
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

High-Level User Interfaces for Transfer Function Design with
Semantics

Christof Rezk Salama, Maik Keller, and Peter Kohlmann

Abstract—Many sophisticated techniques for the visualization of volumetric data such as medical data have been published. While
existing techniques are mature from a technical point of view, managing the complexity of visual parameters is still difficult for non-
expert users. To this end, this paper presents new ideas to facilitate the specification of optical properties for direct volume rendering.
We introduce an additional level of abstraction for parametric models of transfer functions. The proposed framework allows visual-
ization experts to design high-level transfer function models which can intuitively be used by non-expert users. The results are user
interfaces which provide semantic information for specialized visualization problems. The proposed method is based on principal
component analysis as well as on concepts borrowed from computer animation.

Index Terms—Volume rendering, transfer function design, semantic models.

✦

1 INTRODUCTION

Direct volume rendering techniques are the most effective methods for
visualizing tomographic data in clinical scenarios. Apart from medical
applications, volume rendering is of great importance in natural and
computational science, industrial design, engineering, and many other
application areas.

When looking at the variety of solutions which have been published
throughout the years, it seems reasonable to assume that the volume
rendering problem is solved. Indeed, the technical problems, which
are mainly the evaluation of the underlying physical model in real-
time as well as the memory management for large data sets, have been
successfully overcome in the past. In practice and here especially in
medical practice, however, the existing solutions are still not used as
frequently as one would expect. There is no technical reason for this.

Many non-expert users, such as physicians and other scientists with
only marginal knowledge of computer graphics, often experience dif-
ficulties in managing the complexity of visual parameters. The ma-
jority of direct volume rendering techniques interpret the scalar field
as a participating medium which emits and absorbs radiative energy.
Many users report problems involving the process of specifying opti-
cal properties for a given data set. Manual assignment is cumbersome
and time-consuming. In complex cases the visible effect of parameter
modifications is often hardly predictable, even for visualization ex-
perts. On the one hand, automatic approaches are often not flexible
enough. They are difficult to adapt to a wide range of data sets. On
the other hand, they are often not specific enough to account for the
precise task that the user wants to perform. If automatic approaches
fail to deliver satisfying results, non-expert users are often left alone.

Throughout our co-operation with clinical partners, we have per-
formed the visualization of medical data together with the responsible
physicians many times . In this context we have realized the lack of
clear semantics in this process. The physicians often made suggestions
like “Try to make the vessels sharper!”, “Fade out the soft tissue!” or
“Improve the contrast between skin and bone a little bit!” Even for
a person familiar with the underlying transfer function model and the
respective editor, it is not always easy to figure out which modification
to the primitives will yield the desired result.

• Christof Rezk-Salama and Maik Keller are with the Computer Graphics
and Multimedia Systems Group, University of Siegen, Germany,
E-mail: {rezk, keller}@fb12.uni-siegen.de.

• Peter Kohlmann is with the Institute of Computer Graphics and
Algorithms, Vienna University of Technology, Austria.

Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

With regard to multi-dimensional transfer functions, appropriate
user interfaces are difficult to operate. Even if the parameters can eas-
ily be specified by moving the handles in the editor, the visual results
of the modification are often hard to predict. The specification of a
transfer function is still a trial-and-error process which is extremely
time-consuming in practice.

The issue of difficulties arising from complex applications being
used by non-expert users is not a problem that is unique to visual-
ization. Other fields such as computer animation, for example, have
already overcome such problems to a large degree. This paper in-
vestigates how concepts from computer animation can be applied to
improve the usability of direct volume rendering applications. We in-
troduce a high level semantic model with a simple user interface. This
concept allows visualization experts to design transfer function mod-
els for specific application areas, which can then be used intuitively by
non-expert users.

The remainder of this paper is structured as follows. In Section 2,
we have put together relevant related work. In Section 3, we review
concepts from computer animation, which were the source of inspira-
tion for our user interface design. Section 4 introduces the theoretical
basis of our semantic models. Section 5 proposes efficient ways to
design semantic models in practical cases. In Section 6 we describe
details of our implementation of the proposed concept. The results
of our technique are discussed in Section 7. In Section 8, we draw
conclusions and comment on future work.

2 RELATED WORK

Many sophisticated techniques to solve the volume rendering integral
in real-time have been proposed in the past, including the shear-warp
algorithm [16], 3D texture slicing [2, 31], 2D texture mapping [19],
pre-integration [4], GPU ray-casting [15, 22, 26, 15], and special pur-
pose hardware [17]. A detailed overview of GPU-based volume ren-
dering can be found in the book by Engel et al. [3]. The ideas described
in this paper are independent of the specific implementation.

Most approaches to direct volume rendering for scientific purposes
are based upon a simplified physical model of light transport. Light is
assumed to travel along straight lines and this assumption allows us to
integrate radiative energy along rays of sight. The mapping of scalar
values to optical properties is called transfer function. Usually, the
required optical properties are emission and absorption coefficients.
Kniss et al. [10] propose a more elaborate model of light transport
involving shadows and translucency. Their model requires the spec-
ification of additional physical quantities. The concepts described in
this paper are independent of the set of properties required for image
synthesis.

If the scalar value alone is not sufficient to derive the optical proper-
ties required for rendering, multi-dimensional transfer functions may

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 1. Semantic models allow non-expert users to intuitively visualize volume data without knowledge about the visual parameters involved in the
process of image synthesis.

be used as proposed by Kniss et al. [9]. The magnitude of the first and
second order derivatives of the scalar field are frequently used to ex-
pand the transfer function domain. Vega et al. demonstrate the benefit
of 2D transfer functions for visualizing blood vessels in CT angiogra-
phy data [30]. Kniss et al. [12] use multi-dimensional transfer func-
tions to classify co-registered multi-variate MRI data. At the bottom
line, multi-dimensional transfer functions are highly superior to tradi-
tional 1D transfer functions. However, the complexity of parameter
specification increases significantly with each additional dimension.

Automatic approaches to transfer function design can be catego-
rized into image-driven or data-driven techniques. Most existing tech-
niques are applicable for creating one-dimensional transfer functions
only. Image-driven approaches analyze the information contained in
images generated with different parameter settings and can be further
divided into interactive evolution methods [13, 24, 27] as well as ap-
proaches which search for optimal settings based on objective qual-
ity measure (inverse design [25, 29, 7, 32]). He et al. [6] have de-
veloped a technique for semi-automatic transfer function generation,
using stochastic search algorithms which are either controlled by man-
ual thumbnail selection (like in [14]) or by an objective metric such as
entropy, edge energy, and histogram variance. Although image-driven
approaches represent a helpful aid for inexperienced users, they are
not necessarily faster or more goal-directed than manual assignment.

Data-driven techniques analyze the volume data itself instead of
analyzing generated images. The process of transfer function de-
sign is thus decoupled from the influence of image related parame-
ters such as viewing position and pixel resolution. Fang et al. [5] and
Sato et al. [23] do not generate transfer function tables as described
above. Instead, they derive optical properties by applying 3D image
processing operations directly to the volume data. Bajaj et al. [1] pro-
pose a data-driven technique which evaluates statistical information
about area and gradient magnitude of the isosurfaces contained in the
data. Tzeng et al. [28] utilize neural networks to derive transfer func-
tions in an interactive process.

The most prominent data-driven technique was presented by Kindl-
mann and Durkin [8]. Their semi-automatic approach is capable of
determining material boundaries within a given data set by evaluat-
ing statistical information about the first and second order directional
derivatives. It is probably the most effective method which is currently
available to visualize shapes and structures in an unknown volume data
set by using a 1D transfer function.

In most practical cases, however, the user knows exactly which
structures are contained in his data set and wants to visualize these
structures of interest as fast as possible, without detailed knowledge of
the rendering algorithm or the transfer function. For this purpose, we
introduce an additional level of abstraction which completely hides the
transfer function from the user by providing a limited set of semantic
parameters.

3 COMPUTER ANIMATION

Our ideas to facilitate visual parameter assignment are based on con-
cepts borrowed from computer animation. To explain these ideas, let
us briefly consider the process of generating virtual characters in com-
puter animation. In a typical production, there is a technical director

who is responsible for creating the articulated model for each charac-
ter, which can afterwards be controlled intuitively by the animator.

Each individual character has a set of expressions which he must be
able to perform according to the underlying story board. For example,
the character’s face will probably be able to smile or frown and the
animator will have high-level parameters to directly control such facial
expressions.

From the point of view of the technical director, however, each fa-
cial expression consists of a combination of multiple low-level para-
meters such as the activation of specific facial muscles. Generating
a smiling face, for example, will involve movement of the lips, the
cheeks, the eyelids, and the eyebrows, which are all controlled by dif-
ferent pre-defined blend shapes (visemes [21]). Additionally, the jaw,
which is controlled by the kinematic skeleton, will open slightly, and
wrinkles, which are controlled by textures and bump maps, will be-
come visible on the forehead.

In order to provide intuitive control for the animator, the technical
director compiles combinations of the low-level parameters required
for each facial expression into high-level parameters. In the modeling
and animation package Alias MayaTM, for example, this is possible by
creating so-called driven keys, which are key frames that are speci-
fied with respect to an abstract parameter axis instead of the time axis.
This way, the technical director creates semantic parameters such as
“smile” or “frown”, and hides the complex setup of low-level parame-
ters from the animator.

Let us go back to transfer function design now and investigate how
the described concepts can be adapted to this task. Our basic idea is
that the visualization expert who is familiar with all the parameters
involved in image generation will play the role of a technical director.
In the following part of this paper we will explain effective techniques
to hide the complexity of parameter assignment from the non-expert
client.

4 SEMANTIC TRANSFER FUNCTION MODELS

Regardless of its individual representation, a transfer function simply
can be considered as a collection of parameters. At the lowest level
of abstraction, a transfer function may be implemented as a simple
lookup table. Each entry in this table can be considered a separate
parameter.

User interfaces for transfer function specification often provide an
additional layer of abstraction by introducing simple shapes as primi-
tive objects such as boxes, ramps, and trapezoids. In the transfer func-
tion editor these primitives can be manipulated and moved directly on
the screen. Examples of primitives in case of 2D transfer functions are
the trapezoids suggested by Kniss et al. [9], and the paraboloid shapes
introduced by Vega et al. [30]. The 2D primitives used in our system
are displayed in Figure 2.

Each primitive has a set of parameters, such as the color and opacity
values and the position of control points. Modifying the shape of the
primitives results in a parameter change which directly influences the
transfer function. Regardless of its representation and its dimensional-
ity, we assume in the following that the parameters which represent an
individual transfer function can be specified as an array of n floating

REZK-SALAMA et al.: HIGH-LEVEL USER INTERFACES FOR TRANSFER FUNCTION DESIGN WITH SEMANTICS

Fig. 2. The types of 2D transfer function primitives used in our system: Trapezoids (as in [9]), paraboloids [30] and quadrilaterals. The rightmost
image shows the transfer function template used for CTA data. The 2D histogram for intensity and gradient magnitude is shown in the background

point values p:

p = (p0, p1, p2, . . . pn−1) ∈ IRn. (1)

Most implementations convert the primitives into a color table repre-
sentation before rendering. As an alternative, if programmable graph-
ics hardware is used, transfer functions can be specified procedurally
and evaluated at run-time, like the multi-dimensional Gaussian primi-
tives proposed by Kniss et al. [11, 3].

As a basis for implementing semantics in our transfer function
model we introduce a set of semantic parameters s:

s = (s0, s1, s2, . . . sm−1) ∈ IRm. (2)

Generally, the number of semantic parameters m will be significantly
smaller than the number of low-level parameters n, although this is
not a necessary condition. Each semantic parameter s ∈ IR has a pre-
defined influence on the vector of low-level parameters p. This influ-
ence is defined as a function q(s) : IR �→ IRn, and the final low-level
parameter vector p is computed by summing up the influences of all
semantic parameters:

p = f(s) =
m−1

∑
i=0

q(si). (3)

In general, the function f : IRm �→ IRn that maps semantic parameters
to transfer function instances can be an arbitrary function. We have
chosen a sum in order to keep the model intuitively understandable.

Similar to the driven keys described in Section 3, the influence of
a semantic parameter si is specified by a sequence of nodes (σ j, q̂ j)
with q(σ j) = q̂ j and piecewise linear interpolation:

q(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(σ1 −s
σ1 −σ0

) q̂0 + (s−σ0

σ1 −σ0
) q̂1, for σ0 ≤ s < σ1

(σ2 −s
σ2 −σ1

) q̂1 + (s−σ1

σ2 −σ1
) q̂2, for σ1 ≤ s < σ2

...
...

(σk −s
σk −σk−1

) q̂k−1 + (s−σk−1

σk −σk−1
) q̂k, for σk−1 ≤ s ≤ σk

With some effort it might be possible for an experienced user to
specify the keys (σ j, q̂ j) manually for a given data set. The semantic
models we are interested in, however, should work for more than one
specific data set. We aim to derive a semantic model which is applica-
ble to different data sets, provided that they have been recorded with
a similar tomographic sequence and with the same examination pur-
pose in mind. This applies to most examination procedures in medical
practice, and we will show some examples in Section 7.

For simple relationships such as the direct influence of a semantic
parameter visibility on the opacity of a single transfer function primi-
tive, for example, it is easy to specify influence keys manually. In more
complex relationships, more sophisticated techniques must be used to
find appropriate keys that yield the desired visual results.

5 DESIGN OF SEMANTIC MODELS

We suggest that the semantic model is designed in a co-operation be-
tween a computer scientist and a medical doctor. Before starting to
implement a semantic model, the designers should talk to the client
user and consider what structures are of interest and which semantic
parameters are required. The challenge is then to find an appropriate
set of weights which yield the desired result when the semantic para-
meters are finally used to instantiate the transfer function according to
Equation 3.

The basis of our approach to designing semantic models is a set of
reference data. Ideally, this set should statistically represent the range
of possible data sets for the desired examination purpose. In practise,
however, this condition is hard to verify, and we suggest using as many
data sets of a specific type as available.

The next step is to make a list of the relevant structures contained
in the data. We call each relevant structure an entity. In the CT an-
giography example shown in Figure 1, the list of entities comprise
bone, skin, brain tissue and blood vessels. Each entity is represented
by one or more transfer function primitives. Based on these primi-
tives a transfer function model is created which is used as template for
manual adaptation.

In the following step the transfer functions template is adjusted for
the reference data. Each of the reference data sets is loaded one after
the other into the volume renderer. The structures in the 2D histogram
are slightly different for each data set and the primitive editor is used
to adapt the transfer function model to each individual instance. As
a result we obtain an instance of the (low-level) parameter vector p[i]

for each reference data set i.
In order to create semantic parameters, we analyze the set of in-

stance vectors using principal component analysis (PCA).

5.1 Principal Component Analysis
Each instance of the parameter vectors p[i] can be interpreted as a
point sample in the n-dimensional low-level parameter domain of the
transfer function. In order to apply PCA [18], the components of
the instance vector are interpreted as random variables with Gaussian
probability distributions. The mean value vector p is approximated by
averaging the instance vectors:

p =
1

N

N−1

∑
i=0

p[i], (4)

and the covariance matrix is computed:

Cp =
1

N −1

N−1

∑
i=0

(p[i]−p)(p[i]−p)T. (5)

The principal components of the joint probability distribution are de-
termined by calculating the eigenvalues λ j and the eigenvectors e j of
the covariance matrix Cp. Since Cp is symmetric and positive definite,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

p0

p1

p0

p1

Fig. 3. Left: The instance vectors are point samples in the parameter
space of the transfer function model. Principal component analysis is
used to determine the axis of maximum variance. Right: Reducing the
instance vectors to the first principal component approximates the data
in a lower-dimensional subspace.

all the eigenvalues are real and non-negative. The unit-length eigen-
vectors are mutually orthogonal and represent a basis of the low-level
parameter space.

The eigenvector corresponding to the largest eigenvalue is called
first principal component and determines the axis of maximum vari-
ance of the joint probability distribution. Figure 3 shows a simple ex-
ample for n = 2. If the instance vectors are represented by the first few
principal components only, the possible range of the data is approx-
imated in a lower-dimensional subspace. The quality of such an ap-
proximation is determined by the importance of the respective eigen-
values. The importance of a component axis can be determined by
dividing the eigenvalue λ j by the sum of eigenvalues:

I(λi) =
λi

∑n−1
j=0 λ j

. (6)

Principal components with an importance close to zero can be safely
omitted without a significant loss in accuracy. In our system, we use
PCA to create basic semantic parameters for adapting a template to
an individual data set. Afterwards, we build additional semantics as
required for the specific visualization task.

5.2 Creating Parameters for Template Adaptation
Adjusting the transfer function template to an individual data set re-
quires modification of the underlying primitives. These modifications,
however, will most likely not affect all the low-level parameters, but
only a limited subset. Additionally, the modified parameters are usu-
ally highly correlated. Principal component analysis can be used to
determine a single parameter axis in the low-level parameter space
from the reference data sets. This axis will approximate the modifica-
tions to the parameter vector p. Throughout our experiments, we have
found that in practical cases the importance of the first principal com-
ponent is dominant and the transfer function template can be adjusted
using a single parameter.

In this case we can create a semantic parameter “adapt template,”
represented by a single slider in the user interface. The slider value
can be changed by a non-expert user to adjust the transfer function to
its individual data set without any knowledge of the underlying trans-
fer function template at all. In order to determine the minimum and
maximum values for the slider, we project all the instance vectors p[i]

onto the axis spanned by the first principal component e0. We do this
by computing the n-dimensional dot-product:

μi = e0 · (p[i]−p). (7)

The keys (σ j,q j) for the new semantic parameter can then be com-
puted by

σ0 = 0.0 , q0 = p+min(μi) · e0 , (8)

σ1 = 1.0 , q1 = p+max(μi) · e0 . (9)

The values for σ0 and σ1 determine the range of the slider and can be
chosen arbitrarily. The maximum and minimum computation ensure
that the slider has no “dead space”. Figure 4 illustrates a semantic
parameter created for template adaptation of the blood vessels in the
CTA example (see Section 7).

5.3 Creating Additional Semantics
Additional semantics such as ”sharpness”, ”visibility”, and ”contrast”
can be created by using the primitive editor to “learn” the necessary
modifications of the underlying primitives. Since our mapping func-
tion f (s) (see Equation 3) sums up the influences of all semantic para-
meters, the additional semantics must be specified with respect to the
basic “adapt template” parameters explained in the previous section.

In order to create a semantic parameter that increases the contrast
between different entities, for example, we again load each reference
data set, one after the other, and use the basic parameter explained
in the previous section to adapt the transfer function to the individ-
ual data. At this point we store the modified low-level parameter
vector p̃[i]. Then we apply the modifications to the primitives that
are necessary to increase the contrast and store the parameter vector
p̃contrast+[i]. Possible actions to increase the contrast are modifying the
opacity slope at the border of a primitive or changing the brightness of
the colors. Afterwards, we repeat this step, decrease the contrast, and
store the parameter vector p̃contrast–[i] again.

We finally calculate the difference vectors

δcontrast+[i] = p̃contrast+[i]− p̃[i] (10)

δcontrast–[i] = p̃contrast–[i]− p̃[i] (11)

and the first principal components δ̂contrast+ and δ̂contrast– as described in
the Section 5.1. We can now define a new semantic parameter “con-
trast” with the following nodes:

σ0 = −1.0 , q0 = δ̂contrast– , (12)

σ1 = 0.0 , q1 = �0 , (13)

σ2 = 1.0 , q2 = δ̂contrast+ . (14)

Additional keys may be inserted if necessary. Implementing a se-
mantic parameter “visibility” is a good example in which multiple
nodes can be used to improve the visual effect when the slider is
moved. Simply turning down the opacity will make a rather homo-
geneous structure slowly disappear. In many cases, however, it is de-
sirable to turn opacity down for low gradients first. This will turn a
previously opaque object into a transparent shell, before it completely
disappears. Such effects can easily be implemented using multiple
keys for a semantic parameter.

There may be different modifications to the primitives that yield
similar results. In order to decrease the visibility of a structure, for
example, you may either turn down the opacity or reduce the size of
the primitive. Our approach assumes that the creator of the semantic
model uses the same action to achieve a specific task for all reference
data sets.

6 IMPLEMENTATION DETAILS

Our implementation of the technique described is built on top of a
GPU-based volume rendering system in C++ and OpenGL which sup-
ports both 3D texture slicing [31] and 2D multi-texture based render-
ing [19]. The semantic models have been implemented for traditional
1D transfer functions and for 2D transfer functions based on intensity
and gradient magnitude. All images in this paper were generated using
2D transfer functions and 12 bit volume data.

Transfer functions have been implemented with programmable
graphics hardware and post-interpolative 1D or 2D dependent texture
lookups. With regard to 2D transfer functions, the magnitude of the
gradient vector is calculated using a multi-level technique. Each level
is created by downsampling the previous level (i.e. averaging eight

REZK-SALAMA et al.: HIGH-LEVEL USER INTERFACES FOR TRANSFER FUNCTION DESIGN WITH SEMANTICS

Fig. 4. Example of template adaptation to a data set which was not contained in the reference training set. The images have been generated by
incrementally moving the “adapt template” slider for the blood vessels.

voxels). The gradient magnitude is calculated for each level sepa-
rately. Afterwards, each level is upsampled to the resolution of the
previous level and averaged with it. This technique results in smooth
gradient data without the necessity of additional filtering. The gradient
magnitude data is uploaded to the GPU memory at 16 bit resolution.

The different types of 2D primitives supported by our system are
shown in Figure 2, and comprise

• Quadrilaterals with 16 parameters, 8 values for the (x,y)-
coordinates of the four vertices, 4 parameters for the color and
opacity (RGBA) of the primitive, and 4 parameters for the opac-
ity slopes at the borders.

• Trapezoid primitives with 14 parameters, one value for the x-
position of the base vertex, 4 values for the (x,y)-coordinates
of the two upper vertices, and one parameter for the shifting
the lower base line. The parameters for RGBA and the opacity
slopes are the same as in the quadrilaterals.

• Parabolic primitives with 15 parameters, 6 parameters for the
(x,y)-coordinates of the control points for the upper arc and one
parameter for the lower indent. The parameters for RGBA and
the opacity slopes are the same as in the quadrilaterals.

All parameters with the exception of RGBA can be modified by mov-
ing the control points shown in Figure 2. The system can be easily
expanded by implementing additional primitives.

Modifications to the semantic parameters are immediately mapped
back to the low-level parameters of the primitives. The 2D transfer
function table is then generated by rendering the shape of the prim-
itives directly into an off-screen render target which is finally bound
as a 2D dependent texture for volume rendering. It is important to
account for the correct composition of overlapping primitives. In our
implementation, we blend the RGB values based on their opacities and
use a maximum operation for opacity A. The system was tested on an
ATI Radeon X800 XT and an Nvidia Geforce FX 6800 graphics board.

7 RESULTS

Our first application example is the visualization of CT angiography
(CTA) data, collected within clinical practice at the Department of
Neuroradiology at the University of Erlangen-Nuremberg. This col-
lection of data was acquired for the purpose of operation planning for
the treatment of intracranial aneurysms.

All image data has been recorded with a Siemens Somatom Plus 4
spiral-CT scanner. During data acquisition, non-ionic contrast agent
(100ml) has been applied in all cases. The delay time was chosen with
respect to the circulation time for each individual patient. The reso-
lution of the slice images is fixed at 512× 512 with 12bits per voxel.
The number of slice images for each individual data set varies between
120 and 260. Twenty different data sets were used as reference data
for constructing the semantic model. Five additional data sets were
used to evaluate the model. Our experiments have shown that the re-
sulting semantic model does not change significantly, if different data

sets from the collection are chosen as a reference set. Examples of the
reference data are shown in Figure 6.

The structures found in the 2D histogram vary considerably among
the data sets, mainly due to the different fields of view during data
acquisition. A transfer function template was created accounting for
the entities bone structures, brain/soft tissue, skin/cavities, and blood
vessels. The template is shown in the rightmost image of Figure 2, with
one primitive for the vessels (red), the brain (green), the skin (yellow),
respectively, and two primitives for the bone (white and pink). The
bone structures are represented by two separate primitives to improve
their visual appearance.

After the template has been adapted to all reference data sets, the
transfer function is split into groups of primitives that belong to the
same entity. Principal component analysis is performed separately for
each entity. This is necessary due to the different scales of the prim-
itives. As can be seen in the template in Figure 2, the sizes of the
primitives differ considerably for different entities.

The implementation of the techniques described in this paper has
been evaluated using collections of real patient data sets from two dif-
ferent studies in clinical practice.

A rather large modification of the large white primitive (bone) may
have a less significant visual effect to the final rendition than a subtle
modification to a small primitive (vessels or brain). If PCA is per-

Fig. 5. The user interface created by the semantic transfer function
model for CT angiography data. The numbers in the spin boxes repre-
sent the numerical values of the sliders.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 6. CT angiography: 12 out of the 20 reference data sets from the clinical study on intracranial vessels

formed for the complete parameter vector containing all primitives,
the subtle but important adjustments to the small primitives can eas-
ily be lost, because the covariance matrix is dominated by the large
variance of other low-level parameters. If it is desirable to have one
semantic parameter that adapts the whole transfer function, it is neces-
sary to specify additional scaling factors for the individual components
of the parameter vector, but we have found that this will have hardly
predictable effects on the semantic model.

Performing PCA for each entitiy creates a semantic model with sep-
arate “adapt template” parameters for each structure of interest. The
user interface generated from the underlying semantic model is shown
in Figure 5. Additional semantic parameters have been implemented
for “color” and “visibility”. The “visibility” parameters for vessels,
brain, and skin simply specify the opacity of the respective primitive.
For the bone structures, the visibility slider can be used to simulta-
neously fade out both primitives. The opacity of the inner bone struc-
tures (bone marrow, pink) can separately be controlled by an additional
slider to enhance the visual appearance. For the CT angiography data,
this set of parameters turns out to be completely sufficient for creat-
ing all the visual representations that the physician was interested in.
Example images created for data sets which are not contained in the
reference set are shown in Figure 7.

The second application scenario was the visualization of pre-
operative MRI data acquired for the planning of tumor resection in
the brain, provided by the Department of Neurosurgery of the Univer-
sity of Erlangen-Nuremberg. The resolution of the slice images were
fixed at 256× 256, and the number of slices varies between 150 and
200. For the creation and evaluation of our semantic model, 10 MRI
data sets were available. We chose seven data sets as reference sets,
and three data sets for studying the results. Again, the resulting se-
mantic model was almost independent of the choice of reference data
sets. Example images are shown in Figure 8.

The image quality of the MRI data is limited due to the short period
of time permitted for data acquisition in clinical practice. In conse-
quence, there is significant noise inherent in the data. The entities

chosen in this case were “brain tissue” and “skin”. Each entity was
represented by a single primitive. Besides the semantic parameters for
“adapt template”, “color”, and “visibility, an additional parameter
“sharpness” was introduced. This parameter controls the sharpness or
fuzziness of the brain surface and was implemented mainly by mod-
ifying the opacity slopes at the border. The effect of this parameter
on the transfer function can be seen in Figure 9. Using this semantic
model, the surgeon can intuitively analyze the pre-operative volume
data during intervention planning.

7.1 Evaluation
We investigated the importance and the stability of the first eigenvector
for each semantic parameter. For the CTA data, the axis spanned by
the first principal component was stable if more than 12 data sets were
used as reference sets, which means that the axis did not change signif-
icantly, if more than 12 different data sets were chosen. We considered
a principal component as stable, if the dot product of the normalized
axes from different evaluations did not fall below 0.9. It is worth not-
ing that even for dot products of about 0.7, the subjective visual im-
pression of the user was that resulting semantic models behaved in the
same way.

The importance of the first principal component in the worst case
was 0.85 for 12 reference data sets and 0.92 for 20 data sets. For less
than eight data sets the importance of the largest eigenvalue dropped
below 0.6. It might also be interesting to know that the significance of
the first principal component is slightly higher, if the manual template
adaptation was performed by the same person for all data sets instead
of several persons. It shows that the stability of the described approach
depends on the template adaptation strategy of the designer, which
might be considered a drawback of the technique.

For the MRI scenario, the importance of the first principal com-
ponent was 0.6 in the worst case and 0.8 in the best case, due to the
limited number of reference data sets. A higher number of training
data sets would have been necessary for a detailed analysis. In gen-
eral, the presented approach has the danger to over-parameterize or

REZK-SALAMA et al.: HIGH-LEVEL USER INTERFACES FOR TRANSFER FUNCTION DESIGN WITH SEMANTICS

Fig. 7. The semantic model for CT angiography applied to two data sets, which were not part of the reference training set.

Fig. 8. Pre-operative MRI from Brain Surgery: The four leftmost images show 4 of the 7 reference data sets used in creating the semantic model.
The two rightmost images show the semantic model adapted to data not contained in the reference data set. The entities have been adapted to
the data and the color of the brain has been changed in the semantic model. (The contrast was slightly enhanced for the printout)

under-parameterize the parameter space of the transfer function. Al-
though this is always kept under control of the designer, it might also
be considered a drawback of the presented technique.

After the technical analysis, the semantic model was evaluated by
uninvolved users. The users were presented with an unlabelled user
interface and were asked to describe the effect of the slider changes.
In most cases the user did properly describe the visual effect intended
by the designer, such as ”visibility”, and ”sharpness”. The template
adaptation parameter, however, was often inadequately described by
the users. A detailed usability study in clinical practice is still pend-
ing. Up to now, the user interface was presented to a radiologist. He
was asked to perform data visualization for a typical clinical exami-
nation. His feedback to the high-level user interface was very posi-
tive. He stated that he would prefer the simplified user interface to
the primitive-based editors he was accustomed with. He appreciated
the template adaptation parameter for manual tweaking, although he
emphasized that an automatized initial setup would also be desirable.
We will investigate if the technique described in [20] can be used to
achieve this task in a future version.

As a result, we have found that in order to provide a good user
interface it is not necessary to account for all possible kinds of modi-
fications to the low-level parameters. There is a considerable amount
of redundancy in a low-level transfer function model. And although
we are able to create a semantic model easily with a large number
of parameters, the non-expert users are helped much more, if we re-
strict the user interface to a limited number of necessary parameters.
Throughout our experiments we have found that this is possible with-
out a significant loss of flexibility.

8 CONCLUSION AND FUTURE WORK

We have presented a framework for implementing semantic models
for transfer function assignment in volume rendering applications. We
have demonstrated that semantic models can effectively be used to
hide the complexity of visual parameter assignment from the non-
expert user for a specific examination purpose.

The concepts described are not restricted to transfer function de-
sign. They can be used to provide intuitive user interfaces for different
kinds of visualization tasks. Additional parameters such as edge prop-

erties, which are frequently used in non-photorealistic rendering, and
material properties for local illumination and translucent rendering can
also be implemented as semantic parameters.

The assumption of Gaussian distribution for the low-level parame-
ters was made to motivate the use of PCA. Gaussian probability dis-
tribution is completely defined by the mean value and the variance.
First and second order statistics are sufficient for analyzing Gaussian
densities, since the higher-order moments do not carry additional in-
formation. It might be worth investigating if analysis using higher-
order statistics such as independent component analysis can be used
to derive non-linear semantic parameters. Such an investigation, how-
ever, would require enormously large reference data sets to estimate
parameters reliably.

ACKNOWLEDGEMENTS

The CT angiography data was generously provided by Dr. Bernd
Tomandl, now at the Klinik of Neuroradiologie, Bremen, Germany.
The MRI data is courtesy of Dr. Christopher Nimsky from the Depart-
ment of Neurosurgery, University of Erlangen-Nuremberg, Germany.
A very special thank-you is due to Kathrin Ohrndorf for proof-reading
and speaking the accompanying text for the demonstration video.

REFERENCES

[1] C. Bajaj, V. Pascucci, and D. Schikore. The Contour Spectrum. In Proc.
IEEE Visualization, 1997.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and

Tomographic Reconstruction using Texture Mapping Hardware. In Pro-
ceedings of IEEE Symposium on Volume Visualization, pages 91–98,

1994.

[3] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf.

Real-Time Volume Graphics. AK Peters, 2006.

[4] K. Engel, M. Kraus, and T. Ertl. High-Quality Pre-Integrated Volume

Rendering Using Hardware-Accelerated Pixel Shading. In Proceedings of
ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2001.

[5] S. Fang, T. Biddlecome, and M. Tuceryan. Image-Based Transfer Func-

tion Design for Data Exploration in Volume Visualization. In Proc. IEEE
Visualization, 1998.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

turn down “visibility” for the skin increase “sharpness” for the brain

Fig. 9. Pre-operative MRI from Brain Surgery: The three image from the left demonstrate different settings for the “visibility” parameter of the skin.
The three images from the right show the influence of the additional semantic parameter “sharpness”. (The contrast was slightly enhanced for the
printout)

[6] T. He, L. Hong, A. Kaufman, and H. Pfister. Generation of Transfer

Functions with Stochastic Search Techniques. In Proc. IEEE Visualiza-
tion, 1996.

[7] J. Kawai, J. Painter, and M. Cohen. Rapidoptimization – Goal-Based

Rendering. In Proc. SIGGRAPH, 1993.

[8] G. Kindlmann and J. Durkin. Semi-Automatic Generation of Transfer

Functions for Direct Volume Rendering. In IEEE Symposium on Volume
Visualization, 1998.

[9] J. Kniss, G. Kindlmann, and C. Hansen. Interactive Volume Render-

ing using Multi-dimensional Transfer Functions and Direct Manipulation

Widgets. In Proceedings of IEEE Visualization, pages 255–262, 2001.

[10] J. Kniss, S. Premoze, C. Hansen, and D. Ebert. Interative Translucent

Volume Rendering and Procedural Modeling. In Proceedings of IEEE
Visualization, 2002.

[11] J. Kniss, S. Premoze, M. Ikits, A. Lefohn, C. Hansen, and E. Praun.

Gaussian Transfer Functions for Multi-Field Volume Visualization. In

Proc. IEEE Visualization, 2003.

[12] J. Kniss, J. Schultze, U. Wössner, P. Winkler, U. Lang, and C. Hansen.

Medical applications of multi-field volume rendering and vr techniques.

In Proc. Eurographics/IEEE TCVG Symposium on Data Visualization,

2004.

[13] S. Kochhar. A Prototype System for Design Automation via the Browsing

Paradigm. In Proc. Graphics Interface, 1990.

[14] A. König and E. Gröller. Mastering Transfer Function Specification by

Using VolumePro Technology. In Proc. Spring Conference on Computer
Graphics, 2001.

[15] J. Krüger and R. Westermann. Acceleration Techniques for GPU-based

Volume Rendering. In Proceedings of IEEE Visualization 2003, pages

287–292, 2003.

[16] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp

Factorization of the Viewing Transformation. In Proceedings of ACM
SIGGRAPH, pages 451–458, 1994.

[17] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The

VolumePro real-time ray-casting system. In Proceedings of ACM SIG-
GRAPH, pages 251–260, 1999.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-
ical Recipes in C: The Art of Scientific Computing. Cambridge University

Press, 2nd edition, 1992.

[19] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interac-

tive Volume Rendering on Standard PC Graphics Hardware Using Multi-

Textures and Multi-Stage Rasterization. In Proceedings of ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, 2000.

[20] C. Rezk-Salama, P. Hastreiter, J. Scherer, and G.Greiner. Automatic Ad-

justment of Transfer Functions for 3D Volume Visualization. In Proc.
Vision, Modeling and Visualization (VMV), 2000.

[21] K. Ritchie, J. Callery, and K. Riri. The Art Of Rigging, Volume 1. Alias

conductors program. Cg Toolkit, 2005.

[22] S. Röttger, S. Guthe, D. Weiskopf, and T. Ertl. Smart Hardware-

Accelerated Volume Rendering. In Procceedings of EG/IEEE TCVG
Symposium on Visualization VisSym ’03, pages 231–238, 2003.

[23] Y. Sato, C.-F. Westin, and A. Bhalerao. Tissue Classification Based On

3D Local Intensity Structures for Volume Rendering. IEEE Transactions
on Visualization and Computer Graphics, 6, April 2000.

[24] K. Sims. Artificial Evolution in Computer Graphics. In Proc. SIG-
GRAPH, 1991.

[25] K. Sims. Evolving Virtual Creatures. In Proc. SIGGRAPH, 1994.

[26] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A Simple and Flex-

ible Volume Rendering Framework for Graphics-Hardware-based Ray-

casting. In Proceedings of the International Workshop on Volume Graph-
ics ’05, pages 187–195, 2005.

[27] S. Todd and W. Latham. Evolutionary Art and Computer Graphics. Aca-

demic Press, 1992.

[28] F.-Y. Tzeng, E. Lum, and K.-L. Ma. A Novel Interface for Higher-

Dimensional Classification of Volume Data. In Proceedings of IEEE Vi-
sualization, pages 505–512, 2003.

[29] M. van de Panne and E. Fiume. Sensor-Actuator Networks. In Proc.
SIGGRAPH, 1993.

[30] F. Vega Higuera, N. Sauber, B. Tomandl, C. Nimsky, G. Greiner, and

P. Hastreiter. Automatic Adjustment of Bidimensional Transfer Functions

for Direct Volume Visualization of Intracranial Aneurysms. In Proceed-
ings of SPIE Medical Imaging, 2004.

[31] O. Wilson, A. V. Gelder, and J. Wilhelms. Direct Volume Rendering via

3D-textures. Technical Report UCSC-CRL-94-19, Univ. of California,

Santa Cruz, 1994.

[32] A. Witkin and M. Kaas. Spacetime Constraints. In Proc. SIGGRAPH,

1988.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

