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Figure 1: Rendering a landscape with orthophotographic data. Left: textured and unlit. Center: textured and lighted. Right: The GPU ray
casting approach presented in this paper.

Abstract

This paper demonstrates the simple yet effective usage of height
fields for interactive landscape visualizations using a ray casting ap-
proach implemented in the pixel shader of modern graphics cards.
The rendering performance is output sensitive, i.e., it scales with
the number of pixels rather than the complexity of the landscape.
Given a height field of a terrain and a topographic map or similar
data as input, the vegetation cover is extracted and stored on top of
the height field in a preprocess, enhancing the terrain with forest
canopies or other mesostructure. In addition, enhanced illumina-
tion models like shadowing and ambient occlusion can be calcu-
lated at runtime with reasonable computational cost, which greatly
enhances the scene realism. Finally, including the presented tech-
nique into existing rendering systems is relatively simple, mainly
consisting of data preparation and pixel shader programming.

CR Categories: I.3.3 [Computer Graphics]: Display
Algorithms—Real-time rendering; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture; I.3.8 [Computer Graphics]: Applications—
Landscape rendering
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1 Introduction

Interactively exploring large landscapes has recently become quite
popular. Examples for publicly available and widely used tools are
”Google Earth” (http://earth.google.com/), ”NASA World
Wind” (http://worldwind.arc.nasa.gov/), ”Autodesk Map

3D” (www.autodesk.de/map), ”3DGeo” (http://www.3dgeo.
de/) and many more. These systems use images and height data
obtained from laser range scanners, GPS data, and satellites to gen-
erate and render a textured terrain mesh. Much work has been spent
to also represent vertical structures like building facades in the rep-
resentation, because such structures are typically not immediately
available in the acquired data. On the other hand, to the author’s
best knowledge, vegetation has not been faithfully represented in
such systems so far, although this obviously would contribute to a
more realistic look.

This paper presents a method for increasing the realism of vege-
tation rendering in landscape visualization systems. Since in most
of the above systems the terrain is internally stored as height map,
we directly render the landscape from this height map data using a
GPU ray casting approach. The focus of this work is to show the
advantages of such a strategy compared to traditional mesh-based
representations:

• The rendering time is output sensitive, i.e., it depends on the
number of rendered pixels rather than on the complexity of
the landscape.

• It is possible to easily ”refine” the landscape for a more real-
istic representation. This means that special surfaces in the
landscape can be modeled with higher realism without the
need for complex operations like remeshing the scene. An
example for this is shown for enhanced vegetation realism:
given an input heightfield and an according color map, the
technique extracts a special vegetation heightfield from the
color data. During the terrain exploration this heightfield is
rendered ”on top” of the terrain thus providing parallax and
occlusions like a real forest canopy. However, please note
that height field data inherently becomes visible as such when
viewed nearby, and the presented technique is merely thought
for distant rendering only, as is typically the case for land-
scape explorations.

• Global illumination calculations like shadow mapping and
ambient occlusion can be easily and quickly performed at run-
time and changed dynamically. Furthermore, by exploiting
natural implications about the data such as the appearance of
trees, stones, glaciers etc., shadow behavior, and light interac-



tions within a landscape, a fairly good image quality can be
achieved.

After reviewing related work in the next section, Section 3 describes
how the realism of the landscapes can be increased in a preprocess
with emphasis on the generation of forest canopy. Afterwards, Sec-
tion 4 describes the rendering algorithm, including enhanced illu-
mination calculations. In Section 5, results obtained with the de-
scribed methods are shown and Section 6 concludes the paper and
shows roads for further research.

2 Related Work

The work presented in this paper is related to terrain rendering and
here specifically height field rendering. Furthermore, several publi-
cations about vegetation rendering are also reviewed here.

2.1 Height Field Rendering

Techniques such as bump and normal mapping have been in use to
simulate the mesostructure of surfaces for many years [Blinn 1978].
However, they lack parallax and self-occlusions within the surface.
Consequently, enhanced techniques like parallax mapping [Kaneko
et al. ] (optionally with offset limiting [Welsh 2004]) and parallax
occlusion mapping [Tatarchuk 2006] were developed that simulate
the appearance of a heightfield by shifting the texture coordinates
within a texture, depending on the view angle. Unfortunately, these
techniques still cannot display correct object silhouettes in all cases.

Kajiya and Kay [Kajiya and Kay 1989] (and later Neyret [Neyret
1998]) first used ray casting of 3D texture maps in order to dis-
play fur and other complex surface structures. Recent advances in
programmable shaders and increasing GPU performance have al-
lowed implementations with various optimizations that run directly
on graphics hardware. As an example, relief mapping proposed by
Policarpo et.al. [Policarpo et al. 2005] provides believable paral-
lax effects within a surface, but does not render correct silhouettes.
This is often not a problem for rendering object surface mesostruc-
ture. However, for landscape rendering, the undulating nature of
the terrain would result in visual artifacts without correct silhou-
ettes. To overcome this problem, Oliveira and Policarpo [Oliveira
and Policarpo 2005] proposed a method that uses quadrics to better
approximate height fields on curved surfaces. This method relies
on a preprocessing step that computes a quadric approximation of
the surface for each vertex and stores its coefficients as additional
vertex parameters. Unfortunately, the proposed approximation only
works for smooth surfaces, i.e., it fails at sharp edges, and also re-
quires the storage of additional per-vertex data, making it difficult
to incorporate in existing systems.

Existing methods that do produce correct silhouettes are usually
based on rendering tetrahedra or prisms instead of the original sur-
face to avoid visual artifacts. Examples for tetrahedra-based algo-
rithms are [Hirche et al. 2004; Porumbescu et al. 2005; Dufort et al.
2005]. Methods based on prisms have been proposed by Wang et
al. [Wang et al. 2004]. Unfortunately, rendering prisms or tetrahe-
dra significantly increases the polygon count and (even worse) over-
draw. A GPU implementation of a ray casting renderer for (terrain)
height fields has also been proposed by Qu et.al. [Qu et al. 2003].
Although it lacks the acceleration methods proposed in other works,
this approach is the most similar to our method.

2.2 Vegetation Rendering

Given the huge number of publications for rendering vegetation,
presenting an exhaustive description of all the work in this field
is not possible here. In this section we will present a selection of
various techniques that are similar to our approach. For a more
complete reference we refer to [Deussen 2003; Mantler et al. 2003].

One of the key publications in this field is the work by Deussen
et.al. [Deussen et al. 1998], which was later extended to run inter-
actively [Deussen et al. 2002]. In their system individual plants are
placed through a growth simulation, and interactive rendering of
the individual plants is performed at multiple levels of detail via a
hybrid point and polygon representation.

A similar approach has been recently proposed by Gilet et.al. [Gilet
et al. 2005], in which the vegetation geometry (individual trees or
tree groups) is hierarchically clustered and preprocessed into a tri-
angle+point representation. At runtime, the hierarchy is traversed
until the current level can be safely approximated by a point or in-
dividual polygons are rendered.

These approaches provide a highly detailed model suitable for close
up rendering, but suffer problems when very large areas (ie. forests)
need to be rendered: the population of several square kilometers re-
quires an extensive preprocessing step, and the runtime cost of cal-
culating the appropriate level of detail also grows with the number
of plant primitives within the scene (although this is less of an issue
for Gilet’s method, where trees can also be clustered into groups).
In both cases, some sort of instancing is required to keep the to-
tal amount of vegetation geometry within manageable bounds, and
special care must be taken to avoid artifacts, such as trees hovering
above or sinking into the ground, if levels of detail are used for ter-
rain rendering. Furthermore, neither approach handles shading and
shadowing, which must therefore be handled by other means.

Besides such point based approaches, much work has been done
on image-based rendering of vegetation, typically by reusing pre-
computed textures [Max 1996]. Meyer and Neyret have presented
an algorithm that models trees through their bidirectional shading
properties [Meyer et al. 2001]. A hierarchy of bidirectional tex-
ture functions is precomputed and used to render many trees with
shading and shadows at interactive frame rates. Decaudin and
Neyret [Decaudin and Neyret 2004] have proposed an algorithm
that is based on rendering multiple texture layers. Instead of placing
individual trees, aperiodic tiling is performed to cover large areas.
A similar offline rendering method had been previously demon-
strated by Neyret [Neyret 1996]. Volumetric information can be
acquired from existing models or through methods such as [Reche
et al. 2004].

While producing very good visual results including dynamic illumi-
nation, the method by Meyer and Neyret again requires an exten-
sive preprocess (the authors state 75 minutes for 1000 trees on an
Onyx2 InfiniteReality). Runtime performance is also relatively low,
although there is no performance data available for current GPU
hardware. The rendering system by Decaudin and Neyret uses ape-
riodic tiling to cover large areas, which would require a number of
additional tiles to account for forest boundaries that match a given
vegetation cover map. Also, their approach as described does not
handle dynamic illumination, although the authors described this
feature as future work. It is also unclear how these approaches
could be integrated with a terrain level of detail rendering system to
cover very large areas.

In contrast to the above mentioned algorithms, our approach re-
quires little preprocessing, is mostly independent of the terrain ren-
dering system, provides shading and shadowing, and achieves in-
teractive frame rates even for large scenes.
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Figure 2: Overview of the preprocessing steps.See text for details.

3 Preprocess: Enhancing Landscape Detail

The goal of the preprocess component is to enhance the realism of
a landscape model by adding surface detail in dependence on the
represented surface.

There are several possible forms of input data. A DEM (digital
elevation map) which contains the height values of the surface ob-
tained, for instance, from SRTM (Shuttle Radar Topography Mis-
sion) or LIDAR (Laser Imaging Detection And Ranging, a time-
of-flight based range laser scanning method) data. Along with the
DEM there may either exist aerial photographic maps, topographic
maps, and/or aerial photographic interpretation data. Note that we
assume that these maps are already registered to the DEM.

The idea is to use the additional information to modify the eleva-
tion and/or photographic map in order to increase the realism in the
scene. In this paper, the focus is put on arboreous regions which
constitute a special challenge due to their canopy structure. The
goal of the preprocess is to create a combined elevation map from
the various existing data sources (refer to Figure 2): by exploit-
ing the available information, a vegetation cover map is generated
that identifies arboreous regions. This map is then used to augment
the original DEM with a generic displacement map (called canopy
proxy texture) in order to geometrically enhance the forest canopy.
The resulting combined elevation map represents both the terrain
and its vegetation cover.

Please note that the basic idea to augment the original scene with
a proxy appearance is also applicable to other surfaces like water,
rocks, grass, glaciers and so on. Depending on the level of detail
within the classification, this can be done generically (water, grass,
rock or trees), or at a highly specific level (mixed forest, dominant
species larch, 60% closed). In the latter case the proxy geometry
can be varied at a much finer scale than if only a rough distinction
is available.

The following subsections describe the individual steps for generat-
ing the combined elevation map, including the identification of ar-
boreous regions (Section 3.1), resampling terrain elevation data to
an appropriate level and combining terrain elevation with a suitable
canopy proxy model to the combined elevation map (Section 3.2).
A schematic overview of these preprocessing steps is also depicted
in Figure 2.

3.1 Identification of Arboreous Regions

Arboreous regions must be identified in order to generate the veg-
etation cover map. This can be done through a number of means.
If aerial photographic interpretation or other GIS data is available,
this typically already contains the required information. Each re-
gion within the information database is assigned a classification
ID, through which properties such as primary and secondary plant
species, height and density can be queried.

If no such data is available, the information can be extracted man-
ually or (semi-) automatically from a given photographic and/or
topographic map. For example, there are a number of methods
for automatic deriving trees and other features [Straub and Heipke
2001; Gougeon and Leckie 2003]. If the input data is a topographic
map instead of photographic material, the forested areas designated
in the map can of course also be used in a similar fashion. Fig-
ure 5 shows an example of vegetation data derived purely from a
1:50,000 scale topographic map. In this example, the arboreous
regions were identified manually and smoothed through a morpho-
logical close (dilation followed by erosion) operation to combine
regions separated eg. by height lines. However, note that algorithms
exist to perform this process automatically and to also identify ad-
ditional features from the map [Arrighi and Soille 1999; Miyoshi
et al. 2004]. The resulting vegetation cover map contains values
between 0 for non arboreous regions and 1 for regions identified as
forests.

3.2 Canopy Proxy Models and Height Map Texture
Creation

Since the vegetation cover map only describes the presence of veg-
etation on the map but does not capture the undulating canopy sur-
face typically seen in forests, we use a separate canopy proxy model
to achieve this effect. This canopy proxy is essentially a generic,
tileable patch of canopy height data based on a LIDAR scan of
a deciduous forest. For large areas, we propose a tileable, non-
repeating solution such as Wang tiles [Cohen et al. 2003]. Although
we only use one canopy proxy because our vegetation cover map
does not identify individual species, the identification preprocess
could be extended, allowing the use of several distinct canopy prox-
ies for different surfaces, e.g., for deciduous or coniferous forests,
or bushes.

In the ray casting step (see Section 4), the combined local height
of the terrain and the canopy is required to calculate exact ray-
canopy intersection points. To provide this information, the tileable
canopy proxy model is multiplied with the vegetation cover map,
and the resulting vegetation height added to the local terrain height
and stored in the final texture.

An important issue in this context is the (vertical) map resolution.
The DEM typically stores height values between 0 and 2000 meters
(for high mountains even more), resulting in a vertical resolution of
approximately 8 meters for an 8 bit map. Because this is clearly too
coarse for modeling a forest canopy (for an example see Figure 3),
the map is extended to 16 bit resolution before it is modulated with
the proxy map.

Furthermore, since digital elevation data is typically available in
resolutions of approximately 10-25 meters at best, it needs to be
resampled at a higher (horizontal) resolution to capture individual
trees in a canopy with sufficient detail. We have found 0.75 to
1.5 meters to be sufficient for this task. Note that bilinear filtering
should be used for this step in order to preserve a smooth surface.



Figure 3: Visual artifacts as a result of insufficient vertical resolu-
tion.

One might argue that we could have used two separate textures for
the DEM and canopy proxy map and combine them in the fragment
shader at runtime in order to save memory. In fact our first proto-
type system implemented this approach but the resulting shader was
significantly (about 4 times) slower than using a single 16-bit tex-
ture. We attribute this to having to access two 8-bit textures per ray
casting step. Although the total data per access is the same for two
8-bit textures as for one 16-bit texture, accessing a second texture
apparently results in much worse cache coherence. Furthermore,
the inner loop of the shader becomes more complex (2 texture +
12 arithmetic operations compared to 1 texture + 9 arithmetic op-
erations, a 40% increase). Although this approach significantly in-
creases the required memory, we do not expect this to be an issue
for large scale terrain rendering, because such applications typically
already support dynamic texture loading and unloading.

4 Runtime: Interactive Landscape Render-
ing

Given the DEM, enhanced with the canopy geometry as described
in Section 3, the goal is to interactively display the landscape with
realistic illumination. The rendering algorithm is based on per pixel
ray casting using the GPU.

Due to its high resolution (at 0.5m resolution, a 1km2 area amounts
to 2000x2000 samples, or roughly 8 million triangles) it is not prac-
tical to directly convert it to a triangular mesh for rendering. Of
course any number of geometric reduction algorithms could be ap-
plied to create a less detailed representation. However, retaining
full detail is typically desirable, eg., to identify outliers and system-
atic errors from the data acquisition process. We therefore propose
to render a very coarse approximation as a convex hull, and to ’fill
in’ details as needed through an exact ray casting algorithm. Fur-
thermore, the presented pixel shader approach allows an easy adap-
tation to different rendering styles and illumination methods (just
by slightly changing the shader program). Note that this would be
much more tedious with a fully geometric representation.

Section 4.1 discusses the choice of the geometry to be rendered in
order to generate the fragments necessary for the ray casting. Sec-
tion 4.2 describes the basic ray casting step in more detail and Sec-

tion 4.3 discusses the avoidance of rendering artifacts that are often
noticeable in previous approaches. Section 4.4 discusses possibili-
ties how to accelerate the ray casting step and Section 4.5 describes
how advanced illumination techniques like shadow mapping can be
implemented.

4.1 Choice of Rendering Primitives

At runtime a low-polygon approximation of the terrain is sent to the
graphics card. The generated pixel fragments are used as starting
points for ray casting within the pixel shader (see Section 4.2). The
ray caster then uses the canopy map to derive exact visibility and
optionally compute surface color and illumination.

Since the geometric representation of the terrain is only used to cre-
ate the fragments for the pixel shader ray caster, it can be relatively
coarse. In fact, even rendering a simple plane in front of the camera
would be sufficient for this task. On the other hand, the geometry
defines the starting point for the ray caster in the map (see Sec-
tion 4.2). It is desirable to generate a starting point close to the
landscape surface so that an intersection of the viewing ray with the
surface can be found quickly. Many landscape exploration systems
already use geometric levels of detail for the terrain, and fortunately
these approximations always results in starting points close to the
surface.

Since the geometry must encompass the terrain as well as the veg-
etation on top of it, an appropriate vertical offset is necessary. This
can be easily performed in the vertex shader, which also allows a
smooth transition to other rendering methods that are not based on
displacement mapping.

4.2 Basic Algorithm: Per Pixel Ray Casting

We use a ray casting step that intersects the viewing ray against the
combined elevation map, similar to the one described in previous
work [Qu et al. 2003; Hirche et al. 2004; Policarpo et al. 2005].
Every vertex is assigned a 2D texture coordinate for the combined
elevation map. The per fragment 2D texture coordinate (generated
during the hardware rasterization) is the starting point for the ray
casting algorithm in texture space. For simplicity, we define the
landscape in world space over a (x,y) plane and z points up. The
2D direction in texture space is then simply defined by the (x,y)
coordinates of the viewing ray in world space. Beginning with the
starting point, the ray caster compares the value (the height) in the
combined elevation map with the respective z value of the view-
ing ray at that position. If the ray is lower than stored height, an
intersection with the heightfield occurred and the ray caster stops.
Otherwise, the next position along the ray is evaluated using a user-
defined distance from the current position. This process is repeated
for a user-defined number of steps. If the surface has not been hit,
the fragment is clipped in order to provide correct landscape silhou-
ettes.

4.3 Rendering Quality Considerations

Per-pixel displacement mapping algorithms are often associated
with rendering artifacts such as texture distortion and/or incorrect
silhouettes. For correct ray casting of a displacement map on ar-
bitrary objects, the ray would need to be distorted appropriately
to capture the curvature of the object. This problem is typically
solved by using a piecewise linear (or, in the case of [Oliveira and
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Figure 4: Ray casting acceleration. In addition to the local height
(=1 texel safety zone), two safety zones (brighter green boxes) are
stored for each texel. The maximum step size is determined by the
largest box that is not intersected in its floor.

Policarpo 2005], quadric) approximation for each individual trian-
gle of the object. Triangles of the original mesh are rendered as
prisms or tetrahedra to guarantee continuity and to avoid artifacts
due to missed intersections. The use of these primitives also allows
the computation of the exit point of a ray from the current prism or
tetrahedron. By knowing both the start and exit point, the number of
ray casting steps required for full coverage can be easily computed.

In our case, object curvature issues are obviated, because the dis-
placement map stores absolute height information relative to a
ground plane, i.e. the original mesh can be regarded as a plane
with zero curvature. Therefore, no conversion to prisms or tetrahe-
dra is required. However, given a very large terrain the number of
ray casting steps required for full coverage of the terrain may be ex-
cessively large. To avoid this problem, we subdivide the terrain into
tiles that are rendered individually. Each tile has a vertical bound-
ary ’skirt’ to avoid missed intersections, which can be directly com-
pared to using prisms on a per-triangle level. Fortunately, similar
skirts are also used in many tile based terrain rendering techniques
to hide T vertices and other tiling artifacts [?; NASA ], and such
geometry could be re-used directly for our approach.

Also note that the distance between two ray casting steps as well
as the overall number of steps provide simple means for balancing
rendering speed and image quality.

4.4 Ray Casting Acceleration

Our per-pixel ray caster is based on the acceleration scheme pro-
posed by Kolb et.al. [Kolb and Rezk-Salama 2005]. For every texel,
a so-called safety zone is defined, being the largest height value
within a user-defined radius around that texel (see Figure 4). The
safety zones for all texels are computed and stored in a preprocess.
At runtime, the minimum height of a ray within the radius of the
current texel is computed using some simple (and fast) math. If this
minimum height of the ray within the radius is above the maximum
height, it is guaranteed that the ray does not intersect the height
field within the current safety zone and the next sampling point can
be placed just outside the zone instead using a constant distance
as was described in Section 4.2. It is also possible to precompute
multiple safety zones per pixel and to evaluate them in parallel at
runtime by exploiting the vector arithmetic of graphics hardware.
As an example, in Figure 4 the ray intersects the two inner safety

zones (the height of the current texel as well as the first (5 texel)
safety zone) at their sides (blue dots, respectively) whereas the sec-
ond (13 texel) safety zone is intersected through the floor (red dot).
Therefore, the largest safe step size is determined by the medium
box (left blue dot). Although Kolb et al. use three parallel safety
zones, experiments showed that the performance gain of two safety
zones is hardly lower compared to three zones, so we only used 4
and 32 texel safety zones. The last component was then used for
the illumination calculation (see Section 4.5).

4.5 Illumination Calculation

In some situations it might be desirable to relight the scene, for
instance, when the sun should be simulated over a whole day. In
order to get decent lighting, we first experimented with recovering
local normal vector information and calculating diffuse illumina-
tion in addition to ambient occlusion and self shadowing. Unfortu-
nately, this resulted in a quite unrealistic, ’plastic’ look of the forest.
We attribute this to the fact that the reflectance properties of forest
canopies are hard to capture with a diffuse reflection model, and
just using an ambient solution seems to be the best compromise if
short of using a BRDF from measured data [Martens et al. 1991].
Consequently, the color read from the orthophoto map (or, respec-
tively, topographic map) at the intersection between view ray and
elevation map is defined as base color.

In order to shadow the scene, the ray casting approach allows for
a simple and efficient shadow computation which avoids imple-
menting shadow mapping or shadow volumes [Akenine-Moeller
et al. 2004]. Beginning from the intersection between view ray
and elevation, a ray is constructed to the light source (several light
sources are of course also possible, requiring an individual ray to
every light). The ray casting process is then basically performed
as was described in Section 4.2. If the ray intersects the scene,
the current pixel is in shadow. Otherwise, it is lit. Unfortunately,
we have found that in the case of forests and trees, this produces
very hard shadows that look not quite natural. Instead, we accu-
mulate shadowing over several steps similar to ray casting of volu-
metric data [Kajiya and Herzen 1984] and in the spirit of the deep
shadow map technique by Lokovic and Veach [Lokovic and Veach
2000]. To also capture the contribution of distant scene parts (such
as distant mountains), the step size is increased linearly, such that at
close range, occluders are finely sampled and cast darker shadows
whereas more distant occluders have a smaller contribution to the
final shadowing. This results in visually pleasing shadowing, and
the diminishing contribution can be likened to a pseudo ambient oc-
clusion solution (where more distant occluders are outweighed by
a dominating ambient illumination). See also Figure 6.

Also note that typical orthophoto maps already contain shadows,
which must be removed beforehand. We redirect the reader here
to Premoze et al. [Premoze et al. 1999] whose discuss efficient
methods for this task. Figure 7 shows an example for this.

5 Results

We have implemented our method as a C# / Managed DirectX ap-
plication using HLSL shader model 3.0 shaders. Screen shots and
performance figures were taken on a 3.2GHz Pentium D PC with
1 GB RAM and an ATI Radeon X1900 XTX GPU with 512MB
DDR3 memory.

For evaluation, we acquired sample data of a 3.5km x 3.5km section
of the Stillwald area situated in the Nationalpark Hohe Tauern in



Austria. A digital elevation model, topographic map data and an
aerial photography interpretation was available for the entire area,
whereas the orthophotographic data at hand only covered the inner
2.5km x 2.5km subset. The original DEM data had a resolution of
10m (350x350 texels) and the orthophotographic data was provided
at a resolution of 1.25m (2000x2000 texels).

Our canopy proxy texture was derived from a LIDAR scan of a
500m x 500m coniferous forest. The scan data was converted to
an elevation map with 0.5m resolution (1000x1000 texels) and af-
terwards manually converted into to a large, tileable texture. The
output resolution of our canopy proxy was 2048x2048 texels for
the entire area (1.7m resolution), which was also the resolution of
the combined elevation map.

The aerial photography interpretation included a highly detailed
classification including vegetation density, dominant and subdom-
inant species and underlying terrain structure. In theory this could
be used to synthesize a highly detailed combined elevation map that
also differentiates between various tree species, coppice, rocks and
grassland. However since we only had a single canopy proxy tex-
ture we simplified the classification to only discern between arbore-
ous and other areas.

Although aerial photography interpretation is based on orthophoto-
graphic data, the identified areas did not correspond exactly to the
provided orthophoto. We attribute this to the interpretation being
a partially manual process, such that small border details may be
missed or consciously omitted. Similarly, the topographic map is
an even stronger abstraction of reality where the correspondence of
identified forests to ’reality’ is an even coarser approximation.

5.1 Visual Quality

The main benefit of our rendering method is the visual detail pro-
vided by the forest canopy. Effects such as correct parallax are hard
to capture in screen shots, however for example Figure 5 shows how
a terrain textured with a topographic map can be visually enriched.

Figure 1 displays (from left to right) the same view rendered as a
plain textured landscape, with textured with illumination, and with
our approach. The benefits of adding vegetation to the rendering
are clearly visible. In Figures 1 and 9, slight misregistration ar-
tifacts between the orthophoto and the forest canopy can be ob-
served. This is a result of the approximate nature of the (manual)
aerial photographic interpretation used for these models, which did
not capture the exact forest boundaries.

In Figure 10, the orthophotographic information was embedded in
a larger area and additional topographic data was used to create a
canopy model that covers both the detailed orthophoto and the sur-
rounding area. This is a versatile means of providing a meaningful
setting for detailed landscape data.

Examples for dynamic illumination are also presented in Figures 6
and 7. For Figure 7, the original orthophoto contained illumination
information which was removed manually. Of course this is not
practical for larger areas, however automatic algorithms exist for
this task [Premoze et al. 1999].

The performance / quality tradeoff of our approach is illustrated in
Figure 8. The left image is rendered with 30 ray casting steps and
exhibits some artifacts near the horizon as depicted in the magnified
inset. On the right, a higher step count (70) is used, resulting in a
much higher visual quality.

2048x2048 4096x4096
10 20 30 10 20 30

30 35.4 29.0 24.1 25.3 20.7 19.1
50 32.2 27.0 22.6 23.1 19.1 16.2
70 30.1 26.0 21.9 22.1 18.4 15.5
90 29.8 25.1 21.7 21.5 18.0 15.4
(down : intersection steps. across : shadow steps)

Table 1: Average frames per second for 2048x2048 texels and
4096x4096 texels combined elevation maps with various values for
ray casting intersection and shadow accumulation steps.

5.2 Performance Evaluation

To evaluate the rendering performance of the proposed method,
we defined a camera path through the terrain and calculated aver-
age frame rates for various parameter values. Note that frame rate
variance was low because the performance mostly depends on the
number of rendered pixels which was constantly high. All frame
rates were measured with the application running full screen at
1280x1024 pixels. Given the output sensitivity of our approach,
smaller screen sizes (e.g. in a windowed application) have cor-
respondingly higher performance. For example, we achieved an
average frame rate of 15.4 frames per second (fps) in full screen
mode for 90 view ray intersection steps + 30 shadow ray intersec-
tion steps, and in windowed mode (640x480 pixels) with the same
parameters the application ran at 24fps.

The lowest setting that produced visually acceptable results in full
screen mode used 30 steps for intersection calculation, and 10 steps
for shadowing accumulation (see Table 1). With a 2048x2048 tex-
els combined elevation map, we achieved an average frame rate of
35fps. In contrast, a very high setting (70 intersection steps) still
ran at 30fps. Only after adding significantly more shadowing accu-
mulation steps (70 + 30), the frame rate dropped to approximately
22fps.

We did also experiment with higher resolution canopy proxy maps
and combined elevation maps (0.85m, resulting in 4096x4096 tex-
els). However, this did hardly improve the visual quality while
causing a significantly reduced rendering performance (see Table 1)
due to an increased number of necessary ray casting steps in order
to calculate the view ray/elevation map intersection point. In ad-
dition, higher resolution elevation maps increase the time required
for preprocessing (between 80 and 180 seconds). However, the re-
quired time can still be called fairly short, and our preprocessing
code leaves much room for further optimizations if preprocessing
time becomes an issue.

6 Conclusions and Future Work

We have demonstrated an interactive technique for realistic render-
ing of landscape data. The work focussed on enhanced represen-
tations for vegetation without the need to model each plant indi-
vidually. Instead, the approach combines a generic tileable canopy
proxy model with landscape specific information to create a height
map that can be rendered directly on the GPU. Although in theory
it may be possible to achieve a comparable approximation of vege-
tation by creating a purely geometric approximation (ie. a suitably
fine, adaptively tesselated mesh), we believe that our solution has
several advantages over such an approach. Its integration into ex-
isting terrain rendering frameworks is quite straightforward, only
requiring one additional texture and the vertex and pixel shader.



Figure 5: Comparison of topographic map and our visualization derived from the same map

Figure 6: Example for dynamic coloring and illumination of a scene derived from a topographic map.

Figure 7: Dynamic illumination of a landscape with orthophotographic data



Figure 8: Artefacts caused by too few ray casting steps (left) and the same scene rendered with a higher number of steps (right)

Figure 9: (left) Visualization derived from orthophotos, aerial image interpretation and digital elevation model. (right) close-up view.

Figure 10: examples of an orthophotographic image embedded in a larger model, with continuous canopy information.



Changing the appearance of the rendition is very simple by adapt-
ing the shader program. Also note that the presented approach re-
quires a fairly short preprocessing time and the ray casting shader
implementation is relatively simple.

In terms of future work we are currently working on integrat-
ing the algorithm into NASA’s open source World Wind applica-
tion [NASA ]. This will also demonstrate the applicability of our
approach to large scale terrain data and LOD rendering methods.
In large scale terrain rendering, distant areas are typically rendered
with coarser geometry and lower resolution textures. Using smaller
textures instead of mipmapping significantly reduces the amount of
GPU memory required for distant areas, and the textures are dy-
namically replaced by full resolution data as needed. We believe
that our method could be easily adapted to such a system, and lower
resolution textures would require fewer ray casting steps for full
coverage and thus result in higher render performance for the far
field.

Other ongoing research includes ways to enhance the technique for
close-up views, where the limitations of our approach become ob-
vious. One possible way would be the capability of selectively
’hiding’ very close areas of vegetation, which would then be rep-
resented with detailed geometric models. In order to avoid visual
artifacts, this would require good correspondence between the veg-
etation map and the detailed models.

Our approach could also be extended for visualizing other terrain
features such as grass and shrubs, rocks, snow cover and glaciers
similar to the work by Premoze et.al. [Premoze et al. 1999]. It
would also be interesting to investigate how this could be adapted
for dynamic surfaces such as water bodies.

Non-photorealistic rendering methods could also be implemented
to distinguish regions with special properties, for example, forest
areas to be cut or reforestation areas or to display additional data
(vegetation health, soil/air quality, ...). This could also be gener-
alized to rendering data in a time dependent fashion. It might be
possible to use a 3D texture for this task and exploit hardware in-
terpolation for smooth blending over time.

Finally, we are investigating other ray casting acceleration schemes
that may be more efficient for our kind of data, and extending our
data to have multiple canopy proxy maps to be able to distinguish
between tree species and also integrate other structures such as bod-
ies of water, rocks, glacier and buildings.
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