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in Kooperation mit
Dr.techn. Jǐrı́ Hladůvka
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Abstract

Segmentation of volumetric medical data is extremely time-consuming if done man-
ually. This is the reason why currently great efforts are being made to develop al-
gorithms for automatic segmentation. Model based techniques represent one very
promising approach. A model representing the object of interest is matched with
unknown data. During the matching process the model’s shape and additional prop-
erties are varied in order to iteratively improve the match. As soon as the model fits
sufficiently well to the data, the properties of the model can be mapped to the data
and so a segmentation is derived.

Recently the segmentation of cardiac magnetic resonance images (MRI) has
been of great interest. In this work we outline some of the methods proposed to
solve the problem of cardiac segmentation. We review Active Appearance Models
(AAMs) which are a special type of deformable models. AAMs rule changes in
shape and texture using statistical information obtained from a data base of repre-
sentative examples. We describe the theory behind AAMs with special focus on 3D
AAMs. These are applicable to volumetric medical image data. Our implementa-
tion of 3D AAMs is outlined and the results obtained for 3D segmentation of the
left cardiac ventricle are presented.





Kurzfassung

Manuelle Segmentierung von volumetrischen medizinischen Bilddaten kann sich
auf Grund des Umfanges der Daten sehr zeitaufwendig gestalten. Es gibt momen-
tan große Anstrengungen, Algorithmen zu entwickeln, die diese Aufgabe weitge-
hend automatisch erfüllen. Ein sehr vielversprechender Ansatz ist die modellbasier-
te Segmentierung. Dabei wird ein Modell generiert, mit dessen Hilfe es möglich
ist, verschiedene Instanzen des zu segmentierenden Objektes zu generieren. Eine
Segmentierung von unbekannten Daten wird dann erzeugt indem die Differenz zwi-
schen originalen Bilddaten und Modell minimiert wird. Sobald Modell und Daten
hinreichend genaüubereinstimmen, k̈onnnen die Eigenschaften des Modells auf
die Datenübertragen werden, woraus direkt eine Segmentierung abgeleitet werden
kann.

Wir betrachten volumetrische Bilddaten des menschlichen Herzens, die durch
Magnet-Resonanz-Tomographie (MRT) gewonnen wurden. Die vorliegende Di-
plomarbeit gibt zun̈achst einen kurzen̈Uberblick über vorgeschlagene Methoden
zur Segmentierung der Herzventrikel. Danach werden Active Appearance Models
(AAMs) erläutert. Diese stellen eine spezielle Form von deformierbaren Model-
len dar. DieÄnderungen in Geometrie und Textur von AAMs werden mittels sta-
tistischer Methoden realisiert. Die notwendigen statistischen Daten werden dabei
aus einer Datenbank von repräsentativen Datensätzen berechnet. Wir erläutern die
Theorie hinter AAMs mit speziellem Fokus auf 3D AAMs. Diese können auf volu-
metrische Bilddaten angewendet werden. Weiters wird eine Implementierung von
3D AAMs umrissen. Abschließend werden die Resultate bezüglich Segmentierung
des linken Herzventrikels präsentiert.
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Chapter 1

Introduction

Imaging techniques like magnetic resonance imaging (MRI), computer tomography
(CT) and ultrasound (US) are gaining more and more importance in modern clin-
ical diagnosis. However the interpretation and evaluation of images obtained with
these techniques is not a trivial task. Also it is very time-consuming if done com-
pletely manually. This is especially the case for higher dimensional image data such
as volumetric and/or time-dependent data. Ongoing research in the areas of com-
puter vision and pattern recognition deals with the development of robust automatic
and semiautomatic segmentation algorithms. Such algorithms are intended to assist
medical doctors in clinical diagnosis by preprocessing and preparing the captured
data for further analysis.

Approaches for segmentation based on region growing, thresholding or edge
detection in most cases only lead to satisfying results when applied to qualitatively
good images. With “qualitatively good” we mean images that do not contain too
much noise and depicted objects are represented by more or less homogeneous re-
gions. If this is the case structures in an image (e.g. edges) can be identified easily.
In fact most medical images do not have such friendly properties. Noise, acquisition
artifacts, complexity, and fuzziness of anatomical structures make it hard – even for
the human observer – to correctly distinguish between different organs, blood ves-
sels, tissues, etc. One great drawback of conventional segmentation methods is that
they heavily rely on local image features. No information about the general ap-
pearance of segmented objects is used. Especially in the medical domain structures
and appearances of anatomical objects are known very well. This makes it espe-
cially interesting to exploit prior knowledge for the design of robust algorithms for
segmentation of medical images.

Model based segmentation denotes a class of very promising approaches that
make use of prior knowledge in order to identify objects in images. The term
“model” denotes an abstract description of a class of objects (for example hands,
faces, etc.). In order to detect and segment an object, the attempt is made to match
the model with a suitable region in the given image. The matching process tries
to minimize the difference between model and image by changing parameters like
position and appearance of the model. This type of identification of objects is often
referred to as “analysis by synthesis”.

1



2 CHAPTER 1. INTRODUCTION

A very simple model-like approach is to use a single representative example of
a class of objects as model. For example, if a very representative image of a face
is given, an algorithm could use this so called golden image for segmentation of
unknown faces. However, this approach is relatively primitive and there exist better
and more elaborated types of models.

The problem using a simple golden image is that it is not general and flexible
enough. This is where the so-called “deformable models” come into play. As the
name suggests these deformable models do not only represent an object of interest
but also describe how its shape might deform. Of course the deformation has to be
of such a kind that the deformed object still represents a valid instance of the consid-
ered class of objects. The ability to deform is exploited when the model is matched
with unseen data. In order to achieve better matches, the model is deformed itera-
tively.

This work focusses on Active Appearance Models (AAMs) which rule their
deformation using statistical methods. In the following we give a short historical
survey of AAMs.

1.1 Historical Background of AAMs

In the early beginning of model based approaches the idea of aligning objects by
changing their position [Besl and McKay, 1992] was of great interest. This problem
was a fruitful basis for the development of more elaborated approaches. As an
enhancement of the simple alignment, deformable models came up. These models
cannot only change their position in order to fit some other instance but may also
deform to some extent in order to achieve better matches. Such deformable models
use different methods to govern deformations. So-called articulated models only
allow connected sliding and rotation of their rigid parts. Active blobs [Sclaroff
and Isidoro, 1998; Sclaroff and Isidoro, 2003] deform according to piecewise affine
warping. Models based on mechanical Finite Element Methods (FEM) base their
deformations on physical properties such as stiffness and elasticity.

A type of deformable models sensitive to local image features are active con-
tours or snakes [Kasset al., 1987; Leymarie and Levine, 1993] and balloons [Cohen,
1991]. Snakes and balloons represent curves that deform according to so-called in-
ternal and external forces. The internal forces keep the curve smooth while the
external forces pull the curve towards local image features such as edges.

In this work we focus on Active Appearance Models (AAMs). These deform
according to statistical features computed by analysis of a representative training
set. In order to derive deformations the standard AAM makes use of a prediction
scheme based on linear regression. This introduces prior knowledge not only about
the appearance of the model but also about how to match the model to unknown
data.

AAMs have been introduced under this name first by Cootes and Taylor in
1998 [Cooteset al., 1998a]. A large amount of literature about AAMs has
been published since then [Cootes and Taylor, 2000; Cootes and Taylor, 2001b;
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Cootes and Taylor, 2001a; Cooteset al., 1999; Matthews and Baker, 2004;
Stegmannet al., 2003; Tayloret al., 2000]. AAMs are a direct enhancement of
Active Shape Models (ASMs) [Cooteset al., 1995; Dickenset al., 2002]. The
idea behind both AAMs and ASMs is to use a deformable shape model that can be
matched with unseen data using texture difference between image and model. This
difference serves as a criterion for how good a current match is and how it can be
improved in the following iteration. ASMs only use textures along scan lines cross-
ing the edges of the model’s shape. AAMs use the complete texture from the area
or volume where the model overlaps with the data. This makes AAMs very robust
when fitting to unseen data. On the other hand the often large amount of texture
also introduces problems with respect to computational efficiency.

The basis for building an AAM is a training set of representative examples of
the object of interest. To create a model, variations between individual training
data sets are analyzed statistically. Since images in the training set basically only
include gray values, geometric information is not directly available. This geometric
information has to be added by identifying significant points – so-called landmark
points – in the examples included in the training set. Such an annotation is often
obtained by letting a human expert observer define several landmark points. For
the human face, for example, the corners of the eyes or mouth are good landmark
points.

The human face has always been a very popular object for experimenting with
AAMs [Edwardset al., 1998; Stegmann and Larsen, 2003; Grosset al., 2004]. One
reason for this probably is that humans are highly sensitive to even small changes in
face appearances. This makes it interesting for us to examine how good computers
are able to deal with faces. Indeed many optimizations of AAMs for use with faces
have been proposed. Some of them deal with the problem that faces usually are not
given in perfect front view but are turned to the side. In such a case the original 2D
AAMs cannot reproduce suitable instances. On the other hand a full 3D approach
would be too expensive. As a solution several authors propose variations of AAMs
which combine 2D and 3D concepts [Cooteset al., 2000; Xiaoet al., 2004].

Recently a lot of extensions for AAMs have been proposed. While the original
AAMs work with gray value images in 2D, different strategies for adaptations to
higher dimensions have been suggested. In theory such adaptations can be done
straight forward. Practically there are some critical aspects. Different methods
have been proposed to overcome the problems in higher dimensions. Applications
include time-continuous (2D+time) segmentation of image sequences [Lelieveldtet
al., 2001; Edwardset al., 1998], real-time combined 2D+3D AAMs [Xiaoet al.,
2004], and bi-temporal 3D AAMs [Stegmann and Pedersen, 2005]. Normally an
increase in dimensionality inevitably causes a rapid increase of data. Especially
the number of texture samples mounts significantly for higher dimensional data.
Large data is the reason why methods for compression of texture data using wavelets
[Wolstenholme and Taylor, 1999; Stegmannet al., 2004] or wedgelets [Darkneret
al., 2004] recently have been proposed.

Although we do not further consider this type of application we mention that
AAMs also have been used for object tracking [Mittrapiyanuruket al., 2004;
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Stegmann, 2001b]. Many interesting refinements of AAMs come from this ap-
plication domain.

1.2 Problem Statement

Evaluation of a patient’s heart function is a medical task that benefits very much
from modern non-invasive imaging techniques. With such techniques it is possible
to capture volumetric image data of a complete heart cycle. The manual investiga-
tion of such 4D data is a tedious task. Furthermore, a manual investigation does
not directly allow the extraction of global information such as the exact volume of
blood pumped around. Automatic and semiautomatic segmentation methods allow
a better visualization of the data as well as the extraction of meaningful higher-level
information.

Both Magnetic Resonance Imaging (MRI) and Computer Tomography (CT)
have been used for the acquisition of cardiac data. In general CT scanners generate
images of much higher quality than MRI. The drawback of CT is that X-rays are
used, which are considered much more dangerous for the patient than the magnetic
fields used in MRI.

The relatively bad quality of cardiac MRI data makes the development of robust
segmentation algorithms a challenge. The goal of this thesis is to show that 3D
AAMs are highly suitable for segmentation of volumetric cardiac data. The time-
dimension will not be considered. We want to show that even for qualitatively bad
MRI data 3D AAMs can successfully be used to segment the left cardiac ventricle
with high accuracy.

1.3 Thesis Overview

We describe properties of 3D AAMs how to build them, and how to match them to
unseen data. We verify our implementation with a set of 32 volumetric MRI images
of the left cardiac ventricle (the left chamber of the heart).

Before we go too much into detail on AAMs we review the problem of car-
diac segmentation in general in chapter 2. We outline the techniques that have been
proposed so far. In chapter 3 we review the process of building an AAM in 3D.
We explain the theoretical aspects and discuss special difficulties coming up in 3D.
Further we outline some extensions of the AAM model formulation. Chapter 4 con-
tains a discussion on how a 3D AAM is matched with given volumetric data. This
can be done by exploiting prior knowledge about the relation of model parameters
and texture differences. In chapter 5 we discuss a few important issues concerning
an implementation of 3D AAMs. The results obtained with our implementation are
presented in chapter 6. Finally we give a conclusion and discuss future work in
chapter 7.
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1.4 Mathematical Notation

In order to make formulas easier to read, we follow some rules in mathematical
notation. Scalar values are written using cursive letters (e.g.:x, D). Matrices are
denoted by bold capital letters (e.g.M). Vectors are column vectors and are denoted
by bold lower case letters (e.g.v). A matrix whose columns are individual vectors
(e.g.x1, x2, . . . ,xn) is denoted by the same but capital letter (e.g.X). Data given
as a set of vectors transformed to zero-mean is marked with a hat (e.g.x̂).

TheL1-norm of some vectorx is the sum of absolute values of its elements and
is denoted by single vertical lines:

|x| =
∑

i

|xi|. (1.1)

The L2-norm of a vectorx is the sum of squares of the vector’s elements. The
L2-norm is denoted by double vertical lines:

‖x‖ =

√∑
i

x2
i . (1.2)

The following listing associates frequently used terms with their meaning:
I the identity matrix
φi thei-th eigenvector
Φ a matrix whose columns are eigenvectors

(Φ = [φ1|φ2| . . . |φk])
λi thei-th eigenvalue
Λ diagonal matrix whose diagonal elements are eigenvalues

(Λ = diag(λ1, λ2, . . . λk))
ps parameter of a shape model
pg parameter of a texture model
pc parameter of a combined model
k number of eigenvectors considered
Nx number of shape points
Ns number of shape features
Ng number of texture features
Nt number of training sets
α mean of gray values
β variance of gray values
tr trace of a matrix
dM Mahalanobis distance metric
τ a transformation optimally aligning two shapes
ϕ level set function
E expectation value
Rk regression matrix calculated usingk eigenvectors
δx deformation of vectorx



Chapter 2

Segmentation of the Left Cardiac
Ventricle

Segmentation of cardiac data has recently been of great interest. In this chapter
we give an overview over this specific application domain. A short anatomical
overview is presented in which we outline the general structure of the considered
data. We review recently proposed approaches for the problem of cardiac segmen-
tation.

2.1 The Left Cardiac Ventricle

For a better understanding of the problem domain we give a short anatomical
overview of our object of interest, the left cardiac ventricle. Cardiac ventricles
are the parts of the heart from which blood is pumped around the body. The right
ventricle receives deoxygenated blood and pumps it towards the lungs. The left
ventricle receives the blood enriched with oxygen and pumps it to the rest of the
body. The muscle surrounding the left ventricle is much thicker than the one of the
right ventricle.

Figure 2.1 illustrates the overall anatomy of the human heart. Note the left
cardiac ventricle (on the right in the figure) which will be of main interest for our
further discussion. The figure also roughly shows the position of the volume data
that usually is captured for medical diagnosis. The volume of interest resides in
between the two black lines which illustrate the bordering planes. The left upper
plane lies at the base of the ventricle. The right lower plane lies at the ventricle’s
apex.

Important clinical properties of the observed data for example are thickening and
motion/contraction of the heart muscle over time and the volume of blood pumped
around (ejection fraction). The American Heart Association (AHA) suggests a vi-
sualization of the measured properties in form of a “bull-eye” view [Cerqueiraet
al., 2002]. Measurements from three main parts of the left ventricle are shown in
rings around the center of the bull-eye. The inner ring represents the apical part of

6
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Figure 2.1: Anatomy of the human heart. The two black lines in the figure delimit
the volume captured with imaging systems. Figure from [Texas Heart Institute,
2005].

the heart. The farther a ring is away from the center, the closer to the base is the as-
sociated region of the heart. The AHA also recommends a detailed naming scheme
for the individual parts of the left ventricle. Figure 2.2 shows a bull-eye view with
the according naming scheme of individual regions.

The bull-eye view is a good example of how MRI data can be prepared in order
to supply medical doctors with important meaningful high-level information. Such
prepared information cannot directly be extracted from the MRI data. It can only be
derived from a well-done segmentation of this data. This is where 3D AAMs come
into play. Manual segmentation of 3D MRI data takes medical doctors quite a lot
of time. Highly automated segmentation methods such as AAMs can help to save a
lot of time in every-day medical work.

So far the anatomical background. We now take a closer look at the great variety
of techniques which have been proposed for the segmentation of cardiac ventricles.

2.2 Snakes

The concept of snakes or active contours originally has been introduced by Kass
et al. (1987). It is a method that has been applied to many different tasks related
to segmentation and tracking. The idea behind snakes is to initially place a curve
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Figure 2.2: The bull-eye view as recommended by the American Heart Association
(AHA). Figure from [Cerqueiraet al., 2002].

close to some edge in a given image. Then the curve or snake deforms according to
internal and external forces so that it optimally approaches the edge.

The standard method is to define a snake as a parametric curves(t) wheret is a
parameter ranging from 0 to 1. The energy of a snake is defined as

Es =

∫ 1

0

Eint(s(t)) + Eext(s(t))dt (2.1)

whereEint andEext denote the internal and the external energies influencing the
snake. The internal energy is a term which makes the snake resistant to bending
and stretching.Eint is small if the curve is smooth and not stretched. The external
energy relates to image features close to the curve. Usually the curve is supposed to
be attracted by edges. This is whyEext often is selected to correspond to the image
gradient:

Eext = −‖∇Img‖2. (2.2)

The external energy in this case becomes smaller and smaller as the curve ap-
proaches an edge in the image.

A typical application based on snakes allows the user to manually draw an initial
rough guess of an object’s contour. This manually drawn curve is considered to be
the initial snake. Iteratively the energy termEs is then minimized, which deforms
the snake. In other words the snake propagates through the image and approaches
edges while remaining sufficiently smooth. Of course for the relative importance
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of external and internal energies a tradeoff has to be found which depends on the
considered application.

Note that equation 2.1 is a continuous formulation of snakes because of the in-
tegral it includes. To ease an implementation of snakes often the discretized version
[Lobregt and Viergever, 1995] is used. The continuous snake is replaced by points
connected by line segments. The energy function then is only calculated for the
given points and the integral in equation 2.1 becomes a discrete sum.

Several authors have proposed slightly differing strategies in using snakes for
cardiac segmentation [Appleton, 2003; Mikicet al., 1998; Pluempitiwiriyawejet
al., 2005]. All the proposed methods differ in the type of energy functions that are
applied to the snakes. Pluempitiwiriyawejet al. (2005) introduce a special external
force. Not the plain image gradient is used in the external energy term. Instead
statistical properties of the image data are analyzed. The intention behind this is
to make snakes more robust to noisy data. In the next section we review a similar
method.

2.3 A Skeleton-Based Segmentation Technique

Recently a technique has been proposed that performs segmentation of 4D cardiac
data by building a skeleton of the left ventricle [Neubauer and Wegenkittl, 2003].
The first step in the segmentation process has to be carried out manually. For a
single slice the center line of the myocardium of the left ventricle has to be drawn.

The gray values and gradients close to the center line are calculated. This in-
formation is used to characterize the appearance of the heart muscle (myocardium)
which is to be segmented. Using this precalculated information, the points defining
the center line are propagated towards the outer border (epicardium) as well as to-
wards the inner border (endocardium) of the left ventricle. The propagation stops
when the distribution of gray values under the current position of the curve varies
significantly from the originally calculated appearance. The positions of points rep-
resenting the propagated curve constitute the skeleton for the final segmentation.
The original, manually drawn centerline can now be improved by centering it rel-
ative to the calculated inner and outer contours. Once this improved centerline is
determined it can be propagated to other slices of the considered time step. In this
way the complete volume can be segmented. Also the propagation from the current
volume to the volume of the previous or next time step is possible.

Finally each voxel has to be classified in order to make the segmentation com-
plete. This is achieved by calculating a weighted path from individual voxels to
the nearest points of the skeleton. The length of the path is calculated using the
Euclidean distance and the values of the voxels that are traversed. If the length is
below some threshold the voxel is assumed to belong to the left ventricle.

The outlined method is typical for many approaches using an extended version
of snakes. Note that snakes do not make extensive use of prior knowledge. For
the above skeleton-based technique only the initial center line encodes some prior
information about the ventricle’s overall shape. The user has to provide this prior
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Figure 2.3: Curves as zero level sets. Figure from [Sethian, 1999].

information by manually drawing the center line. One goal of research currently is
to reduce such interaction.

2.4 Level Set Methods

A problem of the traditional formulation of snakes as parametric curves is that topo-
logical changes cannot be handled very well. Also the propagation of the curve can
be complicated with an explicit formulation of the snake. This is why often level
set representations are used in order to better deal with propagating curves.

Level sets were first introduced by Osher and Sethian (1988). Following this
approach curves are represented implicitly. A level set functionϕ is used that for
each pointx evaluates to the minimal Euclidean distance betweenx and the curve
s. Usually the modelled curve is closed and each point can be considered inside or
outside. The sign ofϕ then depends on whether the considered pointx lies inside
the curve (sin) or outside (sout). ϕ is equal to zero where a point lies upons:

ϕ(x) =


0, x ∈ s
−‖x, s‖, x ∈ sin

+‖x, s‖, x ∈ sout

(2.3)

The level set representation introduces an additional dimension. For example a
curve in 2D can be regarded as the cut of a 3D surface. Figure 2.3 illustrates this
principle. The red cones represent the level set function. The two blue ellipses show
the 2D curve forz = 0.

The level set function is updated in order to propagate the curve. To find out
the current shape at a specific point in time the level set function is cut atϕ = 0.
Thus the propagation of the curve is replaced by a dynamic change of the level set
function. The motion of the level set function is governed by the level set equation:

ϕt + F‖∇ϕ‖ = 0 (2.4)

whereF denotes a speed function andϕt is the initial state of the level set function.
Note that equation 2.4 formulates an initial value problem. Figure 2.3 illustrates
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the propagation of a 2D curve by moving the cut through a 3D surface. Note how
the topological change is performed implicitly when the two curves meet. For a
more detailed discussion of level set methods we refer to more specialized literature
[Sethian, 1999; Osher and Sethian, 1988].

Level set methods have also been used for the segmentation of cardiac data
[Roussonet al., 2004; Paragioset al., 2002]. Also a segmentation of brain ventricles
with level sets has been reported [Roussonet al., 2004].

The considered medical data often includes strong irregularities and so the pro-
posed applications all need a good initial guess in order to converge correctly. Simi-
larly to level sets snakes often suffer from the bad quality of data and easily diverge.
This is why currently many researchers try to incorporate more prior knowledge
about the shape of analyzed anatomical structures into their level set methods.

2.5 Using Prior Knowledge

All the previously discussed approaches using snakes, level sets or similar tech-
niques have a great weakness in common: only little prior knowledge is used. The
general appearance of the object of interest is not considered. This is why recently
techniques have gained popularity that extensively make use of existing knowledge
of the analyzed anatomical objects.

2.5.1 Atlas-based methods

The idea behind atlas based methods is to use a data base of segmented data sets
in order to segment new data sets. An appropriate atlas is selected from the data
base and matched with the unseen data. This matching or registration can either be
achieved in a rigid or non-rigid way. Rigid registration performs only a transfor-
mation while non-rigid registration additionally deforms the atlas image in order to
increase matching accuracy.

2.5.2 Statistical Models

Statistical models are an extension of atlas-based methods. Not only a single atlas
is used for matching but multiple atlases are combined to create new instances. This
has two main advantages. First, the atlas or model can be deformed in a plausible
way. This is the case because the statistical shape variances of an object can be
calculated. Second, many different appearances of texture can be modelled, which
increases the model’s matching capabilities.



Chapter 3

Active Appearance Models

A very popular type of statistical models are Active Appearance Models (AAMs) on
which we focus in this thesis. Recently AAMs have also become very popular for
segmentation of cardiac data [Boschet al., 2002; Breenet al., 2002; Mitchellet al.,
2001; Mitchellet al., 2002; Montagnat and Delingette, 2005; Stegmann, 2001a].
The elegant mathematical formulation of AAMs and their robustness make them
very suitable for cardiac segmentation.

The process of building a computerized model frequently is equated with mak-
ing the computer learn possible appearances of an object. The basis for such a learn-
ing process is some ground truth, the training set. The idea of teaching the com-
puter general knowledge has made the field of deformable models interesting for
both, researchers in computer graphics and researchers in the areas of cognitive and
neurological sciences [Vetter and Poggio, 1997]. To understand the model based
approaches from the cognitive point of view is worthwhile. Researchers working
in the field of cognitive science nicely formulated the demands on cognitive visual
systems [Riesenhuber and Poggio, 2000]:

A vision system needs to generalize across huge variations in the
appearance of an object such as a face, due for instance to viewpoint,
illumination or occlusions. At the same time, the system needs to main-
tain specificity.

The “vision system” described in this thesis – the classical Active Appearance
Model – tries to explain the above mentioned variations in terms of statistics. It
has recently been shown that such a statistical approach is very robust and stable.
Before we describe the actual model building process we first introduce statistical
principles which are the basis for AAMs.

3.1 Statistical Analysis of Large Data

Statistical analysis is used to describe important properties of large data with a small
set of meaningful values. This is exactly what we need for representing a model.
We want to model the appearance of large data with only few parameters.

12
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The large data we have to handle in the context of this thesis mainly is image
information which in the simplest case is given in form of bitmap images. For exam-
ple human faces can very well be represented using such bitmap images. However
humans talking about faces use information that is more abstract than pixel colors
of bitmap images. We rather use information like “long/short nose”, “large/small
eyes” etc. This allows us to describe variances in appearance of an object with
compact and highly semantic pieces of information. For AAMs statistical methods
analogously are the key to determine the necessary meaningful high-level informa-
tion.

For the moment we do not care about the exact structure of data we want to
analyze statistically. This will be discussed in detail later. We only state that each
example in a training set can be represented by ann-dimensional vector (for ex-
ample such a data vector could contain any low-level information like gray-level
intensities of pixels, etc.).

With the abstraction from object instances to simple vectors in mind one can
start to think about the actual statistical analysis. A simple statistical approach is
to calculate the element-wise arithmetical mean value of a set of high-dimensional
vectors. However the mean value alone is not very flexible and this is why often
statistical variances are considered additionally. As long as the considered data
can be assumed to follow a Gaussian distribution the description of the data using
mean values and variances is a good choice. This is the case because the complete
structure of a Gaussian distribution is completely determined by mean values and
variances.

AAMs are intended to model variations. This is the case why we concentrate
mainly on variances. Statistical methods for analyzing variances are also referred
to as second order methods. One very popular second order method is Principal
Component Analysis (PCA) which we discuss below.

3.1.1 Principal Component Analysis - Overview

For many applications Principal Component Analysis (PCA) is the standard ap-
proach to find out the data’s inherent structure. PCA is also used in the AAM
building process.

The extraction of statistical features with PCA can be regarded as a projection
of high-dimensional data vectors into a space of much lower dimensionality. PCA
is also referred to as Karhunen-Loève transform or Hotelling transform [Hyvärinen,
1999].

As its name suggests PCA tries to determine the principal components of some
given data which describe the largest amount of the data’s variation. Figure 3.1
illustrates the principal components of a set of points in 2D. The first principal
component (PC 1) points into the direction of the largest variance in the point-
cloud. The second principal component (PC 2) is perpendicular to the first one
and defines the direction of the second largest variance. In 2D only two principal
components are defined. Note that two important assumptions are made. First the
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Figure 3.1: Principal Components of data in 2D.

data is assumed to be linear and second it is assumed that the principal components
are mutually orthogonal.

Having another look at figure 3.1 one can easily see that both principal compo-
nents PC 1 and PC 2 form a new basis for the depicted points. Each original point
xi can be calculated as the sum of the mean plus a linear combination of PC 1 and
PC 2:

xi = x +
k∑

i=1

φipi (3.1)

wherek is the number of principal components and the vectorsφi are the principal
components. The mean vectorx is the arithmetic mean of the components of the
given data vectors:

x =
1

N

N∑
i=1

xi (3.2)

with N being the number of data vectorsxi. Usually the principal components
are sorted. The first principal component explains the largest amount of variance,
the last principal component explains the smallest amount of variance. In order to
reduce dimensionality the last few principal components are simply ignored and
left out. This is legitimate since small variations in data can often be considered to
reflect noise. In figure 3.1 for example PC 2 could be omitted as basis vector. This
would reduce the dimensionality of the data to 1. The linear combination could only
describe points lying on a straight line through the mean pointing into the direction
of PC 1. As long as PC 2 is small enough this means that only very little information
is lost because of this dimensionality reduction.

3.1.2 Recursive Definition of PCA

Geometrically seen the mean vector introduces a shift of the coordinate system.
This is not very exciting and the more important concept of PCA is variance. In
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order to focus on variance the mean vectorx simply is subtracted from the original
data vectorsxi: x̂i = xi − x. Then only the remaining zero-mean data vectorsx̂i

are considered.

The length of vectors representing the principal components is not important.
The only interesting information they contain are the directions of principal compo-
nents. Therefore we follow the convention to use unit vectors to represent principal
components:‖φi‖ = 1.

Intuitively principal components can be defined recursively. The first principal
component is calculated as the unit vectorφ1 which aligns with the direction of the
maximum variance that is observed in the data:

E{(φT
1 x̂)2} → max (3.3)

whereE{f(x̂)} denotes the expectation value off(x̂) = (φT
1 x̂)2. The expectation

value is defined

E{f(x̂)} =
N∑
i

f(x̂i)P (x̂i) (3.4)

with P (x̂i) being the probability of vector̂xi. This probability is set to 1 for all data
sets:P (x̂i) = 1 for all 1 ≤ i ≤ N .

The following principal components are calculated in a similar way. Having
computed the direction of the first principal component this direction can be re-
moved from the data by projecting the data to the according perpendicular hyper-
plane through the origin. Note that the assumption is made that all principal compo-
nents are orthogonal. This means that all other principal components have to reside
within the mentioned hyper-plane. Every following principal component then is de-
termined within the projected data. Thek-th principal component is defined as the
unit vectorφk:

E{(φT
k (x̂−

k−1∑
i=1

φiφ
T
i x̂))2} → max . (3.5)

3.1.3 PCA and Eigenanalysis

The above definition of principal components is intuitive but can hardly be used for
calculation. To calculate PCA therefore another approach is used which is based on
the analysis of the covariance matrix.

The elements of the covariance matrix are the covariances of each pair of ele-
ments of the original data vectors:

Sx =
1

N − 1

N∑
i=1

(xi − x)(xi − x)T =
1

N − 1
X̂X̂T (3.6)

whereN denotes the number of original data vectors.
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We have already mentioned that PCA performs a change of the basis. Formally
we can write this down as a simple multiplication of the original data matrix trans-
formed to zero-mean̂X by some matrixP:

Ŷ = PX̂. (3.7)

The column vectors of̂X are the zero-mean data vectorsx̂i and the rows ofP form
the new basis vectors. Matrix̂Y represents the data in̂X after the change of the
basis. We can now derive the covariance matrixSy of matrix Ŷ:

Sy =
1

N − 1
ŶŶT (3.8)

=
1

N − 1
(PX̂)(PX̂)T (3.9)

=
1

N − 1
PX̂X̂TPT (3.10)

=
1

N − 1
P(X̂X̂T )PT (3.11)

= PSxP
T . (3.12)

The goal of PCA is to derive a representation where the variance along individual
principal components is maximized. This maximization of variance along the prin-
cipal components means that the variance of individual components increases while
the covariance between different components decreases. The “optimal” covariance
matrix for an “optimal” representation would thus be a diagonal matrix with all
off-diagonal elements set to zero. This is the point where eigenvectors come into
play. The eigenvectorsφi and eigenvaluesλi of a symmetric matrixA fulfill the
following equation:

Aφi = λiφi ∀i = 1 . . . N (3.13)

wherei is the index of eigenvalues and eigenvectors. A matrixΦ with columns
that are individual eigenvectors is introduced. The corresponding eigenvalues can
be written as a diagonal matrixΛ = diag(λ1, λ2, . . . , λN). Equation 3.13 can so be
reformulated:

AΦ = ΛΦ (3.14)

Matrix multiplication with a diagonal matrix is commutative. FurthermoreΦ is
orthonormal1 and thus its transpose is equal to its inverse. Considering this we can
derive the following equation:

A = ΦΛΦT . (3.15)

Equation 3.15 can be used to extend the formulation of covariance matrixSy from
equation 3.12. ReplacingSx by its eigenvectors and eigenvalues (using equation
3.15) we get:

Sy = PSxP
T (3.16)

= P(ΦxΛxΦ
T
x )PT (3.17)

= (PΦx)Λx(Φ
T
x PT ) (3.18)

1Matrix Φ is orthonormal because we agreed on a normalized representation of eigenvectors.
Furthermore the eigenvectors are mutually orthogonal.
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If we finally chooseP to be equal toΦT
x , we can even simplify this to:

Sy = Λx (3.19)

In other words, if we choose the eigenvectors of the covariance matrixSx as a new
basis for the data representation,Sy is diagonalized. This means that the desired
principal components are the eigenvectors contained in matrixΦx.

The eigenvector that corresponds to the largest eigenvalue represents the largest
variance and thus marks the first principal component. A sorting of all eigenvectors
with respect to decreasing corresponding eigenvalues leads to the correct sequence
of principal components. The influence on data representation decreases as the
eigenvalues decrease. Removing the last few principal components is equal to ig-
noring the smallest variances. Especially if eigenvalues are equal to zero this means
that the corresponding eigenvector describes zero variance and can be removed
without any loss of information. In general the maximum number of eigenvectors
with eigenvalues not equal to zero ismin(n,N)− 1, wheren is the dimensionality
of the data vectors andN the number of data vectors.

Using PCA on high dimensional data imposes the question which criteria should
be used to determine how many eigenvectors can be removed without simplifying
the data “too much”. A simple method is to argue that the complete variation in the
data relates to the sum of all eigenvaluesV =

∑
λi. To maintain a reproducibility

of at least a fractionr of the original training set, the least important eigenvectors
with an index greater thank can be removed as long as the following equation holds:

k∑
i=1

λi ≥ rV. (3.20)

In the following we summarize the complete process of calculating PCA. Given
some data in form of a matrixX whose columns are the vectorsx1, x2, . . . ,xN , we
calculate the meanx and the covariance matrixSx. By determining the eigenvec-
tors φ1φ2 . . . φk and eigenvaluesλ1, λ2 . . . λk from Sx we get the principal com-
ponents. Keeping thek most important eigenvectors and removing all others we
obtain the final compact representation in form of a linear combination of eigenvec-
tors (equation 3.1). This equation can be written using a matrix whose columns are
the eigenvectorsφi:

x = x + Φxp (3.21)

wherep is the vector including the valuespi as elements. Together with the eigen-
valuesλi equation 3.21 represents the result of PCA applied to some data matrix
X.

Note that equation 3.21 not only allows to approximately reproduce the original
data. It also makes it possible to create new data being an interpolation of the
original one. Each instance one can create is defined by the valuespi. However the
newly created data is only similar to the original instances if the absolute values of
pi do not become too large (which means that they differ too much from the mean
and thus also from all the original data). Therefore usually the values of all thepi

are restricted to an interval around zero correlating with the magnitude ofλi. For
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more information on how to limit thepi to reasonable intervals we refer to section
3.5.

3.1.4 Using the Transposed Covariance Matrix

When building models the data vectors representing instances of the training set
usually are very large while the number of vectors is relatively small. This means
that the dimensionalityn (the number of elements in the original data vectors) is
much higher than the size of the training setNt: n � Nt. In this case the covari-
ance matrixSx calculated in equation 3.6 gets a size ofn×n. As a consequence the
calculation of eigenvectors and eigenvalues computationally gets very costly. How-
ever there is a way to avoid this high computational effort [Cootes and Taylor, 2000;
Stegmann, 2000].

One can calculate eigenvectorsΦ′ and eigenvaluesΛ′ of a (different) matrixS′:

S′ =
1

N − 1
X̂T X̂. (3.22)

This differs from equation 3.6 in that the multiplication ofX̂ with its transpose is
permuted. We can further derive:

S′Φ′ = Λ′Φ′ (3.23)
1

N − 1
X̂T X̂Φ′ = Λ′Φ′ (3.24)

1

N − 1
X̂X̂T X̂Φ′ = Λ′X̂Φ′ (3.25)

SxX̂Φ′ = Λ′X̂Φ′. (3.26)

The last equation expresses thatX̂Φ′ is a matrix of eigenvectors ofSx andΛ′ is
the diagonal matrix of according eigenvalues. Instead of calculating the eigenvec-
tors and eigenvalues of the large matrixSx we can calculate them for the much
smaller matrixS′. To achieve the correct eigenvectors we only have to multiply the
calculated matrixΦ′ by X̂.

3.2 Shape Model

The first type of information included in an AAM normally is referred to as shape.
Before we discuss the actual statistical analysis of shape we consider some general
issues about shape and how shape information is obtained. We also take a look at
how the shape of a complete training set can be normalized. For an introduction to
statistical shape models we also refer to Stegmann and Gomez (2002).

3.2.1 What is Shape?

In everyday speech the termshapeis used to refer to the outline or contour of an
object. In computer visionshapeusually refers to geometrical properties in a more
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Figure 3.2: Invariance of shape. All smileys share the same shape independent of
rotation, scaling, translation and texture.

general way. With the purposes and applications of computer vision in mind, shape
can be regarded as [HyperDictionary, 2005]:

“the spatial arrangement of something as distinct from its sub-
stance.”

In the field of AAMs the mentioned substance distinct from shape is nothing else
but the actual gray values or pixel colors of an image.

Very important for the concept of shape is also that shape has to be independent
of rotation, scaling and translation. The shape of something remains the same no
matter whether it appears rotated, scaled or translated. Figure 3.2 illustrates this
principle.

In human language the shape of an object is often described by comparing it
with another object, a geometrical figure or giving it attributes like “thin”, “angu-
lar”, “round”, etc. Such descriptions are relatively vague and can of course not be
understood by a computer. To be able to treat shape with an exact algorithm, we
need a more mathematical method.

In computer vision and pattern recognition the concept of landmarks was intro-
duced to effectively represent shapes. Identifying the shape of an object then means
to identify distinctive points – the landmark points – in the geometrical appearance
of this object. The shape of a human face, for example, could be described by iden-
tifying the corners of the mouth or the eyes as landmark points. This process of
placing landmark points is called annotation. By carrying out the annotation for
an image of some object, we make explicit the shown object’s geometry or shape
information. Indeed this annotation information is the shape information that can
be further processed by an algorithm running on a computer.



20 CHAPTER 3. ACTIVE APPEARANCE MODELS

3.2.2 Obtaining Landmark Points

A crucial problem is how to correctly identify landmarks in a given image. The
simplest approach is to let a human expert manually create the annotation. How-
ever there are several arguments against this solution. The most obvious of these
arguments is that it takes a lot of time to annotate large data. This makes it very
impractical and can be costly when the annotation has to be carried out by a well
trained expert as it is the case for clinical applications. Also the human expert might
make mistakes or the manual annotations can be slightly inaccurate. In this thesis
we concentrate on AAMs in 3D. Since volume data already is not easy to visualize
it is even harder to find good landmark points manually in 3D.

In practice there exist relatively few really significant and unique points that
can be identified manually as exact landmark points. To increase the number of
landmarks, additional points are introduced using an interpolation scheme or local
image features. A general classification of landmark points with respect to how they
are placed is given below.

• Anatomical landmarks correspond between organisms in some biologically
meaningful way. Such points are usually identified by a human expert.

• Junctionsare points where different clearly distinguished boundaries meet.

• Mathematical landmarks are located using some mathematical property, i.e.
high curvature or an extremum.

• Pseudo landmarksare (usually evenly spaced) points upon an object’s sur-
face or outline between existing landmarks.

Figure 3.3 illustrates the different types of landmark points. It has to be stated that
the identification of landmark points in 3D is much harder than in 2D. For example
T-junctions which are often relatively easy to determine in 2D often appear much
more diffuse in 3D. The number of landmark points which are well-defined often is
relatively low in 3D medical data. Therefore intermediate landmark points are used
to a large extent, which in general is not so good for the quality of the model.

AAMs use statistical methods and learn appearance not only from a single
golden image but from a whole training set. To provide the algorithm with the com-
plete shape information that is necessary, landmarks have to be defined for each
example in the training set. Besides making a manual annotation even more com-
plex this poses the problem of correspondence between annotations of different
examples. Any landmark point in one training example has to define exactly the
corresponding salient point as in all other training examples. This seems to be no
problem if suitable distinctive points exist in the training data. However, especially
for volumetric medical data this is rarely the case.

Currently intensive research is done to develop new methods to find good cor-
responding landmark points automatically [Davieset al., 2001; Davieset al., 2002;
Taylor et al., 1999; Kotcheff and Taylor, 1998; Bookstein, 1997; Brett and Taylor,
1998]. Most of these methods start with some not so good annotation and try to
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Figure 3.3: The different types of landmark points.

increase correspondence between correlating points of different data instances by
displacing the initial landmark points slightly. A very promising approach [Davies
et al., 2001] uses the description length of a model as a criterion for its compact-
ness and quality. The description length is a concept from information theory. It
is roughly spoken the amount of information needed to transmit all information
making up the model. The idea is that good, corresponding landmark points lead
to a small description length. The problem of finding good landmark points can
then be seen as an optimization problem for which the description length has to be
minimized by changing the coordinates of landmark points.

A critical aspect concerning volumetric medical data is that artifacts due to mo-
tion of the patients frequently appear. This is the case when individual slices are
captured one after the other with some time gap in between. In order to get good
landmarks some kind of motion compensation has to be performed. For cardiac
data, artifacts are often the result of respiratory motion and so the slices are dis-
placed in a similar way. The question is whether it could make sense to omit motion
compensation so that the model built from the according data also “learns” the most
common displacements that occur. However in general one wants to keep out such
motion distortions from the landmarking information. We will return to the problem
of motion artifacts in chapter 6.

3.2.3 Aligning two Shapes in 3D

The first step in analysis of shapes is to optimally align the considered shapes in
order to filter out differences due to translation, scale and rotation. In this context
we consider shapes to be sets of points each shape consisting of the same number
of Nx points. In this section we discuss alignment of pairs of shapes. In the next
section we show how the presented technique to align two shapes is used for the
alignment of multiple shapes.

Although the following methods in principle are applicable to data of any di-
mension, we stick to the 3D case. A single shape in our notation is thus a3 × Nx

matrix. We denote the two matrices representing the two shapes which are to be
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alignedX andY. Note that both shapes include the same number of points and
thusNx = Ny.

In matrix notation we can now write down the sum of squared Euclidean dis-
tances between pairs of correlating points:

d(X,Y) =
Nx∑
i=1

‖xi − yi‖2. (3.27)

In the above equationd describes the difference between the two shapesX andY
and is also referred to as Procrustes distance of two shapes. The goal of aligning
two shapes can be identified as minimizingd with respect to translation, scale and
rotation. We can thus formulate the problem as a minimization problem

Nx∑
i=1

‖xi − T (yi)‖2 → min (3.28)

whereT refers to a transformation consisting of translation, scaling and rotation.

It can be shown [Horn, 1987] that the optimum translation vector is equal to the
difference vector between the centroidsµx andµy of the two shapes. The centroids
are the mean vectors of all column vectors of the considered matrix:

µx =
1

Nx

Nx∑
i=1

xi, µy =
1

Ny

Ny∑
i=1

yi. (3.29)

So the first step in aligningX andY is to align their centroidsµx andµy. This can
be achieved by shifting the shapes such that their centroids align with the origin of
the coordinate system.

The shift to the origin of the coordinate system is the same as replacingX andY
with the zero-mean matriceŝX andŶ. For finding the optimum scale and rotation
we thus consider only this zero-mean data.

The optimum scaling factors that has to be applied toY such that both shapes
become the same size can be shown to be [Horn, 1987]:

s =

√∑Nx

i=1 ‖x̂i‖2∑Ny

i=1 ‖ŷi‖2
. (3.30)

Finally the optimum rotation has to be found. For this we consider the data from
which translation and scale are already filtered out. We represent this data with two
matricesX′ consisting of the column vectors

x′
i = x̂i (3.31)

andY′ consisting of the column vectors

y′
i = sŷi. (3.32)



3.2. SHAPE MODEL 23

Representing rotation by matrixR the following equation can be introduced

E = RY′ −X′ (3.33)

whereE is the difference after rotation ofY′. The trace ofEET is equal to the
Procrustes distanced as introduced in equation 3.27:

tr(EET ) = d(X′,RY′). (3.34)

Finding the optimal rotation is a matter of minimizing the above trace:

tr(EET )→ min . (3.35)

Note that so far we have not made thatR really is a rotation matrix. This is done
by claiming thatR is orthonormal or

RRT = RTR = I (3.36)

whereI is the identity matrix.

Using the method of Lagrange multipliers [Edwards, 1994] the minimization
problem stated in equation 3.35 with the side condition stated in equation 3.36
can be solved analytically. Using Singular Value Decomposition (SVD) of ma-
trix Y′X′ = UDVT it can be shown thatUVT is the rotation matrix optimally
aligningY′ to X′. For more details about the mathematical background we refer to
Schoenemann (1966).

In order to avoid the side condition stated in equation 3.36 an alternative ap-
proach can be used to find the optimal rotation. Using unit quaternions to represent
rotations the explicit claim that the transformation matrix has to be orthonormal can
be omitted [Coutsiaset al., 2004; Horn, 1987].

We resume that there exist analytical methods to calculate the transformation
for optimally aligning a shapeY to another shapeX. In the following discussion
we denote such a transformationτ(X,Y).

3.2.4 Aligning Multiple Shapes

In order to build a statistical shape model, first all shapesXi of a training set have to
be aligned. We outline an iterative algorithm to perform this task [Besl and McKay,
1992]. The basic idea is to iteratively align all shapes to some mean shape.

At the beginning any shape is chosen to be the initial estimation of the mean
shapeX. All the remaining shapes are then aligned with the initial mean shape. This
can be done by following the approach from above for alignment of two shapes.

After the first alignment a new mean shapeX is calculated as the arithmetic
mean of corresponding coordinates of all shapes:

X =
1

Nt

Nt∑
i=1

Xi. (3.37)
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whereNt denotes the number of shapesXi in the training set. Again all shapes
are aligned to this new mean shape. One result of the alignment is that the mean
shape changes. Therefore a new mean shape has to be calculated in each iteration
according to equation 3.37. The process of alignment and calculation of a new
mean shape is iterated until the distance between the current mean shape and the
mean shape from the last iteration falls below some threshold.

X as defined by equation 3.37 is also referred to as Procrustes mean shape
[Stegmann, 2000; Stegmann and Gomez, 2002]. The newX only is a valid shape
instance if the considered shapes are already more or less aligned. This is why
for the first alignment any shape is chosen to be the mean shape. This results in a
good initial alignment after the first iteration. The following iterations then produce
plausible Procrustes mean shapes.

We can now formulate the complete iterative closest point (ICP) algorithm to
align all shapesXi. In the following we denote transformations ast. Accordingly
t(X) is the point setX transformed byt. A concatenation of two transformations
is written tc = ta · tb. The application oftc is then equal to an application ofta
followed by an application oftb: tc(X) = tb(ta(X)). The identity transformation is
denotedtid.

For each shape a transformationti is kept that represents the complete trans-
formation of the original shape’s position. In algorithm 1 againd denotes the Pro-
crustes distance of two shapes andd0 denotes a threshold for the termination cri-
terion. When the algorithm terminates,ti stores the complete transformation for
shapeXi. Applying each transformationqi to its associated shapeXi aligns all
shapes.

1: for eachi = 1 . . . Nt do
2: ti ← tid
3: end for
4: Select any shapeXi to be the initial mean shapeXnew ← Xi

5: repeat
6: X← Xnew

7: for each shapei = 1 . . . Nt do
8: Calculate the optimal registrationt∗ = τ(X, ti(Xi))
9: Append the current registration updatet∗ to the shape’s transformation:

ti ← ti · t∗
10: end for
11: Recalculate the Procrustes mean shapeXnew from all ti(Xi)
12: until d(X,Xnew) < d0

Algorithm 1: Iterative closest point (ICP) alignment of multiple shapes.

3.2.5 Shape Model Formulation

We have discussed alignment of shapes and principal component analysis of data in
general. Building a shape model is not much more than combining both methods
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appropriately. The input of the whole data analysis is a set of shapes with corre-
sponding points. In the terminology of AAMs a so called point distribution model
(PDM) is derived from these shapes. This PDM is nothing else but a compact de-
scription of possible shapes similar to the ones in the training set.

After having solved the problem of aligning individual shapes the actual statisti-
cal analysis can be carried out in order to build a pure shape model. In the following
we will represent shapes not as matrices as we have done previously. From now on
we represent shapes as vectorss. A shape vector includes all coordinates constitut-
ing a shape. It does not matter in which order the coordinates are included in a shape
vector or of which dimensionality the landmark points are. The only thing that has
to be taken care of is that there is a 1-to-1 correspondence between thei-th coordi-
nate of one shape and thei-th coordinate of another shape. We use the convention
that a shape vector is represented bys = (x1, y1, z1, x2, y2, z2, . . . , xNx , yNx , zNx)

T

wherexi, yi, zi are the coordinates of thei-th landmark point. The abstraction we
use is to regard each shape as a simple vector of features where each feature is one
coordinate of a landmark point. We consider all shapes already being aligned by an
ICP algorithm as described above.

The next step is to compile the individual (aligned) shapessi of the training
set to a matrixS wheresi is thei-th column vector. The last step in building the
shape model then is to calculate the principal component analysis (PCA) of matrix
S. Similarly to equation 3.21 we get the model representation of the shape data:

s = s + Φs,kps. (3.38)

Together with the eigenvaluesλi equation 3.38 constitutes a shape model. The
elementsps,i of ps are called the modes of the shape model.k is the number of
eigenvectors used in the model. The greaterk, the more of the shape variation
included in the training set can be expressed by the model.

Let Ns be the number of shape features andNt the number of training sets. In
3D and forNx shape points there areNs = 3Nx shape features. Equation 3.38
tells us how a shape instance can be calculated from a vector of modesps. It is an
important property of PCA to reduce dimensionality. This means that in generalps

includes fewer elements thans. Especially if there are many more shape features
than there are elements in the training set (Ns � Nt), the dimensionality is reduced
reasonably. In fact the number of modes (denotedk) cannot be greater than the
number of training sets minus 1 (k ≤ Nt− 1). Thenk also is much smaller thanNs

(Ns � Nt > k).

In a realistic setting we used 1500 shape features and 30 training sets. This
means a vector including a maximum of 29 modes is needed to represent all shapes
in the training set each one including 1500 elements. Note that the model allows us
to control variances in large data vectors with a relatively small number of modes.

3.3 Texture Model

Similarly to the shape model, a texture model can be formulated. The data ana-
lyzed for building a texture model is usually represented in form of simple gray
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values. Although there exist approaches using more complex color information
[Stegmann and Larsen, 2003], we will consider only simple gray valued textures
in the following discussion. We do this without restrictions since the medical MRI
data considered here does not include any higher bandwidth color information.

3.3.1 Obtaining Texture

The first step in building a texture model is to find out which gray values are im-
portant. This has to be done since the complete image data usually does not only
include gray values of the object for which we want to build the model. Also texture
information resides in the image which comes from things which are distinct from
our object of interest. Cardiac MRI data, for example, also shows parts of other
organs, not only of the heart. For building a model of the left ventricle one only
wants to use the according texture.

However, spatial information already has to be available in form of annotations
for the shape model we have already outlined. Obviously this geometrical informa-
tion is a perfect basis for deciding which gray values we should use in the texture
model. The standard solution is to calculate a Delaunay triangulation of the land-
mark points and to use all gray values lying inside the resulting simplices (triangles
in 2D, tetrahedra in 3D, . . . ). In other words to obtain the texture used for model
building we run through all samples of the grid representing the image data and
store the according gray values.

An important property of the texture model is that spatial variation is filtered out
completely. This is achieved by placing a regular grid over the mean shape. Only
the nodes of the grid residing inside the mean shape are taken. The mean shape
is now transformed such that it becomes equal to the considered data set’s shape.
The grid nodes introduced in the mean shape space are deformed accordingly. The
texture can then be resampled at exactly the positions where the transformed grid
nodes reside.

The remaining question is how to deform the grid nodes according to the shape
points. The simplest solution is to use a Delaunay triangulation of the mean shape
as mentioned above. This subdivides the model into simplices. Linearity is assumed
for the deformation of each simplex. This means that the barycentric coordinates of
a point inside a simplex are constant under the linear deformation of the shape.

The described piecewise linear warping is relatively easy to implement and is
thus the standard solution for warping AAMs. However it can lead to some prob-
lems. The kinks that appear at the edges of the warped simplices make smooth
contours appear not smooth under the deformation. As an improvement thin plate
splines [Bookstein, 1991] could be used for warping, which in general generate
smoother deformations. Another problem that is not solved using thin plate splines
are foldings of space as depicted in figure 3.4.

Recently the use of diffeomorphic deformations for statistical shape models has
been discussed, which avoids the mentioned folding [Cooteset al., 2004]. How-
ever, such more elaborated deformation strategies increase the computational effort
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Figure 3.4: Overlapping due to folding. A typical fold as it can appear when
applying an affine warp. The corner of the (2D) triangle on the right is transformed
into the (2D) triangle on the left. The result is that both triangles overlap.

especially when used for higher dimensional data. Since usually only very small
deformations are considered, the mentioned folds and kinks are often ignored in
AAM implementations.

In spite of the mentioned problems connected to affine warping we follow this
approach in the present work. In the mean shape space the barycentric coordinates
of regularly spaced grid nodes are determined. If the texture of a given data set
has to be extracted the data set’s shape is taken and is made the new basis for the
previously calculated barycentric coordinates. In other words we do not change the
barycentric coordinates but their basis points. This leads to the correct Cartesian
coordinates of sample nodes in the considered data set’s shape space. At these
transformed nodes the volume data is resampled and stored in the data set’s texture
vector. This proceeding is illustrated in figure 3.5.

Note that with the above procedure for each data set exactly the same number of
texture samples is calculated. Also the correlation of individual texture samples is
maintained between different data sets. For example a texture sample that resides at
the inner border of the left ventricle in one data set also resides at the corresponding
position for another data set thanks to warping of the resampling grid.

So far we have assumed that all the texture is taken from evenly spaced samples
lying in the triangles of a Delaunay triangulation of the mean shape. This is a very
simple method to obtain texture samples. The great drawback is that a Delaunay
triangulation covers the complete convex hull of all points for which it is built. In
other words if the mean shape of an object is not convex the Delaunay triangulation
includes both the interior and exterior simplices.

For a 2D shape of a human hand, for example, the Delaunay triangulation also
creates triangles in between the fingers. For the texture model this means that tex-
ture of the background is included. Such texture from outside the actual object
usually is not wanted. Simplices lying outside the mean shape have to be identi-
fied and removed before texture is resampled. In the simplest case this can be done
manually.
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Figure 3.5: Sampling in shape-normalized space. The mask for resampling texture
is determined in mean shape space (a). Then this mask is warped to the individual
shapes of the examples in the training set (b), (c) and (d). After this the texture
values are resampled in the warped nodes.

3.3.2 Intensity Normalization

Usually there are variations of gray value intensities included in most image data.
These variations can be considered acquisition artifacts. Since the goal is to build
models not including such unwanted information, these variations have to be filtered
out. In the following we assume that for each data set a vector of texture values has
already been extracted.

A simple method is to subtract the mean valuegj of all intensity values in
the texture vector belonging to data setj. Assuming that there areNg samples
gj,1, gj,2, . . . , gj,Ng concatenated to a single texture vectorgj, the according zero-
mean texture sampleŝgj,i can be calculated by

ĝj,i = gj,i − gj, gj =
1

Ng

Ng∑
i=1

gj,i (3.39)

wheregj denotes the average gray value intensity of a single data setj. Furthermore
the average mean value over all data sets can be calculated

g =
1

Nt

Nt∑
j=0

gj, (3.40)

with Nt being the number of data sets.
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Figure 3.6: Normalization of intensities of a given texture vector. The figure on the
left shows histograms of distributions of texture intensities of three images. On the
right both, mean and standard deviation, are unified. This makes the distributions
of intensities for all three data sets fit together much better. The intention of texture
normalization is to filter out global intensity variations before a model is built.

Next we would like to unify the different variances in the training set. This can
be done by first calculating the average varianceα of all data sets:

α =
1

Nt

Nt∑
j=0

αj, αj =
1

Ng − 1

Ng∑
i=1

(ĝj,i)
2. (3.41)

Hereαj denotes the variance of thej-th data set andNt again is the number of
data sets. Finally the normalization of an individual texture vector is achieved by
dividing each intensity value shifted to zero mean by the data set’s standard devia-
tion
√

αj, multiplying it by the average standard deviation
√

α and shifting it to the
average meang:

g′j,i =
gj,i − gj√

αj

√
α + g (3.42)

whereg′j,i is the normalizedi-th sample of thej-th texture vector. The result of such
a normalization is illustrated in figure 3.6.

When taking a look at slices of volumetric medical data sets one can see that
there are great differences in intensities of adjacent slices. This texture-related prob-
lem is similar to the geometry-related problem of motion dependent displacement
of slices. The sometimes considerable differences of intensities between slices in-
duce additional unwanted variations that one wants to keep out of the model. One
approach to solve this problem is to normalize intensities of individual slices. For
example, intensity distributions of individual slices could all be shifted to the same
mean and stretched to the same variance as described above. Note that for this
strategy all voxel intensities of a complete slice are considered. This makes a big
difference to the normalization described above where only texture from inside the
model is considered.

Removing inter-slice variations in the data can be regarded as a preprocessing
of the data. If such a preprocessing is introduced the fact that also background is
considered for the normalization has to be kept in mind. It makes the strategy very
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problematic if the objects in the background, which are not included in the model,
vary strongly from data set to data set. Then unwanted variations from outside the
model disturb the model’s texture. For many medical data sets however this problem
can be neglected since the surroundings of organs usually do not vary so much.

Intensity-adjustment of slices actually is some kind of preprocessing of the orig-
inal data. It takes place before any real model building step is carried out. Refer to
chapter 6 for more details on texture preparation for our cardiac ventricle data sets.

3.3.3 Texture Model Formulation

Once texture values are resampled and normalized the texture model itself can be
built. This is done in a very similar way to building the shape model. The texture
vector extracted from data setj is represented as a vectorgj of normalized gray
values. All texture information can be represented by a matrixG whose column
vectors are denotedgj. Finally the PCA ofG can be calculated resulting in the
texture model:

g = g + Φg,kpg. (3.43)

As for the shape model we can now represent large texturesg with thek parameters
or modespg,i included in vectorpg.

3.3.4 Border AAMs

In general, only texture from inside the shape model is taken for the texture model.
Sometimes, however, it can also be useful to include texture samples from outside
the model shape. This is done because the outer border of the shape often corre-
sponds to an edge in the image data. Taking only texture from inside the model
means that the model has only information about texture from one side of the edge.
Thus the model has no information about the edge itself. To include the edge in-
formation in the model, a thin border around the shape is considered to include
additional texture samples in the model.

This approach is also known as “Border AAMs” [Stegmann, 2000]. It is es-
pecially interesting for medical applications since the variances of adjacent organs
correlate. This justifies the inclusion of surrounding texture. This approach avoids
the shrinking of the model away from the object’s outer border when matching the
model to unseen data.

3.4 Combined Model

The last step in building a complete AAM is to merge the shape model given by
equation 3.38 and the texture model represented by equation 3.43 into a combined
model. The combined model then describes the complete statistical variations in
both shape and texture.



3.4. COMBINED MODEL 31

The first step in building the combined model is to simply concatenate the vec-
tors representing shape and texture:

x =

[
s

g

]
. (3.44)

The above concatenation is problematic because shape features which represent co-
ordinates and texture features which represent gray values are put together. The
magnitude of both types of data in general varies and the following statistical anal-
ysis of the combined data leads to bad results. This is why a weight matrixWs for
model parameters of the shape model is introduced. The shape model is reformu-
lated,

s = s + Φsps = s + ΦsW
−1
s psWs︸ ︷︷ ︸

p′
s

= s + ΦsW
−1
s p′

s (3.45)

wherep′
s denotes the scaled model parameters. In the following the scaled shape

model parameters are considered instead of the original shape model parameters.

An open question is how the weight matrixWs is determined. A common
method is to calculate the fraction of the sum of eigenvaluesλg,i of the texture
model and the sum of eigenvaluesλs,i of the shape model:

r =
λg

λs

, λs =
∑

λs,i, λg =
∑

λg,i. (3.46)

The weight matrixWs for the shape model parameters is now chosen to be the
diagonal matrix whose elements are equal tor:

Ws =

 r 0
...

0 r

 . (3.47)

With the weighted version of the shape model parameters we are now able to for-
mulate an initial version of the combined model:

x =

[
s

g

]
=

[
s

g

]
+

[
ΦsW

−1
s 0

0 Φg

] [
p′

s

pg

]
. (3.48)

Using equations 3.38 and 3.43 a model instance can be built according to some
given parameters. For building the combined model it is necessary to invert this cal-
culation. Namely, the parameters have to be determined given the model instances.
The equation of the shape model can be inverted according to the following deriva-
tion:

si = s + Φsps,i

si − s = Φsps,i

ΦT
s (si − s) = ps,i

(3.49)

wheresi denotes the shape andps,i the parameters of data seti. Note thatΦ−1
s =

ΦT
s since the columns ofΦs are orthonormal eigenvectors. For the weighted shape

model parameters we get:

WsΦ
T
s (si − s) = p′

s,i. (3.50)
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Analogously an inversion of the texture model gives:

ΦT
g (gi − g) = pg,i. (3.51)

Using the two previous formulas one can calculate the corresponding vector of
model parameters for any training data seti:

pi =

[
p′

s,i

pg,i

]
. (3.52)

Each of these vectors contains both the parameters for the shape model and the
parameters for the texture model. Eachpi encodes shape and texture – the complete
appearance – of one example in the training set. All vectorspi are assembled into
matrixP as column vectors. We can now apply PCA toP in order to get a model-
like representation of its column vectors:

p =

[
p′

s

pg

]
= p + Φppc. (3.53)

The trick is now to replace vector(p′
s|pg)

T in equation 3.48 with the right part of
equation 3.53:

x =

[
s

g

]
=

[
s

g

]
+

[
ΦsW

−1
s 0

0 Φg

]
(p + Φppc) . (3.54)

The parameters of the combined model are represented by vectorpc. The elements
of this vector do not correspond to shape or texture values separately but influence
both. Equation 3.54 however is not the final formulation of the combined model.
Since the model parameters of shape and texture have values evenly distributed
around zero we can assume thatp, the mean of parameters in the models of shape
and texture models is the null-vector:p = (0, 0, . . . , 0)T . This simplifies equation
3.54 to

x =

[
s

g

]
=

[
s

g

]
+

[
ΦsW

−1
s 0

0 Φg

]
Φp︸ ︷︷ ︸

C

pc (3.55)

or simply:
c = c + Cpc (3.56)

3.5 Valid Range for Model Parameters

Equation 3.56 is the final representation of model instances. Each of the elements in
pc is a parameter or mode of the model and usually is considered to have a value of
±3σi whereσ is the standard deviation. We know that the eigenvaluesλi calculated
in the PCA ofP are the maximum likelihood estimates for the variances of the
combined model’s parameters. Accordingly the standard deviation for each model
parameter is the square root of its associated eigenvalue:σi =

√
λi.



3.5. VALID RANGE FOR MODEL PARAMETERS 33

−6

−4

−2

 0

 2

 4

 6

−3 −2 −1  0  1  2  3

B

A

B’

Figure 3.7: The hyper-ellipse defining the valid model instance. Point A denotes a
valid model instance. B represents an invalid instance which can be corrected to B’
which is the closest valid instance to B.

By restricting the individual model parameters to three times their standard de-
viation the specificity of the model can be assured. In literature this is described as
the usual restriction so that all derived model instances are likely to represent valid
instances of the modelled object [Cootes and Taylor, 2000; Stegmann, 2000]. Fur-
ther it can be stated that model instances whose parameters all differ a lot from
zero are rather implausible. Thus often an even stronger restriction is made to
the model parameters. The Mahalanobis distance between the mean (where all
modes are zero) and some model instance is calculated. If this distance exceeds
some threshold the model instance is declared invalid [Cootes and Taylor, 2000;
Stegmann, 2000]. The Mahalanobis distance is frequently used in statistics to mea-
sure the distance of two pointsa andb. It is defined as

dM(a, b) =
√

(a− b)TS−1(a− b) (3.57)

whereS denotes the covariance matrix. Here we only want to calculate the distance
of some instance to the mean. Since the mean has all parameters set to zero we can
considerb = 0. Further the covariance matrix calculated by the PCA is diagonal-
ized and includes the eigenvalues as its diagonal elements. Thus equation 3.57 can
be rewritten as:

dM(a, 0) =
√

aTΛ−1a. (3.58)

In other words the criterion for a model instance to be valid is

√
pT

c Λ−1pc =

√√√√ N∑
i=0

p2
ci

σ2
i

≤ Dm (3.59)

with N being the number of eigenvalues not equal to zero andDm a threshold. In
order to conform with the criterion that a parameter value should not exceed±3

√
λi

the thresholdDm is chosen to be 3. If only one single parameter is not equal to zero
the validity criterion becomes √

p2
ci

σi

≤ 3. (3.60)
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If a set of parameters is not valid,√√√√ N∑
i=0

p2
ci

σ2
i

= F > Dm, (3.61)

a correction has to be done to the model parameters in order to make the model plau-
sible again. This can be achieved by scaling each individual parameter byDm/F :

pc,i ← pc,i ·
Dm

F
(3.62)

The space delimited by the Mahalanobis distance is a hyper-ellipse. The valid
model instances only lie inside this ellipse. This is illustrated in figure 3.7.

3.6 Extended Model Formulations

The standard AAMs assume that each shape instance can be modelled as a simple
linear combination of a basis of shapes and textures as found in the training set.
In this section we will take a closer look at model formulation and outline some
recently proposed techniques that try to extend model representation and make it
more robust.

We remind the reader of the main problem of efficient model representation:
The model has to be general enough to be able to represent all possible instances
and at the same time it has to be specific enough to avoid invalid instances. In
the following we present some approaches which try to resolve this antagonism of
generality and specifity.

3.6.1 Non-Linearity and Non-Continuity

One critical aspect of AAMs is that linearity of shape and texture is assumed. The
question is what will happen if this assumption fails and the real object variances are
not linear. Figure 3.8 shows possible distributions of model parameters for highly
non-linear training sets. Such non-linearities for example appear if the shape of an
object is bending over different instances in the training set.

Another case where the assumption of linearity fails is if there is some feature
that can have two or more distinct values where an interpolation in between does not
make sense. For example imagine a training set for a face model including images
of people some wearing glasses and some wearing no glasses. The standard AAM
would then be able to create instances with “a little bit” glasses. This does obviously
not make much sense and so we can state that these instances should be identified
invalid and should be avoided during the model matching process. Although a lot
of literature has been published about non-continuous and non-linear modelling
[Roweis and Saul, 2000; Tenenbaumet al., 2000] we shall here only review some
of the proposed strategies.
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Figure 3.8: This figure shows two examples where the linearity assumption is not
appropriate: non-linearity (left) and non-continuity (right) in the model parameters
of a training set.

Figure 3.9: A shape that is strongly bending over examples in the training set

3.6.2 Projection into Tangent Space

There are several techniques dealing with the problem of non-linearity. One ap-
proach [Cootes and Taylor, 1999; Cootes and Taylor, 2000; Stegmann and Gomez,
2002] uses a projection into tangent shape space of individual training shapes.
Imagine a training set where strong bending is observed in the given examples.
Figure 3.9 shows an example for such a shape that strongly bends over the training
set. This variation can be explained by a single non-linear parameter. However, the
use of PCA in such a case leads to two linear model parameters. The modelling
of non-linear variations by multiple linear ones is typical of PCA. Not only the in-
crease of the model’s dimensionality is a problem. Also the specificity of the model
suffers. In the following we discuss projection of shapes into tangent space. The
intention is to transform non-linear variations into linear ones.

Often non-linearities are caused by the alignment of shapes. In section 3.2.3 we
have discussed alignment of shapes. For this the shapes are scaled in their size such
that the Procrustes distance is minimized. This scaling is not always optimal with
respect to linearity of the positions of shape points.

In figure 3.10 the two arrows illustrate the positions of two shape points. The
bold arrow represents the point’s position in the mean shape and the other arrow il-
lustrates the corresponding point of some specific training example. Pivoting of the
shape point is indicated by the depicted arc. The figure illustrates that a projection
of the point to the tangent of its mean shape transforms the non-linear variation into
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Figure 3.10: A shape which varies from the mean by pivoting (left) is transformed
to tangent shape space (right) by scaling. The bold arrow represents the mean shape.
The transformed shape is represented by the thin arrow [Stegmann and Gomez,
2002].

a linear one. A projection into tangent shape space can be accomplished by scaling
individual shapessi by the factor1/(si · s).

However in the given example a relatively simple non-linearity appears. The
method described above only works if the non-linearities approximately follow cir-
cular arcs around the centroid of shapes. For real-world shapes the situation is more
complicated.

3.6.3 Using Polar Coordinates

To better handle non-linearities also the use of polar coordinates for individual
points has been proposed [Heap and Hogg, 1996]. Similar to the use of tangent
space in chapter 3.6.2 the assumption is made that the appearing non-linearities are
approximately circular. The main idea of the hybrid representation of landmark
points is that parts of a model can pivot relative to other parts. For example in a
hand model the fingers might rotate relative to the palm. A hybrid model can be
formulated that uses Cartesian coordinates for points lying upon the palm. Points
upon the fingers are modelled using polar coordinates. The PCA is carried out on
the mixture of Cartesian and polar coordinates. The model finally is capable of
modelling bending of a finger with a linear change of the angle of the according
polar coordinates.

The lamp depicted in figure 3.11 also is an object which can very well be de-
scribed using the mentioned hybrid approach. In order to describe possible de-
formations of this lamp as indicated in the figure, point 5 for example has to be
represented by polar coordinates. Point 4, which has to be given in Cartesian coor-
dinates, serves as the origin for the polar coordinates of point 5. However point 4
is not the only reference point needed. Another point is needed because the angle
in the polar coordinates has to be given relative to some straight line. Such a refer-
ence line has to pass through point 4. A second point has to be found to completely
specify the line’s orientation. Two properties of the second point are claimed:
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Figure 3.11: The shape of a lamp with pivoting parts [Heap and Hogg, 1996].

• The point has to be far away from the origin

• The point should move as less as possible relative to the origin.

In the above example point 2 would be feasible. Finally the position of point 5
can be determined completely by specifying its distance to point 4 and the angle
between line42 and line45.

The outlined representation has the advantage that a hierarchy of point groups
can be established. The points in the lowest layer have to be given in Cartesian
coordinates. Point groups in a higher layer always have the possibility to rotate
around a point from a lower layer. In this way it is possible that point 5 pivots
around point 4, 6 pivots around 5 and 7, 8, 9, etc. pivot around 6.

For a small shape it is possible to manually determine which points shall be
represented by which type of coordinates. For polar coordinates the correspond-
ing reference points can also be manually determined. Anyway, for more complex
shapes this method is too time-consuming. Two algorithms for automated assign-
ment of the representation have been proposed [Heap and Hogg, 1996]. The first
one allows only pivoting relative to existing points in the shape. The second one
adds points to the shape as parts of the shape seem to pivot around this point.

To our knowledge the outlined hybrid method has not yet been extended to 3D.
In principle this could be done straight forward. However, one has to consider that
rotations in 3D are much more difficult to describe than in 2D because the moving
points describe a sphere.

The hybrid method using Cartesian and polar coordinates is useful for objects
whose parts are rigid and rotate relative to each other. However for medical data
sets this usually is not the case. Non-linearities appearing in medical data appear
rather due to more complicated bending combined with stretching and the like.
We suggest that the outlined hybrid approach is not adequate to be applied in the
medical domain.
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3.6.4 Mixture Models

The previously described methods all use very specific approaches to handle very
specific non-linearities in shape. The idea is to detect or assume a special kind of
non-linearity in the model. Specific techniques are used to convert the non-linear
relations into linear relations.

The Mixture Model approach [Cootes and Taylor, 1999] tries to increase speci-
fity of a model without losing generality where it is needed. In the standard AAM
approach the original shapes are projected into a lower-dimensional space by apply-
ing PCA. Then the domain of plausible shapes is identified as a hyper-ellipse around
the mean shape defined by the Mahalanobis distance. For Mixture Models also the
projection into a lower dimensional space is carried out. The difference is that the
hyper-ellipse is not used to identify valid instances. Instead Mixture Models make
use of Gaussian Kernels in order to describe the space of valid model instances.

The crucial question is to define what a “plausible shape” actually is. It must
be stated that whether a shape is plausible or not often allows no strict answer.
A shape may be “more plausible” or “not so plausible”. This makes it necessary
to specify plausibility of shape in terms of probabilities. This is something only
roughly considered in the standard AAM. Only global variances measured in the
data set are considered.

Mixture models refine the treatment of statistical variances. The only informa-
tion about plausible shapes that can be learned directly is that the training shapes can
be assumed to be plausible. Of course this is not enough since there exist other plau-
sible shapes similar to the ones in the training set. The simplest way to increase the
domain of plausible shapes is to put Gaussian kernels around the training examples.
This is done already in the space of reduced dimensionality as determined by PCA.
The great advantage of this method is that the domain of valid model instances
is described directly and this has the nice property that a lot of non-linearities or
non-continuities in shape or appearance in general can be handled.

An important remaining question is how we can make sure that only valid in-
stances are created during the model search. In case of the standard AAMs a trun-
cation of parameter values is applied in order to project the invalid shape to the next
valid shape (see figure 3.7). For Mixture Models in principle something similar
is done. Suppose the plausibility for a specific shape becomes very small during
search. Then this shape should somehow “flow” towards a close plausible state.

Cootes and Taylor (1999) suggest to move implausible shapes towards more
plausible shapes using a gradient ascent approach. To make clear how this works in
practice take a look at the training set of synthetic shapes in figure 3.12. Each shape
consists of 28 points (there are three points lying on each line segment).

Figure 3.13 (left) shows an instance created by the model with the points dis-
turbed by noise. Projecting the instance into the reduced space of parameters results
in a shape as depicted in 3.13 (middle). This shape is already more plausible since
the noise is reduced. However the size of the triangle still seems to be too large com-
pared to the square. To solve this problem the model instance represented by a point
in the parameter space is moved iteratively towards a point with higher “plausibil-
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Figure 3.12: A synthetic training set including strong non-linearities. Figure from
[Cootes and Taylor, 1999].

Figure 3.13: Increasing plausibility for generated shapes. Figure from [Cootes and
Taylor, 1999].

ity”. This means the Gaussian mixture function is ascended towards a maximum.
The result of this can be seen in figure 3.13 (right).

3.6.5 Independent Component Analysis for AAMs

Principal Component Analysis which is used for standard AAMs makes the as-
sumption that the individual principal components are orthogonal. This assump-
tion allows an elegant calculation of principal components by analysis of the
covariance matrix. However, recently another method has gained much inter-
est. The so called Independent Component Analysis (ICA) [Hyvärinen, 1999;
Üzümc̈u et al., 2003] is a powerful alternative to PCA. In the following we dis-
cuss the main ideas behind ICA and show how it can be used for AAMs.

ICA versus PCA

We have already mentioned that the use of PCA is legitimate as long as the analyzed
data follows a Gaussian distribution. This is the case because PCA mainly uses vari-
ances to describe the distribution of the data. However, if no Gaussian distribution
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Figure 3.14: PCA and ICA on non-Gaussian data.

can be assumed the use of PCA is problematic. For example the point-cloud in fig-
ure 3.14 obviously includes two main directions. PCA performed on this data leads
to principal components PC 1 and PC 2 which do not align at all with the two main
directions in the data. This is the motivation for the use of higher-order techniques.
For the example in figure 3.14 it would be nice to calculate the two independent
components IC 1 and IC 2. For the depicted data IC 1 and IC 2 would definitely
describe more meaningful and interesting properties.

In general the goal of reductions of dimensionality is to extract meaningful in-
formation from some high-dimensional data. As with PCA this is performed by
some projection of the high-dimensional data to a low-dimensional space. In the
simplest case the complex data is projected to a simple one-dimensional curve. The
question is how to determine an optimal projection in order to derive highly mean-
ingful low-dimensional information. Projection pursuit is a technique developed
in statistics for finding “interesting” projections of multidimensional data. It has
been argued [Huber, 1985] that projections which show a Gaussian distribution are
the least interesting ones and that the most interesting projections are those which
show the least Gaussian distribution. For example in figure 3.15 the first principal
component of PCA is horizontal and a projection to this principal component shows
a Gaussian distribution. However this does not contribute to the fact that the data
forms two separate clusters. Applying a projection to the vertical axis, this infor-
mation could be maintained. This is another case where PCA fails to extract an
important feature.

PCA only considers variances which contribute to correlations in the data. The
principal components are chosen such that correlations of different variables are
minimized. For ICA not the correlations of different variables but statistical depen-
dences are claimed to be minimized. Statistical independence is a much stronger
requirement than uncorrelatedness. The latter is stated

E{yiyj} − E{yi}E{yj} = 0,∀i 6= j (3.63)

whereE is the expectation value andy is the considered random vector. Indepen-
dence on the other hand is stated by

E{g1(yi)g2(yj)} − E{g1(yi)}E{g2(yj)} = 0,∀i 6= j (3.64)
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Figure 3.15: PCA on clustered non-Gaussian data.

for any functionsg1 andg2. This is the case if the density function can be factorized:

f(y1, . . . , ym) = f1(y1)f2(y2) . . . fm(ym). (3.65)

Definitions of linear independent component analysis

Although there exist also non-linear approaches to linear component analysis we
shall in the following only consider the linear case. Also we consider the data to be
mean-centered. This is no real restriction since every data set can be mean-centered
by subtraction of the mean vector. According to Hyvärinen (1999) there exist three
main definitions for ICA.

Definition 1: ICA of a random vectory consists of finding a linear transform
s = Wy so that the componentssi are as independent as possible, in the sense of
maximizing some functionF (s1, . . . sm) that measures independence.

This first definition is very general. The linear transform mentioned reminds
very much of PCA where also a linear transformation is performed. The great dif-
ference is that for ICA no orthogonality of the independent components is claimed.
Instead a cost function measuring independence is introduced. A maximization al-
gorithm maximizing this function can be used in order to determine the independent
components.

Definition 2: ICA of a random vectory consists of estimating the following
generative model for the data:

y = As + n (3.66)

where the componentssi in the vectors = (s1, . . . , sn)T are assumed independent.
Matrix A is a constant “mixing” matrix andn is a vector representing noise.

Definition 2 represents ICA as the problem of finding latent variables in the
model. The problem with this definition is that the noise vectorn makes it hard to
handle. This is why in most cases the third definition of ICA is used.
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Figure 3.16: Comparison of variation in ICA (left) and PCA (right). The shapes
are cross sections of the heart ventricles. Figure from [Üzümc̈u et al., 2003].

Definition 3: ICA of a random vectory means estimating the following model
generatingy:

y = As (3.67)

whereA ands are the same as in definition 2.

Definition 3 is a simplification of definition 2. For many applications this def-
inition is sufficient. Definitions 1 and 3 become equivalent if certain measures of
independence are used in definition 1 andW = AT .

To determine the independent components usually some kind of objective- (or
contrast-) function is defined which leads to the independent components as it is
minimized or maximized. Of course the exact statistical properties of ICA depend
on the objective function. A lot of different approaches to ICA and thus a great
variety of objective functions have been proposed. For more information refer to
further literature [Hyv̈arinen, 1999; Bingham and Hyvärinen, 2000].

ICA and AAMs

Recently ICA has been applied to AAMs [Üzümc̈u et al., 2003]. Using ICA has
been compared to the standard AAM approach using PCA. It has been shown that
ICA obviously has a big advantage compared to PCA. ICA seems to detect local
variations in the training data. This is not the case for PCA where modes of varia-
tions in appearance are global and usually affect the complete texture and shape of
an object. Figure 3.16 illustrates variations for both PCA and ICA.



Chapter 4

Model Matching

A statistical model as described in the previous chapter allows one to describe a
given volumetric object and its statistical variances in a very compact way. Only
few parameters describe the variances in the object’s appearance. The assumption
is made that the model can form all – or at least most – possible instances of the
modelled object of interest.

In this chapter we discuss how the model can be used to imitate and thus analyze
unseendata. The idea is to first superimpose the model over a given image (or
volume respectively). Then the model parameters are changed until the model is
as close to the target image as possible. If the difference between model and target
becomes sufficiently small it can be stated that the model’s appearance very well
reflects the appearance of the target object. In other words the image data’s shape,
texture, orientation, position and average intensity are known.

4.1 Parameters for Matching

Before we start to discuss methods for fast optimization we extend the description
of the model a little. So far actual scaling, rotation and translation has not been
part of the actual model. Positional information has been filtered out intentionally.
When the model is matched to unseen data this information has to be added again.
To match the model the correct modes of variation have to be found and the model
also has to be scaled, rotated, and translated.

Analogously the information filtered out for the texture model has to be con-
sidered for matching. Since model texture is normalized with respect to mean and
variance of intensities these two values also have to be added explicitly to the model
description for the matching process.

The vector of model parameters is enlarged by the elements which describe the
model’s pose and global deviations of mean and variances of gray values. Pose can
be represented using a quaternion written as a vectorq with four elements [Shoe-
make, 1985]. This quaternion defines rotation and scale. Additionally a translation
vectort with three elements is used to represent the translation.

43
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Texture intensity variations are represented by some meanβ and varianceα. All
the mentioned components are appended to the vector of core model parameterspc

representing the main modes of variation calculated by PCA. An enlarged vector of
parametersp is obtained:p = (pc|q|t|α|β)T . In order to optimize a model match
the right values for the elements of vectorp have to be found.

4.2 Matching as Minimization

As mentioned before the model matching process tries to minimize the difference
between some model and a target. For this one needs some concrete measurement
for the difference between model and target. The root mean square of the sum of
differences of individual gray values can very well be used to estimate to which
extent model and target fit together:

d(model(p), target) =

√√√√ Ng∑
i

(gmodel,i − gtarget,i)2. (4.1)

wheregmodel,i and gtarget,i are thei-th gray values of model instance and target
respectively.Ng is the number of texture values contained in the model. Once such
a difference is defined, matching the model can be regarded as a minimization of
the difference between unseen data and model. The idea is to incrementally update
the model parameters in order to improve an initial guess until no better matching
can be achieved or some other termination criterion becomes true.

4.3 AAM Search

At a first glance it seems to make sense to apply any general optimization technique
to solve the matching problem. A general strategy to do this higher dimensional
non-linear optimization problem should be sufficient to do the job. Possible options
include the Nelder Simplex, Powell’s Method or randomized approaches like Simu-
lated Annealing and Genetic Algorithms. All these methods work fine when solving
optimization problems for general instances. For matching a specific model, how-
ever, we assume that the unseen data to which we match the model represents the
same kind of object. In other words, the problem instances for which we have to
carry out optimization are inherently very similar. The idea is to learn the search
paths which have to be similar due to the similarity of the actual problem instances.
In literature this method is usually referred to as AAM search [Cooteset al., 1998a].

The important question is what should be understood by “learning the search
path”. Imagine a face model is put over an image of a real face. We assume further
that the model is slightly translated relatively to the image. We notice that the tex-
ture sampled under the shape of the model tells us something about how the model
has to be translated so that the model texture and the image texture fit together bet-
ter. In other words the difference of the current model texture and the image texture
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encodes information about how the parameters of the model have to be updated in
order to achieve a better matching. Formally we state that there is a functionf de-
scribing the correlation between the vector of texture differencesδg and the vector
of model parameter updatesδp:

δp = f(δg). (4.2)

For the training data sets one can obtain deviations in the parametersδp and
the according deviations in the gray valuesδg. The crucial point now is to derive a
function that does not only reproduce this data but also interpolates unknown data
accordingly. This problem – finding a function that sufficiently estimates a given
set of observations – is generally known as regression. The points in figure 4.1
illustrate observations of two variables along X- and Y-axis. The distribution of
points suggests that both variables correlate. The straight line represents the linear
regression which determines the simplified correlation of both variables. Knowing
this regression line one can estimate X knowing Y and vice versa. In other words
linear regression gives us the possibility to predict the value of one variable by
measuring its correlated “twin”.
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Figure 4.1: The principle of linear regression. The observed data is approximated
by a straight line.

For the moment we assume that some functionf as mentioned above could be
deduced in order to estimate the correlation of texture and parameter changes. We
will see later how this can be done using multivariate linear regression. Once a
regression is known the iterative AAM Search (algorithm 2) can be applied.

Usually it is assumed that the initial position of the model is close to the object
which is to be found in the image. Thus a relatively good initialization has to be
found. This can, for example, be achieved by manually placing the model.
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1: Place a model instance with mean appearance onto the unseen data
2: repeat
3: Determine the texture differenceδg

4: Calculate the update of parameters:
δp ← f(δg)

5: Update the parameters of the model instance accordingly:p← p + δp

6: Calculate the difference between model and image:
E ← d(model(p), target).

7: until E is smaller than some threshold

Algorithm 2: The standard AAM search [Cooteset al., 1998a].

4.4 Multivariate Linear Regression

For the discussion of AAMs so far we have often assumed linearity. We proceed in
this fashion and assume that the correlation of texture difference and model param-
eter update is locally linear. Thenf in 4.2 can be represented by a simple matrix
multiplication and we obtain:

δp = Rδg. (4.3)

The remaining problem is to find an appropriate regression matrixR.

The idea of the standard AAM approach is to estimateR in a precalculation
step. The parameters of a model instance are changed and the according differences
in texture are measured. Based on this information it should be possible to calculate
matrix R. We represent the texture differences measured each as a column vector
of a matrix∆g. The corresponding parameter differences are the column vectors of
a second matrix∆p. This extends equation 4.3 to

∆p = R∆g. (4.4)

The i-th column vector of model parameter differences in∆p corresponds to the
i-th column vector of texture differences in∆g. Algorithm 3 is used to determine
both matrices∆p and∆g.

In the following we denote the number of texture samplesNg and the number
of parameters involvedNp. The parameter changes with according texture changes
are calculatedNexp times. In other words∆p has dimensionsNp ×Nexp, matrixR
has dimensionsNp ×Ng and matrix∆g has dimensionsNg ×Nexp. Once we have
obtained∆p and∆g, we can use equation 4.4 to calculateR.

We determine eigenvectorsΦ and eigenvaluesΛ for matrix∆T
g ∆g:

∆T
g ∆gΦ = ΦΛ. (4.5)

Since the matrix of eigenvectors is orthonormal,Φ multiplied by its transpose is the
identity matrixI:

ΦTΦ = I. (4.6)

Equations 4.5 and 4.6 directly lead to:

ΦT = Λ−1ΦT∆T
g ∆g. (4.7)
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1: for each training data seti = 1 . . . n do
2: Create a model instance with the parameters set to the according parameters

for thei-th training data set.
3: for each parameterj = 1 . . . k considered in the matching processdo
4: for c ∈ {±c1,±c2, . . . } do
5: Create the vectorδp consisting of zeroes except for thej-th element

which is set to the current displacementc: δp ← (0, . . . , 0, c, 0, . . . , 0)T .
6: Appendδp to matrix∆p.
7: Create a model instance according to the new parameters and determine

the difference in textureδg.
8: Appendδg to matrix∆g.
9: end for

10: end for
11: end for

Algorithm 3: Building matrices∆p and∆g for linear regression.

Remember that usually the number of texture samples in AAMs is very large
compared to the number of training sets. This means that the column vectors of
∆g are very much larger than its row vectors. Our goal is to project the large
texture vectors to a lower dimensional space. In the last chapter we have used PCA
to reduce dimensionality. For the linear regression we will also use the principal
components to project∆g to lower dimensional space. In equation 4.5 we have
introduced the eigen decomposition of∆T

g ∆g. It can be shown that∆g multiplied
by the matrix of eigenvectorsΦ is the matrixΦpc whose columns are the principal
components of∆g:

∆gΦ = Φpc. (4.8)

This directly leads to
ΦT

pc∆g = ΦT . (4.9)

Equation 4.9 states thatΦT
pc projects∆g to lower dimensional space. We can thus

replace the original matrix∆g by φT for the calculation of the regression. The right
side in equation 4.4 is replaced byR′ΦT :

∆p = R′ΦT (4.10)

whereR′ represents the correlation between the parameter differences∆p and the
texture differences after projectionΦT .

Further the left side of equation 4.10 is replaced by the right side of 4.4:

R∆g = R′ΦT (4.11)

Now the left side of equation 4.7 is used to replaceΦ in equation 4.11 and∆g is
removed from both sides of the equation. This leads to:

R = R′Λ−1ΦT∆T
g . (4.12)

According to equation 4.10R′ can be expressed as:

R′ = ∆pΦ. (4.13)
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Together equation 4.12 and equation 4.13 lead to

R = ∆pΦΛ−1ΦT∆T
g . (4.14)

Equation 4.14 allows us to finally calculate matrixR as claimed by the linear cor-
relation formulated in equation 4.2. This matrix represents correlations of texture
and parameter differences and is the key to efficient model matching. It allows the
design of very fast gradient-based optimization algorithms for matching a model to
unseen data. In algorithm 4 we resume the two necessary steps for calculating the
multivariate linear regression.

1: Calculate the difference matrices∆p and∆g using algorithm 3
2: Calculate the regression matrix using equation 4.14

Algorithm 4: Calculating multivariate linear regression for AAM search.

4.5 Parameter Displacements for Regression

In algorithm 3 the model is put over the original training data sets. The model
parameters are displaced by amounts±c1,±c2, ... and the differences in the texture
vectors are determined. The remaining question is how manyci should be taken and
which values they should have.

Cootes and Taylor (2000) suggest to use±0.5 standard deviation (over the train-
ing set) of the core model parameters, about 10% for scaling, the equivalent of 3
pixels translation and about 10% change in texture normalization parameters. This
suggestion is made for a 2D face model.

Mitchell et al. (2002) use between±1.5 standard deviation for the core model
parameters, up to3−5 voxels for translation and 10% for the remaining parameters.
The authors use these values for a volumetric model of the left cardiac ventricle.

4.6 Elastic AAMs

The great advantage of AAMs is their compact description of deformation. Only a
few parameters explain the most important deformations of the object of interest.
These most important deformations are learned from the training set through statis-
tical analysis. The assumption is made that unseen data can be approximated quite
well with the known deformations. Anyway, this is not always the case. A rep-
resentative training set increases the possibility of the model to match unseen data
sufficiently. However there is still no guarantee that for some instances matching
the model leads to sufficient results.

Taylor and Cootes (2000) propose a method to explicitly extend the model’s
elasticity by allowing additional small deformations. The idea is to use standard
AAM search to find an initial solution. Then additional deformations are carried
out on the shape of the model in order to improve the fit.
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4.6.1 Local AAMs

To introduce local deformations the standard representation of the model as given
in equation 3.55 is extended. A deformation vectorδx that affects only shape is
added:

c =

[
s

g

]
=

[
s

g

]
+

[
ΦsWs 0

0 Φg

]
Φpp +

[
δx

0

]
. (4.15)

The remaining question is howδx can be calculated so that matching is improved.

It can be shown that the overall idea of the AAM search can also be formulated
in a local context. The standard AAM search sets up a correlation between deforma-
tions and texture differences. A similar strategy is used for local deformations. The
main difference is that a deformation is not considered to affect the whole shape but
only a single point of it. Analogous to the standard AAM search the interrelation
of displacement of individual shape points and changes in texture can be learned.
With this precalculated information local deformations can be predicted.

The displacements of individual points should only depend on their surrounding
texture. Texture far away from a landmark point should not influence the predic-
tion of the point’s displacement. Local AAMs only deal with local texture. In the
following we discuss how locality of texture can be introduced.

For each mean-shape landmark pointxi a (sparse) matrixWi is defined that
contains information about which texture samples are supposed to influence the
point’s displacement. Imagine the displacement of thei-th point is governed byNi

texture samples stored in a vectorgi. The complete texture information is stored in
vectorg which contains allNg texture samples. NecessarilyNg is much larger than
Ni: Ng � Ni. Matrix Wi extracts the local samples from the vector of all samples
and thus mapsg to gi:

gi = Wig. (4.16)

More preciselyWi is a Ni × Ng matrix with only one element not equal to zero
per row. The non-zero elements ofW can be chosen such that they form some
kind of kernel. For example a Gaussian kernel smoothly increases the importance
of samples as they lie closer to the considered mean-shape landmark point.

In a preprocessing step the matricesWi have to be determined. For each shape
point the closest samples have to be found. For this some kind of space subdivision
such as an octree or a simple grid can be used. We stress that the distance between
a texture sample and a point is determined in the mean shape reference frame.

To train local AAMs, individual shape points are displaced randomly and the
changes of surrounding texture samples are observed. By regression the correlation
of point displacement and change of texture is set up for each point individually:

Dx,i = RiWi∆g. (4.17)

HereDx,i denotes the matrix whose column vectors represent the displacements of
the i-th point. When the model is built in 3D each such a column vector contains
3 elements.∆g includes the according changes of texture as column vectors. This
is very similar to the way in which the standard AAM search is prepared with the
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difference that this time parameter changes are replaced by changes of individual
points. So for each point a local linear regression is introduced.

4.6.2 Restrictions for Local Deformations

So far local deformations have been introduced that allow shape points to change
their position almost independently. “Almost independently” because two neigh-
boring shape points are allowed to displace in completely different directions. This
can lead to more or less chaotic deformations of contours. To avoid this behavior
two important restrictions are made to local deformations:

• The deformations have to be limited to some magnitude. This is claimed
because the shape of the model still has to represent a plausible instance of
the object after the additional deformations have been applied.

• The deformations have to be smooth in order to avoid overfitting of the model.

The first restriction can easily be realized by limiting all deformations by some
threshold. The second restriction is a little harder to implement. Some post pro-
cessing of the complete deformation vectorδx has to be carried out in order to
make the predicted shape change smoother.

The problem we have to deal with can be formulated as follows. A set of points
as a single shape vectorx together with the predicted deformationδx is given. How
can a vector̃δx be derived which describes a similar but smoother deformation?
One method is to use a smoothing filter. To the displacement of an individual point
the weighted sum of displacements of adjacent points is added. Close points should
have great influence and distant points should have no influence. In other words,
the weights depend on the distance to the currently considered point. Letdi,j be
the Euclidean distance of two pointsxi andxj. Then the weight for pointxj when
smoothing the displacement of pointxi is

mij =
e−dij/(2σ2)∑
j e−dij/(2σ2)

(4.18)

where σ is a parameter which determines how strong distant points influence
the currently considered point. We remind the reader that shape vectors in-
clude coordinates point by point. A 3D shape, for example, has the elements
x = (x1, y1, z1, x2, y2, z2, . . . xn, yn, zn)T . The same weightsmij have to be applied
to all coordinates. Weighting a vector can thus simply be written as a multiplication
with the diagonal matrixMij = diag(mij, mij, . . . ,mij): x̃ = Mi,jx.

To describe the complete smoothing operation as matrix multiplication, a bigger
matrix M is considered whose elements are the matricesMij mentioned above.
Smoothing of the predicted deformation can finally be written as:

δ̃x = Mδx. (4.19)

Note that for distant points the weights are very small due to the exponentially de-
creasing weights with increasing distance. This means that small elements (weights
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for distant points) in matrixM can be considered zero. In other wordsM is a sparse
matrix. This feature has to be exploited for an implementation. The matrix should
be represented by adequate data structures in order to increase performance.

4.7 Fine Tuning

The standard AAM model search as described above converges very fast. Anyway
there is still the possibility that the final matching achieved is not optimal. This
is especially true if the given unseen data differs significantly from the data in the
training set.

Stegmann (2000) suggests to carry out some fine tuning of the actual AAM
search. This is legitimate since in general one can assume that the AAM search has
already found a solution near the overall optimum.

In general any optimization technique could be applied. Possible options in-
clude the Nelder Simplex or Simulated Annealing. A great problem with such gen-
eral optimization techniques is that the evaluation of the function to be optimized
usually is computationally very costly. This is the case because all texture sam-
ples of the model have to be compared with the original data. Below we review a
method to reduce the amount of texture. Similar strategies have already been used
with other types of deformable models [Jones and Poggio, 1998].

4.8 Multiresolution Search

The performance of standard AAMs often suffers from the huge number of texture
samples used to represent a model. Especially for 3D AAMs the huge amount of
texture slows down the matching process. A relatively simple way to reduce texture
[Cooteset al., 1998b; Cootes and Taylor, 2000] is to use low resolution model
representation. The drawback of this is that such a low resolution model leads to
inexact matching. In the following we discuss an approach for speeding up model
matching by treating texture efficiently.

The easiest way to reduce texture is to leave out texture that is not important.
The question is what should be understood by “not important”. In general it can be
said that for model matching only the texture samples are interesting which help to
predict the changes of the model parameters to obtain a better matching [Cooteset
al., 1998b]. In general the predicted update of a single model parameterpi can be
calculated using the following equation.

δp,i = riδg (4.20)

whereri denotes thei-th row of the regression matrixR. The elements with the
highest absolute values inri indicate that the according texture sample has a great
influence on parameterpi. Because of this the most important texture samples (de-
notedu) can be determined for each parameterpi. If u is chosen small enough the
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union of most important texture samples of all parameters is still much smaller than
the total number of texture samples.

Once the samples with the greatest influencesδ′
g are found the model can be

trained using only these samples. In other words another linear regression is calcu-
lated:

δp = R′δ′
g. (4.21)

In practice different sets of texture samples are considered. Each set represents a
different resolution of the model. The search is started with the lowest resolution.
After the search has converged for one resolution it is continued at the next finer
level with the next higher resolution.

Thus the amount of texture that has to be resampled for each prediction of model
parameter updates can be reduced dramatically, at least for the beginning of the
search. This is important since resampling of difference texture is crucial to the
computational efficiency of the model matching process. Further it was shown that
the robustness of the search also is increased [Cooteset al., 1998b].

4.9 Texture Compression

In chapter 4.8 we have already outlined how the amount of texture data needed
for matching the AAM can be reduced. The basic idea of the outlined method
is to simply remove texture samples that do not contribute much information to
the AAM search. In the field of image compression, however, there exist more
sophisticated methods to compress image data. Using some kind of frequency anal-
ysis usually allows to decrease the amount of texture data strongly while reducing
quality only to some small extent. Usually texture is the most critical entity of an
AAM implementation with respect to size. Thus efficient compression techniques
offer an interesting approach to reduce the amount of texture significantly and im-
prove the efficiency of AAMs. Several authors have proposed wavelet compres-
sion or similar techniques for the use with AAMs [Wolstenholme and Taylor, 1999;
Stegmannet al., 2004; Darkneret al., 2004]. To our knowledge only implementa-
tions in 2D have been reported so far.

The main idea behind the application of elaborated compression techniques for
AAMs is to replace the original texture information by the compressed data. The
idea is that not the difference in texture but the difference in the compressed data is
used to predict model parameter updates. This makes AAMs not only computation-
ally more efficient but also more robust.

4.9.1 Wavelets for Image Compression

Wavelet analysis is an extremely powerful method used for compression of image
data at high compression rates with relatively little loss of information. The fast
wavelet transform (FWT) [Mallat, 1989] makes the computation of wavelet com-
pression especially attractive. It is a fast implementation of the discrete wavelet
transform and allows efficient handling of digital image data.
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Figure 4.2: Two steps of the wavelet decomposition using the Haar wavelet.

The basis for fast wavelet analysis is the repeated application of high- and low-
pass filters to the original signal. The low-pass filters extract an approximation
of the global signal. The high-pass filters extract details. The result of the iterative
filtering operations is a set of wavelet coefficients. From the wavelet coefficients the
original image can be reconstructed. In order to achieve a reasonable compression
the coefficients which are close to zero are removed completely. This leads to only
very little loss of quality since the low-valued coefficients do not contribute much
information to the image.

In fact the wavelet decomposition can be regarded as a change of the basis. The
new basis functions after decomposition are the wavelet functions, which are all a
scaled copy of the mother wavelet.

For wavelet decomposition the rows and columns of a 2D image are filtered
with both low- and high-pass filters. This is illustrated in figure 4.2. The figure
shows the original image and the first two steps of wavelet decomposition. The
four possible combinations of the high- and low-pass filters result in a scheme that
creates a copy from the original image at a lower resolution and three additional
images representing the coefficients of high frequencies which were filtered out.
Always the low-resolution image from the last iteration is decomposed again. This
scheme can directly be extended to 3D [Rodler, 1999].

4.9.2 Wavelets and AAM Texture

Wavelets can be used to efficiently represent texture in AAMs [Wolstenholme and
Taylor, 1999; Stegmannet al., 2004]. We have already mentioned that the large
amount of texture is the bottleneck for matching AAMs. Wavelets offer the possi-
bility to improve performance significantly.

A great advantage of texture compression for AAMs is that for the matching
process texture does not have to be decompressed. The wavelet coefficients are
directly used for prediction of parameter updates. Only if the difference in real
texture is desired the wavelet compressed texture has to be reconstructed.

In principle the use of wavelet compression for texture representation in AAMs
does not influence the overall structure of the model. The texture model from the
standard AAM simply is replaced by a wavelet coefficient model. For this wavelet
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coefficient model the considered texture vectorg is compressed using wavelets and
further analysis including PCA is performed on the vector of wavelet coefficients
w.

When building a standard AAM the texture is traversed in the mean shape and
texture samples are directly appended to the texture vector which is then analyzed
statistically. When wavelets are used only another step between texture extraction in
mean shape space and statistical analysis has to be introduced. This step in between
takes the raw texture samples, performs a wavelet decomposition with truncation of
small coefficients and hands the coefficients over to the statistical analysis.

When a wavelet enhanced model is matched to unseen data similarly in a first
step the raw texture is extracted from the data. Then a wavelet compression is per-
formed on it. For the prediction of model parameter updates the vector of wavelet
coefficients is multiplied by the regression matrix built for compressed texture. Im-
mediately after this the model parameters can be updated without reconstruction of
original texture data.

Recently Stegmannet al.(2004) have reported that wavelets allow compression
of AAM texture up to a rate of about 1:40. As basis functions the Haar Wavelet and
the Daubechies-9/7-Wavelet were used.

4.9.3 Multi-Level Wavelet-Enhanced AAMs

In chapter 4.8 a method was introduced for improving the model matching pro-
cess using multiple resolutions of texture. Only texture samples were used which
contribute most to the parameter updates during model search.

Wavelets allow the use of a similar strategy. The idea also is to use multiple
resolutions of texture. For the multiresolution search of the standard AAM the
contribution of an individual texture sample is the criterion for whether the sample
is used for parameter update or not. When wavelets are used the reduction of texture
data is performed implicitly by the wavelet compression.

Wavelet compression is carried out at different levels resulting in images with
higher or lower quality and more or less data needed to represent the image. As for
the multiresolution search of uncompressed data the model can be trained for multi-
ple levels of wavelet compression. The AAM search then starts with the maximum
compression and switches to lower compression rates as the search converges. Fig-
ure 4.3 shows a 2D AAM of the human brain with 6 different levels of compression.

As mentioned above the multiresolution search of uncompressed models and
multi-level search of wavelet-compressed models is insofar different as different
criteria for compression (contribution to search and wavelet coefficients) are used.
In principle both methods can be combined.

As we have already mentioned that wavelet enhanced AAMs have already been
applied successfully to 2D images. An adaptation to 3D has not yet been imple-
mented and will be one of the next logical steps in the evolution of volumetric
AAMs.
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Figure 4.3: Different levels of a wavelet compressed AAM of the human brain.
Figure from [Wolstenholme and Taylor, 1999].

4.10 Analytical Approaches

Above we have already described in detail how linear regression is used to estimate
optimal model parameter updates from measured texture differences. This is the
standard approach for AAM search and in general leads to a very fast convergence
after only a few iterations. The assumption is made that parameter changes and
texture changes correlate linearly. It has been shown that this assumption at least
roughly holds as long as the model parameters are displaced only slightly [Cootes
et al., 1998a; Stegmann, 2000].

Although linear regression for AAM search is fast and relatively easy to imple-
ment it has one great drawback. The estimates for parameter updates can be more
or less inaccurate depending on the stability of the calculated linear regression. Re-
searchers recently have proposed techniques to analytically calculate the parameter
updates [Baker and Matthews, 2001]. In this section we outline the main ideas of
such analytical approaches.

4.10.1 The Lucas-Kanade Algorithm

The Lucas-Kanade algorithm was originally introduced to solve the problem of rigid
registration of images [Lucas and Kanade, 1981]. Given two similar images the
algorithm aims to find the transformation optimally aligning one image to the other.
In the original formulation only translations are considered.
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The idea of the Lucas-Kanade algorithm is illustrated for the 1D case in figure
4.4. Imagine functionF represents the target image andG stands for the model.
The problem is to find the optimum shifth which aligns both functions. For a small
h it can be assumed that

F ′(x) ≈ F (x + h)− F (x)

h
=

G(x)− F (x)

h
(4.22)

so that

h(x) ≈ G(x)− F (x)

F ′(x)
. (4.23)

Equation 4.23 shows how to calculate an estimate of the desired optimum shifth(x).
The only problem with this estimate is that in general it depends on the positionx
where it is calculated. The solution is to calculateh(x) at multiple positions and
to use an average as the final result. For positionsx whereF (x) is approximately
linear the estimateh(x) is more accurate and worse where|F ′′(x)| is large. This is
the reason why for calculation of the final optimumh a weighted sum is used where
individual elements are weighted with the inverse of the estimated|F ′′(x)|.

G(x) − F(x)

h

x

G(x)

F(x)

Figure 4.4: Lucas-Kanade in 1D.

We do not go too much into detail on the Lucas-Kanade algorithm. It is possible
to extend it to multiple dimensions and to consider transformations that are more
complex. It can be shown that not only translation but also rotation [Lucas and
Kanade, 1981] and even warping can be handled [Baker and Matthews, 2001].

4.10.2 Analytically Matching Models

In the following we review some issues of the work of Baker and Matthews (2001).
They suggest to analytically calculate estimates of model parameter updates in order
to achieve higher accuracy in matching.

An algorithm similar to Lucas-Kanade can only handle transformations of
shape. This is the reason why separate shape and texture models are used for
matching instead of the combined model formulation of AAMs. In fact only the
shape model can be optimized in this way.

Baker and Matthews (2001) compare their analytical approach with linear re-
gression and report a much higher accuracy for matching. They apply AAM search
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Figure 4.5: Comparison: linear regression versus inverse compositional matching.
The figure shows the RMS in texture error of the converged model for all frames of
a face video. Figure from [Baker and Matthews, 2001]

with both strategies to a video showing a face. Figure 4.5 illustrates the matching
accuracy they achieve with linear regression and with their inverse compositional
approach.



Chapter 5

Implementation Issues

While AAMs have been applied to 2D images very successfully, the implementa-
tion of volumetric AAMs still is a challenge. Theoretically AAMs in 3D can be
regarded as a straightforward extension of 2D AAMs. In practice volumetric data
is much harder to handle. In this chapter we try to outline the most important issues
concerning an implementation of 3D AAMs.

Our implementation of AAMs includes two main functionalities:

• Building AAMs in 3D (as outlined in section 3.4) together with calculation
of regression (as described in algorithm 4)

• AAM search (as described in algorithm 2)

The first task, model building, usually is carried out offline only once. For this in
general computational efficiency is not so important. Once a model is built only the
second functionality, the AAM search, is of importance. An application running in
a clinical environment in principle only needs to be capable of matching a model
to unseen data. The precalculated model can be delivered together with the appli-
cation. However, it is crucial for such a software that the matching is computed as
fast as possible.

We experienced that model building and calculation of the regression for later
use in AAM search are relatively hard to implement while AAM search is quite a
simple process. In principle the AAM search only comprises iterative updating of
parameters in a loop. In this chapter we mainly focus on how model building is
implemented. We also discuss the MRI data which we used to test our implementa-
tion.

5.1 Model Building

Since the implementation developed in the context of this work is a research pro-
totype, the design was kept simple and as modular as possible. We especially tried
to keep the implementation of the model building process very modular in order

58



5.1. MODEL BUILDING 59

to make it flexible. The intention was an implementation that allows to exchange
individual steps of the algorithm by exchanging different modules that implement
the individual steps of the algorithm differently.

5.1.1 Building a Combined Model

The complete process of building a combined (shape and texture) model includes
several steps one following the other. First a shape model has to be built. Then a
tetrahedralization of the mean shape points has to be calculated. After this the tex-
ture model can be built and so on. We decided to use a pipe-and-filter architecture to
realize individual functionalities in separate processing steps. Figure 5.1 illustrates
the individual filters (software modules) and pipes (input data or the resulting data
from previous filters). Filters are represented by boxes including bold font. Pipes
are shown as boxes with round corners. The arrows illustrate the flow of data.

In our current implementation the individual model building steps (buildShape-
Model, buildTextureModel, and buildCombinedModel) are based on Eigenanalysis
which is calculated by a C-version of the linear algebra package LAPACK [CLA-
PACK, 2005]. The subdivision of shapes into tetrahedra (buildSubdivision) is ac-
complished with the help of the computational geometry library CGAL [CGAL,
2005] which performs a Delaunay tetrahedralization.

Our architecture makes it possible to simply exchange individual filters. For ex-
ample, currently Delaunay tetrahedralization is used for subdivision of the model’s
interior. For some shapes it might be necessary to apply some other kind of triangu-
lation, for example, a non-convex one. In this case only the filter “buildSubdivision”
has to be replaced while the rest of the software remains unmodified.

5.1.2 Calculating Regression for AAM Search

Training the model means to generate model instances differing slightly from the
actual training sets and to measure the resulting texture differences. The applied
changes of parameter values and the according texture differences are stored lin-
ear regression is used to estimate the relation between them. Our implementation
realizes algorithm 4. Obtaining the data for this regression turned out to be the
computationally most time-consuming part of our AAM framework.

Imagine there are 30 examples in the data set. The model is trained for 10
modes of variation plus additional parameters like position or scaling. In 3D there
are (at least) 7 additional parameters to describe position, scaling and rotation of
the model. This leads to a total of 17 parameters for training. Usually each model
parameter is displaced±25% and±50% which means each parameter is displaced
4 times.

In order to get the data for the linear regression the model is superimposed over
each of the 30 examples and all the 17 parameters are updated 4 times in order to
measure texture differences. This means texture differences have to be measured
30× 17 × 4 = 2040 times. Keeping in mind that each texture vector contains
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Subdivision

sampleTextures Textures

Volume (prepared)

normalizeTextures

buildCombinedModel

Mean (Texture)

Texture Model

Textures (normalized)
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Annotations

Combined Model

buildShapeModel
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Weighting of Shape

Volume

preprocessData

buildTextureModel

EVec (Shape)
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Mean (Shape) EVal (Shape)

EVec (Combined) EVal (Combined)

Figure 5.1: Model building overview. The boxes including bold font represent
functionality. The boxes with smooth edges represent processed data. “EVec” and
“EVal” denotes eigenvectors and eigenvalues respectively.

many thousand texture samples one can imagine that this takes considerable time to
calculate even on modern computer hardware.

Building a model with our implementation takes between one or two minutes
when the model includes about 14.000 texture samples and is built from 30 data
sets. Calculating the data for regression for the same model with 17 parameters that
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are displaced 4 times each one takes about half an hour. These times were measured
on a notebook with a Mobile AMD Athlon XP 2500+ (1.867GHz) processor and
512MB RAM.

5.2 Model Matching

For matching the model to unseen data iteratively the texture differences have to
be measured and the model parameters have to be updated accordingly. This is
done as outlined in algorithm 2. The only two problematic issues concerning model
matching are obtaining a good initialization and finding a reasonable termination
criterion.

For the initialization of the matching algorithm the model has to be placed rela-
tively close to the object which is to be segmented. This can be done manually and
is no great effort since it only requires a simple initial positioning of the model. If
manual interaction has to be avoided the model can also be placed at multiple ran-
dom initial positions. For each of the positions the matching algorithm is started.
Initial positions for which the search does not converge are eliminated. However,
this can significantly increase the total time needed for matching since multiple
AAM searches have to be executed in parallel.

The second crucial point concerning an implementation of AAM matching is
to determine when the best match is achieved and how good it is. The central
problem here is that the algorithm only gets volume texture as input. In other words
only the difference of texture samples can be used to calculate an estimate for the
quality of a match. In general it can be said that when texture difference gets small
enough also the matching of the model’s shape is good enough. This usually is the
termination criterion of the AAM search. It is also used as the termination criterion
in our implementation. However, it has to be kept in mind that texture difference
is only an estimate (and not an exact measure) of the actual matching quality of
the model’s shape. Especially for medical applications the matches found by the
algorithm should thus afterwards be inspected by medical doctors.

5.3 General Properties of the Test Data

Our training set included 32 MRI data sets showing the part of the heart illustrated
in figure 2.1. Each data set contains between 7 and 13 slices each with a resolution
of 256 × 256 × 12bit. All data sets show the heart in the end diastole. In this state
the cardiac ventricles reach their largest diameters.

All shape data is given in units of millimeters. Textures are measured as gray
value intensities ranging from 0 to 1. Every time a texture sample is taken from
a volume, we apply trilinear interpolation. The spacing of samples in individual
slices of the original volume data ranges from 0.93mm to 1.56mm. The inter-slice
distance is 7.2mm for all data sets except for data set 30 (8.4mm) and data set 32
(4.8mm).
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Figure 5.2: Manual annotation of a basal, a mid and an apical slice of data set
13. The annotated contours separate the left ventricle from the blood inside (endo-
cardium) and its surrounding (epicardium, endocardium of the right ventricle).

5.4 Preparation of the Training Set

Before an AAM can be built the volume data has to be prepared. Two important
things need to be considered. First, an annotation has to be obtained so that a
shape model can be built. Second, the variations in histogram intensities have to
be reduced as much as possible. In the following we discuss how landmark points
were obtained, how shapes were aligned and how intensity variations in the original
data were reduced.

5.4.1 Obtaining Annotations

Obtaining good landmark points is much more challenging when building AAMs
in 3D compared to the case in 2D. We solved this problem by defining landmark
points manually for each data set and slice by slice. The number of points varied
as the user was free to place a random number of landmark points on each slice.
The points were placed on the outside (epicardium) and inside (endocardium) of
the ventricle. This was done clockwise when looking towards the apex and starting
with the point where the outer muscle of the right ventricle meets the left ventricle.
Figure 5.2 shows three slices of data set 13 with according landmark points.

After the initial annotation the landmark points were resampled in order to get an
equal number of 40 points upon the epicardium and 40 points upon the endocardium
of the left ventricle. This was achieved by calculating the central axis for each
ventricle and interpolating landmark points along the normal of this axis changing
the angle evenly. The axis is assumed to be perpendicular to the slices. This is
illustrated in figure 5.3 (a).

Since the number of slices varies from data set to data set, the landmarking in-
formation was interpolated such that a constant number of 13 layers was obtained.
This is illustrated in figure 5.3 (b). In other words, the complete irregular land-
marking information is interpolated so that the shape of each data set finally is
represented by 13 layers each containing 40 points representing the endocardium
and another 40 points representing the epicardium of the left ventricle. This makes
up the annotation which finally is used for calculation of the shape model.
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manual annotation

interpolated landmark points

axis

(a) (b)

landmark point on interpolated layer
landmark point on original slice
interpolated layer
original slice

Figure 5.3: Interpolation of landmark points upon (a) and in between slices (b).

The outlined way of interpolating landmark points is very specific to the left ven-
tricle. Landmark points are interpolated twice: upon slices and in between slices.
To some extent this already falsifies the original (manually created) shape informa-
tion. Another critical aspect with our strategy of obtaining annotations is outlined
in the following. We use the convention that the first landmark point aligns with
the point where left and right ventricle meet. This is the only real anatomical land-
mark point that is used. It would be much better to integrate more such anatomically
meaningful points as landmark points. This would lead to a better model where cor-
respondences of landmark points between individual data sets are represented much
better. The automatic improvement of correspondence in shape is one suggestion
for future work. However, in this work we stick to simple manual landmarking with
additional interpolation in order to get a constant number of final landmark points.

It is desirable to include additional texture surrounding ventricle into the model.
This is why we interpolated and added another ring of landmark points outside the
outer border of the ventricle.

As it is the case with many medical objects also the left ventricle includes very
irregular structures. The papillary muscles lying inside the ventricle (figure 5.2)
can vary strongly from patient to patient. In the present work papillary muscles
were not modeled with extra shape information. In other words our AAMs can only
represent them in terms of texture variation.

5.4.2 Alignment of Shapes

The reference frame for annotations was chosen such that the axis of the ventricles
aligns with the Z-axis. X- and Y-axes are then parallel to the slices. For the align-
ment the centroids of all shapes were shifted to the same position. Then a scaling
was applied to unify the sizes of the individual shapes.
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For the alignment we did not account for rotation. This is legitimate since all
data sets were acquired such that the axes of the ventricles point into the same di-
rection. For model matching, however, rotation was considered in order to improve
the matching capabilities of the model.

5.4.3 Inter-Slice Variations of Texture

A difference in intensity distributions can be observed varying from one data set
to the other and also from one slice to the other. Figure 5.4 shows the mean and
standard deviations of gray value intensities of the slices of two data sets. A signif-
icant difference in the mean and variances can be observed. Since both show the
same anatomical objects it can be assumed that the different distributions of mean
and variance in texture intensities depend on the exact settings and circumstances
of the acquisition process. To hide these variances from the model, we performed
a texture normalization step as described in section 3.3.2 before using the volume
data to build the model.

The same texture normalization then also has to be carried out for every data
set before the AAM search can be applied. The additional normalization of the
complete volume data does not replace the normalization of model textures but is
intended to reduce global variances even before the actual model building process
starts.
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Figure 5.4: The mean values and standard deviations of texture in individual slices
of data sets 1 (left) and 5 (right).



Chapter 6

Results

In this chapter we present results obtained with our implementation. We proceed in
the following fashion:

1. We review different error measures in section 6.1.

2. In section 6.2 we present the results obtained with models which were
matched to all data sets. The intention is to show how the considered models
generalize to a large number of data sets.

3. In section 6.3 we pick out a single data set and examine how well it can be
matched using AAMs. Several parameters are varied and the influence on the
matching quality is inspected. Compared to the quantitative results we give
more detailed information about the exact matching behavior.

4. The results obtained with local AAMs are presented in section 6.4.

5. Finally, performance issues are discussed in section 6.5 and the results are
summarized in section 6.6.

6.1 Error Measures

To evaluate the quality of a specific model matching process it is important to be
able to measure the difference between the target (the unsegmented volume data)
and the model. There are basically two different types of error measures:

• Differences in shapecan only be measured if the annotation of the target is
explicitly known.

• Differences in texture can be calculated without knowing the shape of the
target.

The first class of difference measurement is much more interesting for segmenta-
tion. This simply is the case because a successful segmentation is desired to iden-
tify the geometrical features (the shape) of the unknown data. The quality of the

65
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matched texture is of minor interest. Also for segmentation of the left cardiac ven-
tricle the geometrical accuracy is of major interest.

However, comparing the matched shape to the real shape presumes that the real
shape is known. This is only the case for already segmented data. When we perform
a leave-one-out test with annotated data we can calculate this measure. In order to
estimate the quality of a match applied to completely unknown data, only differ-
ences in texture can be calculated. Later in this chapter, when we present some of
our results for model matching, we will use both a measure for differences in shape
and a measure for differences in texture. Next we introduce and explain the most
commonly used error measures.

Procrustes distance

The Procrustes distance describes the distance between two shapes in terms of
squared distances between pairs of corresponding points. The Procrustes distance
is defined by

PCD =
Nx∑
i=1

‖xi − yi‖2. (6.1)

Average point-to-point distance

The average point-to-point distance can be understood more intuitively. It is the
sum of distances of corresponding points divided by the number of pointsNx:

APP =
1

Nx

Nx∑
i=1

‖xi − yi‖. (6.2)

Average point-to-surface distance

Model

Ground Truth

point−to−point distance

point−to−surface distance

Figure 6.1: Point-to-point and point-to-surface distances.

The point-to-point distance has one little disadvantage. Shapes defined for a 3D
AAM mainly consist of surfaces. When manual annotation is used, usually only few
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distinctive anatomical points are identified. To increase the number of landmark
points, intermediate points are added. These intermediate landmark points may
slide a little upon a surface without changing the position or shape of the surface.

Imagine the point-to-point distance is calculated for two shapes which are very
much the same. Although the shapes might overlap perfectly well, the point-to-
point distance can be relatively large since the shift between pairs of points along
the surface is included. For segmentation purposes the exact distance of pairs of
points is not as important as the actual difference or distance of two shapes. For
this reason another measure, the average point-to-surface distance (figure 6.1), is
introduced. This is the average distance of surface points in the model to the surface
of the ground truth:

APS =
1

Nx

Nx∑
i=1

ds(xi, s), (6.3)

whereds(x, s) denotes the distance between a pointx and a surface meshs. Here
we consider only triangle meshes. The distanceds(x, s) then is equal to the mini-
mum distance betweenx and the closest triangle tox in s.

One could invert the roles of model shape and ground truth shape. In other
words it would be possible to calculate the average distance of the ground truth
points to the surfaces of the model. Although this is not the same it should result in
a similar distance value and the failure should in general be smaller than the failure
introduced by the assumption that surfaces can sufficiently well be approximated
by triangle meshes.

If no shape information is available one has to revert to pure texture informa-
tion to estimate the quality of a match. The following two measures express the
difference between model and target in terms of texture.

Average texture error

The average texture error is the mean deviation of model and target texture values
[Stegmann, 2000]:

ATE =
1

Ng

Ng∑
i=1

|gV,i − gm,i|, (6.4)

wheregV,i andgm,i denote thei-texture samples of the volume data and the model
respectively.Ng denotes the number of texture samples contained in the model.

Root Mean Square Error of Texture

The root mean square error of texture differences is also used by some authors
[Baker and Matthews, 2001]. It is calculated as:

RMS =

√√√√ 1

Ng

Ng∑
i=1

(gV,i − gm,i)2. (6.5)
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The RMS involves a sum of squared values. This is why few large texture errors
increase the RMS more than many small differences. In other words the RMS
accounts better for individual high differences than ATE.

6.2 Quantitative Results

The quantitative results comprise tests carried out for all data sets. The results of
these tests show how well a model generalizes to a large number of data sets. The
quantitative results comprise three tests:

1. A model built from all 32 data sets is matched to all data sets (leave-all-in).
The results obtained with this test show how good data sets are matched when
these data sets are contained in the training set.

2. A total of 32 models (each built from 31 data sets) are matched to the one data
set which was left out (leave-one-out). This type of test reflects how well the
model can be matched to unknown data which is not included in the training
set.

3. A model built from 15 data sets is matched to all data sets (leave-15-in).
The 15 data sets were manually identified as qualitatively good with respect
to texture and shape. We carried out this test in order to find out how the
removal of statistical outliers affects the matching quality.

The quantitative results are intended to give a rough survey of how well the
algorithm works in general when applied to a large number of data sets. In section
6.3 on qualitative results we will inspect the behavior of matching processes for
individual data sets in detail.

6.2.1 Leave-All-In

The model including the largest amount of variations that we were able to build was
a model including all 32 available data sets. Before we discuss the matching quality
of this large model we present some interesting properties of the model itself.

The amounts of variation explained by model parameters are illustrated in fig-
ure 6.2. Figure 6.2(a) shows the percentage of variance explained by the individual
parameters. As it is characteristic of PCA the first parameter relating to the largest
eigenvalue describes the largest separate amount of variance (36.9%). The amount
of variance described by the subsequent parameters decreases significantly. Figure
6.2(b) illustrates the amount of variance explained by the sum of the firstn param-
eters. Ten parameters (about a third of all parameters) explain 87.3% of the total
variation found in the training set.

Figure 6.3 shows the variations of shape for the first three modes of variation
of this model. The parameters illustrated in the figure each were changed by± 1.5
times the standard deviationσ =

√
λ.
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Figure 6.2: Variance explained by model parameters.

Figure 6.4 shows the training instances projected to model parameter space (pa-
rameters 1 and 2 in figure 6.4(a) and parameters 1 and 3 in figure 6.4(b)). Every
point in the figure represents one instance in the training set.

The texture resolution for this model was chosen such that the model included
14,168 individual texture samples. This relates to a grid spacing of about 3 millime-
ters (depending on the data set). For the tests the matching processes were limited
to a maximum of 15 iterations.



70 CHAPTER 6. RESULTS

(a) 1st mode of variation (±1.5σ)

(b) 2nd mode of variation (±1.5σ)

(c) 3rd mode of variation(±1.5σ)

Figure 6.3: The first three modes of variation with respect to shape.
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(a) The complete training set projected to the hyper-plane spanned
by the first two modes of variation
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(b) The complete training set projected to the hyper-plane spanned
by the first and third mode of variation

Figure 6.4: Projected model parameters of the training data sets.
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Figure 6.5: Result of a leave-all-in test from all 32 data sets.

We have already mentioned that for segmentation purposes the shape error mea-
sure of the average point-to-surface (APS) seems to be most interesting. Thus we
review the results mainly with respect to APS. Matching the model to each of the
training data sets using 10 modes of variation gives the results illustrated in figure
6.5. The average quality over all data sets in terms of APS is 2.61mm. This is about
two times the sampling frequency upon slices of the original data. The two best
matches were achieved for data sets 31 (APS = 0.86mm) and 19 (APS = 0.87mm).
A total of 10 data sets could not be matched with an accuracy below 3.0mm APS.
These matches can be considered complete failures.

Figure 6.6: Shape of data set 10.

The reason for failed matches – here as well as in the following tests – seem to
be strong statistical deviations. For example data set 10 is not matched very well.
Figure 6.6 shows the shape of this data set after interpolation to 13 slices. It seems to
be the case that this data set includes a strong shift of slices due to patient movement
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during data acquisition. Further more this data set comprises only 7 slices of texture
data. Only two other data sets also contain only 7 slices, all other data sets include
denser volume data information (up to 13 slices). In other words the shape of data
set 10 is a statistical outlier and texture information is not very precise. Indeed this
relatively poor quality of data set 10 seems to be the reason for the bad behavior of
model matching achieved for it.

6.2.2 Leave-One-Out

So far we have reported properties of a single model built from all 32 available data
sets. Such a complete model should be able to match all examples in the training
set very well as long as a sufficiently large number of model parameters is used. To
better estimate the quality of the method it is necessary to apply the model matching
process also to data which is not used for building the model. Such a situation is
much more realistic for real world applications.

We carried out a classical leave-one-out test by building 32 different models
each one derived from 31 instances in the training set. For each model the attempt
was made to match it to the one data set that was not used for building the considered
model. The first model was built from all data sets except the first one. The second
model was built from all data sets except the second one and so on. Then model
number one was matched to data set number one, model two to data set two and
so on. The purpose of such a leave-one-out test is to show how well the models
generalize to unseen data.
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Figure 6.7: Result of the leave-one-out test for all 32 data sets. For each data set a
model was built from all other training examples and matched to it.

As for the leave-all-in test above again a total of 10 model parameters were
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Figure 6.8: Shape of data set 8. This data set shows strong distortions of shape
which might be a result of patient movement during acquisition.

used. Figure 6.7 shows the best match with respect to APS for each data set. The
very best matches were obtained for data sets 15 (APS = 1.14mm) and 19 (APS =
1.37mm). This time 11 data sets produced a match with an APS larger than 3.0mm.
The average APS was 2.883mm. Compared to the leave-all-in test the leave-one-out
test produced worse results as it was expected. The reason for this is that the models
this time were matched to completely unknown data. The data set to which a model
was matched was not contained in the training set used to build this model.

6.2.3 Removing Outliers

We have described properties of large models built from more than 30 data sets. A
closer look at individual data sets shows that relatively much qualitatively bad data
is included in our test data. Figure 6.8 shows the annotation (after interpolation
to 13 slices) of data set 8. It seems as if the patient moved during acquisition
and individual slices were shifted relatively to each other. Such distortions appear
not only for shape but also for texture as we have already discussed in chapter
5.4.3. Furthermore, some data sets do not represent exactly the same portion of the
heart. Because of this the correlation of landmark points suffers heavily. In general
one wants to filter out all these negative effects in order to build a model which is
more compact and accurate. This was the motivation for us to test another model
incorporating fewer but qualitatively better data sets.

We decided to separate the good data sets from the bad ones by manually in-
specting the data. 15 data sets which obviously did not include strong distortions
were selected. From these 15 data sets we built one model and matched it to all data
sets (including the ones used for model building). This small model explains the
relative amount of its variation with fewer modes of variation. This is why we used
only 8 modes for model matching.
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Figure 6.9: Matching all data sets to a model built from 15 instances.

Figure 6.9 shows the best matches with respect to APS. The dark instances are
those used to build the model. It can be seen that this smaller and compacter model
matches even better than the model containing all data sets. Only 6 data sets led
to an APS larger than 3.0mm. The average best APS for this model was 2.13mm.
Table 6.1 summarizes all the quantitative results. The small and compact leave-15-
in model seems to behave best.

leave-all-in leave-one-out leave-15-in
average APS 2.61mm 2.88mm 2.13mm
# data sets with APS> 3.0mm 10 11 6

Table 6.1: Quantitative results.

6.3 Qualitative Results

Above we have considered models which were matched to all data sets. In this sec-
tion we concentrate on more details of individual AAM searches applied to selected
single data sets. The intention is to show how different parameters influence the
matching process.
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6.3.1 Leave-One-Out

From the quantitative results it can be learned that data set number 13 leads to
better matching results than data set number 18. The reason for this difference in
quality of matches seems to be that data set 13 explains its appearance by modes
that represent statistically frequent details. Data set 18 on the other hand seems to
comprise statistically rare features.

Both data sets 13 and 18 were taken from the set of 15 data sets manually iden-
tified as qualitatively good. A leave-one-out test was carried out such that for both
data sets a model of the remaining 14 data sets was built and then matched with the
one that was left out.

For both data sets multiple AAM searches were performed which differ in the
initial displacements of the model’s position. Figure 6.10 shows the progress of
matching in terms of APS. For all initial positions the model converges on data set
13. The matching of data set 18 proceeds not so stable and diverges for two of the
four tests.

In the following we present results of matching the model from 14 good data sets
to data set 13. In figure 6.11 the model initially was displaced by 15mm in direction
of the X- and by 30mm in direction of the Y-axis. Red color represents a point-
to-surface distance of 10mm or more. Blue indicates a point-to-surface distance of
5mm and green a distance of 0mm. Other color values are interpolated accordingly.
The color coded surface distance is only calculated for individual model points and
not over the whole surface. Colors are smoothly interpolated between points in
the mesh. The black wire frame represents the shape of the ground truth for the
considered data set 13.

Figure 6.12 shows the converged model together with the ground truth. Endo-
and epicardium of model and ground truth are shown separately.

Figure 6.13 illustrates the differences in texture of the same matching process
using a volume visualization. The three volumes shown are again the difference
volumes before the first, after the 4th and after the 8th (converged) iteration.

The same matching process is visualized differently in figure 6.14. Three slices
were interpolated for the initial model placement, after the 4th iteration and after
the 8th (converged) iteration. The data together with the model superimposed on it
are shown. The bottom row shows the original data with the shape of the converged
model.
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Figure 6.10: Progress of APS in AAM search for data sets 13 (top) and 18 (bot-
tom). After convergence both APS and ATE continue to vary slightly. The reason
for this is noise in the linear regression. One can see that the model on data set 13
converges well for all initial displacements. The test on data set 18 leads to worse
results.
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Figure 6.11: Matching data set 13 (all iterations) with a model built from 14 data
sets not including data set 13. The matching process starts at the image on the top
left and ends at the right bottom. Each image represents one iteration.
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Figure 6.12: Matching data set 13. The Result is shown for endocardium (left) and
epicardium (right) separately.

Figure 6.13: Matching data set 13 (difference volumes). This figure shows the
initial difference volume, the difference volume after 4th, and after 8th (converged)
iteration.
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Figure 6.14: Matching data set 13 with slice-wise texture visualization. The top
row shows three slices of data with the initial model superimposed. The second and
third rows show the model after the 4th and 8th (converged) iteration respectively.
The bottom row shows the data with the matched model’s shape points.
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6.3.2 Variation of Texture Accuracy

The amount of texture which is used has a great influence on how fast an AAM
can be built and matched. It is thus very interesting to see how texture accuracy
influences the quality of AAM search. We built several models from the 14 good
data sets, again leaving out only data set 13. The model was built several times with
exactly the same settings but with different numbers of texture samples. Figure
6.15 illustrates the individual matching processes. The initial matching position
was disturbed by 20mm, -15mm, and 0mm in X-, Y-, and Z-direction. It can be
seen that with at least about 2400 samples the AAM search still converges very
well. With 800 texture samples, however, convergence is not satisfying. Table 6.2
lists the numbers of texture samples in the model together with the according sample
spacing and time needed for a single matching iteration (see section 6.5 for more
details on performance).

# texture samples Spacing of samples Time per iteration
62,532 ∼ 1.8 mm ∼ 2.65 sec.
13,911 ∼ 3.0 mm ∼ 1.40 sec.
2,398 ∼ 5.4 mm ∼ 0.86 sec.

803 ∼ 7.8 mm ∼ 0.82 sec.

Table 6.2: Grid spacings with according number of texture samples and time used
for matching.

6.3.3 Varying the Number of Modes

The chosen number of parameters or modes of variation determines the deforma-
bility of a model. The more modes are used the higher is the model’s capability to
match unseen data. We carried out several matching experiments where we used
different numbers of core model parameters. The core model parameters are those
calculated by PCA. The core model parameters do not include position, orientation
and intensity of the model.

It turned out that for very representative data sets the core model parameters are
not that important. Data set 13 is such a representative data set. With 8 core model
parameters an APS of 1.50mm could be achieved. With no core model parameters
the matching was only a little worse with an APS of 1.61mm (figure 6.16). The
reason for the good quality of matching in this case can be explained by the fact
that the considered data set has a very frequent appearance and thus can already
very well be approached by the mean model.

In general the influence of the number of modes on the quality of matching de-
pends strongly on the data set. Imagine a data set that includes a shift of slices which
does not appear frequently. If a model is built from other data sets and matched with
the one with the rare variation, an increase in model parameters would not help since
the training set simply does not include the variation. This again is a motivation to
reduce variances in the data before running an AAM search on it.
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Figure 6.16: Matching data set 13 with no core model parameters. It can be
seen that the optimal match achieved has relatively bad quality due to the lack of
deformability of the model.

6.3.4 Compact Training of AAM Search

Training the AAM search means to calculate differences in parameters and tex-
tures and to find a correlation between them. The standard approach is to calculate
changes in model parameters and textures for each and every example in the training
set.

Above we have shown that when a large training set is used it makes sense to
remove statistical outliers or data that has bad quality. This is done to increase the
quality of the model. The same should hold for the training of AAM search. The
idea is to use not all the training sets to calculate regression for the AAM search.
Only the most representative ones are taken into account. Only training sets that
contain qualitatively good texture should be used for calculating the regression.

We trained the AAM search for one model using only two data sets. With the
compact regression it turned out that the accuracy of matches increased. Thus data
set 13 could be matched with an accuracy of 0.84mm APS. The matching is visual-
ized in figure 6.17.

Not only the accuracy of the AAM search is increased with a smaller number
of training sets. Also the computational effort is decreased. Setting up the data
for the regression is the most time-consuming task when building a model. With a
smaller number of data sets considered, the complete creation of a model (including
calculation of regression) can be done significantly faster.
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Figure 6.17: Matching the compactly trained model with data set 13. After the 8th
iteration convergence with an APS of 0.84mm is reached.

6.4 Local AAMs

In principle an AAM should reproduce all shape and texture variances that appear in
the training set. The problem with this is that statistical outliers cannot be matched
correctly because they differ too much from the instances from which the model
was built. Also if there are only few data sets available for putting up a training set,
the resulting model is not general enough. In both cases it is desirable to increase
the model’s flexibility using other strategies.

In section 4.6.1 we have discussed local AAMs [Taylor and Cootes, 2000].
There are other ways to increase the model’s flexibility, for example using me-
chanical deformations. However, local AAMs fit very well to the framework of
standard AAMs since they use similar techniques. The idea is to locally deform
the model and to learn the correlation between local deformations and local tex-
ture differences. In fact for every point in the shape model the change of texture in
its surrounding is observed as its position changes. To maintain a nice shape only
smooth deformations are considered. The idea is to use local deformations when the
standard AAM search with its global deformations is not able to improve a match.

Figure 6.18 shows local smooth deformations applied to our model of the left
ventricle. In the previous sections we have shown that most data sets can be matched
with an accuracy of about 2mm. Thus the ideal magnitude for local deformations
seems to be of a magnitude of not more than 4 or 5mm. A match of about 2mm APS
could then be achieved by standard AAM search and refined by local AAMs. We
used random deformations with a magnitude between 0 and 5mm for calculating
the local regressions.
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Figure 6.18: Smooth local deformations for local AAMs.

We applied the local AAM strategy to several data sets. It turned out that for
most of them the local AAMs lead to only small improvements. For data set 13, for
example, the best global match with an APS of 0.84 could be improved to an APS
of 0.82mm.

A great problem of local AAMs is that if the data is noisy the local linear regres-
sion does not work very well. Individual points deform differently even though the
deformation is smoothed. In other words the model’s shape gets very implausible.
The robustness, which is a typical property of standard AAMs, is lost if only local
texture is considered.

6.5 Performance Issues

The tests were carried out on a notebook with a Mobile AMD Athlon XP 2500+
(1.867GHz) processor and 512 MB RAM. Most of the computational effort comes
from the resampling of texture values and thus depends on the amount of texture
used. In table 6.2 the approximate times needed for a single iteration in an AAM
search are listed on the right.

An average AAM search converges after about 8 iterations. The standard resolu-
tion which we used was 3.0mm spacing of texture samples. In this case a complete
AAM search takes about 11 seconds.

What has to be mentioned is that we calculate barycentric coordinates on the
fly as the model volume is traversed. Of course this information could also be
precalculated since it does not change as the model is deformed. In this case the
matching time should even be decreased.

6.6 Summary

We have shown that AAMs can be used to robustly segment volumetric cardiac
data. Depending on the considered data set, our 3D AAMs align with an accuracy
between about 0.9mm and 2.5mm relative to the manually annotated surfaces. Re-
call that the data itself is captured with an accuracy of about 1.3mm upon slices and
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an inter-slice distance of about 7.3mm. Under these circumstances an accuracy of
about 1.5mm can be considered quite good.

We presented the behavior of models applied to all data sets (quantitative re-
sults) and analyzed individual matching processes of individual data sets (qualita-
tive results). Additional issues such as influence of the amount of texture were also
discussed and the according results of model matching were shown.



Chapter 7

Conclusion and Future Work

In this thesis we have discussed segmentation of 3D cardiac MRI data. We have
outlined the importance of fast automatic and semiautomatic segmentation of such
data. We shortly reviewed the anatomical background and outlined special proper-
ties of cardiac MRI data.

The theory of building, training and matching AAMs was discussed with focus
on 3D AAMs for volume data. The successfully achieved goals of this thesis are
listed below.

• We gave a survey of the theory behind 3D AAMs and tried to show the ad-
vantages of using statistical methods for building robust deformable models.
We reviewed the idea of AAMs to incorporate both shape and texture into a
model and mentioned several extensions to the standard AAM. Furthermore
the problem of model matching was discussed. We also showed how AAM
search can be done using linear regression of model parameter changes and
texture changes.

• We discussed our implementation of 3D AAMs and roughly outlined its struc-
ture.

• Finally we presented the results obtained for a model of the left cardiac ven-
tricle. We showed that for the majority of our 32 cardiac MRI data sets the
AAM search converged relatively fast and with high accuracy.

In general there is a great variety of approaches for automatic segmentation.
Often it depends very much on the problem domain and additional constraints –
such as the claimed performance or accuracy – to determine which method is best.
To better identify their role among other segmentation techniques we now give a list
of the advantages and disadvantages of AAMs.

Advantages

+ The strong statistical background of AAMs in general makes them very robust
even if the quality of analyzed data is bad. The prior information about an
object’s appearance helps to compensate missing texture.
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+ The result of segmentation with AAMs always is valid with respect to the
training set that was used. Contrary to other deformable models an AAM
changes its appearance only in such a way that implausible segmentations are
avoided.

+ User interaction is reduced to a minimum or can even completely be omitted
when AAMs are used. If multiple AAM searches are performed on the unseen
data no user interaction is needed at all.

+ The convergence of AAM search in general is very fast and we showed that
also for 3D AAMs only about 6 iterations are needed to derive an optimum
match.

Disadvantages

- In order to use AAMs one has to possess a representative training set. For
many applications it is relatively hard to assemble such a training set consist-
ing only of representative examples.

- The training set is only half of the data necessary to build an AAM. The
creation of annotations is also of great importance. It is often very hard to get
the expert knowledge needed in order to derive good annotations for given
data.

- It is important to remove statistical outliers from a training set in order to
prevent the model from creating implausible instances. For many applications
it is not easy to determine which data sets should be excluded from the model.

- Depending on the type of data that is analyzed the assumption of linearity in
model parameters is often hard to justify. When the variation of an object is
highly nonlinear, the standard AAM approach can lead to implausible model
instances and thus to bad segmentation results.

- The texture deformation in the simplest case is done by affine warping. This
requires a dense placing of shape points in order to approximate non-linear
deformation. Often it is hard to achieve a large evenly distributed number of
shape points. Furthermore the affine warping has the drawback that it can
produce kinks in the deformed texture.

- AAMs are not suitable for modelling objects which can only be identified in
a special context or which do not have a fixed shape. Therefore the AAM
approach cannot be used for e.g. matching clouds, stones, trees, or blood
vessels.

- For AAM search with linear regression a linear correlation of texture differ-
ences and parameter updates is assumed. This is a very strong simplification
and allows only small parameter changes.

- If models with high texture resolution and in higher dimensions, such as volu-
metric models, are considered, the extraction of texture becomes a bottleneck
for the AAM search.
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Many of the listed disadvantages are issues of ongoing research. In our imple-
mentation we have so far implemented standard AAMs and local AAMs. Future
work will be the adaptation, evaluation and improvement of extensions and im-
provements of AAMs. This will include the following issues:

• Incorporation of techniques for automatic creation and improvement of anno-
tations [Davieset al., 2001; Kotcheff and Taylor, 1998; Hladůvka and B̈uhler,
2005] in our implementation.

• Sophisticated methods for preprocessing captured data. This is intended to
improve the quality of both the model and the matching process.

• Identification and elimination of statistical outliers in the training set.

• Alternative model formulations such as the use of ICA or mixture models.
The goal of this is to improve handling of non-linearities [Cootes and Taylor,
1999;Üzümc̈u et al., 2003].

• Evaluation of alternative techniques to estimate the gradient in the AAM
search. For example analytical approaches such as the Lucas-Kanade algo-
rithm [Lucas and Kanade, 1981] could be used.

• Compression of AAM texture in order to reduce the amount of texture data
incorporated in the model [Stegmannet al., 2004; Darkneret al., 2004;
Wolstenholme and Taylor, 1999].

We finally remark that the interpretation of medical images is a highly critical
task with respect to a patient’s health. Therefore a visualization tool offering the
possibility of automatic segmentation also has to offer a user interface that allows
medical doctors to inspect and eventually correct automatically computed segmen-
tations.
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