
Rendering of Forest Scenes

Paul Guerrero

September 19, 2006

Abstract

I will discuss and compare two methods to render
large forest scenes. One involves pre-generated im-
postors with different levels of coarseness, the other
one batches up large parts of the scene according
to an octree grid. Additionally, a method for LOD
blending without transparency and a method for tree
shading will also be presented.

1 Introduction

Rendering a forest scene involves rendering thousands
of trees, each one having a complex geometry when
fully modeled. To render such a scene without ge-
ometry simplification of any sort would be exceed-
ingly slow, even modern graphic cards can’t render
hundreds of millions of polygons at interactive frame
rates.

Another problem with the naive approach is that
instancing trees requires thousands of render calls per
frame, which stalls rendering even when rendering
only few polygons per tree1.

1Instancing trees requires one render call per tree, although
this problem may be alleviated with hardware instancing.

The unique material of forests, when seen from a
distance, with its strong parallax effects, make sim-
plification of groups of trees difficult.

Various attempts have been made to cope with
those difficulties. One approach described in [1] is to
automatically generate multiple LOD levels for each
tree and choose one of them for display based on the
viewing distance.

[2] propose using a specially tiled 3D texture to
represent the forest, which is then displayed in lay-
ers. This method does not work well for close-ups
of individual trees, but gives good frame rates of re-
alistic forests when viewed from a distance (e.g. for
flight simulators).

In [3] trees are rendered using points of increasing
coarseness instead of triangles, if screen size or visi-
bility is low. Clustering and averaging of finer points
is used to construct the coarse points. This method
can be used for a near view at a forest (walk through)
as well as for a landscape view of it.

The goal of this project is to display a forest scene
consisting of around 75.000 trees at interactive frame
rates while maintaining good visual quality.

I have implemented and tested two different meth-
ods for forest rendering in Ogre [4], one based on [5],
using an impostor for each octant of an octree cov-
ering the scene, the other one involving image-based
LODs, LOD blending, and special tree shading.

2 Impostor Method

The idea of this approach (described in [5]) is the fol-
lowing: Organize the scene in an octree and build one
impostor for each octant in each level of the octree.
An impostor simply contains six colours, represent-

1

ing the octant as viewed from each of its six sides.
If area of on octant on screen is small enough, the
impostor is displayed instead of the contained geom-
etry. The same principle is applied to higher levels
in the octree: if the higher octant is small enough,
its coarser impostor is displayed instead of the finer
child octant impostors.

This method can be implemented efficiently by re-
cursing through the octree, starting at the root and
continuing deeper into the octree until either the
screen area of an octant is small enough or a leaf
octant is reached2. In the former case, the octant
impostor is drawn and the subtree of this octant is
disregarded. In the latter case, the original geometry
is drawn.

Impostors are generated in a pre-processing step
by rendering the contained geometry of each octant
from six sides and averaging each resulting image to
one colour. Coarser Impostors in higher levels of the
octree can be constructed by averaging the colours of
the finer impostors in the child octants.

Impostor Rendering saves rendering time by dis-
carding distant geometry and using impostors of in-
creasing coarseness instead. This speedup comes at
the cost of using image-based impostors and the as-
sociated loss of visual quality.

2.1 Loose and Tight Octrees

In Ogre, the standard scene manager uses an octree
to manage the scene and do culling. It is a loose
octree, meaning that octants in the same octree level
overlap by a factor of 0.5. This octree organization
assures that each object is inside the volume of only
one octant. The single octant containing the object
is determined by the center and extent of the object
bounding box. This way, objects can be managed
easily and don’t have to be split up.

However, loose octrees are not well suited for the
impostor method described above, since overlapping
impostors cause visible artifacts, like too much opac-
ity on the overlapping areas when using transparent
impostors, depth fighting, and a loss of resolution

2It is also possible to define a maximum octree depth to
keep the number of impostors low. Impostors are only gener-
ated up to this depth.

 tight octant
loose octants

loose volume

tight volume

Figure 1: The teapot object has one loose octant and
three tight ones. The red dot marks the object center.

since the octant screen area will be larger than in a
standard octree.

To avoid having to use two octrees for the same
scene, the existing octree has been adapted to act as
loose octree as well as standard octree. I will call the
standard octree ’tight’ octree from now on to avoid
confusion.

To achieve this, each object in the scene is assigned
to exactly one loose octant and possibly one or more
tight octants, if the object is also inside the tight
volume3 of these octants. In Figure 1, the center of
the teapot object determines its single loose octant.
The object is completely included in the octant loose
volume. If the object would be bigger, it would have
to be assigned to an octant at a higher level of the
octree. The teapot also has three tight octants, since
it is partially included in their tight volumes.

Tight octants of an object are always at the same
octree depth as the object loose octant. Octants are
created on demand, so there are no empty octants in

3Tight volumes are the non-overlapping volumes of octants.

2

the octree.

2.2 Impostor Generation

In a preprocessing step, each leaf octant (or octant
at maximum depth) is rendered from six sides. The
rendered colours are then averaged to calculate the
colours of the octants at higher octree levels, resulting
in six colours for each octant in the octree.

One difficulty in storing rendered colours is that
texture readbacks have to be done. This is generally
not recommended and can be very slow. To avoid
having to do one readback per render, many octant
sides are rendered into one large texture, which is
read back afterwards.

2.3 Impostor Types

Two types of impostors have been implemented,
sprite impostors and cube impostors.

Sprite impostors consist of a sprite that is always
facing the camera. The single colour of the sprite is
interpolated from three of the six side colours, de-
pending on the viewing angle.

Cube impostors are colour cubes. Each side of the
cube has a single colour.

Both impostor types have the extent of the octant
tight volume.

To reduce memory consumption, one material is
used for as many impostors as possible. The impostor
colours are packed into large textures and texture
coordinates for impostors are adapted.

2.4 Clustering

When clustering, more than one impostor is gener-
ated for each octant. Impostors are arranged in a
clusterSize × clusterSize × clusterSize grid inside
the octant. This is more efficient than simply increas-
ing octree depth since the whole cluster is treated as
a single mesh and just one render call is needed. The
drawback is that only the whole cluster can be shown
or hidden, not parts of it.

When building a cluster, 6×clusterSize sides have
to be rendered. Each image contains colour infor-
mation for clusterSize× clusterSize impostor sides.

impostors

billboards

full geometry

Figure 2: Impostors are rendered at far distances.
Between impostors and full geometry, billboards are
used.

Parts of the cluster that are hardly visible (too little
alpha) are left out. This requires having a separate
mesh for each cluster, increasing memory consump-
tion, but, especially in a tree scene, with a relatively
thin layer of trees above the terrain, large parts of
the cluster geometry can be omitted.

Impostors require at least 6× clusterSize3 colours
for each octant. In the forest scene, this amounts
to 138MB, when using 32 bit colours and standard
settings.

Impostors in the forest scene are typically rendered
at far distances (see Figure 2). Billboard trees are
used for the large area between the original geometry
and the impostors.

3 Static Geometry Method

This method achieves better visual quality by simply
continuing to render billboard trees at far distances.
The main bottleneck when rendering each instance of
a tree separately is the large number of render calls

3

0123 9101112

ordered static geometry

octree serialization

0 1 2 3 4 5 6 7 9 10 11 12
13

14
8

13

4567

8

14

Figure 3: Octree serialization defines the ordering of
the static geometry.

issued.
Since trees are assumed to be static, it is possible

to group all trees in the scene into one large soup of
polygons, which can be rendered by issuing a single
render call 4.

The problem with this approach is that software
culling and LOD switching can’t be done, since only
all of the billboard trees can be rendered or none.

One solution could be to use a grid of smaller tree
groups and display or hide each group as needed. But
the choice of grid resolution would be problematic.
When choosing a fine resolution, too many render
calls are needed. When choosing a coarse one, there
is too little control over the border between static
geometry and instanced geometry.

A better method is to use an octree to group the
trees in multiple grid resolutions. This is done as
follows:

4Due to hardware limitations (16 bit indices), more than
one render call is needed when rendering large amounts of
trees, but the number of render calls needed is very low when
compared to separately rendering each tree.

First the octree is serialized by recursively num-
bering its octants depth-first. Then, the billboard
trees are added to the single polygon soup in the or-
der defined by the octree serialization (see Figure 3).
For each octant, two indices into the polygon soup
are stored, marking the beginning and the end of the
octant geometry.

Since only two pointers have to be stored per oc-
tant, only minimal additional memory is required
compared to the grid method.

Now it is possible to render the geometry contained
in any octant volume with one render call. By choos-
ing an octree level, the resolution of the tree group
grid can be varied.

The algorithm to render the static billboard trees,
starting at the octree root, is described in Figure 4.

draw_geometry(octant) {

if (not_visible(octant))
return;

if (dist_to(octant.bound) < LOD_dist)
for each child octant
draw_geometry(child octant);

return;

if (partially_visible(octant)
and
octant_depth < max_cull_depth)

for each child octant
draw_geometry(child octant);

return;

draw_octant_geometry();
}

Figure 4: The algorithm used to render static bill-
board trees.

An octant is either split up if it is close enough to
the camera, so that some of its trees may be drawn
using full geometry instead of billboards, or if part of
it can be culled.
draw octant geometry requires one render call.

max cull depth defines the octree depth, after which

4

octants are no longer split up to do visibility culling.
Splitting up octants to do culling only helps to im-
prove performance up to a certain depth, since it also
increases the number of render calls needed and the
number of culled polygons is smaller close to the leaf
octants.

For readability, the non-static billboard trees (bill-
board trees that are close to the camera and drawn
one at a time) are not included in the pseudo-code.

Later, I will show that using static geometry in
the forest scene is actually faster than the impostor
method described in the last section, while achieving
better visual quality.

3.1 Implementation in Ogre

The Ogre static geometry class has been modified
to support indexing into regions of static geometry.
Each octant stores two indices into such a region,
pointing to the beginning and end of the octant ge-
ometry.

4 LOD blending

At far distances, trees are represented as crossed
billboards. Crossed billboards were used instead of
sprites (billboards facing the camera), since crossed
billboards avoid a problem with sprites; when two
sprites are close enough to overlap, popping of one
sprite in front of the other can be seen at some angles,
when rotating around the sprites. However, shading
of crossed billboards is more difficult. I will address
this problem in the next section.

The LOD blending implemented does not use
transparency, instead small texels of the tree are
blended in or out, according to a noise pattern (sim-
ilar to the technique used in SpeedTree[6]).

First, a grey-level noise texture is created in mul-
tiple resolutions. This texture is then used by the
two blending LOD levels to determine which texels
are visible. A blend factor ranging from 0.0 to 1.0
determines the overall visibility of a LOD level. Only
texels with an intensity smaller than the blend factor
are rendered.

low detail LOD

low detail blending

high detail blending

high detail LOD

Figure 5: LOD blending is not done in parallel.

The resolution of the noise texture is very impor-
tant. If it is too small, the texel areas are too large
and become obviously visible. If it is too large, the
texture becomes blurred to only a few grey values.5

Figure 5 shows how LOD levels are blended over
the distance. LOD levels are not blended in parallel.
First one LOD level is completely blended in, then
the other one is blended out. This is done to avoid
that the background leaks through.

This kind of blending helps to reduce the ’ghost-
ing’ effect seen when using transparency for blending.
Since trees usually have a noisy texture (due to the
great number of leaves), noise blending is harder to
notice in this noisy environment. Additionally, in
contrast to transparency blending, no depth sorting
or alpha blending has to be done.

LOD blending is implemented in Ogre by extend-
ing the entity class to calculate the blend factor. The
actual blending is done by vertex and fragment pro-
grams.

5It may also be necessary to turn off texture filtering to
avoid blurring of the texture to few grey values if the texel
screen size is small.

5

5 Tree Shading

Figure 6: Billboard trees shaded by using the normal
orthogonal to the billboard plane.

The default shading of the crossed billboards (with
normals orthogonal to the billboard plane) reveals
their flatness (see Figure 6) and the default shading
on high detail tree models doesn’t take self-shadowing
into account, a property that is important for realistic
shading in (dense) trees. On a tree, leaves that are on
the side opposed to the sun are usually darker since
the sunlight has less chance to get through to them.

Taking this property into account, the diffuse fac-
tor for a vertex in a tree is determined by its distance
from the tree center along the sun direction (see Fig-
ure 7).

This shading works well for full geometry trees, but
still shows some artifacts when applied to billboards.

First, shading is incorrect when looking at the dark
or light side of the tree, since all vertices of the facing
billboard are at about the same depth as the tree
center, resulting in a medium lightness for the whole
billboard. This error occurs, because billboards are
located at the center of trees, while in real (dense)
trees, we hardly ever see the leaves or small branches
at the center of the tree.

Second, the edges of billboards seen at a grazing
angle are usually brighter or darker than the the un-
derlying colour of the billboard facing the camera.

tre
e d
ep
th

tree center
vertex

Figure 7: The tree depth of each vertex is used for
shading.

This makes the edges of grazing angle billboards vis-
ible.

Both problems are shown in Figure 8, the encir-
cled billboard edge has a different colour than the
underlying billboard. The billboard marked with a
red border has a medium lightness, even though it
should be darker when viewed from the side opposite
to the sun and lighter when viewed from the other
side.

To correct these problems, all billboard vertices are
projected onto a plane for lighting calculation. This
plane has an offset towards the camera, usually half
the radius of the tree.6 This method results in a
smooth gradient. Figure 9 shows the corrected shad-
ing model for billboards.

Figure 10 shows the results of using the corrected
shading. The right image shows the lightness of
the billboards. Note how the gradient is now much
smoother.

6Since most trees have more of an elliptical shape than a
spherical one, the tree radius is larger in the vertical directions
when calculating the offset.

6

Figure 8: Billboard trees shaded without projecting
the vertices to a plane. Only the lightness of the
billboards is shown.

For trees close to the camera, this kind of shading
may look too smooth (trees have a very noisy tex-
ture). To avoid this effect, in full geometry trees, the
normals of each leaf are also taken into account when
calculating the diffuse factor.

Note that billboard vertex positions in the static
geometry polygon soup are relative to the polygon
soup center, not the billboard center. The vertex
positions relative to the billboard center are saved as
texture coordinates in each vertex, which can then be
read by a vertex program.

6 Results

The two methods were tested on an Athlon64 (run-
ning in 32-bit mode) at 2.2 GHz with a GeForce 7800
graphics card at a resolution of 800× 600 pixels.

For the impostor method, cube impostors were
used with a cluster size of 12 and a maximum oc-
tree depth of 8. For the static geometry method, a
maximum culling depth of 7 was used.

The scene consists of about 75000 trees, a terrain
and some smaller objects. Three tree models were
used: a palm tree (about 340 vertices in full geom-
etry), catalpa (about 650 vertices in full geometry)
and cammelia (in three colours, about 2800 vertices

camera

Figure 9: Each vertex of a tree billboard is projected
to a plane for shading.

in full geometry). 7 One low detail LOD level was
used for each tree model, consisting of three crossed
billboards.

Because impostor rendering requires more render
calls, impostor rendering performs poorly when com-
pared to static geometry rendering. To achieve the
same frame rates, the impostor screen area has to be
very large resulting in unacceptable image quality.

Figure 11 shows a comparison of static geometry
to impostors.

When using static geometry organized in an octree
structure, the frame rate is 35 to over 100 frames per
second. When rendering almost all of the 75000 trees
using billboards only, the frame rate is around 50 fps.

Figure 12, top shows most of the forest scene. Only
billboards are rendered (no trees are close enough to
show full geometry).

When getting closer, more render calls are needed

7The number of vertices was not the bottleneck in the ap-
plication. Cammelia forests would render just as fast as palm
tree forests. The number of render calls needed was a much
larger factor for performance.

7

and the trees closer to the camera display full geom-
etry. Figure 12, bottom shows a closer view at the
trees. When displaying full geometry, the frame rate
depends mostly on the number of different materi-
als per tree, as each material needs a separate render
call. When ’walking’ among the trees, the frame rate
is 35 to 100 fps, depending on the number of trees in
view.

For comparison, here are results when using the
other methods for tree grouping mentioned in section
3:

Drawing each tree separately results in 0.2 - 0.3 fps
when viewing most of the 75000 trees. When flying
through the scene, the framerate is rarely above 10
fps.

When using a grid with a resolution fine enough to
do LOD blending 8 instead of the octree structure,
the framrate is in the range of 10-35 fps (10 fps when
viewing most of the 75000 trees).

7 Conclusion

The results have shown that impostor rendering as
described in this document would only be efficient,
if large parts of the scene were very distant, such
that many trees would be mapped to one or only
a few pixels. Although the memory requirements for
impostors in such a scene would probably be too high.

A hierarchical static geometry structure organized
in an octree gives the ability to hide or show regions
of arbitrary size and location inside a static geometry
polygon soup, while keeping the number of render
calls low. Minimal additional memory is needed.

LOD blending with noise textures is usually less
noticeable in tree environments than transparency
blending and helps to increase performance, because
no depth sorting or alpha blending is needed.

Tree shading that takes the tree depth relative to
the sun direction into account hides the flatness of
billboards and results in more realistic shading with
minimal additional processing needed, although mea-
sures have to be taken to avoid that trees close to the
camera appear too smoothly shaded.

8Each grid cell contains roughly 100 trees.

References

[1] A. Fuhrmann, E. Umlauf, S. Mantler: Ex-
treme Model Simplification for Forest Rendering.
In Eurographics Workshop on Natural Phenomena
(2005), pp. 57-66

[2] Philippe Decaudin, Fabrice Neyret: Rendering
Forest Scenes in Real-Time. In Rendering Tech-
niques ’04 (Eurographics Symposium on Render-
ing) (June 2004), pp. 93-102

[3] G. Gilet, A. Meyer and F. Neyret: Point-
based rendering of trees. In Eurographics Work-
shop on Natural Phenomena (2005) - http://www-
evasion.imag.fr/Publications/2005/GMN05

[4] Object-Oriented Graphics Rendering Engine -
http://www.ogre3d.org/

[5] Bradford Chamberlain, Tony DeRose, Dani
Lischinski, David Salesin, John Snyder: Fast Ren-
dering of Complex Environments Using a Spa-
tial Hierarchy. In Proceedings of the conference on
Graphics interface (1996), pp. 132-141

[6] www.speedtree.com, Interactive Data Visualiza-
tion, Inc

8

Figure 10: The final billboard tree lighting. Only the lightness is shown in the right image.

Figure 11: Comparing an image rendered using static geometry (left) to an image rendered using impostors
(right). The impostor screen area was adjusted to get the same framerate.

Figure 12: Overview of the scene (left) and a closer look with some full geometry trees (right).

9

