadow frusta formed by each triangle in SC. Therefore, the resulting shadow
polygons are calculated by repeatedly clipping triangles in SRP against the planes
of the shadow frusta.

If the number of the shadow polygons is very high, the clipping operations may not
be performed at interactive rates on the CPU. Therefore, Lloyd et al. suggest a
hybrid scheme that uses shadow maps instead of shadow polygons if they are very
small or far away from the eye. Therefore, shadow polygons are computed only
where they make a significant difference in image quality, and a shadow map is used
everywhere else.

Because it is not (yet) possible to compute PV Sl, PV Se and perform cross-culling
and shadow generation on a single graphics processor at interactive rates, Lloyd et al.
use a process-parallel algorithm and distribute the work on three graphics processors
(on three different workstations). The algorithm is distributed as follows:

• GPU1: computes PV Se

• GPU2: computes PV Sl

• GPU3, CPU1, CPU2 and CPU3: perform cross-culling, shadow generation
and rendering of the final image

The communication between the workstations is synchronized using an acknowledge-
based protocol.

The original implementation used three Dell Precision workstations, each with dual
1.8 GHz Pentium4 CPUs, 2 GB of main memory and a NVIDIA GeForce 4 Ti4600
GPU. With this configuration, Lloyd et al. are able to render 2M triangles in
immediate mode and about 14M triangles in retained mode.

3.2.5 CC Shadow Volumes

Lloyd et al. present a method for accelerating shadow volumes in scenes where
shadow volume rasterization is the main bottleneck [69]. This method is an im-
provement of the technique described in subsection 3.2.4 and decreases rasterization
cost by two different techniques: shadow volume culling and clamping.
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Figure 3.10: CC shadow volumes in a scene that consists of 96k polygons. Shadow volumes are
colored in transparent yellow. Left: standard shadow volumes. Middle: CC shadow volumes.
(Image courtesy of Lloyd et al. [69])

Figure 3.11: CC shadow volumes accelerate the standard shadow volume algorithm by first culling
unnecessary shadow casters and then clamping surviving shadow volumes to fit tightly around the
scene geometry. From left to right: standard shadow volumes, shadow volume culling, continuous
shadow volume clamping, discrete shadow volume clamping. (Image courtesy of Lloyd et al. [69])
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Culling

The culling step is very similar to the technique described in [39]. To recap, the
culling of shadow volumes usually proceeds in two steps. First, all objects that
are visible from the eye are detected, yielding the set of potential shadow receivers
(PSR). Similarly, in the second step all objects are detected that are visible from
the light source’s point of view. Taking the previously identified objects in PSR into
account, these objects can be additionally limited to those that actually occlude
any visible objects from the eye. The second step yields the set of potential shadow
casters (PSC).

Clamping

A closer examination of Figure 3.11 reveals that even after the culling step, the
remaining shadow volume are largely unnecessary: only small parts of the shadow
volumes actually cover any scene geometry. By clamping shadow volumes to regions
that contain shadow receivers, we can save fill costs and increase overall perfor-
mance.

Lloyd et al. perform clamping using two different techniques. Continuous clamping
operates entirely on the host CPU and attempts to clamp shadow volumes to their
z bounds in light space. Discrete clamping splits the viewing frustum by several
planes into sections and utilizes the graphics hardware to find out which sections
are occupied with shadow receivers. Like continuous clamping, it then limits the
shadow volumes to these sections.

Continuous Clamping Continuous clamping is performed entirely on the CPU and
does not need any dedicated graphics hardware. Clamping is done by transforming
every object ∈ PSR into the light’s coordinate system, ideally the same that was
used in the culling step. Then, the regions where the shadow volumes need to be
drawn correspond to the intervals that are occupied by shadow receivers in the z
direction.

Discrete Clamping In contrast to continuous clamping, discrete clamping uses the
graphics hardware to test for shadow receivers within discrete shadow volume inter-
vals. To this end, the view frustum is partitioned into slices by a set of similarly
oriented planes. The discrete shadow volume intervals are determined by the inter-
section of the shadow volumes with the slicing planes. After the slicing planes have
been constructed, discrete clamping uses image-space occlusion queries to test for
slices that contain any shadow receiver, and shadow volumes are finally rasterized
only in such slices.
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3.2.6 Split-Plane Shadow Volumes

An interesting method for combining the robustness of the zfail algorithm with
the speed of zpass was presented by Laine in 2005 [67]. The main idea behind
this technique is the observation that since both zfail and zpass produce identical
shadows, the choice between using zpass or zfail can be made locally as long as it
stays consistent while rendering a single shadow volume. If this choice is made on
a per-tile basis, it is possible to cull entire pixel tiles when it can be concluded that
none of the pixels in that tile would cause stencil updates.

Both zpass and zfail adjust the stencil value for a given fragment depending on a
given set of conditions. This adjustment can be formally expressed for both algo-
rithms (Equation 3.2 and Equation 3.3).

∆S(zpass) =


+1 if zfrag < zpixel , facing = front
−1 if zfrag < zpixel , facing = back
0 otherwise

(3.2)

∆S(zfail) =


+1 if zfrag ≥ zpixel , facing = front
−1 if zfrag ≥ zpixel , facing = back
0 otherwise

(3.3)

By taking a pixel-dependent split depth (zsplit) into account and comparing it against
the depth stored in the depth buffer (zpixel), an additional criterion can be applied
to the stencil buffer adjustment ∆S. This comparison is referred to as the split test,
and its result determines whether zpass or zfail update rules are used. The split
depth zsplit does not need to be the same for every pixel, but it must be ensured
that zsplit remains the same while a single shadow volume is processed. Thus, the
result of the split test is consistent for individual shadow volumes. Using the split
test yields new rules for stencil buffer adjustment, as denoted in Equation 3.4.

∆S(spsv) =



+1 if zfrag < zpixel < zsplit , facing = front
−1 if zfrag < zpixel < zsplit , facing = back
−1 if zfrag ≥ zpixel ≥ zsplit , facing = front
+1 if zfrag ≥ zpixel ≥ zsplit , facing = back
0 otherwise

(3.4)

Hence, if zpixel is smaller than zsplit, zpass stencil update rules are applied. Otherwise,
zfail stencil update rules are used.

The motivation for adding the split test is that no stencil buffer update is required
unless zpixel is between zfrag and zsplit. This by itself results in a reduction in the
number of stencil buffer updates, provided that the split depth zsplit is chosen ad-
equately. Therefore, the challenge with this technique is the calculation of zsplit.
Laine suggests assigning a suitable, automatically constructed split plane for every
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individual shadow volume and calculating the split depths based on the plane equa-
tion of that split plane. [67] describes two different methods for constructing the
split planes and performing the split test against a plane.

A reduction of the number of stencil updates is not that much of an improvement,
unless the number of processed pixels can be reduced as well. Moreover, the cost
of performing the split test on a per-pixel basis may well surpass the benefit gained
from reducing the number of stencil updates. Therefore, this technique requires an
efficient hardware implementation that makes it possible to cull multiple pixels at
once, thereby reducing the number of processed pixels. A possible implementation
involves pixel tiles, per-tile depth tests and hardware per-tile split tests. For every
pixel tile, zmin and zmax values are maintained, which enables the culling of complete
pixel tiles.
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4 Shadow Volumes in Complex
Scenes

The aim of this thesis was to implement shadow volumes at interactive frame rates
in complex urban scenes. As opposed to the technique described in subsection 3.2.4,
the algorithm should run on a single workstation while still providing acceptable
performance. Moreover, most optimization techniques that try to improve fill rate
achieve their goal by increasing the load on the CPU and/or the geometry stage.
Because all of these stages are comparably busy, such an approach does not improve
the performance in these scenes.

A typical view of the city model can be seen in Figure 4.1. This scene consists
of more than a million triangles. Furthermore, the triangles are distributed over a
large number of small, individual objects. Hence, the scene graph representation of
the scene is flat, but very wide, which requires significant processing power on the
CPU. In the context of this thesis, we call scenes complex if they contain a lot of
geometric primitives that are distributed over a large number of small, independent
objects. This means that the robot scene used in subsection 3.2.5 does not qualify
as a complex scene by this definition because the polygons are clustered in large,
but few objects.

In common terms, scenes are called complex when they contain a sufficiently large
number of triangles and vertices. In such scenes, shadow maps often do not generate
pleasing results because of their aliasing problems. For shadow maps to work in those
scenes, we would have to drastically increase the image resolution, which would in
turn decrease performance. In contrast, shadow volumes do not have any aliasing
problems, therefore they are still the first choice in complex scenes.

The shadow volume algorithm produces good results, but this comes at a severe
performance hit. This performance hit takes place at three independent places:

• CPU The shadow volumes have to be constructed on the host CPU. Moreover,
depending on the variation of the algorithm used, possibly silhouette edges
must be computed, at the worst in every frame for dynamic scenes.

• Geometry Shadow volume polygons increase the number of geometric prim-
itives (triangles) in the scene, therefore more vertices have to be processed in
the geometry stage.
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Figure 4.1: The city scene that was the basis for this thesis. The city is stored in a scene graph
that consists of 17,420 individual geometric objects, some of which are instantiated for multiple
use. The geometry itself is made up of 1,033,002 triangles and 872,715 vertices.

• Rasterizer Since shadow volumes usually extend to infinity, they cover large
regions of the screen, which results in a lot of rasterized fragments and, together
with the additional stencil writes, burns fill rate.

Implementing standard shadow volumes without optimizations in such a complex
scene results in an unacceptable performance on even the latest graphics hardware
(several seconds per frame on an NVIDIA GeForce 6600 GT). Furthermore, as we
will see, many optimization techniques described in section 3.2 fail with this scene
because of the additional requirement that the scene geometry is distributed over a
large number of objects.

In the following sections, we will take a closer look at the different steps involved
in performing the classical shadow volume algorithm and try to improve the vari-
ous stages. To do this, we will take some of the optimization techniques described
in section 3.2 and adapt them for our specific needs. In section 4.1, we will dis-
cuss existing techniques to enhance the generation of shadow volumes, ideally by
using fast graphics hardware instead of software algorithms. Section 4.2 describes
ways to determine an object’s silhouette with respect to the light source, and how
shadow volumes can be created at these silhouette edges. Constructing a shadow
volume only at silhouette edges reduces depth complexity by decreasing the number
of shadow volume polygons, which in turn decreases the number of buffer writes
(stencil, z). Section 4.3 discusses strategies to reduce (cull) the number of shadow

60



4.1 Creating Shadow Volumes

casting objects. Not all objects in a complex scene cast relevant shadows, because
some are completely enclosed in the shadow of another object, while others do not
occlude any visible objects at all. The culling algorithms presented by Lloyd et al.
([69], see section 3.2) address this issue, however they are tailored toward scenes
that contain only a few number of individual objects and do not produce acceptable
performance in the city scene. Therefore, this chapter introduces an improved algo-
rithm that works in arbitrary scenes that do not necessarily consist of only a few,
clustered objects. Furthermore, we discuss how to apply a sophisticated technique
to focus the light source’s view on the relevant parts of the scene (which is necessary
to achieve culling speed and accuracy). After culling unnecessary shadow casters,
section 4.4 describes a technique to limit (clamp) shadow volumes to those regions
in space that actually contain geometry, avoiding large shadow volumes that only
cover empty space. In this section, we also present a technique that optimizes the
rendering of the shadow volume segments by creating them on-the-fly in a vertex
shader. Finally, all techniques are tied together in section 4.5, describing a complete
algorithm for shadow volumes in complex scenes.

4.1 Creating Shadow Volumes

The construction of a shadow volume is a promising candidate for improving the
CPU part of the shadow volume algorithm. Since a complex scene consists of a
high number of shadow casters, this step has to be repeated many times. Therefore,
improving the shadow volume construction step can result in a significant overall
performance gain. In this section, we will take a closer look at some existing tech-
niques for shadow volume creation.

To construct a shadow volume for a single triangle, each of the three vertices has to
be duplicated and projected away from the light source. How exactly each vertex
is projected depends on the specific light source. Directional lights, i. e., lights that
are located infinitely far away from the scene, cast parallel light rays, hence all three
vertices are projected along the same vector. For point light sources with a fixed
position in the scene, each vertex must be projected along the vector from the light
source to the vertex. Figure 4.2 clarifies the process.

To obtain the extruded point (usually called far cap vertex), the light vector ~l is
multiplied by a parameter t and added to the original point p. Setting t to infinity
yields an extrusion point p∞ = (lx, ly, lz, 0). The sides of the shadow volume can
be rendered by warping every edge of the object into a quadrilateral by duplicating
and extruding each of its two vertices. The resulting quad can then be sent to the
graphics pipeline, e. g., as a strip of two triangles. When the zfail algorithm is used
(chapter 3), the shadow volume can be closed by rendering the original object two
times, once with its original vertices, and a second time with the far cap vertex
p∞. For solid occluders, the number of triangles can be reduced somewhat by using

61



4 Shadow Volumes in Complex Scenes

3v
2v

1v

3v
2v

1v

3vl

1vl

2vl

l

l
l

l

l

Figure 4.2: The creation of a shadow volume for a single triangle. With point light sources (left),
points are extruded along the path from the light source (l) to the vertex (v1, v2, v3), resulting in
the vectors ~lv1, ~lv2 and ~lv3. If the light source is located at infinity (right), all incoming rays are
parallel. In this case, the extrusion vector is the same for all vertices, namely the light direction
vector ~l.
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4.1 Creating Shadow Volumes

only the set of triangles facing towards (or, equivalently, the set of triangles facing
away from) the light to render the shadow volume caps. A big drawback with this
simple technique, however, is the high number of triangles that make up the shadow
volumes. Each triangle creates six additional triangles forming the shadow volume’s
sides, plus two triangles for the shadow volume caps if the zfail algorithm is used.

A smarter solution extrudes only the objects’ silhouette edges to form the sides of
the shadow volumes. This technique involves finding the silhouette edges of the
occluding object (see section 4.2). For it to work, however, the object must be
manifold. With manifold objects, none of the back-facing triangles are visible from
outside the object, and every edge is part of exactly two triangles. A silhouette
edge is then defined as an edge where one adjacent triangle face towards the light,
and the other triangle faces away from the light. Therefore, only the silhouette
edges need to create shadow volume quadrilaterals. We will examine methods for
silhouette detection more closely in section 4.2. Generating shadow volumes in this
way increases the load on the CPU, because the silhouette must be recalculated
whenever the relative position of the occluding object and the light source changes,
but can significantly cut down the number of shadow volume polygons.

Another interesting idea utilizes the vertex shader to create shadow volume polygons.
Several different methods are thinkable. One technique, originally presented by ATI
[45, 19], sends every occluder edge down the pipeline as a degenerate quadrilateral
when constructing the shadow volume, supplying the normals for both adjacent
triangles as well (Figure 4.3). Specifically, the original edge vertices are assigned one
normal, the vertices from the replicated edge the other. For each of the two edges,
the vertex shader checks the respective surface normal against the light direction. If
the normal faces the light, the vertices are part of the light cap and passed through
without change. If the normal faces away from the light, the vertices are part of the
dark cap. In this case, the vertices are projected away along the vector from the
light to the vertex. By doing this, shadow volumes are formed automatically. If the
surface normals of both adjacent triangles face toward the light, the edge is rendered
as a degenerated quadrilateral. If both surface normals face away from the light, the
edge is still rendered as a degenerated quadrilateral, but moved to the far cap, thus
closing the shadow volume. If the surface normals have opposite facings, the edge is
part of the silhouette. In this case, one edge remains at its original position, while
the other is projected away, forming a side quadrilateral of the shadow volume. An
advantage of this method is that for static objects, the edge quadrilaterals can be
formed once and then stored in a vertex buffer directly on the graphics hardware
for fast access. This method does not require silhouette determination on the CPU,
but doubles the amount of vertices in the scene.

A method used by BioWare in their game Neverwinter Nights to create shadow
volumes on the fly first determines silhouette edges on the CPU, then uses the
centroid of the occluding object to create a triangle strip of four triangles formed
by six vertices for each silhouette edge. One triangle connects the centroid with

63



4 Shadow Volumes in Complex Scenes

Figure 4.3: Constructing a shadow volume using vertex shader hardware. In the leftmost figure,
the occluder is shown. In the middle, the edges are replaced by degenerate quadrilaterals with two
identical vertices (thick outline). On the right, the vertex shader extrudes those edges found to be
part of the silhouette away from the light source, thus forming the sides of the shadow volume.

Figure 4.4: When silhouette edges are connected in a closed loop (middle), the side polygons of
the shadow volume can be drawn as a triangle strip (right), reducing the number of vertices sent
down to the graphics accelerator and conserving bandwidth. Manifold objects always have a closed
silhouette.

the silhouette edge, two degenerate triangles that will form the side of the shadow
volume using a copy of each silhouette vertex, and a last triangle back to a replica
of the centroid. The vertex shader then projects the last three vertices in the strip
the proper distance away from the object. So, in the end, the first triangle forms the
light-side cap of the shadow volume (the light cap), the two middle triangles become
the quadrilateral that forms the side, and the last triangle the dark-side cap (dark
cap).

For every manifold object, the silhouette edges form a closed loop. This fact can be
exploited by rendering the sides of the shadow volume as a triangle strip (Figure 4.4).
Triangle strips are an optimized form of rendering. They cut down the number of
vertices in the geometry by reusing vertices in adjacent polygons. However, creating
triangle strips from arbitrary mesh geometry can be difficult. If the light source is
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Figure 4.5: The difference between a triangle strip and a triangle fan. On the left, a triangle strip is
used. Strips allow for shared vertices between adjacent triangles and reduce the number of vertices
that are sent to the pipeline from 18 (each triangle has its own copy) down to 8. On the right,
the side polygons are drawn as a fan, taking advantage of the parallel projection with directional
lights. The fan further reduces the vertex count to 4.

infinitely far away, i. e., it is a directional light source, the shadow volume polygons
can be further optimized. With directional lights, all vertices of the occluding object
are projected along the same vector (Figure 4.2). Since this vector has infinite
length, all points are projected to the same point at infinity. Basically, this has two
advantages. First, the dark cap polygons degenerate into a single point and need
not be drawn at all. This can significantly reduce the number of shadow volume
polygons when using the zfail algorithm, where the shadow volumes have to be
closed at both ends. Second, instead of rendering the side polygons of the shadow
volume as a triangle strip, they can now be rendered as a triangle fan (Figure 4.5).

4.2 Silhouette Detection

As mentioned before (section 3.2), determining the silhouette of an occluding object
reduces the number of shadow volume polygons and is thus an important step in
shadow volume generation. Just like the generation of the shadow volume polygons,
it is a starting point for performance optimizations. As such, a number of different
silhouette detection algorithms have been developed in the past.

Basically, silhouette detection can take place either in object space, or in screen
space. Screen space algorithms are usually based on 2D image recognition techniques
and are useful if the main goal is the actual rendering of the silhouette, therefore we
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Figure 4.6: The angle between the triangle’s surface normal and the incoming light vector deter-
mines the orientation of the triangle. The surface normal ~n is the binormal vector of the two plane
vectors, ~a and ~b, and calculated by building the cross product of these two vectors (top). On the
lower left, the angle ϕ between ~n and the to-light vector ~l is lower than 90 degrees, and the dot
product returns a value greater than zero. On the lower right, ϕ is greater than 90 degrees, and
the dot product returns a value less than zero.

will concentrate on object space algorithms. These operate in three dimensions and
usually produce a list of edges. For object space silhouette determination methods
to work properly, the object must be a closed triangle mesh, i. e., there must be no
“holes” that expose the object’s interior, and every edge must be part of exactly two
triangles. To avoid holes in the object’s surface, all triangles must have a consistent
winding, either clockwise or counterclockwise. Objects that satisfy these criteria are
called manifold.

Silhouette edges are edges that connect a front-facing and a back-facing triangle
(with respect to the light source). To determine the orientation of a triangle, the
dot product of the triangle’s surface normal with the vector formed reversing the
incoming light ray is calculated. If the dot product results in a value greater than
zero, the angle between the two vectors is smaller than 90 degrees, and the triangle
faces towards the light. If the value is less than zero, the triangle faces away from
the light (Figure 4.6). In summary, the inequality that has to be fulfilled for edges
that are part of the silhouette can be expressed as

( ~n1 ·~l > 0) 6= ( ~n2 ·~l > 0) (4.1)

where ~l is the vector towards the light source, and ~n1 and ~n2 are the surface normals
of the adjacent triangles.

There are many ways to calculate the set of silhouette edges, and most of them are
CPU intensive. A very simple method is to loop through all edges and compare the
orientation of the two adjacent triangles by brute force [71]. If they have opposite
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orientation, the edge is added to the silhouette set. However, this method has linear
complexity with respect to the number of triangles in the mesh. Moreover, every
triangle is involved in three dot product computations. Obviously, this method is
not very efficient. An optimization mentioned by Lander involves culling out edges
that are inside planar polygons [68]. This means that the silhouette test is skipped
for edges whose adjacent triangles lie in the same plane.

An algorithm called edge buffer was presented by Buchanan and Sousa [20]. Instead
of iterating over all edges and testing adjacent triangles for their orientation, this
method iterates over the triangles. Since the number of triangles is always less than
the number of edges, this algorithm should run faster than brute force algorithms
that perform testing for every edge. Iterating over a triangle list, the orientation of
every triangle is tested. If the triangle is front-facing, the front-facing flag for each
edge shared by this triangle is XOR’ed with 1. Likewise, for back-facing triangles,
the back-facing flag for each edge is XOR’ed with 1. Upon completion, silhouette
edges are those edges that have both their front-facing and back-facing flags set to 1.
Interestingly, in practice the edge buffer algorithm runs slightly slower than the brute
force method mentioned above. Hartner et al. ascribe this to the higher overhead
cost because of the numerous XOR operations and edge table lookups [46].

Another technique is called edge elimination. This technique makes use of the fact
that internal front-facing and back-facing edges are shared by exactly two triangles.
The algorithm proceeds in a single step. It loops through all front-facing triangles
and adds all edges that are part of these triangles to a silhouette edge set. If the edge
was already contained in the set, however, it is removed. This is the case for all edges
where both adjacent triangles are facing the light. After the loop terminates, the
edge set contains all edges that connect a front-facing triangle with a back-facing
triangle. Instead of looping through all front-facing eges, the algorithm can also
iterate over the back-facing triangles and achieve the same result. For an efficient
implementation, mesh data structures should be implemented using an indexed edge
table, where every triangle is stored as indices into an array of edges. This algorithm
is robust in that it also works for objects that have holes, i. e., objects with edges
that are part of only one triangle. These “dangling” edges remain in the silhouette
set and are ultimately considered part of the silhouette.

There are several silhouette determination methods that are based on hierarchical
culling. Each of these algorithms requires to descend a hierarchical data structure
at runtime. A method developed by Sander et al. involves creating a hierarchy of
normal cones during a pre-process step (Figure 4.7). These can be used at runtime
to cull large numbers of edges which are definitely not part of the silhouette. Any
cones that intersect the light vector are discarded immediately, others that intersect
the light vector have to be further analysed. The cones are organized in a hierarchical
search tree. Whenever polygons within a certain node can be classified as all front-
facing or all back-facing, this node can be discarded as not containing any silhouette
edges. In addition to normal cones, several other variations of the hierarchical
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Figure 4.7: An example of a cone hierarchy built from cones that have similar dihedral angles,
have similar cone normals, and are spatially close to each other. (Image courtesy of A. Hartner,
M. Hartner, E. Cohen, and B. Gooch, University of Utah)

culling method exist. Hertzmann et al. use dual surface intersections [54], Pop et
al. a wedge hierarchy [78].

Markosian et al. present a probabilistic, randomized search algorithm for rapidly
finding silhouette edges [70]. This technique assumes that a silhouette always con-
sists of a single closed curve, although there can be more than one silhouette curve
on a surface. Furthermore, silhouette edges can belong to only one curve at a time.
This does not necessarily mean that each vertex on the silhouette curve has only
two incoming silhouette edges, although this would be preferable. Initially, a small
number of edges based on their probability to be part of the silhouette is chosen,
then tested to see whether the assumption is correct. The probability for being a
silhouette edge correlates to the edge’s dihedral angle (Figure 4.8). Edges that were
part of the silhouette in the previous frames also have a high probability (frame
coherency). Once these edges have been found, the algorithm starts by testing ad-
jacent edges to see whether these are part of the silhouette as well. This process
is repeated iteratively until the whole silhouette has been identified. Compared to
many others, the advantage of this method is that it does not require any special
data structures that are often expensive to set up. Therefore, it is suitable for use
in dynamic scenes with animated meshes and/or light sources. A disadvantage with
this technique is that some silhouette edges may be missed. This has to do with the
termination criterion of the algorithm and how many edges are tested before it is
assumed that there are no more silhouettes on the mesh. This value must be tuned
according to the circumstances, which may involve the speed of the animation, the
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Figure 4.8: The dihedral angle of an edge and its correspondance to the view area. In this figure,
the edge e connects the two triangles t1 and t2. Edges with a small dihedral angle ϕ have a higher
probability of being part of the silhouette.

kind of meshes used, and how accurate the results should be. Compared to the
brute-force algorithm, Markosian reports about a five times speedup.

A modified Gauss map can also be used to calculate the silhouette edges of a polygo-
nal object [36, 9]. First, the object is placed at the origin of a bounding sphere (Gauss
map). Each edge of the object now maps to an arc on the surface of the sphere.
Silhouette edges can be extracted by intersecting the Gauss map with a plane. This
plane passes through the origin of the sphere and is defined as perpendicular to the
light vector. Arcs in the Gauss map that intersect with this plane correspond to
silhouette edges of the object. A severe disadvantage with this method is that it
only takes into account the direction to the light and not the distance. Hence, it
will work only with orthogonal projections and cannot be used with omnidirectional
point light sources.

A disadvantage common to all mentioned silhouette determination techniques is
that they are quite CPU intensive. It is possible to move the process of determining
silhouette edges to the vertex shader, using a technique similar to ATI’s way of
projecting shadow volumes on the fly (section 4.1). However, such methods are not
applicable in this case because the silhouette data must be available on the host CPU
for shadow volume construction. A possible bottleneck with CPU based methods
is the nonsequential memory access [6]. Ordering mesh data structures (vertex,
edge, and triangle lists) simultaneously in a way that allows for efficient caching
is virtually impossible. Another area of concern is the linear complexity of most
methods, resulting in an increasing number of silhouette tests for highly-detailed
meshes that are comprised of lots of triangles.
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Figure 4.9: An illustration of shadow volume culling. On the left, no culling is done. A shadow
volume is constructed for every object, resulting in 9 shadow volumes. On the right, a visibility
test for the view point reveals 4 possible shadow receivers (objects a, b, d, f). Based on these
results, a shadow volume is constructed only for objects b and c. Object i is not visible from the
eye, hence no shadow volume is needed for object h. Objects d, e, f, and g lie totally within the
shadow volume of object c.

4.3 Shadow Volume Culling

The standard shadow volume algorithm creates a shadow volume for every object in
the scene. However, for large, complex scenes that are comprised of many objects,
it is often not necessary to take all objects into account. Usually, there are many
objects that do not contribute to the shadowing process, because they do not cast
a shadow on any visible objects, or because they are completely enclosed in the
shadow volume of another object (see Figure 4.9 for an illustration). The CC shadow
volumes algorithm described in subsection 3.2.5 proposes a culling step to filter out
unnecessary objects. This method, however, is not well suited for use in a complex
scene. In this section, we will introduce a technique to perform shadow volume
culling in complex scenes. Figure 4.10 shows shadow volume culling in a test scene,
as compared to the standard shadow volumes illustrated in Figure 3.5.

The culling of shadow volumes usually proceeds in two steps. First, all objects that
are visible from the eye are detected, yielding the set of potential shadow receivers
(PSR). Similarly, in the second step all objects are detected that are visible from
the light source’s point of view. Taking the previously identified objects in PSR into
account, these objects can be additionally limited to those that actually occlude
any visible objects from the eye. The second step yields the set of potential shadow
casters (PSC).
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Figure 4.10: Shadow volume culling reduces the number of shadow volumes in the scene by dis-
carding shadow casters that do not contribute to the final image.

4.3.1 Visibility in Light Space

In their paper, Lloyd et al. use image-based hardware occlusion queries to resolve
the visibility [69]. To compute the set of potential shadow receivers (PSR), the
scene is rendered from the viewpoint of the eye, creating a depth representation
of the visible surface in the z buffer. Next, with z writes disabled, but still doing
z testing, the bounding volume of every object in the scene is rendered with an
occlusion query. If all fragments of a bounding volume fail the z test, the occlusion
query returns zero. In this case, the object is completely occluded. Objects with a
visible bounding volume are added to PSR. The potential shadow casters (PSC) are
determined similarly, except that the scene is rendered from the viewpoint of the
light source. However, this way PSC may contain objects that are visible to the light
source, but do not occlude any objects in PSR. These unnecessary shadow casters
can be removed by slightly modifying the algorithm. After the depth representation
is created for the light, the objects in PSR are rendered into the stencil buffer,
setting the stencil value to 1 if the z test fails. After this step, regions with a stencil
value of 1 indicate areas of objects that receive shadows. Finally, when rendering
the bounding volumes and performing occlusion queries, the stencil test is enabled
as well, so that only those shadow casters are added to PSC that actually cover
shadowed regions.

Though simple and easy to understand, this method for visibility detection has a
distinct disadvantage: it is slow. Determination of the PSR requires two additional
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rendering passes, plus another three per light source to compute the PSC. In our
complex scenes, the cost of these additional passes surpasses any performance gains
accomplished by having fewer shadow volumes. In complex urban scenes, performing
shadow volume culling as described above results in an even lower performance than
using standard shadow volumes (see chapter 5)

A smarter way is to use one of the fast visibility determination algorithms presented
in section 2.5. The aim of visibility determination is usually to identify objects
in the scene that are visible from the viewer’s point of view, therefore preventing
hidden objects from entering the rendering pipeline and wasting valuable hardware
resources. With shadowing, the problem is identical, except that the visibility is not
established from the viewer’s position, but from the light source. The type of the
light source dictates which visibility algorithms are applicable. For omnidirectional
point light sources, a point-based approach must be used, whereas area light sources
require a cell-based algorithm. Since this thesis deals only with point light sources
and their hard shadows, we will concentrate on point-based visibility determination
algorithms.

As explained in section 2.5, visibility culling consists of view-frustum culling, back-
face culling, and occlusion culling. View-frustum culling is used to filter out objects
that do not lie within the light’s region of influence (see subsection 4.3.3 for a more
detailed explanation). Backface culling is performed automatically by the GPU
when the lighting model is evaluated, because polygons facing backwards never re-
ceive any lighting from that specific light source. This leaves occlusion culling, which
is very much applicable when doing shadows. Performing occlusion culling from the
point of view of the light source, we can filter out all objects that are themselves
occluded from the light and whose shadow does not contribute to the final image
because it is totally enclosed within the shadow cast by another object. This way,
the number of shadow volumes in the scene can be significantly reduced, saving both
geometric as well as fill costs in the graphics hardware.

4.3.2 CHC Shadow Volume Culling

A well-suited technique to perform shadow volume culling is the coherent hierarchical
culling algorithm described in subsection 2.5.1. Like the simple technique described
at the beginning of this chapter, CHC uses hardware occlusion queries to resolve
visibility. However, CHC traverses the scene graph in such a way that CPU stalls
due to the unavailability of the query result are avoided. Ideally, any idle times
are prevented altogether, resulting in a performance increase of 500 % and more.
However, this speed improvement comes at the cost of a slightly less culling acuity,
since CHC renders leaf nodes that were previously visible without waiting for the
query result. Therefore, CHC can be slightly more conservative than the simple
algorithm above, resulting in a higher number of shadow volumes in the scene. In
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practice, the performance improvement of CHC over the exact algorithm turned out
to more than compensate the higher geometry and fill costs.

CHC shadow volume culling can be easily integrated into the rendering framework.
Similar to [69], we determine the eye-visible objects (PSR) in a first step. To do so,
we invoke the CHC renderer, but instead of rendering visible objects into the frame-
buffer, they are stored in a list for later use. For the determination of the light-visible
objects, it is important to use a different instance of the CHC renderer; otherwise,
all frame-coherent visibility information for both the eye and the light view is lost.
To include only objects in PSC that actually occlude any shadow-receiving object,
all objects in PSR (as determined in the first step) are drawn into the stencil buffer,
using the eye-instance of the CHC renderer. Although this introduces an additional
rendering pass, it is very fast because it exploits the precalculated visibility infor-
mation from the PSR pass. After initializing the stencil buffer, we use the light
instance of the CHC renderer with stencil testing enabled to determine the objects
in PSC. Again, instead of actually rendering visible objects into the framebuffer, we
just store them in a list.

By following this approach, we exploit frame coherency in both PSR and PSC deter-
mination, which greatly improves the performance for the culling step. As mentioned
in subsection 3.2.5 on page 53, the added overhead of the culling algorithm (lots of
buffer writes that eat up any fill savings achieved by culling unnecessary shadow vol-
umes) is one of the main bottlenecks of the CC shadow volume algorithm and the
main reason why they don’t achieve acceptable performance in complex scenes.

4.3.3 The Light Frustum

To perform visibility tests for the light source, a frustum must be constructed which
represents the region that is influenced by the light source. The exact form of the
frustum depends on the type of the light source. Directional light sources that are
infinitely far away from the scene cast rays that are parallel to each other. Therefore,
the frustum corresponds to an orthographic projection and must be chosen so that it
encloses the whole scene. Point light sources can be either spot lights that influence
a cone-like region in space, or omnidirectional lights that emit light in all directions.
Spot light sources correspond directly to the camera analogy. Their opening angle
ϕ is analogous to the field-of-view angle of a camera. The near plane is usually
close to the light, and the far plane depends on its attenuation. Omnidirectional
light sources are somewhat more complicated, because their field of view cannot
be described with a single frustum. If they are located sufficiently far away from
the scene (i. e., outside the bounding volume), they can be dealt with just like spot
lights by fitting the frustum tightly around the scene. Omnidirectional light sources
that are located within the bounding volume of the scene typically need to compute
their visibility in several steps, e. g., in the front, back, top, bottom, left, and right
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Figure 4.11: This figure illustrates how a frustum can be fit around the scene for different types
of light sources. Top left: directional light sources correspond to orthographic projection, tightly
fit around the bounding volume of the complete scene. Top right: spot lights are analogous to a
viewer camera with perspective projection. They are parameterized by their position and field-of-
view-angle ϕ. Bottom left: omnidirectional light sources that are positioned outside the bounding
volume of the scene are similar to spot lights, however the frustum is fit around the bounding
volume and ϕ is calculated accordingly. Bottom right: for omnidirectional light sources within the
scene bounding volume, the visibility determination must proceed in six distinct steps. A frustum
is constructed for each of the top, bottom, left, right, front, and back viewing directions.

directions, which can be expensive. Figure 4.11 illustrates the frusta for different
types of light sources.

A light frustum that is constructed this way changes only if the scene changes, i. e., if
the scene contains moving objects or if the position of the light source changes. It
also usually encompasses a big part of the scene (for directional light sources and
point light sources outside the bounding volume of the scene, it contains even the
whole scene). Since visibility culling often operates in image space, precision may be
lost for large scenes that contain lots of individual objects which are small compared
to the size of the world. Objects are lost if they are too small to map to a single
pixel in screen space, which may result in shadows popping in and out in consecutive
frames, which in turn greatly impairs the realism of the scene. Given the fact that
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Figure 4.12: The construction of the intersection body B for a point light source. First, the convex
hull of the view frustum V and the light position l is created. Then, the resulting body is clipped
against the scene bounding volume B to avoid large frusta that cover vast regions of empty space
and, consequently, result in a decreased precision when performing visibility culling.

the viewer can seldom see the whole scene, a lot of the light frustum is wasted on
objects that are not even visible in the final image. Generally, it is better to limit
the light frustum to those objects that actually contribute to the image.

The optimal way of focussing the light frustum to relevant parts of the scene is an
issue that is also encountered in shadow mapping, which also profits from conserving
image resolution. A way to focus the light view is described by Drettakis and
Stamminger [29] and later refined by Wimmer et al. [94]. Here, the region of
interest B is defined as the convex hull of the view frustum V and the light position
l (for directional lights, this position is at infinity), clipped by the scene bounding
volume S (Figure 4.12).

By clipping with S, large regions of empty space due to an over-dimensioned viewing
frustum V are avoided. The resulting intersection body B defines a region that
contains objects of interest with respect to light source visibility. Mathematically,
the computation of B can be expressed as B = (V + l)∩S, where + denotes a union
and ∩ an intersection operator. The resulting set operations are relatively easy to
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implement, because all involved objects are simple convex polyhedra. Therefore,
general purpose convex hull and polyhedra intersection algorithms can be avoided
[94]. Listing 4.1 shows the construction of the intersection body in C-like pseudocode
(from [94].

BRep tmp; // a solid representation of an intersection object

Matrix4 invEyeProjView;

BRep sceneBV; // the scene bounding volume (usually a box)

createSolidFrustum(tmp, invEyeProjView);

if (/* point light */)

createConvexHullWithPoint(tmp, lightPosition);

else

createConvexHullWithDirection(tmp, lightDirection);

clip(tmp, sceneBV);

return tmp;

Listing 4.1: Pseudo-code that shows the construction of the light’s frustum.

createSolidFrustum() creates a solid view frustum representation by transforming
the vertices of a centered 2-unit cube by the inverse of the combined view and
projection matrix of the desired frustum.

clip() performs the intersection of two convex objects by clipping the first object
against every plane of the second object and finally filling any holes with new poly-
gons. Depending on the type of light source, the convex hull with the view frustum
must be constructed in different ways.

createConvexHullWithPoint() creates the convex hull from a convex object and
a point by removing all of the object’s front-facing polygons with respect to the
point, then closing the resulting hole with a triangle fan to the point. However,
any algorithms that compute the convex hull for a set of points can be employed as
well.

For directional lights, createConvexHullWithDirection() extrudes the light-facing
polygons of the given convex body tmp a certain amount along the inverted light
direction −~l. The surplus space in the resulting volume is finally clipped against the
scene bounding volume.

Summarizing, focussing the light frustum to tightly fit the region of interest within
the scene is an important part in light visibility determination. It is relatively easy
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to implement and can be achieved without wasting too much processing power.
Generally, the increased overhead due to the geometric intersection calculations is
easily outweighed by the improved culling acuity.

4.4 Shadow Volume Clamping

Shadow volume clamping is originally part of the CC shadow volumes algorithm
described in subsection 3.2.5. Let us examine how it fits in with complex scenes.

In the culling step, we removed unnecessary shadow volumes. A close examination
of Figure 4.9 reveals that only small parts of the remaining shadow volumes actu-
ally cover shadow receivers. This observation indicates another disadvantage with
standard shadow volumes: they extend to infinity. In screen space, the projected
shadow volumes often cover a large number of pixels, which puts stress on the ras-
terizer engine. Moreover, the rendering of shadow volumes also modifies the stencil
value, which further increases fill consumption1. Figure 4.9 suggests another way
of improving standard shadow volumes. By tightly fitting the shadow volumes to
regions in space that contain a shadow receiver (i. e., an object ∈ PSR), the number
of pixels that are covered by shadow volumes can be drastically decreased, which
in turn results in a lower number of buffer writes and higher fill performance. The
process of fitting the shadow volumes around the shadow receivers is called shadow
volume clamping. See Figure 4.13 for an illustration. The use of shadow volume
culling and clamping in a simple scene is shown in Figure 4.14.

Lloyd et al. suggest two different techniques to perform shadow volume clamping
[69]. These are technically complementary, but both follow the same basic principle:
they try to determine where interactions occur between a shadow volume and shadow
receivers, then limit the shadow volume to these regions. The algorithm known
as continuous clamping operates entirely on the host CPU and attempts to clamp
shadow volumes to their z bounds in light space. Discrete clamping splits the viewing
frustum by several planes into sections and utilizes the graphics hardware to find
out which sections are occupied with shadow receivers. Like continuous clamping, it
then limits the shadow volumes to these sections. In the following sections, we will
examine each of the two techniques in more detail.

4.4.1 Continuous Clamping

Continuous clamping is performed entirely on the CPU and does not need any
dedicated graphics hardware. Clamping is done by transforming every object ∈

1On modern graphics hardware, render passes that do not affect the color buffer are often executed
in an accelerated path, which results in a doubling of the nominal rasterizer speed on NVIDIA
GeForce cards
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Figure 4.13: Two techniques to perform shadow volume clamping. Continuous clamping is illus-
trated on the left. All objects ∈ PSR are transformed into the light’s coordinate system, and their
z extents are used to clamp the shadow volumes around the shadow receivers. The right figure
depicts discrete clamping. The view frustum is split into slicing planes, and shadow volumes are
drawn only within slices that contain a shadow receiver. (after Lloyd et al. [69])

PSR into the light’s coordinate system, ideally the same that was used in the culling
step. Then, the regions where the shadow volumes need to be drawn correspond to
the intervals that are occupied by shadow receivers in the z direction.

The algorithm proceeds as follows. First, all objects o ∈ PSR∪PSC are transformed
into light space. In this space, an axis-aligned bounding box (AABB) is constructed
for every object. To perform intersection tests, a technique similar to dimension
reduction is utilized. The AABBs are projected onto the light’s image plane, and
the depth interval (zmin, zmax) of every AABB is stored. Then, two-dimensional
bounding box overlap tests are performed on this plane to detect occupied z intervals
according to the following rule: an object R possibly lies within the shadow of an
object C if the projections of the bounding boxes on the light’s image plane overlap
and when zmax of R is greater than zmin of C. Naturally, objects may be mutually
contained within each other’s shadow volumes. Figure 4.15 gives an illustration.

The computation of occupied intervals after testing for overlaps in light space can be
performed efficiently by keeping all objects in a sorted list and processing all shadow
casters simultaneously. Every shadow caster stores a list of the intervals that are
occupied by overlapping shadow receivers. The lists are initialized with the depth
interval of the casting object itself to account for self-shadowing. Then, the shadow
receivers are processed in order of increasing zmin, and the depth intervals of the
shadow casters in which each receiver lies is updated. Since the shadow receivers
are processed in order of increasing zmin, only the last interval in the list needs to
be considered. There are three different ways in which the occupied intervals can be
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Figure 4.14: A scene that employs culling and (continuous) clamping to improve shadow volume
performance.

updated:

1. The last interval in the list completely encloses the new interval. Nothing has
to be done in this case.

2. The last interval in the list partly contains the new interval. In this case, zmax

of the last interval is extended to include the new receiver.

3. The new interval is completely outside the last interval in the list. In this case,
the new interval is appended to the back of the list.

Listing 4.2 gives an overview of the algorithm in pseudocode. In the pseudocode,
encounteredShadowCasters is initially empty. Shadow casters are added only as
they are encountered in the sorted list. This is to prevent incorrect shadow volume
segments around objects that actually intersect the shadow caster in the light’s view,
but are closer to the light source than the shadow caster (the resulting shadows would
be above the shadow casting object). allObjects is a list containing all objects of
interest, i. e., PSR∪PSC. This list is sorted by increasing z to facilitate the merging
of new depth intervals. As the algorithm loops through allObjects, every object
that is a shadow caster is added to encounteredShadowCasters. If the current
object is a shadow receiver, overlap tests are performed for every encountered shadow
caster. If the objects overlap, a new interval is added to the list of depth intervals
of the shadow caster, according to the three possible cases explained above.
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z

Figure 4.15: An illustration of continuous clamping. The left figure shows axis-aligned bounding
boxes in light space. The AABBs are projected onto the light’s image plane, where two-dimensional
overlap tests are performed (right). (after Lloyd et al. [69])

For every depth interval in the list, a new shadow volume segment consisting of two
sets of caps and an extra set of side polygons must be drawn in the stencil pass.
If the gap between successive shadow volume segments is small in image space, the
cost of rendering the additional geometry may outweigh the performance gain due
to fill reduction. To determine whether or not the addition of a new interval in case
3 makes sense, a simple heuristic can be used [69]. Let V be the geometry processing
cost of the new interval, and R the rasterization cost if the gap remains filled. Then,
a new interval is only added if V < R. Otherwise, the interval is merged as in case
2, closing the gap. V and R can be computed according to equations 4.2 and 4.3.

V = (2C + 2S)v (4.2)

R = Ar (4.3)

C is the number of vertices in the shadow volume gap, S the number of vertices
in the shadow volume silhouette, v the cost per vertex, A an estimate of the gap
area in pixels, and r the rasterization cost per pixel. The exact values for r and v
vary with different hardware accelerators and applications and can be determined
empirically. An estimate of v can be obtained by rendering a “typical” set of shadow
volumes at a very low resolution to eliminate rasterizer cost. Rendering this set at
a high resolution and subtracting v yields r. This simple heuristic already provides
reasonable results.

Intersection tests are expensive in scenes that contain a large number of objects.
Without additional information about the scene and distribution of the objects,
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List encounteredShadowCasters;

List allObjects;

encounteredShadowCasters.clear();

SortByZmin(allObjects);

for every object o in allObjects do

if isShadowCaster(o) then

encounteredShadowCasters.add(o);

end

if isShadowReceiver(o) then

for every object c in encounteredShadowCasters do

if overlap(o, c) then

c.addInterval(o.zmin, o.zmax);

end

end

end

end

Listing 4.2: Finding shadow volume intervals using sorted lists and sweep-and-prune intersection
tests.

every object has to be tested against every other object. Dimension reduction tech-
niques originate from the field of computational statistics, where often enormous
amounts of data have to be processed. A similar problem exists with the quadratic
complexity of bounding box intersection tests. Using dimension reduction to split
the original three-dimensional problem into a two-dimensional xy-plane intersection
problem and a separate test for the z axis simplifies the intersection tests themselves,
but does not reduce the number of tests that have to be performed. For many scenes,
it can be observed that the object distribution in the world does not change signifi-
cantly between successive frames. Therefore, we can try to exploit temporal coher-
ence to accelerate the tests, similar to the coherent hierarchical culling algorithm
described in subsection 2.5.1. An efficient method that exploits temporal coherence
by performing incremental computations is the sweep-and-prune algorithm devel-
oped by Cohen et al. [23]. It can easily be adapted for use with continuous shadow
volume clamping [69].

Basically, the sweep-and-prune algorithm reduces the number of pairwise collision
tests by eliminating the test for pairs that are far away. The algorithm proceeds
as follows. First, axis-aligned bounding boxes are created. Every projected AABB
consists of a minimum and a maximum coordinate in the x and y dimensions xmin,
xmax, ymin, and ymax. These minima and maxima are maintained in two separate
lists, one for each dimension. The lists are then individually sorted using insertion
sort [64]. Additionally, for each bounding box pair, two separate overlap flags Ox
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and Oy are maintained (one for each dimension). An AABB pair overlaps if and
only if both flags are set. The key element of the algorithm is that the overlap flags
are not computed in a separate step. Rather, they are maintained during sorting
and modified whenever insertion sort performs a swap. The decision whether to
toggle an overlap flag is based on whether the involved coordinate values both refer
to bounding box minima, both refer to bounding box maxima, or one refers to a
bounding box minimum and the other a maximum.

When a flag is toggled, the overlap status indicates one of three situations:

1. Both flags are now set. This means that the bounding boxes overlap in all
three dimensions.

2. The bounding box pair had both flags set previously. In this case, the corre-
sponding pair does no longer overlap.

3. The bounding box pair did not overlap in the previous frame, and does not
overlap in the current frame either.

In every frame, the lists are re-sorted using insertion sort. When sorting is complete,
an overlap test can be performed by simply comparing Ox and Oy for the correspond-
ing pair. The list of depth intervals is maintained in a similar way, however there is
no overlap flag for the z dimension.

The two main observations with sweep-and-prune are that the lists for the x and y
dimensions are assumed to change little over successive frames, and the incremental
operation of insertion sort which benefits significantly from almost-sorted lists. Thus,
temporal coherence is exploited practically automatically.

To sum up, continuous clamping works entirely on the CPU, which keeps the graph-
ics hardware free to perform other tasks. It can reuse the light coordinate system
that was constructed in the culling step and relies on AABB intersection tests. Con-
tinuous clamping can in many cases generates tight fitting shadow volume segments.
However, in scenes where the light direction is not aligned well with the orientation
of the objects in the scene, the results may be poor. Continuous clamping fits
shadow volumes precisely to the bounds of the shadow receivers in the z direction,
but can overestimate the size of a shadow volume if only a small part of the shadow
receiver lies in shadow because it always takes the entire extents of the receiver into
consideration (Figure 4.16).

4.4.2 Discrete Clamping

Discrete clamping is an alternative technique that is in several ways orthogonal to
the continuous clamping algorithm described above [69]. While the former operates
entirely on the CPU, discrete clamping uses the graphics hardware to test for shadow
receivers within discrete shadow volume intervals. To this end, the view frustum is
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Figure 4.16: Continuous clamping can overestimate the shadow volume segments if only a small
part of a receiver lies in shadow.

partitioned into slices by a set of similarly oriented planes. The discrete shadow
volume intervals are determined by the intersection of the shadow volumes with the
slicing planes. After the slicing planes have been constructed, discrete clamping uses
image-space occlusion queries to test for slices that contain any shadow receiver, and
shadow volumes are finally rasterized only in such slices.

As a matter of principle, any arbitrary plane can be used to partition the view
frustum. A good choice for slicing planes are those that face the light source and
pass through the viewpoint, splitting the image plane into strips of equal width [69].
Shadow volume segments created by such slicing planes cover an approximately
equal area on the image plane, no matter how far away the shadow volume is from
the viewpoint. Furthermore, with slicing planes oriented this way, the caps of the
shadow volume segments need not be drawn, because they lie on a plane that passes
through the viewpoint and do not affect any pixels. This choice of slicing planes is
especially useful for point light sources that lie outside the view frustum.

Figure 4.17 illustrates how these planes can be created. Every slicing plane εi is
defined by a point on the plane (in this case, the viewpoint p) and its normal vector
~ni pointing towards the plane’s positive halfspace. We start with the top or bottom
slicing plane, which coincides with the view frustum. The normal vector of this plane
can be calculated using the eye’s field-of-view angle. Furthermore, the angle between
the normals in successive planes ϕ can be calculated by dividing the field-of-view
angle by the number of desired planes. The normal vector of every subsequent plane
~ni+1 can then be computed by rotating ni by φ.

To determine in which slices the shadow volumes have to be rasterized, Lloyd et al.
describe a way to perform the discrete clamping computations in the light’s view
[69]. Every slice is rendered separately with a pair of user clip planes in back-to-
front order. An occlusion query is issued for every shadow caster against a given
slice. The depth test is set to GREATER, and the shadow caster is projected onto
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Figure 4.17: A view frustum partitioned by slicing planes. The planes face the light source, pass
through the viewpoint and have the same angle ϕ, which is calculated as the field-fo-view angle
of the eye divided by the number of slicing planes. To construct the slicing planes, a starting
normal vector (e. g., , the normal of the bottom or top frustum plane) is continuously rotated by
ϕ, yielding a normal ~ni for every plane εi.

the bottom plane of the slice. This way, shadow receivers that lie within a slice but
are not in shadow are discarded. If the occlusion query indicates that some pixels
passed the test, the corresponding slice contains shadow receivers that are within
the shadow volume of the occluder. Otherwise, the slice is empty or contains only
objects that are not within this shadow volume. See Figure 4.18.

Projecting a shadow receiver onto the bottom plane of a given slice can be performed
by the graphics hardware if a correct transformation matrix is supplied. The pro-
jection does not change the shape of the object in the light space, only the depth of
the rasterized pixels. To setup the transformation matrix, the plane ε is represented
by a quadrupel of homogenous coordinates (a, b, c, d). This quadrupel corresponds
to the coefficients of the plane equation

ax + by + cz + d = 0 (4.4)

a, b, and c are the x, y, and z coordinates of the plane normal ~n, respectively. d is
computed as the dot product of ~n and an arbitrary point on the plane (here, the
viewpoint p). The homogenous matrix M that projects the shadow caster onto ε
through a center of projection c = (cx, cy, cz, 1) can then be computed by

M = c⊗ p− (p · c)I (4.5)
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Figure 4.18: The identification of occupied slices. On the left, a shadow caster is tested against a
slice, which is found empty. On the right, the following slice is determined occupied, so the shadow
volume is rasterized within this interval. (Image courtesy of Lloyd, Wendt, Gonvindaraju, and
Manocha [69])

where ⊗ denotes the outer product and I is the identity matrix. The center of
projection c is the position of the light source. If c is located below the plane, M
should be negated. This ensures that the fourth coordinate w is non-zero, which is
necessary to prevent the point from being clipped by the graphics hardware. The
projection matrix M correctly projects only objects that are closer to the plane than
the light source. For objects that are farther away from the plane than the light
source, the edges of their shadow volume must be extruded to infinity from the last
plane onto which the object can be correctly projected.

This way of detecting occupied slices requires every shadow caster to be rendered for
every slicing plane, because for every slice, every shadow caster must be projected
onto the bottom plane. In the following, we describe an improved technique that
utilizes the stencil buffer and needs every shadow caster to be rendered only once for
all slices. With this technique, the idea is to render every individual shadow caster
once into the stencil buffer. Then, in the light’s plane, pixels with a stencil value
other than zero correspond to regions that are in the shadow of this shadow caster.
When testing the slices with occlusion queries, the stencil test is simply activated
as well. With this improvement, the projection of the shadow caster is no longer
necessary. With this improvement, the discrete clamping algorithm is outlined in
the pseudocode in Listing 4.3.

As with all techniques operating in image space, the use of hardware occlusion
queries in discrete clamping may lead to sampling errors due to the limited screen
resolution (undersampling) and limited precision of the z buffer. These errors can
cause sparsely occupied intervals to be incorrectly classified as empty, which results
in holes in the shadows. A technique developed by Wonka and Schmalstieg [96] can
be used to alleviate this problem by bloating the geometric primitives sufficiently to
avoid sampling errors. Discrete clamping can be expressed as an interference com-
putation problem between shadow casters and the objects within the view frustum
slices. Lloyd et al. adapt the conservative overlap tests described in [40] to perform
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Vector normal = viewer.frustum.top.normal;

Vector viewPoint = viewer.position;

Angle planeDifferenceAngle = viewFrustum.fov_y / numberOfSlices;

for every shadow caster c do

/* setup stencil for writing */

Render(c);

/* setup stencil for testing */

for plane = 1 to numberOfPlanes do

Vector newNormal = Rotate(normal, planeDifferenceAngle);

Plane plane1 = CreatePlane(normal, viewPoint);

Plane plane2 = CreatePlane(newNormal, viewPoint);

/* set clipping planes plane1, plane2 */

IssueOcclusionQuery();

RenderScene();

if (QueryResult() > queryThreshold)

c.addInterval(plane1, plane2);

normal = newNormal;

end

end

Listing 4.3: A basic outline for constructing shadow volume intervals with discrete clamping.

reliable clamping by first constructing and bloating the solid representations of the
shadow volumes [69]. With these, overlap tests can be performed with the bloated
objects that are enclosed within the slices. This algorithm completely eliminates the
image-precision artifacts, but is significantly slower.

4.4.3 Rendering Clamped Shadow Volumes

Shadow volume clamping produces shadow volumes that consist of individual seg-
ments that are not connected to each other. Consequently, such shadow volumes
can no longer be constructed by simply morphing silhouette edges into quads and
extruding the duplicated vertices to infinity. None of the techniques that construct
shadow volumes directly in hardware (as explained in section 4.1 work with clamped
volumes. In this section, we will first explore a general way to construct segmented
shadow volumes on the host CPU. Then we will take a look at how to implement
this technique on the graphics hardware.

Let us begin with continuous clamping. Continuous clamping projects the objects in
the scene into the light’s point of view. In this space, the z extents of the axis-aligned
bounding boxes correspond to intervals that have to be occupied by shadow volumes.
From a silhouette vertex’ point of view, every silhouette vertex is projected onto two
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Figure 4.19: This figure depicts how shadow volume vertices are created for continuous clamping
(left) and discrete clamping (right). The corner points v1 and v2 of the shadow receiver (dark
brown) are projected onto the top (ε1) and bottom (ε2) planes of the shadow volume segment,
yielding the projected points p11 and p12 on the top (forming the segment’s near cap) and p21 and
p22 on the bottom (forming the segment’s far cap).

planes. The first is a plane that is parallel to the light’s xy plane and passes through
the point on the receiver that is nearest to the light (the top plane). Similarly, the
second plane is also parallel to the light’s xy plane, but passes through the farthest
point on the receiver (the bottom plane). Due to the nature of the continuous
clamping technique, all projection planes are parallel to each other. The left of
Figure 4.19 illustrates the projections and the vertices that are created.

As hinted by Figure 4.19, the creation of the shadow volume segments with discrete
clamping is very similar. Like with continuous clamping, all silhouette vertices are
projected onto the top and bottom planes of an occupied segment. Only the planes
themselves are different, because they are no longer parallel, but rather defined by
the viewpoint through which they all pass and their normal vector, which is obtained
by rotating the normal vector of the view frustum’s top or bottom plane.

Obviously, to create shadow volume segments, all we have to do is supply the top and
bottom planes of every occupied interval, then project silhouette and cap vertices
of the shadow caster onto these planes. For point light sources, the vertices are
projected through a center point c, for directional lights all vertices are projected
along the same projection vector ~l. The nice thing with this observation is that it
works for both continuous and discrete clamping, even though both techniques are
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otherwise completely different. The process of projecting the vertices can easily be
performed on the host CPU. The shadow volume segments obtained by continuous
clamping are view-independent, therefore they need only be recomputed when the
objects’ positions relative to each other or the light source changes. This is not
the case with discrete clamping, where the boundary planes of the shadow volume
segments are defined by the viewpoint. Hence, whenever the viewpoint moves, the
segments have to be recomputed. In larger scenes that consist of many objects, this
can be expensive and decrease performance, especially if the CPU has already a lot
to do.

A better solution relieves the CPU and relies on programmable graphics hardware
to perform the projections. We pass the plane coefficients for the segment’s lower
and upper plane to the vertex shader. For point light sources, the light position is
supplied as a vector with a w coordinate of 1, whereas the direction of directional
light sources has a w component of 0. Then we let the graphics hardware project the
shadow volume segment. The application simply renders the untransformed shadow
volume vertices (usually, far cap vertices are marked by a w value of zero) once for
every segment and passes the plane parameters on to the vertex shader. Listing 4.4
shows the pseudocode for the rendering part in the application. See section A.4 for
a sample vertex shader program, written in NVIDIA’s shading language Cg.

4.5 Putting the pieces together

Not all of the optimization techniques presented in the above sections can be used
together simultaneously. For example, only one silhouette detection technique is
implemented in a typical application. This section explains which techniques were
actually chosen in the implementation of this thesis, as well as describing the idea
behind the selection. In the next chapter (chapter 5), we will examine the perfor-
mance improvement gained by these optimizations. Figure 4.20 gives a basic outline
of the tasks that are performed by the application

Creating shadow volumes only for the shadow caster’s silhouette edges may be the
single most important optimization of all. Depending on the complexity of the
shadow caster, it can greatly reduce the number of shadow volume polygons as well
as the depth complexity of the shadow volumes, which relieves both the geometry
stage as well as the rasterizer stage. On the other hand, CPU load increases because
of the additional overhead of finding the silhouette. Basically, any of the silhou-
ette detection techniques presented in section 4.2 can be chosen. Due to the data
structures in the rendering engine, the edge elimination method was selected. This
method also has the advantage that it is sufficient to compute intermediate data
(normal vectors) once during the runtime of the application. In principle, the edge
elimination algorithm loops through all polygons of the object and tests their orien-
tation with respect to the light source. For these tests, the normal vector for every
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List shadowVolumes;

BindShader(projectShader);

Vector4 lightVector;

if (isPointLight(l)) do

lightVector = l.position;

lightVector.w = 1;

else

lightVector = l.direction;

lightVector.w = 0;

endif

SetShaderParameter(lightVector);

for every volume v in shadowVolumes do

List svSegments = v.segments;

for every segment s in svSegments do

SetShaderParameter(s.lower);

SetShaderParameter(s.upper);

Render(s);

end

end

Listing 4.4: The rendering of shadow volume segments using a shader program that takes care of
the segments’ final projection.

polygon must be available. However, since the objects don’t change their shape, the
polygon normal must be calculated only once and can be reused later. For polygons
that face towards the light source, all edges are stored in a list if they are not al-
ready contained in the list. Otherwise, they are removed. Therefore, all edges that
remain in the list are either silhouette edges or “dangling” edges that are part of
only one triangle and must be considered as well for correct shadow volumes. The
orientation tests have to be done whenever the relative position of the object and
the light source changes. For purely static scenes, the silhouette is determined only
in the first frame. The edge elimination technique is exact, fast and rather simple
to implement. However, for correct results, the objects need to be manifold, which
is not the case with the city scene (Figure 4.1). Appendix A describes in detail how
this problem was solved.

Chapter 3 describes two different algorithms for stencil shadow volumes, namely the
zpass and zfail algorithms. Performance-wise, the zpass algorithm is preferrable,
because it rasterizers less geometry. However, zpass is not robust and produces
incorrect results when parts of the shadow volume are clipped against view frustum
planes. The zp+ algorithm (subsection 3.2.1) improves zpass by initializing the
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Figure 4.20: This figure illustrates the tasks that have to be performed for shadowing.

stencil buffer correctly for clipped shadow volumes. ZP+ does not need any special
hardware extensions and requires only an additional render pass to rasterize the
shadow caster with a special transformation matrix. Though mathematically exact,
ZP+ still suffers from minor artifacts due to numeric errors in the transformation.
In most cases, these can be safely ignored because they are nearly invisible. The
nice thing about zp+ is that it is very easy to integrate into existing applications,
requiring only a few lines of additional code. In our implementation, zp+ replaces
the zfail algorithm because of its reduction of shadow volume polygons. See 5.3 for
a comparison of the zpass, zfail and zp+ algorithms in the city scene.

To reduce the number of shadow casters, section 4.3 introduces a way to cull irrel-
evant shadow casters that do not contribute to the shadowing process. Culling is
normally performed every frame. It can be expensive because the visibility com-
putations can involve several rendering passes, depending on the chosen algorithm.
For the city scene, both the exact algorithm as well as coherent hierarchical culling
were implemented. The former is slower, whereas the latter is more conservative
and does not filter out all irrelevant shadow casters.

Shadow volume clamping limits shadow volumes to those regions in space that ac-
tually contain shadow receivers. Both techniques have their advantages and disad-
vantages, their use should depend on the application. Applications where the CPU
is already the bottleneck will not benefit from continuous clamping, and the same
holds for applications that are GPU-bound and use discrete clamping. Theoretically,
both techniques could be used together, using discrete clamping to further refine the
results obtained from continuous clamping. However, in practice, this is not feasible
because it involves complex geometric calculations with a large number of objects.

Finally, the culling and clamping results are used to construct shadow volume seg-
ments. To create the shadow volume segments, a shader program is used that
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projects silhouette vertices into the occupied intervals on the fly. This relieves the
CPU from performing a large number of geometric projections. With recent graphics
hardware, this is almost as fast as using standard shadow volume extrusion (aside
from the additional geometry due to the segment caps).
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5 Discussion and Comparison

In this section, we will examine and compare the performance with the optimization
techniques mentioned in the previous chapter. In particular, we will examine the
performance gains of each technique in comparison to the standard stencil shadow
volume algorithm. To measure the performance, NVIDIA’s NVPerfKit tool was
used, which gives access to low-level performance counters in the hardware and
driver (see Appendix A). We use the city scene (Figure 1.3, 4.1) as our main test
environment. The city scene comprises 1,033,002 individual triangles and 872,715
vertices and is organized as a scene graph with 17.420 individual objects, not count-
ing object instancing for the smaller city objects (traffic lights, trees, ...). Our second
test scene is the “light” version of the powerplant model that was released for pub-
lic use by the University of North Carolina 1. The original model is made up of
12,748,510 vertices, our light version is reduced to 3,067,884 triangles and 1,998,330
vertices in 18,427 distinct objects (Figure 5.1). The graphics hardware used for
these performance tests is a mid-range NVIDIA GeForce 6600 GT with a clock of
500 MHz and 128 MB DDR memory.

Unless stated otherwise, all of the following performance plots were taken at a screen
resolution of 800x600 pixels, with two light sources (a point light and a head light,
which does not cast visible shadows). For the sake of comparison, Figure 5.2 shows
the performance results for the city scene without shadows. The techniques that are
compared in this section are:

• Standard shadow volumes limited to silhouette edges

• Shadow volumes with different culling algorithms

• Shadow volumes with culling and clamping

As it turns out, any performance measurement for standard shadow volume without
any optimizations at all is practically useless, even if they are created on-the-fly
in a vertex shader (section 4.1), because a single frame takes several seconds to
complete. This is mainly due to the high count of geometric primitives (without
silhouette determination, every triangle creates at least three additional shadow
volume polygons) as well as the high overdraw which stresses the rasterizer.

Rendering shadow volume polygons only at silhouette edges is the single most impor-
tant optimization technique to enhance performance. Identifying silhouette edges

1http://cs.unc.edu/~geom/Powerplant

93

http://cs.unc.edu/~geom/Powerplant


5 Discussion and Comparison

Figure 5.1: A view of the PowerPlant model used in the performance comparisons. The “light”
version consists of 3.067.884 triangles and 1.998.330 vertices and uses the sections 2-14, 17, 18, and
21 of the original model.

involves a slight computational overhead but greatly reduces the number of shadow
volume polygons. Furthermore, these computations have to be performed only when
the relative position of the shadow caster and the light source has changed. Since
the city (and the power plant as well) are static, it is sufficient to perform silhouette
detection only at the first frame. The fact that the scene is static can be exploited in
shadow volume creation as well, because the shadow volumes do not change. Even
if they are constructed on the CPU, the overhead can be neglected because it occurs
only in the first frame. Creating shadow volumes at silhouette edges only results in
a performance boost to approximately 2 frames per second.

The zfail algorithm is a robust variation of zpass, however this robustness comes at
the cost of a higher number of primitives that have to be rendered. In the city scene,
zfail is about twice as slow as zpass (Figure 5.3). The use of the zp+ algorithm is
almost as robust as zpass and for most viewpoints just as fast. zp+ involves only one
additional rendering pass, in which the stencil buffer is initialized with the fragment
counts of the objects that lie within the pyramid formed of the viewer’s near plane
and the light position. Since this pyramid is empty in most frames, it is vital to
perform hierarchical view frustum culling in the zp+ pass to avoid traversing the
complete scene graph and sending all primitives into the rendering pipeline. If the
light source is very close to the near plane, and the near rectangle is large, the light
pyramid is askew. In this case, zp+ may generate visible artifacts, because the
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Figure 5.2: Performance in the city scene without rendering any shadow volumes, from a static
viewpoint with moderate occlusion.

light projection and the viewer projection are not exactly aligned, due to numerical
errors. In practice, the zp+ algorithm is usually perceived just as fast as the zpass
technique, because HVFC takes care that only the necessary objects (those whose
shadow volume is clipped) are sent down the rendering pipeline in the zp+ step. See
Figure 5.3 for a performance comparison of the three algorithms.

The CC shadow volumes technique (section 4.3) describes two interesting possibili-
ties for optimizing shadow volumes for complex scenes: shadow volume culling and
clamping. Figure 5.4 shows performance plots for CC shadow volumes in the city
scene.

Shadow volume culling is important for complex scenes because it limits the number
of shadow casters and, consequently, the number of shadow volumes to those that
actually generate visible shadows in the final image. A reduction of shadow volumes
means a reduction of geometry and, more important, a reduced depth complexity
and decreased fill requirements. However, the culling step itself can be expensive,
because depending on the technique used, it may require several additional render
passes, which in turn eat up any fill savings gained by reducing the number of
shadow volumes. According to Figure 5.4, performing shadow volume culling in the
city scene actually results in a performance drop of about 30 percent.

To recap, shadow volume culling basically involves two steps. In the first, the set
of possible shadow receivers (PSR) is determined by performing visibility tests from
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Figure 5.3: The city scene rendered with standard shadow volumes, but restricted to silhouette
edges. The plot depicts frame times for each of the zfail, zpass, and zp+ algorithms. For this view,
zpass is about twice as fast as zfail because of the additional cap geometry needed for zfail.

the viewpoint. The second step is similar to the first, but performs visibility tests
from the viewpoint of the light to determine the set of possible shadow casters (PSR)
as those objects that are visible from the light. The exact determination technique
for PSC and PSR as described by Lloyd et al. involves 2 + 3i render passes, where i
denotes the number of light sources in the scene. Even a single light source requires
5 additional passes, which is a lot and expensive for complex scenes with hundreds
of thousands of triangles.

The first culling step - determining the PSR - is clearly view-dependant, because
the PSR vary from viewpoint to viewpoint. In contrast, the visibility from the light
source changes only if the position of scene objects and the light source changes,
which is not the case for static scenes. However, the computation of the PSC
depends on the PSR because the PSC should contain only objects that actually
occlude any object ∈ PSR, and since PSR changes with the viewpoint, PSC changes
as well. A possible way to reduce the number of rendering passes in the culling step
is by removing the dependency of PSC on PSR. Then, it is necessary to perform
the culling step only if the scene changes, but the set of PSC will contain some
intrinsically irrelevant shadow casters that do not occlude any object in PSR. In the
city scene, this simplified culling technique noticeably outperforms the exact culling
technique, even though more shadow volumes are rasterized. Figure 5.5 compares
the performance for different shadow volume culling algorithms.
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Figure 5.4: Performance plots for CC shadow volumes [69]. As we can see in the bottom plot,
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As it turns out, the use of coherent hierarchical culling (subsection 2.5.1) makes
the above optimizations obsolete (Figure 5.5). Performance-wise, CHC is much
preferrable over the above techniques to resolve visibility, even while keeping the
dependency of PSC on PSR. Performance plots for CHC shadow volume culling in
viewpoints with high and low occlusion are shown in Figure 5.6. As can be seen,
using CHC shadow volume culling with zp+ algorithm gives an average framerate
of ˜ 55 fps (800x600) in scenes with high occlusion, and ˜ 10 fps in scenes with low
occlusion (both with a resolution of 800x600 pixels). Obviously, CHC improves the
performance even for viewpoints with little occlusion (compare Figure 5.6, top, to
Figure 5.3).

Generally speaking, for shadow volume culling to make sense, there must be some de-
gree of unnecessary shadow volumes in the scene. With the complex self-shadowing
of branches in a tree, there are only few shadow casters that are completely en-
closed within the shadow of another object or do not cover any shadow receiver at
all. Though this scene may be fill bound as well, CHC culling would provide only
little performance gain, if any at all (note the increased overhead of the culling step
itself). A slight drawback when CHC is used for shadow volume culling is that the
framerate is highly dependent on the position of the viewpoint. If the position of
the viewpoint makes up for a high occlusion, which results in CHC culling a large
number of objects, the framerate can easily be ten times higher and more than for
little occlusion (for instance a bird’s eye view of the city).

Shadow volume clamping aims at reducing the surviving shadow volumes in size so
that they tightly fit around scene geometry. The discrete clamping technique uses
the graphics hardware to determine the slices in which shadow volumes have to be
rasterized. How tight the resulting shadow volume segments fit around the shadow
receiver depends on the number n of slicing planes that are used to partition the view
frustum. With a field-of-view angle of 60 degrees, 10 slices are usually sufficient,
resulting in a slice angle ϕ of 6 degrees. For every shadow caster in the scene,
discrete clamping adds n additional rendering passes to determine occupied intervals.
Therefore, in large scenes, discrete clamping makes sense only in conjunction with
shadow volume culling to limit the number of shadow casters. Even if the culling
step reduces the number of shadow casters to 10 (which would mean a culling rate
of more than 99.9 % in the city scene), there is an overhead of 100 (10 slices for
10 occluders each) additional rendering passes. Also noteworthy is the fact that
discrete clamping is view-dependant, because if the viewpoint changes, the slicing
planes have to change as well. Therefore, the computations have to be performed
in every frame. In practice, the overhead involved with discrete clamping is not
feasible, because it eats up any fill reductions due to clamped shadow volumes.

In contrast to discrete clamping, continuous clamping is performed entirely on the
CPU. The scene objects are transformed into light space, where overlap tests are
performed to determine object intersections. The extents in the z dimension then
dictate the intervals that must be occupied by shadow volumes. An efficient culling of
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Figure 5.6: Performance plots for CHC in shadow volume culling. The top figure shows the plot for
a viewpoint with very little occlusion (a bird’s eye view over the city). Note how there is almost no
difference in fps between zpass, zfail, and zp+. This is because the rasterizer is the bottleneck even
with the reduced shadow volume polygon counts in the zpass and zp+ algorithms. A viewpoint
with high occlusion is illustrated at the bottom.
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the scene objects and tight PSR and PSC sets are crucial for continuous clamping,
because the two-dimensional intersection tests have quadratic complexity O(n2),
where n is the total number of objects in the scene. Exploiting temporal coherence,
the expected time can be reduced to O(n + k), with k being the actual number
of overlapping objects. Even the sweep-and-prune technique, which benefits from
temporal coherence and performs incremental operations, has to insert-sort the x
and y lists initially, which can take a long time if there is a huge number of objects
involved. Another problem with continuous clamping involves the transformation
of the scene objects into light space. The CC shadow volumes algorithm accelerates
this step by transforming axis-aligned bounding boxes instead of the real geometry,
which makes sense in a scene that consists of only a few, but complex objects.
Bounding boxes do not make much of a difference in the city scene, though, since
the objects are already simple enough, and the main problem is the high number of
objects, not their individual complexity.

Even in conjunction with CHC shadow volume culling, the performance with contin-
uous clamping turned out to be worse than when shadow volume culling is performed
alone. CHC shadow volume culling is a more conservative technique than the exact
method described in subsection 3.2.5 and results in slightly larger sets of PSR and
PSC. Obviously, the remaining objects in PSR and PSC are too numerous in the
city scene, which results in a shift of the bottleneck from the GPU to the CPU.

Continuous clamping is view-independent. The depth intervals of the shadow vol-
umes depend only on the relative position of the objects and the light source. There-
fore, for static scenes, shadow volume clamping can be executed in a preprocessing
step. However, since the shadow casting objects can change from frame to frame
(due to shadow volume culling), the preprocessing step must process all objects in
the scene, which takes a very long time for the 17.420 individual objects in the
city scene (about 45 minutes on a Pentium 4 with 3.2 GHz and 1 GB RAM). As
it turned out, the increase in performance with the 800x600 resolution was only
about 10% with those precomputed shadow volume segments, clearly not worth the
45 minutes waiting time. The poor performance gain is mainly due to the culling
step, which relieves the rasterizer sufficiently. With high resolutions (1600x1200),
the performance gain is between 8 and 10 %.

Summarizing, we achieved the best result by using CHC to cull unnecessary shadow
casters and then rendering standard shadow volumes without performing any shadow
volume clamping. This results in a distinct reduction of the number of pixels that
have to be rasterized every frame (Figure 5.7 compares fillrate and framerate at
a resolution of 1600x1200 pixels for standard shadow volumes and CHC shadow
volume culling). Clamping is an interesting technique to reduce fill cost, but relies
on a small number of objects in the scene. Discrete clamping is executed on the
GPU, which leaves the CPU free to perform other tasks, but introduces a lot of
additional rendering passes, which in practice results in an even lower performance.
Continuous clamping executes on the CPU and has quadratic complexity (due to
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the sorting steps), therefore can be used only if the number of objects is sufficiently
small. The shadow volumes are constructed every frame on-the-fly, using a vertex
shader. This provides flexibility and works with clamping as well as without; the
application only has to set the parameters accordingly. Figure 5.8 and Figure 5.9
show performance plots for a typical walkthrough in the city and PowerPlant scenes,
using CHC shadow volume culling with zp+. By comparing Figure 5.2 and the
bottom of Figure 5.6, we achieve an almost better average framerate when doing
CHC shadow volume culling than using a standard renderer without any kind of
occlusion culling.
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Figure 5.7: A comparison of standard shadow volumes and CHC shadow volume culling at a high
resolution (1600x1200) from a static viewpoint. The top plot shows the number of pixels drawn
every frame, which is four times higher without shadow volume culling. This reduction leads to a
framerate increase from 1 to about 13 at this resolution, as indicated in the bottom plot.
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6 Conclusion

In this thesis, we first presented an overview over the current state-of-the-art in real-
time shadowing algorithms, followed by a description of several techniques that try to
address the deficiencies in the standard shadow volume technique. We described how
shadow volumes can be constructed efficiently directly in the graphics hardware by
using a vertex shader and how the number of shadow volume polygons can be reduced
by extruding only those edges of an object that make up the silhouette with respect
to the light source. Several different techniques can be used to identify silhouette
edges, including exact and probabilistic ones. The zp+ algorithm is an extension
to the zpass algorithm and corrects the robustness problems of the latter when
shadow volume polygons are clipped by the viewer’s near plane. Shadow volume
culling utilizes standard visibility culling techniques to cull shadow casters that are
completely enclosed within the shadow of another object or do not cast a shadow
onto any visible objects. Shadow volume clamping tightly fits a shadow volume
around a shadow receiver, preventing shadow volumes from covering large regions
of empty space and reducing fill cost, but requiring a sufficiently small number of
objects in the scene to provide a performance gain.

The main contribution of this work is the analysis of the shortcomings of several
existing optimization techniques that do not work well in our target scenes. To
overcome these shortcomings, we developed a number of optimized algorithms that
work well together and result in acceptable performance.

Even though the shadow volume culling algorithm presented in [69] was designed
for scenes with a large amount of triangles, in fact it makes sense only if the scene
consists of only a few number of individual objects. This is due to the fact that
the algorithm makes heavy use of bounding volumes that reduce the complexity
of the objects but don’t yield a performance gain if the scene contains many but
simple individual objects. Therefore, we present a new technique for shadow volume
culling based on the CHC visibility determination algorithm [13]. This new tech-
nique is designed to work in all scenes, no matter how the triangles are distributed
and how many distinct objects there are. To improve culling accuracy, we addition-
ally apply a technique to focus the lights’ view on the relevant parts of the scene.
Shadow volume clamping [69] tightly fits shadow volumes around shadow-receiving
objects and avoids shadow volumes that cover large portions of empty space, but
imposes a computational overhead, since the individual shadow volume segments
must be identified and recomputed every frame. We improve the occupied-slices de-
termination by using the stencil buffer once instead of rendering the shadow casters
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multiple times (once for each slice) and also present an optimized way of rendering
the clamped volumes using a vertex shader that completely frees the CPU from the
task of creating shadow volume segments.

Not all of these techniques are equally suited for the use in our target scenes. For
example, performing shadow volume clamping (even with our optimized technique)
did not yield a performance gain because it relies heavily on a small number of
shadow casters. For the city scene that was the basis for this thesis, we achieved the
best result with a combination of the zp+ algorithm, shadow volume culling using
the coherent hierarchical culling technique, and creating shadow volumes directly
on the graphics hardware, without doing shadow volume clamping. By these means
we achieved a significant performance gain with the city scene from several seconds
per frame with standard shadow volumes up to approximately 60 frames per second
with a screen resolution of 800x600 pixels and a sufficient degree of occlusion (with
CHC SV culling, the actual speed depends on the degree of occlusion in the scene).
Compared to about 200 fps that can be achieved by rendering without any shadows
at all, this amounts to a performance overhead of a factor of only 4.

6.1 Further Improvements

There are several directions for further improvements. The main focus of this work
was to reduce the rasterization cost of the shadow volumes. The described clamping
techniques are not very well suited for large scenes, mainly because of their com-
putational overhead both on the GPU and the CPU. More sophisticated techniques
might be found that reduce the overhead of both continuous and discrete clamping
by better exploiting temporal coherence.

Second, the data structures associated with the algorithm can become quite large
with complex scenes. This is mainly due to the caching of intermediate data to speed
up processing time on the CPU. Basically, we improve CPU load at the expense of
main memory (for the city scene, a minimum of 512 MB are required to avoid
swapping). It may be possible to reduce the RAM requirements by using smarter
data structures and caching strategies.

Finally, all described techniques are tailored for hard shadows, e. g., shadows cast
by point light sources. Point light sources are less realistic because they don’t
exist in the real world, but have been used in computer graphics for a long time
because of their simplicity. It might be desirable to integrate some of the presented
optimizations with existing soft-shadowing algorithms.
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A Implementation Details

A.1 The Engine

This thesis was implemented into the YARE graphics engine (Yet Another Ren-
dering Engine), which was developed at the Institute for Computer Graphics and
Algorithms of the Vienna University of Technology. It is originally part of the
UrbanViz project which aims at providing a platform for modelling and real-time
visualizing of large urban environments. However, its capabilities are not restricted
to this kind of scene. YARE is designed as a general-purpose graphics engine that
also serves as a framework for the implementation and assessment of new techniques
like occlusion culling or image-based rendering.

The API that is provided by the engine is similar to Java3D. Internally, OpenGL
is used as the underlying graphics library. YARE organizes the scene in the form
of a scene graph, using most of the concepts described in section 2.4 like internal
transformation nodes and node instancing. Scene graph traversal is implemented
after the Visitor design pattern [35], which provides enough flexibility to implement
many different types of traversals, including the multiple passes that are necessary
for the shadow volume algorithm.

A.2 Non-manifold objects

The standard shadow volume algorithm works with any kind of objects, because
every single triangle casts its own shadow volume. To optimize shadow volumes by
extruding only silhouette edges, the objects are required to be manifold to produce
correct results. Manifold objects are closed, i. e., none of the triangles’ backfaces
are visible from the outside. Furthermore, every edge must connect exactly two
triangles. For manifold objects, the silhouette is guaranteed to be a closed loop
outlining the object.

In the city scene, not all objects fulfill this requirement. There are many objects that
are not closed, but especially problematic for most silhouette detection algorithms
are those objects that contain T-junctions at edges, i. e., edges where three or more
triangles connect (Figure A.1). The edge elimination algorithm for silhouette deter-
mination fails with such edges, because it expects every edge to be part of exactly
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Figure A.1: This figure shows an edge that connects three triangles with incompatible orientations.

two triangles. Even worse, depending on the order in which the adjacent triangles
are processed, the generated results may be correct or not.

To circumvent this problem, edges that connect more than two triangles must be
duplicated. The original data structure includes an edge table that contains all
edges. Initially, all edges contained in this list are unique, shared edges are there-
fore referenced by multiple triangles. By duplicating shared edges that are part of
incompatible triangles, they are regarded as individual edges by the silhouette de-
termination algorithm. For example, consider an edge that connects three triangles.
The edge is duplicated. Now, there are two individual edges (with identical ver-
tices). The first connects two triangles, and the second is part of only one triangle.
Edges that are part of only one triangle are not a problem because they are put into
the edge stack when they are first encountered, and stay there until the algorithm
terminates. Therefore, ultimately all “dangling” edges are considered part of the
silhouette, which leads to a correct result.

A second problem is the orientation of the triangles. With manifold objects, adjacent
triangles must have a compatible orientation. Refer to Figure A.2 for an illustration.
This problem can also be solved with the edge duplication method mentioned above.
However, care has to be taken that the right triangles are chosen for the edge that
connects two triangles.

108



A.3 Vertex Buffer Objects

Figure A.2: The vertex winding determines the triangle’s normal, which in turn determines the
diretion the triangle faces. Adjacent triangles must have a consistent winding, otherwise they face
opposite directions, which results in a hole in the object.

A.3 Vertex Buffer Objects

Many real-time rendering packages, including OpenGL and DirectX, provide two
different approaches for rendering geometric data: immediate mode and retained
mode. With immediate mode, the application sends in every frame all the data to
the GPU. This can be advantageous in situations like modeling and animating, where
the geometric data is prone to change frequently. However, because immediate mode
transfers all data as individual elements, such as a single vertex or normal, it typically
creates significant traffic to and from system memory and over the bus to the graphics
hardware. This is additionally augmented by an increased CPU overhead because
of the high number of API function calls. Optimized rendering primitives such as
strips or fans attempt to mitigate some of the necessary data transfer by allowing
for shared vertices. Nonetheless, rendering in immediate mode can often cause data
transfer and CPU bottlenecks, which inhibits overall performance.

Retained mode is an alternative to immediate mode. OpenGL implements retained
mode rendering in the form of display lists, which enable a series of rendering com-
mands to be compiled into an optimized form that can be stored and later executed
with a single call. Display lists can be kept in video memory, to avoid traffic over
the graphics bus. Moreover, they make it attractive for OpenGL implementations to
allow GPUs to pull data directly from system memory using DMA transfers. While
this still requires the data to move over the graphics bus, applications usually benefit
from the reduced CPU cycle count and front-side bus traffic.

Despite those benefits, display lists do have some disadvantages. Geometric data
that is stored in a display list can not as easily be modified as with immediate mode.
Depending on the frequency with which the data changes, the overhead of creating
and managing display lists may outweigh the performance gains. Similarly, for best
performance, OpenGL assumes that some states will not change within the display
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list. Therefore, not all commands can be put into a display list, because some may
prevent the block processing and still require CPU intervention. Moreover, display
lists are initially issued to the OpenGL client. Ultimately, though, they are processed
by the GPU from a copy stored on the server, which creates a doubling of data as
compared to immediate mode. Also, the size of the display list’s server copy is not
visible to the application, possibly causing problems when memory size is limited.

As an alternative to display lists, OpenGL also offers vertex arrays. These allow
vertex data (position, normal, color, texture coordinates) to be grouped and treated
as a block, providing for a similar data transfer efficiency as display lists. The data
contained in vertex arrays may also be interleaved, which means storing every vertex’
attributes in a contingent block. This can be convenient for referencing the data. In
contrast to display lists, however, vertex arrays do not assume that any individual
piece of data will not change. Hence, when drawing an object using vertex arrays,
the data in the array must be validated each time it is referenced, which adds to the
overhead in data transfer. However, vertex arrays do not need to store two separate
copies of all data.

Vertex Buffer Objects (VBOs) are intended to enhance OpenGL’s capabilities by
providing a combination of the benefits from immediate mode, display lists, and
vertex arrays, while avoiding some of the limitations. VBOs allow data to be grouped
and stored with the efficiency of vertex arrays. They are an improvement to a
previous extension, NV_vertex_array_range, which provided similar functions, but
was much more complex and incompatible to OpenGL’s client-server architecture.

VBOs provide the possibility for applications to give hints about the data usage so
that the OpenGL implementation can make decisions about the form in which the
data should be stored, as well as its final location. This results in the possibility
to modify data without causing transfer overhead due to validation. Finally, in
combination with programmable shaders, VBOs enable the application to modify
vertex data with previously rendered pixel data, and provide the possibility to render
directly into a vertex array.

The main idea behind VBOs is to provide contingent memory regions (buffers) that
are accessible from the application through identifiers. A buffer is made active by
binding its identifier, similar to other OpenGL entities like texture objects or display
lists. By binding a VBO, every client-state pointer is converted into an offset relative
to the currently bound buffer. As a result, the bind operation turns a client-state
function into a server-state function. This makes it possible to share VBO data
among various clients, which is not possible for data that is contained in client-
state. As a result, OpenGL clients are able to bind common buffers in the same way
as textures or display lists. The following enumeration gives an outline of the most
important steps involved in using VBOs:

1. Bind a VBO. This allows to use binding buffers, as opposed to work in absolute
client-side memory.
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2. Manage buffer size, provide usage hints, and copy data to the buffer.

3. Map or unmap the buffer, which returns a pointer into client-state absolute
memory. This should be done only for short operations, and the result pointer
is not persistent.

In short, VBOs are a great asset to complex scenes because they can move parts of
the geometric data directly into graphics memory, avoiding transfer overheads.

A.4 The project shader

struct appdata

{

float4 position : POSITION;

};

struct vfconn

{

float4 hPos: POSITION;

float4 col0: COLOR0;

};

vfconn main(appdata IN,

uniform float4 l,

uniform float4 lower,

uniform float4 upper,

uniform float4x4 modelViewProj)

{

vfconn OUT;

// l: light position (w == 1) or direction (w == 0) (world space)

// lower: lower projection plane (world space)

// upper: upper projection plane (world space)

// IN.position: vertex (world space)

// vertex

float4 p = IN.position;

// light-to-vertex vector

float3 v = (l.w == 0) ? l.xyz : p.xyz - l.xyz;

// if IN.position.w == 1 -> project to upper plane

// if IN.position.w == 0 -> project to lower plane
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// plane parameters

float3 n;

float d;

if (p.w == 1) {

n = upper.xyz;

d = upper.w;

OUT.col0 = float4(0.8, 0.8, 0.2, .7);

} else if (p.w == 0) {

n = lower.xyz;

d = lower.w;

OUT.col0 = float4(1.0, 0, 0, 0.7);

}

// compute translation amount lambda

float lambda = -(dot(n,p.xyz)+d) / dot(n,v);

if (lambda > 0) {

p.xyz = p.xyz + lambda*v;

}

p.w = 1;

OUT.hPos = mul(modelViewProj, p);

return OUT;

}

A.5 NVPerfKit

NVPerfKit is a tool developed by NVIDIA that gives an application direct access
to low-level performance counters inside the driver as well as hardware counters
inside the graphics hardware itself. These counters can be used to analyse the
usage of the GPU, including the determination of bottlenecks. For NVPerfKit to
work properly, the system must use a specially instrumented driver that provides
the counters. NVIDIA’s Developer Control Panel can then be used to select which
signals are reported to the application. Counter querying is implemented using
Windows’ Management Instrumentation Performance Data Helper interface (PDH).
The results can be obtained either from Windows’ performance monitoring utility
(PerfMon) which takes one sample per second, or directly within the application.
The latter is the only way to perform per-frame sampling.

112



A.5 NVPerfKit

A code snippet for setting up PDH is listed below.

// Setup

PDH_HQUERY hQuery;

PDH_COUNTER hCounter;

PDH_STATUS status = PdhOpenQuery(0,0,&hQuery);

PdhAddCounter(hQuery,

"\\NVIDIA GPU Performance(GPU0/% gpu_idle)\\GPUCounter Value",

0,

&hCounter));

// Periodically...

PDH_STATUS status = PdhCollectQueryData(hQuery);

PDH_FMT_COUNTERVALUE cvValue;

PdhGetFormattedCounterValue(hCounter,

PDH_FMT_DOUBLE|PDH_FMT_NOCAP100|PDH_FMT_NOSCALE,

0,

&cvValue);

double dCounterValue = cvValue.doubleValue;

float fCounterValue = cvValue.floatValue;

Two types of counters are available through NVPerfKit: hardware counters and
software counters. Hardware counters are incorporated in various points directly on
the GPU. Their results are accumulated from the last sampling point. For instance,
triangle_count returns the number of triangles that have been processed since the
last sample was taken. Therefore, hardware counters are somewhat cumbersome to
use with PerfMon, because to get a per-frame average, the sample has to be divided
by the average framerate of the application.

Software counters are integrated within the OpenGL and Direct3D drivers. In con-
trast to hardware counters, they accumulated and updated every frame, therefore
representing a per-frame accounting. Sampling software counters at a sub-framerate
frequency will result in identical values (from the previous frame).

Another way to distinguish counters is their method of reporting. Raw counters
give an absolute count of something (triangles, milliseconds, pixels, ...), whereas
percentage counters are based on the GPU clock rate and automatically divided by
the number of GPU clock cycles since the last sample was taken. An example for
a percentage counter is gpu_idle, because it counts the number of clock ticks the
GPU has been idle since the last call, which is then divided by the number of clock
ticks, yielding a percentage of time that the GPU was idle.

[77] gives a thorough explanation of the available counters and shows further exam-
ples how to integrate NVPerfKit into an application.
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