
Forest Scene Demo Developer Manual

Paul Guerrero

September 24, 2006

1 Compiling the Demo

The Forest Scene Demo is an Ogre (www.Ogre3d.org) application interactively
rendering a Forest Scene.

The source code of the Forest Scene Demo is divided into two parts:

• The first part consists of the actual program which constructs the Forest
Scene from a text file, handles user input, grows trees, handles collisions,
etc.

• The second part is a custom Ogre scene manager (called ProxySceneM-
anager) which handles proxies, static geometry and LOD blending in the
scene. It is used as a library by the main program (first part). This custom
scene manager can handle all kinds of scenes, not only forest scenes.

The main program and the custom scene manager both have a Visual Studio
2005 project file. The file for the main Program is located at
Landscape/Landscape.sln. The scene manager is embedded in a slightly mod-
ified version of Ogre: ogreDagon/Ogre vc8.sln. Before compiling, check if
you have the DirectX SDK installed and configured in Visual Studio 2005 (un-
der Tools—Options—Projects—VC++ Directories). If the DirectX SDK is in-
stalled, it should be enough to open these files and compile the applications in
’Release’ configuration.

1.1 Library Dependencies

All needed libraries except the DirectX SDK should be included in the distri-
bution, but here is a list of dependencies:

The Forest Scene Demo was compiled using a slightly modified version of
Ogre 1.4 (Dagon) and you will need this version of the Ogre libraries (and
the standard Ogre dependencies) to compile the Demo. The modified version
(including the source files) is included in the distribution. To get the unmodified
Ogre libraries including dependencies visit www.ogre3d.org. You can modify

1



the standard Ogre library yourself by changing the lines as described in the
included OgreMain/OgreMainChanges.txt file 1.

The main program additionally needs Ogre Opcode, a collision detection
library for Ogre available at
http://ogreconglo.sourceforge.net/index.php/OgreOpcode Download Install

2 Main Program

.txt
resources

user input

scene description

InputFrameListener

Planter

ProxySceneManager.dll

Main Program

User

Scene Manager Plugin

FirstApp ProxyFrameListener

DepthOfFieldEffect

LensFlareEffect

Figure 1: Overview over the classes in the main program.

An overview of the classes in the main program and their interactions is
given in Figure 1.

For the remainder of the manual I will assume that the reader is familiar
with the main Ogre classes and terms, for more information please read the
Ogre documents available in the distribution (OgreDagon/Docs) or on the Ogre
website (www.ogre3d.org).

The class FirstApp loads resources and constructs the scene using a scene
description or scene generation text file (for more information on these files
see the user manual). To add objects to the scene it communicates with the

1Only 5 lines were changed to grant subclasses more access to the functions of their base
classes

2



ProxySceneManager class, a custom scene manager which is available in the
ProxySceneManager.dll library.

Input handling is done with two frame listeners, the InputFrameListener,
which handles movement, collisions, the sun animation and tree growth and
the ProxyFrameListener, which handles Lens Flare, the Depth of Field effect
and the ProxySceneManager functionality (Static Geometry and Proxies). In
contrast to the InputFrameListener, the ProxyFrameListener is designed to
work with any type of scene using the ProxySceneManager and should be easily
reusable in other Ogre applications.

The DepthOfFieldEffect2 and LensFlareEffect classes both use the Ogre
Compositor framework to add their effect in a post-processing pass. They rely
heavily on vertex and fragment shaders and while there exist both a HLSL
(DirectX) and GLSL (OpenGL) version of the DepthOfFieldEffect shaders,
the LensFlareEffect shaders are only available in HLSL (DirectX) (although
it is possible to rewrite them in GLSL).

2created by Christian Lindequist Larsen

3



3 Proxy Scene Manager Plugin

application

Proxy Rendering

Static Geometry Tree
Rendering

LODBlendEntity

IndexedStaticGeometry TightOctree

TightOctreeNode

ProxySceneManager

OctreeProxy

Billboard
Octree
Proxy

Cube
Octree
Proxy

Proxy
Billboard
Set

Proxy
Entity

ProxyShareManager

ProxyCamera

Figure 2: Overview over the classes in the proxy scene manager plugin. The
classes used for static geometry tree rendering are on the left, the classes used
for proxy rendering on the right. The hollow arrows depict an inheritance
relationship.

The Proxy Scene Manager handles static geometry and proxies in a scene.
It provides functionality to generate static geometry and proxies, special render
modes for proxies / static geometry and methods to generate specialized En-
tities, Cameras and Nodes. To generate Proxies or Static Geometry for some
nodes in a scene you would typically first mark these nodes (markNode function),
then call the static geometry or proxy generation function (generateProxies
or generateStaticGeometryTree) and finally switch to the appropriate render
mode (setUseImpostors or setUseStaticGeom). A more detailed overview of
these functions is given in appendix A.

The Proxy scene manager is implemented as an Ogre plugin (like the stan-
dard octree scene manager) and has to be added to Plugins.cfg file if it is to

4



be used in an application.
Only the functions of the ProxySceneManager and LODBlendEntity classes

are exported in the library. These functions form the interface to other appli-
cations using the Proxy scene manager plugin. A quick overview of the most
important functions is given in appendix A.

3.1 The ProxySceneManager class

The ProxySceneManager is derived from the standard Ogre OctreeSceneManager.
It creates and manages all other classes in the plugin. The most important ad-
ditions to the OctreeSceneManager functionality are the following:

• Create and manage LODBlendEntity objects.

• Extend the loose octree to act as a tight octree.

• Generate Proxies or Static Geometry.

• Functions to render Proxies or Static Geometry (see section 3.10 for more
details).

This class also forms the interface to applications that want to use the Prox-
ySceneManager plugin. For an overview of the most important functions see
appendix A.

3.2 The TightOctree class

The octree scene manager implementation in Ogre uses a loose Octree to accel-
erate visibility culling. Scene nodes are assigned to exactly one octant (based
on position and bounding box extent). When generating Proxies, the standard
loose octree has to be adapted to act as a tight octree (for more information on
loose and tight octrees see the user manual and the report). For this purpose,
the TightOctree extends the standard Octree class to store the nodes that are
only partially inside the tight volume of an octants. If a proxy was created for
an octant, a reference to it is also stored in the TightOctree. Most of the con-
struction work for the static geometry tree is also done inside the TightOctree
class and each TightOctree stores references to the static geometry region cor-
responding to its volume.

3.3 The OctreeProxy, BillboardOctreeProxy and CubeOctreeProxy

classes

An OctreeProxy is a special SceneNode (although it is never attached to the
scene graph). Each OctreeProxy represents a simplified version of objects
inside the volume of an octant. Two geometric primitives can be used as
a coarse approximation for the objects to be represented; either billboards -

5



BillboardOctreeProxy - or cubes3 - CubeOctreeProxy. Both classes are de-
rived from OctreeProxy. Billboards use the ProxyBillboardSet class and
Cubes the ProxyEntity class for their representation. These classes are just
slimmer versions of the standard BillboardSet and Entity classes. The OctreeProxy
class renders an octant from six sides and stores one colour for each side (in co-
ordination with the ProxyShareManager, see section 3.4). The resulting colours
are then used by the CubeOctreeProxy or BillboardOctreeProxy to build the
proxy.

3.4 The ProxyShareManager class

The ProxyShareManager coordinates the use of shared materials, meshes and
textures by the proxies. Proxies are created by the ProxySceneManager and
have to be registered in the ProxyShareManager (using the addProxy func-
tion). There they are queued until enough proxies have been added or the scene
manager notifies that it is done adding proxies (by using the notifyDone func-
tion). The ProxyShareManager also contains functionality to store/load proxies
(using the ProxyRepository class).

3.5 The ProxyCamera class

The ProxyCamera is a simple OctreeCamera that can calculate the screen area
(in pixels) of an AxisAlignedBox (the getScreenArea function).

3.6 The ProxyBillboardSet and ProxyEntity classes

Both of these classes trade some of their functionality for a smaller memory foot-
print. In their standard Ogre implementation, these classes contain functions
that are not needed for proxies.

3.7 The TightOctreeNode class

The TightOctreeNode is derived from the standard Ogre OctreeNode. Each of
these nodes can be marked (by calling setProxyless(false)). Only marked
nodes are included in proxies or static geometry.

A TightOctreeNode can also be marked as handled (setHandled(true)).
This is necessary to avoid adding a node twice when traversing the octree. The
handled mark is reset at the end of each frame.

3.8 The IndexedStaticGeometry class

This class is a modified version of the standard Ogre StaticGeometry class. It
allows indexing of custom regions inside the static geometry called GeometryBucketLists.
To create a GeometryBucketList, first create an empty RegionSubset. The
RegionSubset will store the location of your custom region inside the static

3for more detail on these representations see the user manual or the report

6



geometry. Now add all the objects you want in your custom region to the static
geometry passing the RegionSubset as parameter. Each time you add an ob-
ject, the RegionSubset will be updated. The RegionSubset now contains a
list of index buffers intervals, corresponding to the locations of the objects you
just added to the static geometry. You can modify these index Buffer intervals
as you like, as long as they still point to valid locations inside the index buffer
(e.g. to optimize a RegionSubset, you might merge successive index buffer
intervals). When you are done, build the static geometry as usual. Now pass
the RegionsSubset to the addCustomGeometry function, also passing an empty
GeometryBucketList. The GeometryBucketList will be filled with the appro-
priate GeometryBuckets. To render the custom region, call queue() on each of
the GeometryBuckets in the list.

When generating a static geometry tree, the TightOctree and ProxySceneManager
do these steps for you.

3.9 The LODBlendEntity class

This class is derived from the standard Ogre Entity class. It adds functionality
for smooth blending between LODs. Since blending can only be done with
materials, you have to adapt the materials of the objects you want to blend.
The LODBlendEntity calculates the blend factor for each LOD level (ranging
from 0.0 to 1.0, where 1.0 means fully blended in) and stores it in the custom
GPU parameter number 55 where it can be accessed by a GPU program.

3.10 ProxySceneManager Render Modes

The ProxySceneManager can operate in three render modes: standard mode,
proxy mode and static geometry tree mode. Proxy mode or SG-tree mode are
only available if proxies or the SG-tree have been created. Their main difference
is the way they traverse the octree and add objects to be rendered along the way.
Which octree traversal to use is decided in the findVisibleObjects function.
The following three functions define the octree traversals:

• The standard octree traversal is defined inside the OctreeSceneManager
class, in the function walkOctree. In standard mode, the octree is tra-
versed starting at the root, continuing through visible octants and adding
visible objects along the way.

• The traversal in proxy mode is defined inside the ProxySceneManager,
in the function walkProxyOctree. In this mode, proxies are queued for
rendering instead of real geometry whenever the area of an octant on
screen is small enough (the ProxyCamera class is used to determine the
screen area). In this mode, scene nodes can be referenced by more than one
octant. To avoid queuing the same node multiple times, each node can be
tagged as queued (using the setHandled function in TightOctreeNode).

7



• The traversal in SG-tree mode is also defined inside the ProxySceneManager
class, in the function walkStaticGeomOctree. In this mode, static geom-
etry buckets are queued for rendering for the more distant octants. Care
is taken to add as few buckets as possible to the render queue.

To change render modes use the functions setUseImpostors and setUseStaticGeom.

8



A Interface Functions

ProxySceneManager class:

void markNode(SceneNode* node, bool markChildren=true)

void unmarkNode(SceneNode* node, bool markChildren=true)

MarkedNodeIterator getMarkedNodeIterator()

Marks/Unmarks the node pointed to by node. Only marked nodes are
used in the construction of proxies and static geometry. Unmarked nodes
are displayed as usual. If markChildren is set to true, all child nodes
are marked as well.

void generateProxies(const String& baseName,

const String& savefileName="")

void loadProxies(const String& baseName, const String& filename)

void clearProxies()

Generates a proxy representation of each octant in the octree. baseName
shouldn’t be used for any other mesh or texture. When using the func-
tion loadProxies, you have to specify the name of the file that stores
the proxies. If a static geometry tree was already created when calling
this function, it is cleared before generating proxies. clearProxies re-
moves everything associated with proxies. The octree is also truncated
to only act as a loose octree.

void generateStaticGeometryTree(size t LODIndex)

void clearStaticGeometryTree()

Generates a static geometry tree, based on the scene octree. The LOD
with index LODIndex of each object is added to the static geometry, or
the highest (least detail) LOD, if a LOD with this index does not exist. If
proxies were already created when calling this function, they are cleared
before generating the static geometry tree.
clearStaticGeometryTree() removes everything associated with the
static geometry tree.

void setUseImpostors(bool b)

bool getUseImpostors(void)

void setUseStaticGeom(bool b)

bool getUseStaticGeom()

Use these functions to specify the render mode. If both functions are set
to true, impostors will be rendered (if available). If both functions are
set to false or if the chosen mode is not available (because proxies or
static geometry were not generated), standard rendering is used.

9



LODBlendEntity* createLODBlendEntity(const String& entityName,

const String& meshName)

void destroyLODBlendEntity(Entity *e)

void destroyLODBlendEntity(const String& entityName)

Creates/destroys a LODBlendEntity with name entityName. Do not
create a LODBlendEntity directly, you should always use this function
to create a LODBlendEntity.

LODBlendEntity class:

void setBlendMode(LodBlendMode mode)
LodBlendMode getBlendMode()

LODBlendEntities automatically blend between LOD levels. These func-
tions set/get the way two LODs are blended. Possible parameters are
LBM SEQUENTIAL (default) and LBM PARALLEL. In sequential mode, first
one LOD is blended in, then the other LOD is blended out. In parallel
mode, both LODs are blended in parallel.

10


