
Modern Texture Mapping in Computer Graphics

Stephan Pajer∗

Abstract

Textures have a variety of applications in computer graphics. While
the original idea of texture mapping was just to cover the surface
of an object with an image to avoid having to model every detail
geometrically, in time a lot of other uses have been proposed. In this
paper, the most important applications of texture mapping (except
the original approach) will be explained.

Keywords: bump mapping, normal mapping, horizon mapping,
displacement mapping, parallax mapping, relief mapping, shadow
mapping, percentage closer filtering, perspective shadow mapping

1 Introduction

Since its introduction, texture mapping [Catmull 1974] has evolved
from ’just’ painting an image onto a geometric model. While most
applications of textures still focus on the simulation of geometric
detail, other applications like shadowing the scene using a texture
have also been proposed. This paper will give an explanation of
the most important algorithms for simulating surface details with
textures.

This includes algorithms for altering the surface normals to mod-
ify the lighting and give the illusion of protrusions as well as ways
to offset the rendered texels using height fields and combinations
of these variants. Furthermore, the shadow mapping algorithm
[Williams 1978] as well as its most important refinements will be
described.

2 Exposition

2.1 Bump Mapping

Bump mapping[Blinn 1978] is an approach to simulate complex
surfaces by perturbing the normal vector of a surface on a per-pixel
basis. This yields good results due to the fact that the main effect
of surface irregularities on the perceived intensities is due to their
effect on the surface normal.

In Blinn’s approach, the normal vector of the wrinkle function
is calculated by taking the cross product of the functions partial
derivates. The pertibation of the normal is then accomplished by
adding the normal vectors of the wrinkle function to the normals of
the smooth surface and illuminating the object as usual.

While Blinn’s algorithm does improve the quality of the rendered
image, there are a number of imprecisions compared to actually

∗e-mail: hadesbringer@netscape.net

Figure 1: Basic principle of bump mapping, [Blinn 1978].

Figure 2: A sphere with bump mapping. (top) resulting image (bot-
tom) image of the used wrinkle function. [Blinn 1978]

using a higher polygon model. Since his method does not actu-
ally increase the geometric complexity of the model, this algorithm
fails to affect the silhouette of the object. Furthermore, it neither
manages to produce self shadowing objects (unless the unmodified
geometric object already shadowed itself before), nor does it mod-
ify the (color-) texture coordinates used to texture the model, thus



failing to show self occlusion.

Figure 3: A sphere with bump mapping. Note that the silhouette
does not show the presence of the bumps. [Blinn 1978]

Normal mapping, a variation of Blinn’s original bump mapping al-
gorithm, differs from the original by not simply perturbing the nor-
mal vectors of the surfaces, but completely replacing them with
precalculated normal vectors usually stored in the red, green and
blue components of a normal map. This results in a significant in-
crease in rendering speed, but since the complete normal vector has
to be stored in the texture, a texture used by this approach requires
significantly more memory.

Another interesting variation of bump mapping ishorizon mapping
[Max 1986]. This approach adds the ability for bumps to cast shad-
ows onto the object. This is accomplished by storing an additional
horizon map for the surface. The horizon map contains the angle
to the horizon (represents at what height the light can pass over
the succeeding bumps in this direction) for a discrete number of
directions (usually 8) for each texel. When the surface is being ren-
dered, the angle to the light sources for the texel is compared to
the angle required to pass over the horizon. If the angle is greater
than the associated angle in the horizon map the respective pixel is
illuminated, otherwise the light source is obscured by a bump and
therefore cannot illuminate this position.

2.2 Displacement Mapping

Unlike bump mapping,displacement mapping[Cook 1984] actu-
ally changes the geometry of the object. Additional vertices are
set onto the surfaces of the model and shifted to create the heights
contained in the texture. This approach naturally allows self shad-
owing and self occlusion and also modifies the silhouette of the
object. However, due to the fact that the object that is rendered is
actually a lot more complex, this approach does suffer from poor
performance. Thus, displacement mapping is not so much a way to
simulate complex objects, but an approach to reduce the memory
requirements to store a complex model.

Figure 4: Rendered results, the green line shows the direction of the
light (top) bump mapping (bottom) horizon mapping. Images taken
from a demo program by Tom Nuydens.

2.3 Parallax Mapping

Parallax mapping [Kaneko et al. 2001] does not work by modifying
the surface normals, but rather affects the way a texture is mapped
to the surface. Thus, it is possible to use this approach in conjunc-
tion with bump mapping so the lighting is affected as well. From
the regular texture position on the surface, the height displacement
is calculated and transformed back onto the surface by multiplying
it with the tangent of the angle between the texture axis and the vi-
sual axis. The texel at this new position is then used for texturing
the pixel.



Figure 5: The basic principle of parallax mapping, [Kaneko et al.
2001]

This approach works well for smooth height functions on steep an-
gles. While the approximation error can be considered marginally
for such occasions, they can easily become significant if the angle
becomes shallower or the height function gains higher frequencies.

Figure 6: Accuracy of parallax mapping (dotted line) correct result
(bold line) parallax texture mapping (surface of polygon) regular
texture mapping, [Kaneko et al. 2001]

This technique does allow self occlusion but still lacks self shad-
ows. While the perceived silhouette may be altered when using
this approach (due to the fact that some new texture positions may
be outside of the actual texture, and consequentially assumed to
be completely transparent), the underlying geometric silhouette re-
mains unaffected.

Figure 7: Rendered results (left) normal texture mapping (right)
parallax texture mapping, [Kaneko et al. 2001]

2.4 Relief Mapping

Relief mapping[de Oliveira Neto 2000a], refined in [Policarpo et al.
2005] once again (see parallax mapping) warps portions of the tex-
ture map, but this time using a raycaster. The raycaster calculates
the intersection point with the bumpy surface using a binary search
between the original intersection point of the unmodified surface
and the ray’s intersection with the surface offset by the maximum
difference in the heightfield preceded by a linear search in order to
avoid finding the first intersection (might happen if a search point
is outside the height field surface but has already intersected the
surface before).

Figure 8: Binary search within a height field, [Policarpo et al. 2005]

This intersection point contains the coordinate of the texel to use
as well as the depth information (from the observer). To add self
shadowing to relief textures, another ray has to be cast towards each
light source to check for occlusion with other bumps.

By properly refreshing the z-buffer with the modified z values, re-
lief surfaces can even be correctly interpenetrated.



Figure 9: Rendered results, (top) regular textures (bottom) relief
textures. [de Oliveira Neto 2000a]

Furthermore, it was shown in [Oliveira and Policarpo 2005] that
by deforming the height field to match the object’s geometry, it is
possible to render silhouettes using this technique by deciding that
a point does not belong to the model when the ray does not intersect
the deformed height field.

Since the original shadow algorithm is no longer usable when us-
ing silhouettes,shadow mappingis the new shadow algorithm of
choice.

Recently, relief mapping has been enhanced [Policarpo and Oliveira
2006] to support non-height-field structures of opaque, closed sur-
faces. Therefore, instead of having one height value in a height
map, 2n height values (since closed surfaces always pass twice at
any texel) are stored in one (or more) texture(s). This time, the
height of the ray is not simply compared to the height in the height
map, but it is checked if the ray is in a surface by checking if the
height is between the two heights of any surface.

Figure 10: Rendered results, note the shadows. [Policarpo et al.
2005]

Figure 11: Rendered results, (top) relief mapped teapot (bottom)
close-up view. [Policarpo et al. 2005]



Figure 12: Interpenetration between a relief mapped surface and
textured spheres, [Policarpo et al. 2005]

Figure 13: Rays traversing a deformed height field, [Oliveira and
Policarpo 2005]

Figure 14: Rendered results, (top) original relief mapping (mid-
dle) relief mapping with silhouette (bottom) same as middle, but
also showing a wireframe of the geometry. [Oliveira and Policarpo
2005]



Figure 15: Rendered results, relief mapping showing silhouettes
(shadowed using shadow mapping). [Oliveira and Policarpo 2005]

Figure 16: Rendered results, two coincident cylinders with different
relief and texture maps. [Oliveira and Policarpo 2005]

Figure 17: Rendered results, (top) teapot with non-height-field
weave pattern (bottom) close-up of a part of the teapot. [Policarpo
and Oliveira 2006]



2.5 Shadow Mapping

Shadow mapping[Williams 1978], as the name suggests, is a way to
shadow a scene. Unlike other shadowing algorithms, this algorithm
does its work completely in the image space. This leads to the fact
that it requires no knowledge of the actual geometry that casts the
shadows, but, since it uses discrete sampling points to compute the
shadows, it has to deal with aliasing artifacts.

With shadow mapping, the scene is rendered once normally without
lighting as well as once for every light source that can cast shadows
onto a surface of the visible part of the scene. However, since this
algorithm only requires the depth information of the light sources,
no color information of the scene has to be calculated for this pass,
and only the z-buffer has to be filled. The shadowing itself is done
by transforming the (x, y, z) positions of the computed scene (from
the observer’s point of view) to the coordinate system of the light
views and subsequently checked for visibility from the light source.

If the rendered position is further away from the light source, this
light does not affect the intensity of the point, and it has to be prop-
erly shaded. Otherwise, it equals the corresponding value of the
light sources depth map.

However, in computer graphics, due to the discrete nature of the
depth buffer (as well as numeric inaccuracies of machine arith-
metic), the projected z-value will, even if it refers to the exact same
(x, y, z) position, fall either above or below the z-value of the cor-
responding value of the light sources depth map.

Therefore, Williams introduced the idea of subtracting a (usually
constant) bias from the z-value of the transformed point to avoid
self-shadow artifacts. While this may alter the silhouette of the
shadow slightly, it is preferable to an implementation without bias,
since the odds that a fragment may shadow itself (if no bias is used)
is quite high. On the other hand, the bias should not be too large
since it effectively increases the minimum distance an object may
have to a surface to be able to cast a shadow onto the surface.

This still leaves the aliasing problem, which is caused by one
shadow map texel mapping to more than one pixel of the final scene.
The sources of this undersampling with shadow maps have been
well formalized [Stamminger and Drettakis 2002].

d = ds
rs

r i

cosβ
cosα

The aliasing problem can be further split up in perspective aliasing
dsrs/r i , which typically happens when the user zooms the view to
the edge of a shadow, and projection aliasingcosβ/cosα , which
occurs when the light rays are close to parallel to the surface.

A number of ways to reduce the effect of aliasing using shadow
maps have been proposed.Percentage closer filtering[Reeves et al.
1987] does so by comparing the result of the transformation to the
surrounding depth values as well as the central one and calculating
the percentage of shadowed values. The point is then considered to
be in shadow by this percentage and consequently shaded accord-
ingly.

One particularly nice feature is that it not only reduces the artifacts,
but also allows partially shaded fragments. Thus this algorithm can
not only reduce aliasing artifacts, but also supports a smooth tran-
sition from shadowed to illuminated areas.

A more sophisticated method of reducing aliasing areperspective
shadow maps[Stamminger and Drettakis 2002]. Unlike uniform
shadow maps, perspective shadow maps are computed in device

Figure 18: The shadow mapping algorithm: (top left) unshadowed
scene (top right) unshadowed scene from the position of the light
source (middle left) depth map of light source scene (middle right)
depth map of light source transformed to observer’s view (bottom
left) light’s planar distance transformed to observer’s view (bot-
tom right) shadowed scene. [Nealen 2002], taken from an NVIDIA
demo.

Figure 19: Effect of bias (left) bias too low, resulting in self-
shadowing (right) bias too high, resulting in incomplete shadowing
(only the highest part casts a shadow in this case). [Nealen 2002],
taken from an NVIDIA demo.

coordinates rather than world coordinates like their uniform coun-
terpart. This approach aims at reducing the influence of the fraction



Figure 20: Shadow map projection qualities, [Stamminger and
Drettakis 2002].

Figure 21: Principle of percentage closer filtering, [Reeves et al.
1987]

rs/r i since the projections empowering this fraction are removed af-
ter said transformation. However, special attention has to be taken
with objects behind the camera plane.

3 Conclusion

While texture mapping can noticably increase the perceived quality
of an image, more elaborate algorithms can still add greatly to the
perceived realism of a scene without even modifying the geometry.
While state-of-the-art algorithms can provide great visual results,
they do not provide interactive framerates in large environments
with current hardware.

References

BLINN , J. F. 1978. Simulation of wrinkled surfaces. InProceed-
ings of the 5th annual conference on Computer graphics and in-
teractive techniques, 286 – 292.

Figure 22: Shadow quality improvement from using perspective
shadow maps instead of uniform shadow maps. (upper) uniform
512 x 512 shadow map (lower) perspective 512 x 512 shadow map.
[Stamminger and Drettakis 2002]

BRABEC, S., ANNEN, T., AND SEIDEL, H.-P. 2002. Shadow
mapping for hemispherical and omnidirectional light sources. In
Computer Graphics International (CGI) 2002 proceedings, 397
– 408.

CATMULL , E. E. 1974. A Subdivision Algorithm for Computer
Display of Curved Surfaces. PhD thesis, University of Utah.

CIGNONI, P., MONTANIY, C., ROCCHINIZ, C., AND SCOPIG-
NOX, R. 1998. A general method for preserving attribute values
on simplified meshes. InProceedings of the conference on Visu-
alization ’98, 59 – 66.

COHEN, J., OLANO , M., AND MANOCHA, D. 1998. Appearance-
preserving simplification. InProceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, 115 –
122.

COOK, R. L. 1984. Shade trees. InProceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, 223 – 231.

DE OLIVEIRA NETO, M. M. 2000. Relief texture mapping. In
Proceedings of the 27th annual conference on Computer graph-
ics and interactive techniques, 359 – 368.

DE OLIVEIRA NETO, M. M. 2000. Relief Texture Mapping. PhD
thesis, University of North Carolina at Chapel Hill.

KANEKO, T., TAKAHEI , T., INAMI , M., KAWAKAMI , N.,
YANAGIDA , Y., MAEDA , T., AND TACHI , S. 2001. Detailed
shape representation with parallax mapping. InProceedings of
the ICAT 2001, 205 – 208.

MASCHEK, M. 2006. A state of the art report for displacement
mapping. Tech. rep., Vienna University of Technology.

MAX , N. L. 1986. Shadows for bump-mapped surfaces. InPro-
ceedings of Computer Graphics Tokyo ’86 on Advanced Com-
puter Graphics, 145 – 156.



MCM ILLAN , L. 1997. An Image-Based Approach to Three-
Dimensional Computer Graphics. PhD thesis, University of
North Carolina.

NEALEN, A. V. 2002. Shadow mapping and shadow volumes:
Recent developments in real-time shadow rendering. Tech. rep.,
University of British Columbia.

OLIVEIRA , M. M., AND POLICARPO, F. 2005. An ecient repre-
sentation for surface details. Tech. rep., UNIVERSIDADE FED-
ERAL DO RIO GRANDE DO SUL.

PEERCY, M., A IREY, J., AND CABRAL , B. 1997. Efficient bump
mapping hardware. InProceedings of the 24th annual confer-
ence on Computer graphics and interactive techniques, 303 –
306.

POLICARPO, F., AND OLIVEIRA , M. M. 2006. Relief mapping
of non-height-field surface details. InProceedings of the 2006
symposium on Interactive 3D graphics and games, 55 – 62.

POLICARPO, F., OLIVEIRA , M. M., AND COMBA , J. L. D. 2005.
Real-time relief mapping on arbitrary polygonal surfaces. In
Proceedings of the 2005 symposium on Interactive 3D graphics
and games, 155 – 162.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987. Ren-
dering antialiased shadows with depth maps. InProceedings of
the 14th annual conference on Computer graphics and interac-
tive techniques, 283 – 291.

SLOAN , P.-P. J.,AND COHEN, M. F. 2000. Interactive horizon
mapping. InProceedings of the Eurographics Workshop on Ren-
dering Techniques 2000, 281 – 286.

STAMMINGER , M., AND DRETTAKIS, G. 2002. Perspective
shadow maps. InProceedings of the 29th annual conference
on Computer graphics and interactive techniques, 557 – 562.

WILLIAMS , L. 1978. Casting curved shadows on curved surfaces.
In Proceedings of the 5th annual conference on Computer graph-
ics and interactive techniques, 270 – 274.


