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in Kooperation mit
Dipl.-Ing. Dr.techn. Markus Hadwiger
Dipl.-Math. Dr.techn. Katja Bühler

von

Henning Scharsach

Matr. Nr.: 9551348

A - 1020 Wien, Wittelsbachstr. 4 / 16

Wien, im April 2005



This thesis is dedicated to the memory of Daniela Rhomberg



Abstract

Volume rendering techniques for medical applications face a number of problems that
restrict the applicable techniques to a handful of established algorithms. Developing
a virtual endoscopy application further narrows the choice due to the very specific
demands of such a system.

First, being able to move the viewpoint into the dataset and providing correct ren-
derings incorporating the wide field of view optical endoscopy cameras usually deliver
is a challenging task at a time when many of the available professional solutions like
TeraRecon’s VolumePro boards are still restricted to orthogonal rendering. Second,
the extreme perspective distortion of the image leads to an amplification of visible
sampling artefacts, making it necessary to employ special techniques to deal with
this problem.

Third, highly interactive framerates are not a welcomed feature but an absolute
necessity, since the possible intra-operative environment makes immediate response
to certain actions essential. And last, correct visualization and intersection of the
endoscopic tools have to be ensured in order to provide the surgeon with an adequate
representation of the environment.

In the past, there has always been a trade-off between functionality, interactivity and
high-quality renderings resulting in systems either being able to produce interactive
visualizations that lack the necessary detail and correctness of the representation, or
high-quality renderings that have to be generated off-line in a tedious process that
makes real-time adaptations impossible.

This thesis presents an approach that attempts to meet all the demands on a virtual
endoscopy system by creating a rendering framework that allows for interactive
framerates for almost every possible dataset, quality setting and rendering mode.
To achieve this, a number of specialized techniques is incorporated that extend the
basic rendering pipeline in numerous ways.

As virtually all of the different approaches to real-time visualization of volume
datasets, raycasting on consumer graphics hardware faces its own problems and
pitfalls. This is why separate sections of this thesis are dedicated to solutions to
these problems that make the approach as versatile as possible.

Finally, results and real-life images of the raycaster are presented, which is already
used in medical practice in pre-operative planning for neuro-surgery.



Kurzfassung

Systeme zur Volumensvisualisierung von medizinischen Datensätzen müssen eine
Vielzahl unterschiedlicher Probleme lösen, was die Anzahl verfügbarer und anwend-
barer Visualisierungsalgorithmen deutlich limitiert. Virtuelle Endoskopie stellt durch
die spezielle Art der erzeugten Bilder noch höhere Anforderungen an die Applikation,
womit die Auswahl passender Visualisierungstechniken weiter eingeschränkt wird.

Ein virtuelles Endoskopiesystem muss in der Lage sein, den extremen Sichtwinkel
und die starken perspektivischen Verzerrungen, die bei den verwendeten optischen
Endoskopiesystemen auftreten, adäquat zu simulieren. Dies ist besonders prob-
lematisch, da viele verfügbare professionelle Systeme wie TeraRecons VolumePro-
Boards immer noch auf orthogonale Projektion beschränkt sind oder eine perspek-
tivische Projektion nur mit speziellen Algorithmen approximieren können. Zweit-
ens führt die erwähnte perspektivische Verzerrung zur Verstärkung von sichtbaren
Diskretisierungsartefakten, was spezielle Techniken erfordert, um dieses Problem in
den Griff zu bekommen.

Drittens stellen interaktive Bildfrequenzen keine wünschenswerte Erweiterung mehr
dar sondern sind absolut unerlässlich, wenn es darum geht, in der intra-operativen
Navigation sofort auf kleine Bewegungen und Richtungsänderungen zu reagieren.
Außerdem muss noch für eine korrekte Visualisierung der endoskopischen Werkzeuge
gesorgt werden, um dem Arzt eine realitätsgetreue Repräsentation des Umfeldes zu
präsentieren, auf die er adäquat reagieren kann.

In der Vergangenheit musste ein Kompromiss zwischen Funktionalität, Interaktiv-
ität und Qualität der Visualisierung gefunden werden. Dies hat zu der Entwicklung
von Systemen geführt, die entweder interaktive Bilder in ungenügender Qualität und
mit teilweise fehlenden Details erzeugen konnten, oder Animationen von hochqual-
itative Darstellungen vorberechnen mussten, was jede Art von Echtzeitinteraktion
unmöglich macht.

Diese Arbeit präsentiert einen Visualisierungsansatz, der den verschiedenen An-
sprüchen an ein Virtuelles Endoskopiesystem gerecht zu werden versucht. Es wird ein
System vorgestellt, das interaktive Bildfrequenzen für alle Arten von Datensätzen in
jeder Qualitätsstufe und verschiedenen Rendermodi ermöglicht. Um das zu erreichen
wurden eine Reihe spezialisierter Techniken implementiert, die den grundsätzlichen
Algorithmus in vielfacher Weise erweitern.
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Wie die meisten Visualisierungsansätze, so hat auch hardware-basiertes Raycasting
mit eigenen Problemen zu kämpfen. Diese Probleme werden im Laufe dieser Ar-
beit untersucht und zum Großteil beseitigt, um das Gesamtsystem so vielseitig wie
möglich zu machen.

Zuletzt werden noch Resultate aus der täglichen Praxis präsentiert, wo das System
schon erfolgreich in der prä-operativen Planung von neurochirurgischen Eingriffen
eingesetzt wird.
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1. Introduction

Modern GPUs offer a degree of programmability that opens up a wide field of ap-
plications far beyond processing millions of triangles at ever increasing speed. Ray-
casting is one of these applications that can make heavy use of the built-in features
of today’s graphics cards. With the possibilities offered by this technology, there is a
lot of room for new techniques that do not simply convert existing algorithms to the
GPU, but use the very strengths of this architecture to create more realistic images
at interactive frame rates.

Figure 1.1: Example Rendering of a CT scan of a human head. This quality can
be achieved at near interactive framerates (approx. 12 fps on a GeForce 6), and the
user can navigate into the dataset at any time for virtual endoscopy applications.
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1.1 Problem Statement and Objectives

Rendering of volume datasets for virtual endoscopy applications is a computation-
ally expensive task, mostly because of the need for perspective projection from a
viewpoint within the volume. To be able to do this in realtime, most applications
either convert the volume to a triangle mesh with marching cubes or, in the best
case, use iso-surface rendering. Of course, both is not an optimal solution for virtual
endoscopy, where the medical doctor wants to get an idea with what kind of tissue
he is dealing and what is behind the thin structure in front of him. Furthermore,
certain areas of interest should always be visible (e.g. a tumor that needs to be
removed), and an existing segmentation of the dataset should not be a prerequisite.

A perspective DVR seems like the obvious solution to this, but the need for highly
interactive framerates to get a good estimation of the position of different objects
made this approach infeasible so far. However, with modern graphics cards exceeding
the computational power of CPUs for highly parallelizable tasks and offering a more
flexible feature-set than ever before, realtime high-quality perspective DVR is not
impossible to achieve anymore.

This master thesis presents an approach to hardware based raycasting in the frag-
ment shader of a shader model 3 compatible graphics card that not only allows for
both orthogonal and perspective projection, but enables the user to move the view-
point into the dataset for virtual endoscopy views. This hardware-based approach
can also be used to correctly intersect the rendered dataset with normal OpenGL
geometry, allowing arbitrary 3D-meshes, pointers or grids to be rendered in the same
scene. This is especially important for virtual endoscopy again, because both the
endoscope and the attached tools have to be visualized as well and should of course
blend seamlessly into the rendered scene. Furthermore, a couple of specialized ray-
casting techniques is presented that further improve rendering speed, image quality
and applicability of this approach, making this raycaster versatile enough for almost
every possible visualization demand.

Special attention is paid to the biggest problem of GPU-based approaches - the
limited amount of available video RAM - and how it can be circumvented by applying
a cached blocking scheme that loads only blocks of interest into the video memory.
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1.2 Structure of this Thesis

Before getting into the implementation details, this thesis gives a quick overview
of the necessary fundamentals and different visualization techniques in chapter 2.
Apart from comparing image and object order approaches, a quick introduction in
raycasting and virtual endoscopy is given and similarities and differences of CPU
and GPU based algorithms are identified. This should give the reader a better
understanding of what demands a certain technique can satisfy and where strengths
and weaknesses of different approaches are. Furthermore, it should explain the choice
of a hardware based raycaster for the goal we were trying to achieve.

Chapter 3 will then present the basic raycasting algorithm and explain the idea be-
hind most of the techniques presented in this thesis, focusing on the special structure
of the underlying setup compared to software-based approaches.

In chapter 4, the algorithm will be extended by various techniques that improve ren-
dering speed to achieve the goal of interactive framerates - even for large datasets and
demanding transfer functions. Furthermore, a special technique will be presented
that allows to correctly intersect the volume with arbitrary OpenGL geometry. This
technique also assures that no parts of the volume are rendered that are hidden be-
hind these structures, thus even enhancing rendering speed when adding geometry
to the scene. The last part of the chapter is devoted to fly-through applications like
virtual endoscopy and the necessary modifications to the rendering pipeline.

Image Quality will be the primary concern in chapter 5, where techniques are pre-
sented that make the image more appealing by removing certain artifacts without
imposing a huge impact on overall rendering performance. Here again, special at-
tention is paid to possible fly-through applications, that move the viewport very
close to thin structures and are prone to producing sampling artifacts. With surface
shaded DVR, a new rendering mode is introduced that is especially useful in virtual
endoscopy applications and combines the advantages of shaded and unshaded DVR.

Chapter 6 will focus on the results we were able to achieve and compare different
speeds at various quality and resolution settings. This should give a better under-
standing of the speedup this algorithm provides over conventional techniques. Also
image-quality comparisons will be made to better understand the benefits of the
presented techniques in a real-world environment.

At last, chapter 7 will conclude the results achieved and provide a short outlook
into our future work and other possible applications that we are looking into. These
include further development of iso-surface shaded DVR and deferred shading, leading
to an even more flexible rendering pipeline, as well as extensions to the memory
management and support for segmented datasets.



2. Fundamentals and State of the
Art

Numerous algorithms for realistic rendering of volume datasets have been published,
each of them with its very own advantages and problems. The following chapter
gives a quick introduction into the different kinds of algorithms and their respective
applications. The top down order of introductory sections is meant to give an insight
on why exactly this algorithm was chosen for our visualization demands and what
other possibilities exist.

The first section gives an answer to the first question that arises when implementing
a volume rendering algorithm: With a given type of datasets and visualization de-
mands, what kind of algorithm suits our needs best? In our case, the decision for an
image-based approach directly leads to the next section, which gives a short intro-
duction on raycasting, the available techniques and the possible implementations.

After the decision for a certain technique, a closer look is taken at the field of
application: The third section is all about virtual endoscopy, the specific problems
and available systems. After that, the next question is whether the algorithm should
be implemented on the CPU or the GPU. CPU and GPU-based approaches are also
sometimes referred to as software or hardware implementations of an algorithm,
referring to the fact that many of the specific graphical instructions in such an
algorithm have to be divided up into many simple instructions on the CPU while
they can be immediately carried out ’in hardware’ on a graphics card - this is one
of the main advantages the GPU offers.

The fact that a GPU is not as versatile as a CPU heavily influences the decision,
and it definitely makes no sense to implement algorithms on the graphics card that
can not take advantage of the specific features. In fact, once the decision for a GPU-
based algorithm is made, there are only two techniques left that have proven to be
applicable and take heavy advantage of the texturing capabilities of the graphics
card. Therefore the last section of this chapter compares these two specific tech-



5

niques, though this is actually again a comparison of an image order and an object
order approach.
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2.1 Visualizing 3D Datasets

Generally speaking, algorithms for rendering of volume data can be divided into
two main categories: Image order and object order approaches. In the past, both
of these techniques have proven to be useful for specific applications, though image
order approaches seemed to be more generally applicable because the computational
complexity scales with image rather than object size, which often makes it a better
choice for applications where the exact size and structure of the volume is unknown.

2.1.1 Image order approaches

As the name suggests, image order approaches iterate through the parts of the image
that should finally be generated and try to find all possible contributions to this part.
With these parts being screen pixels most of the time, the algorithm tries to find
all objects that change the appearance of a certain pixel. The most widely known
image order approach is raycasting [Levoy, 1988], where a ray is cast through each
pixel and sampled at regular intervals. The contributing samples of the volume
are composited to a final pixel color, which in the end is a (more or less exact)
approximation of the integral along that ray.

Primary advantage of this algorithm is the fact that it is much more dependent on
screen resolution than on object size, which also makes it easily scalable by reducing
the resolution for quick in-between renders. Also, the number of objects in the
volume does not influence rendering speed as much as with object order approaches
(this situation changes a little bit with the implementation of techniques like early
ray termination and empty space skipping, see chapters 3.1 and 4.1).

Obvious disadvantage of image order approaches is that, if no further measures
are taken, very sparsely populated volumes will be rendered a lot slower than with
object order approaches, because a lot of pixels will be checked (and thus a lot of
rays started) that never even hit an object. On the other hand, techniques like early
ray termination make sure that in the case of very dense volumes, only those objects
are rendered that really contribute to the final image.

2.1.2 Object order approaches

In contrast to image order approaches, object order approaches iterate through all
parts of the object - in most cases voxels - and determine their contribution to the
final image. The most popular object order approach is splatting [Westover, 1990,
1991, Wilhelms and A., 1991], where a footprint of the current object is generated
and ’splatted’ onto the image plane.

This works particularly well if there are only very few non-empty voxels inside a
large volume. In all other cases, the probability is quite high that a substantial
part of the objects will not even be visible in the final image, thus wasting a lot of
computational effort.

Apart from speed concerns, object order approaches can have a substantial advantage
in terms of memory consumption. This is mainly due to the fact that virtually all
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image based approaches rely on some kind of regular grid to store the data, thus
reserving the same amount of memory for empty and non-empty voxels. In the case
of object order approaches, usually only non-empty voxels are stored, which can
reduce memory demands significantly if the volume is not heavily populated.

However, another main drawback of this approach is that the appearance of the
footprint limits the quality of the final image - zooming in on a splatted image will
reveal the structure of the footprint quickly, making the quality of the precomputed
kernel essential for good results [Westover, 1990]. Though various extensions of this
algorithm have been published [Mueller et al., 1999, Mueller and Yagel, 1996, Müller
et al., 1999, Huang et al., 2000], the quality of the magnification is still inferior to
image-based approaches in most cases.
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2.2 Raycasting Fundamentals

The basic software raycasting algorithm, as proposed by Marc Levoy in his initial
publication on raycasting [Levoy, 1988], divides the process of image generation into
six distinct steps, as shown in Figure 2.2. It should be noted that in order to retrieve
correct color values, the voxel colors have to be premultiplied by their respective
opacities before resampling, which might not immediately be obvious when looking
at the pipeline [Wittenbrink et al., 1998a].

The six raycasting steps are:

Figure 2.1: Simple raycasting algorithms provide the ability to achieve high-quality
visualizations of transparent surfaces.
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1. The preparation of volume densities along a regular grid, resulting in voxel
values for each discrete position

2. The classification of voxels, mapping each voxel density to a respective opacity
value

3. Resampling of sample opacities at the discrete sampling positions along the
ray

4. The shading, mapping each voxel density to a color value

5. Resampling of voxel colors at the discrete sampling positions along the ray

6. The Compositing step, calculating a final pixel color from the vector of shaded
samples and respective opacities

Figure 2.2 provides a good overview over the steps that have to be carried out for
color values and opacities. The first step is to prepare the volume densities for further
processing, arranging the acquired values at certain positions inside the volume along
a regular grid (several techniques have been introduced in the meantime that extend
this approach to other grid types like unstructured grids [Weiler and Ertl, 2001,
Westermann, 2001]). This step might include correction for nonorthogonal sampling
grids, patient motion while scanning or even contrast enhancements, interpolation
of additional samples or pre-filtering of noisy data. Figure 2.3 shows how voxels

Figure 2.2: The basic raycasting pipeline, with the six steps for preparation, clas-
sification, shading, resampling of opacities and colors and finally compositing of
samples.
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Figure 2.3: Preparing the volume densities for further processing results in values
arranged on a regular grid, which simplifies further calculations and prepares the
volume for rays being cast through.

of certain density are aligned on a regular grid to facilitate further processing and
prepare for later resampling along the rays started from the view plane.

The output of this step is an array of prepared values which is again used as input
for the shading and classification steps. In the case of shading, phong shading is
used regularly because it represents a good trade-off between speed and quality. A
phong-model incorporating an approximation of depth-cueing would look as follows:

where

• λ always denotes the respective color channel,

• xi is the current sample location,

• c is the color value of the pixel,

• cp the light color of a parallel light source,

• ka is the ambient coefficient,

• kd is the diffuse coefficient,
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• ks is the specular coefficient,

• n is the exponent for specular highlights,

• k1 and k2 are constants for approximation of depth-cueing,

• d(xi) is the perpendicular distance from picture plane to voxel location,

• L is the normalized light vector,

• V is the viewing vector in the direction of the observer and

• H is the half-vector between V and L.

The surface normal N is given by

where the gradient ∇f is approximated using central differences:

The classification performs the essential step of assigning each voxel a respective
opacity value. This opacity value can be a function of various parameters, like
voxel density, normal vector direction or gradient magnitude. Standard raycasting
modes would include setting the opacity above a certain threshold to 1. This results
in rendering of the first intersection with a value above the threshold along the
ray, commonly referred to as iso-surface raycasting or first-hit-raycasting. Another
common classification strategy is the simple definition of opacities for all density
values via a transfer function, resulting in a visualization of translucent tissue that
is used primarily for direct volume rendering (i.e. the accumulation of all color values
along the ray, see the explanation of compositing below). Including the normal vector
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Figure 2.4: Trilinear Interpolation uses the eight neighbouring voxels to calculate an
approximation of the density value at a certain sample position.

or gradient magnitude into the classification function is primarily used for non-
photorealistic renderings and thus mostly found in specialized applications where
these strategies provide a better insight into certain structures.

With shading and classification strategies defined, the actual algorithm is performed
by casting rays into the volume and resampling the voxel densities at evenly spaced
locations along that ray. The color and opacity values are usually trilinear interpo-
lated from the eight voxels closest to each sample location (see Figure 2.4). This
provides a good trade-off between simple nearest-neighbour interpolation (always
take the value from the closest voxel) and more complex filter kernels like tricubic
interpolation, that yield better results at higher computational demands [Hadwiger
et al., 2001, Marschner and Lobb, 1994, Mitchell and Netravali, 1988].

Figure 2.5: The basic raycasting algorithm casts rays from the viewing plane through
every screen pixel, always calculating the coordinate translation from image space
to object space. Image taken from [Levoy, 1988].
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Figure 2.6: These four compositing strategies result in the rendering modes known as
first-hit raycasting (iso-surface raycasting), Maximum Intensity Projection (MIP),
Averaging and Direct Volume Rendering (DVR) (top to bottom).
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Finally, these color and opacity values have to be composited to the final pixel color.
In order to exploit strategies like early ray termination front-to-back compositing is
usually used, starting the ray at the viewing plane and casting rays through every
single pixel until a certain alpha threshold near 1 is reached, as shown in Figure
2.5. Figure 2.5 also illustrates the different coordinate systems used in the process
of volume rendering. Front-to-back compositing calculates the summed pixel color
by adding further samples according to the following formula:

where Cin and Oin are the input color and opacity values before adding the current
sample, Cout and Oout are the output color and opacity values after adding the
current sample, and Cv and Ov are the color and opacity values of the sample point
(i.e. the result of the trilinear interpolation of classified and shaded samples).

Depending on the compositing strategy, different rendering modes can be achieved,
as shown in Figure 2.6.
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2.3 Virtual Endoscopy

Minimally invasive procedures have gained increasing importance in medical practice
because of the - in many cases - faster (and thus cheaper) process, the often easier
and less painful way in which inner organs can be reached and the faster recovery
of patients which reduces the overall risk and helps to keep clinical costs low. These
procedures have proven particularly useful in surgery, neurosurgery, radiology and
many other fields.

In most cases, these procedures are performed using an endoscope, which is a fiber
optic of small diameter which serves as a light source, with a small camera and one
or more additional tools attached to it. All these tools need to be small enough to
fit through small holes in the tissue or tiny vessels. At the same time they have to
provide the necessary functionality and - most important of all - a manageable way
of handling them. This not only imposes a challenge for the design of suitable tools,
but especially affects the way the mini cameras work.

Figure 2.7: This image demonstrates a typical endoscopic view that can be retrieved
from the inside of regions that would otherwise be difficult to reach. Image taken
from [Neubauer et al., 2004].
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In order to provide a sufficient large opening angle at a small enough size, the
spezialized lenses used in these cameras deliver a fish eye view of the environment.
Besides the difficulties imposed by the small scale of the tools, this distorted view
together with the limited amount of light makes controlling and navigation a difficult
task. The limited flexibility of the endoscope, the limited depth perception and the
necessity to constantly clean the camera lens impose additional challenges.

Furthermore, the effect of a tiny mistake in endoscopic surgeries can be devastating:
Since the endoscopic approach is often used in cases where an open surgery is not
easily possible, there is a high probability that the region of interest can not easily be
reached in case of serious complications, such as strong bleeding. Also, the fact that
an open surgery is not possible suggests that the region of interest is surrounded by
tissue that can not be cut open or should not be hurt at all, like important nerves.

These facts imply that endoscopic procedures have to be carefully planned in order
to avoid any complications, and medical doctors should be given the oportunity to
practice the process in a most life-like environment as often as possible. Virtual
endoscopy has proven to be an important tool in both of these applications, and its
use has been discussed in various publications [Bartz, 2005, Auer and Auer, 1998,
Auer et al., 1997].

Besides training on real specimens, virtual endoscopy provides a convenient and
cheap alternative to practice the course of the surgery and has the advantage of
already providing a visualization of the real data, which makes exact pre-operative

Figure 2.8: Virtual endoscopy gains increasing importance as a tool for teaching,
diagnosis, pre-operative planing and even intra-operative navigation. Interactive
DVR raycasting could provide additional insight, providing medical doctors with a
more detailed representation of the environment. Image courtesy of S. Wolfsberger,
Department of Neurosurgery, Medical University Vienna.
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planning possible. This visualization is based on a 3D scan of the respective body
region, like a CT (Computed Tomography) or MRI (Magnet Resonance Imaging)
scan or a rotational angiography.

The resulting data from one (or more) of these scans is visualized in a way that
allows interior views of the dataset, mimicking the real environment as closely as
possible. Current systems either strive for interactive rendering of iso-surfaces (from
polygonal representations generated with marching cubes or with an accelerated iso-
surface raycaster), or high-quality renderings that have to be generated offline and
can later be viewed without further possibilities for interaction. Though interactive
direct volume representations would be highly desirable because of additional expres-
siveness semi-transparent surfaces provide and the possibility to visualize objects of
interest without prior segmentation of the dataset, no system has yet been presented
that is capable of delivering sufficient quality at truly interactive framerates [Bartz,
2005].

Applications for virtual endoscopy systems are not limited to pre-operative planning
and practicing with endoscopic tools. They may also include teaching and diagnos-
tic purposes as well as the possibility for intra-operative navigation. This supports
medical doctors with an additional, computer-generated view of the current position
and orientation of the endoscope, providing additional information about surround-
ing tissue and non-visible parts of the body.

2.3.1 Requirements

Virtual endoscopy applications impose a couple of requirements on a visualization
system which narrows the list of applicable rendering techniques:

• Being able to move the viewpoint into the dataset is the foremost requirement,
and one that not all techniques easily fulfill.

• Since the viewpoint will always be very close to surrounding tissue, acceleration
techniques for this special case should be available

• Rendering speed is essential, non-interactive framerates would rule out some
of the most interesting applications of virtual endoscopy systems

• The strong perspective view inside the dataset requires an algorithm that can
cope with real perspective rendering and does not impose further inaccuracy
by approximating certain aspects of perspective projection

• Undersampling is almost always a problem and the limited resolution of the
dataset becomes often obvious. A suitable algorithm should be able to deal
with this issue as flexible as possible.

• Visualization of the endoscope and the attached tools requires an easy way
to correctly visualize polygonal tools and their interactions with surrounding
tissue. This requires, first of all, correct intersection with the volume dataset.
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2.3.2 Techniques

The already mentioned problem of undersampling is less of an issue with iso-surface
rendering, where the problem can be circumvented by generating triangles with the
marching cubes algorithm [Lorensen and Cline, 1987a]. However, the number of
triangles generated by this approach is usually large and may prevent rendering at
interactive framerates, though a couple of acceleration techniques have been intro-
duced [Bartz and Skalej, 1999, Hong et al., 1997, Mori et al., 1996, Vining et al.,
1997, Lorensen et al., 1995].

Even worse, this approach does not allow for later changes of the iso-value, mak-
ing it very inflexible. Also, rendering of multiple transparent objects requires pre-
segmentation of the dataset and slows down rendering considerably again due to the
necessity for sorting.

Adaptive Raycasters [Novins et al., 1990] can cope with the undersampling by adap-
tively oversampling the volume in certain regions at the cost of lower framerates.
These performance issues still restrict the algorithm to iso-surfacing, with all of the
problems mentioned before.

Figure 2.9: Direct Volume Renderings for virtual endoscopy applications provide a
lot more insight into the dataset than a simple visualization of the iso-surface.
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Splatting [Westover, 1990] can be very fast for certain datasets and enables fil-
tered reconstruction of the voxels, but can also increase blurriness of the represen-
tation [Meißner et al., 2000].

The Shear-Warp algorithm [Lacroute and Levoy, 1994, Meißner et al., 2000] faces
quality issues for large magnification factors due to the base-plane approach, which
make it infeasible for this kind of application.

Slice-based approaches on graphics hardware [Cullip and Neumann, 1993a] mostly
suffer from the limited amount of graphics memory available even on modern GPUs
and inherent problems with perspective projection, resulting in visible sampling
artifacts. Hardware based raycasting algorithms can partly solve this problem, but
still suffer from the video memory limitation and various inflexibilities.

With none of the presented algorithms being primarily suitable for virtual endoscopy,
most available systems either incorporate only iso-surface rendering to be able to
offer interactive framerates, or employ huge multi-processing systems to handle the
massive computational demand of a highly interactive DVR.

2.3.3 Applications

One of the first applications of virtual endoscopy was virtual colonoscopy [Vining
et al., 1994a, Hong et al., 1995, Rubin et al., 1996, Hong et al., 1997, Laghi et al.,
1999, Bartroĺı et al.], which is a diagnostic tool to identify and locate polyps. Beyond
diagnostics, the use of virtual colonoscopy is limited because of the highly mobile
organ systems of the abdomen, which is changing the absolute position and shape of
the colon significantly. Thus, once a polyp or anything unusual is found, an optical
colonoscopy becomes necessary to estimate the danger and remove the polyp.

Virtual bronchoscopy is another important application, but unfortunately can not
significantly improve the detection of tumors [Rogalla, 1999, Rogalla et al., 2000,
Bartz et al., 2003]. This limits the possible value as a diagnostic tool [Mori et al.,
1994, Vining et al., 1994b, Summers et al., 1996, Ferretti et al., 1996, Rodenwaldt
et al., 1997], but it still is a valuable visualization tool for various purposes like
resection or biopsy planning [Wegenkittl et al., 2000, Higgins et al., 2003, Bartz
et al., 2003, Mayer et al., 2004].

Virtual ventriculoscopy examines the ventricular system of the brain, which is useful
for diagnostic purpose as well as planning complex endoscopic surgery [Auer and
Auer, 1998, Bartz et al., 1999a, 2001b, 2002] because of its ability to visualize risk
structures like arterial blood vessels [Bartz et al., 2001b]. Combined with optical
endoscopy [Bartz et al., 2002, Fischer et al., 2004], it can also be used for intra-
operative navigation.

Examinations of the vascular systems like cerebral arteries [Bartz et al., 1999b, Beier
et al., 1997], the Aorta [Davis et al., 1996] or the heart [Bartz, 2003, Bartz et al.,
2001a] is another important application, where the main focus is on diagnosis and
surgery planning.
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A very specific application has recently been presented by Neubauer et al. [Neubauer
et al., 2004], where virtual endoscopy is used to plan a complex endoscopic procedure
to remove pituitary tumors.

2.3.4 Virtual Endoscopy Systems

As described above, various developed methods of virtual endoscopy have been ap-
plied to colonoscopy [Vining et al., 1994a, Hong et al., 1997, Laghi et al., 1999,
Bartroĺı et al.], bronchoscopy [Mori et al., 1994, Vining et al., 1994b, Ferretti et al.,
1996, Rodenwaldt et al., 1997, Wegenkittl et al., 2000, Mayer et al., 2003, Higgins
et al., 2003], ventriculoscopy [Auer and Auer, 1998, Bartz et al., 1999a, 2001b], and
angioscopy [Davis et al., 1996, Beier et al., 1997, Gobbetti et al., 1998, Bartz et al.,
1999b, 2001a].

In all these systems, a trade-off between graphics quality and rendering speed has to
be found. In many cases, only surface models [Mori et al., 1996, Vining et al., 1997,
Lorensen et al., 1995, Hong et al., 1997, Bartz and Skalej, 1999, Bartroĺı et al., Nain
et al., 2001] extracted with the marching cubes [Lorensen and Cline, 1987a] algorithm
are rendered. However, despite the fact that this is fully hardware supported, the
complexity of the generated geometry regularly exceeds the capabilities of even the
latest graphics accelerators, thus requiring either high-end systems [Hong et al.,
1997, Vining et al., 1997], algorithms to reduce the rendering complexity [Hong
et al., 1997, Bartz and Skalej, 1999, Hietala and Oikarinen, 2000], or to relinquish
interactive performance [Bartroĺı et al., Beier et al., 1997].

On the other hand, volume rendering techniques can greatly increase image quality
or rendering speed [Shadidi et al., 1996, Hong et al., 1995, Davis et al., 1996, You
et al., 1997, Gobbetti et al., 1998, Serlie et al., 2001] - unfortunately, almost always
one of these two is sacrificed. Even the use of high-end hardware or multi-processor
setups did not lead to satisfying results.

Available systems for virtual endoscopy include:

• FreeFlight [Vining et al., 1997]: Developed at the University of Wake Forest,
FreeFlight is one of the oldest systems and based on the OpenInventor API.
It requires a surface representation which is generated using the marching
cubes algorithm [Lorensen and Cline, 1987a], which is then used for endoscopic
examination. Also, a texture-based volume renderer is incorporated, which
unfortunately is limited to unshaded representations.

• EasyVision Endo3D: Developed by Philips Medical Systems, EasyVision Endo3D
is based on an iso-surface raycaster that uses a low-resolution interaction ren-
dering for interactive framerates.

• Syngo: Syngo is the overall platform for imaging workstations of Siemens
Medical solutions. It uses the VolumePro technology [Pfister et al., 1999]
combined with a software approach to deliver near-interactive framerates for
iso-surface raycasting.
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• VESA: Like Free-Flight, VESA is also based on a polygonal surface represen-
tation of a segmented organ. Performance of a few frames per second can be
achieved for standard iso-surface renderings [Davis et al., 1996, Auer et al.,
1997].

• VoxelView/Vitrea2: Based on texture-mapped direct volume rendering [Sha-
didi et al., 1996, Rubin et al., 1996], VoxelView offers the possibility to define
camera paths and generate a video animation in a time-intensive offline pro-
cess. Though Vitrea2 optimized the process of path generation, it is still an
DVR offline-renderer that makes it impossible to change the path or camera
angles on the fly.

• VICON: While employing sophisticated approaches for segmentation and path
generation, the animation is still generated off-line [Hong et al., 1995]. Real-
time visualization is restricted to iso-surface rendering using a polygonal rep-
resentation calculated with the marching cubes algorithm.

• V3D-Viewer: Based on the VICON-system, the V3D-Viewer provides inter-
active iso-surface raycasting and the possibility to render semi-transparent
surfaces. Unfortunately, once rendered surfaces become semi-transparent, the
high framerates break down significantly.

• CRS4: Incorporating an texture-mapping-based approach [Cullip and Neu-
mann, 1993a] using graphics hardware, this system provides rendering perfor-
mance of a few frames per second for an unshaded DVR.

• VIVENDI: Also based on the VICON system, VIVENDI renders iso-surfaces
requiring a polygonal representation of the volume calculated with the march-
ing cubes algorithm. It introduces many enhancements that speed up rendering
to achieve near interactive framerates.

• VirEn: Developed at the Vienna University of Technology, VirEn [Bartroĺı
et al., Wegenkittl et al., 2000, Bartroĺı, 2001] also requires a polygonal repre-
sentation generated with the marching cubes algorithm to provide interactive
framerates for iso-surface renderings. Alternatively, direct volume rendering
can be performed by utilizing the VolumePro system [Pfister et al., 1999]. Due
to the limitation of this system to orthogonal representation, an algorithm was
proposed that renders single slabs which are then warped to simulate perspec-
tive projection - unfortunately, to achieve sufficient quality, a high number of
slabs is needed which in turn leads to non-interactive framerates.

• J-Vision: J-Vision from Tiani is a Java-based diagnostic workstation that fea-
tures, among many others, a virtual endoscopy plug-in [Neubauer et al., 2004].
This plug-in allows for iso-surface rendering at interactive framerates. The
iso-surface view can be enhanced with additional details about the density of
the surface by taking more than one sample in proximity of the found surface.
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• 3D-Slicer [Gering et al., 2001]: 3D-Slicer is a joined effort of the AI lab at MIT
and the Surgical Planning Lab at Brigham’s and Women’s Hospital in Boston.
Largely based on VTK, this system incorporates no additional acceleration
techniques. A virtual endoscopy mode was just recently added, which again
uses a surface model of a segmented organ to render iso-surfaces at interactive
framerates.

2.3.5 Conclusion

Most existing techniques rely on a polygonal representation of segmented objects
which is created with the marching cubes algorithm or a simple iso-surface ray-
casting to achieve near-interactive framerates. Seeing the need for improvement of
expressiveness, J-Vision incorporates an enhanced mode that supplies additional de-
tails about the properties of tissue and supports semi-transparent visualization of
objects of interest.

A minority of systems allows for offline generated direct volume renderings on pre-
defined paths, which results in expressive high-quality animations. Unfortunately,
the lacking flexibility makes this approach useless for many of the interesting virtual
endoscopy applications like intra-operative navigation.

So far, no system has been presented that allows for high-quality direct volume
renderings at truly interactive framerates, which would be the next logical step in
virtual endoscopy. Not only would this allow for easier evaluation of the density of
surrounding tissue, but it would enable surgeons to better estimate the position of
objects of interest that might not be visible in iso-surface renderings without the
necessity of a pre-segmented dataset.
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2.4 CPU vs. GPU based approaches

During the last couple of years, the role graphics cards play in modern computer sys-
tems has significantly changed. With the complexity and size of these chips already
being higher than their general purpose counterpart and the flexibility increasing up
to a level of a fully programmable chip with dedicated instructions, GPUs are no
longer limited to calculating and rasterizing triangles at ever increasing speeds.

Instead, a large number of different applications for these chips have already been
published, including simulations, physics frameworks, sound systems and even gen-
eral purpose math libraries [Harris et al., 2002, Krüger and Westermann, 2003b].
This development lead to heavy discussion about what should actually be imple-
mented on a GPU and what should. With this topic becoming more and more
controversial, two distinct groups of people seem to emerge, with some others still
waiting which side will be proved right in the end: The GPU enthusiasts, who want
to try everything that can possibly be done in hardware on their graphics card, and
the CPU programmers, who rather take the software approach because they do not
want to risk features not being available on the GPU.

Compared to CPU-based approaches, the specific architecture of the graphics card
requires different algorithms, and porting the same technique from the CPU to the
GPU will not make sense in most cases. Good hardware based algorithms try to
utilize the specific advantages a GPU has over a CPU in the best possible way,
namely:

• A massively parallel architecture

• A separation into two distinct units (vertex and fragment shader) that can
double the performance if the workload can be split accordingly

• Incredibly fast memory and memory interface

• Vector operations on 4 floats that are as fast as scalar operations

• Dedicated instructions for graphical tasks

More advantages may arise through the specific nature of a GPU-based algorithm.
Since the environment is very different to that on a CPU, a lot of standard tasks
of the GPU can be used to calculate necessary information in a very efficient way.
Most of these advantages come from the use of implicit interpolation, texturing
capabilities or the available buffers and their efficient implementation in graphics
hardware (i.e. the hierarchical z-buffer). An algorithm like the raycaster presented
in this thesis can take advantage of features like:

• Automatic calculation of ray positions by letting the hardware interpolate color
values

• Built-In Fast Trilinear Interpolation of 3D-Textures
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• Full floating point compositing at almost no cost

• Changing from orthogonal to perspective projection without additional effort

• Automatic calculation of intersections in the depth buffer

At the same time, these algorithms have to either circumvent or live with some of
the disadvantages a GPU approach faces:

• Restriction of video memory

• No integer operations at this time

• Programmability still restricted in a number of ways, like limited loop count
and limited conditional statements

• Readability of a GPU shader is still inferior to standard high-level languages

• Different vendors support different features and extensions, making it difficult
to write an algorithm for every plattform

• Choice of API may be more crucial than on the CPU (OpenGL or DirectX?
Assembler fragment programs or high-level shading language? And if so, which
shading language?)

• Unstable drivers, half-implemented features etc...

That said, hardware approaches can often impress with amazing speed gains com-
pared to software approaches, but at the same time require a very specific system
with a certain graphics card and certain drivers and extensions available. The algo-
rithm presented in this thesis is no exception, as there is at this time just one GPU
that supports the required shader model 3 and the newest drivers are required to
assure smooth execution.

However, with current development moving towards unified feature sets and the
APIs becoming more and more complete, it should not be too long before GPU
algorithms may run on every system regardless of the configuration.

For the algorithm presented in this thesis, the advantages of a GPU based approach
outweigh the disadvantages, and the end result is a combination of speed and quality
that would not have been possible to achieve otherwise. With the main disadvantages
still concerning the programmability, readibility and the ease of use, hardware based
algorithms just require a bit more work than their software counterparts. The only
major disadvantage left is the limited video memory, which is adressed in chapter
4.2, but with the introduction of 512MB graphics cards and PCI-Express, allowing
faster transfers to and from video memory, this is much less of an issue than it used
to be.
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2.5 GPU-based algorithms

In the field of hardware-based volume rendering, there are two distinct approaches
for rendering datasets at highly interactive framerates. The first approach, as orig-
inally presented by Cullip and Neumann [Cullip and Neumann, 1993b] and further
developed by Cabral et al. [Cabral et al., 1994a], is directly exploiting the GPUs tex-
ture mapping capabilities by creating some kind of (usually planar) sampling surface
- either viewport aligned [Westermann and Ertl, 1998] with one 3D-texture, or object
(axis) aligned [Rezk-Salama et al., 2000a] with a set of 2D-textures - and resampling
the original data at this so-called proxy geometry. These two approaches are shown
in Figure 2.10. Object-aligned techniques using a stack of 2d-slices are usually faster
and easier to handle. However, since one separate stack has to be stored for every
principal viewing direction, this tripples memory demands and leads to noticable
switching when rotating the dataset. In comparison, viewport-aligned algorithms
use one 3D-texture to store the data and generate the view-dependant geometry
on-the-fly.

Both techniques are widely accepted now as a common way to render medium sized
datasets in acceptable quality at interactive framerates and have been revisited,
finetuned and extended many times, e.g. [Westermann and Ertl, 1998, Engel et al.,
2001, Van Gelder and Kim, 1996, Meißner et al., 1999].

Though this approach is very similar to the way computer games make use of the
GPU, which ensures that it runs at the highest possible speed, it has two serious
drawbacks, which are all based on the fact that this is an object order approach:
First, with standard texture-based slicing, everything that needs to be calculated
for the final result, every texture fetch, gradient or lighting calculation, has to be
done for every single fragment, no matter if it contributes to the final image or not.
Advanced techniques like empty space skipping have been developed for texture-
based approaches, but are very difficult to implement because of the unflexible nature
of the algorithm. [Li et al., 2003, Li and Kaufman, 2003]. Second, implementing
perspective projection (or even fly-through modes) and dealing with the resulting
sampling artifacts is almost impossible.

Figure 2.10: Slices in texture-based approaches can either be object-aligned (left) or
viewport-aligned (right).
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The first problem can be circumvented for the most part by extending the algorithm
and has become less of an issue now, though all implementations are still not as
efficient as in comparable raycasting approaches. But the second problem is still
not solved satisfactorily and the lack of perspective projection limits the possible
applications of this technique.

The second approach would be to implement a raycaster in the fragment shader
of the GPU, as proposed by Krüger and Westermann [Krüger and Westermann,
2003a]. The basic idea here is to have two color images that represent the starting
and ending positions of the ray in volume coordinates (i.e. texture coordinates for
the lookup into the 3D-texture). These images can simply be generated with normal
colored OpenGL geometry, so that all the interpolation work is done by the graphics
card and smooth transitions of the vectors are achieved. By subtracting the starting
position from the ending position, viewing vectors for every single screen pixel are
retrieved and can be used to perform the raycasting. This approach is used as a
basis for our raycasting environment, so it is discussed in greater detail in chapter
3.

Since this algorithm uses the graphics card in a very different way than most games
do, there is often some additional effort required to find the most efficient solution
for a certain task. Still, this approach is far more flexible, leaves more room for
extensions and, most important, allows for perspective projection. Thus the decision
for the raycasting approach is an obvious one when implementing a system that
should be ready for virtual endoscopy applications. The various extensions that make
for a complete full-fledged ray casting system for every possible kind of application
will be presented in chapters 4 and 5.



3. Basic GPU Raycasting

As mentioned in the last chapter, the GPU raycasting algorithm ist built around
the basic idea that normal geometry is rendered into a buffer with the the position
of this geometry encoded in the color channel. OpenGL will interpolate the color
values automatically, creating a correct position value for every single pixel. This
way, it is possible to retrieve the position for a certain pixel later on with a single
lookup into this image at the very same position.

Figure 3.1: Rendering only the front or back faces of the color-coded bounding box
retrieves starting and ending positions for the rays in volume coordinates for every
single screen pixel.
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3.1 Hardware-based Raycasting

For casting through a volume, a starting position as the ray enters the volume and an
ending position when the ray leaves the volume are necessary. These two images can
very easily be created by rendering a color-coded volume bounding box. Rendering
only the front faces of this bounding box retrieves the starting positions of the rays
at each pixel position while rendering the back faces in a second pass returns the
respective ending positions. Both of these images can be seen in Figure 3.1.

By subtracting these two images, a ’direction image’ or ’direction texture’ is created,
that holds the actual viewing vector for each pixel in volume coordinates. This way,
a single lookup into this texture at a certain pixel position retrieves a viewing vector
that just has to be multiplied with the position along that ray. This procedure is
repeated until the ray has left the volume.

Figure 3.2: The rendering pipeline of the basic GPU raycasting algorithm.
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All the values along that ray are composited, stored in a separate buffer and blended
back to screen in the last pass. The final pixel color then is the equivalent of the
integral along that ray, or at least a good estimation of it if the sampling rate was
sufficient. The whole rendering pipeline is outlined in Figure 3.2.

Looking at the steps outlined above, it seems obvious that one should try to minimize
the number of passes needed to generate the final image. The only image that is
not needed for further processing is the backface image - containing the ending
positions for the rays - because this information is implicitly present in the direction
texture. Thus, it seems obvious to move backface rendering and direction texture
generation into the same pass. This can be achieved with a simple fragment program
that subtracts the value from the front face buffer at the same pixel position from
the incoming back face color, immediately retrieving the viewing vector. For easier
computation of the sampling position along the ray, the viewing vector should be
normalized before it is written out to the buffer. Storing the initial length in the
alpha channel makes it very easy to check whether the ray has already left the volume
later on.

That said, the final raycasting algorithm comprises four passes:

1. front face generation: render the front faces of the color cube to a buffer.

2. direction texture generation: render the back faces of the color cube, subtract
the front face color and store the normalized viewing vector together with its
length in a separate direction texture.

3. raycasting: get the starting position from the front face image and cast along
the viewing vector until the ray has left the volume.

4. blending: Blend the result back to the screen.

3.1.1 Front Face Generation

As mentioned before, the first pass has nothing else to do other than provide the
starting positions for the rays. This can be very easily achieved by rendering only
the front faces of the volume bounding box, where every corner vector is assigned its
respective position as color value. Since the volume bounding box is always convex,
there cannot be more than one front face for a particular pixel position, making any
kind of depth test unnecessary.

The resulting image is a simple color cube, as shown in Figure 3.1, that is stored in
a separate texture for later retrieval.

3.1.2 Direction Texture Generation

For direction texture generation, only the backfaces of the color cube are rendered.
Again, there can only be one backface per pixel. Only this time, the result is not
directly stored in a texture but rather given as input to a fragment program, which
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Figure 3.3: The back faces of the color cube (left) are never rendered out to a buffer,
instead a direction texture is immediately created in the fragment program (right).
Note that the right cube only appears to be smaller because of the low alpha values
towards the border regions.

is responsible for generating the direction texture. The left image in Figure 3.3
shows the actual backface image of the color cube, that is never really written out
to a buffer, but taken as intermediate step for calculation of the right image (the
direction texture).

The fragment program gets the color value (i.e. position) of the backfaces and the
current pixel position as input and makes a texture lookup at the same position
into the front face image to retrieve the starting position. Subtracting these two
values now retrieves the viewing vector. Normalizing this vector and retrieving the
initial length can easily be acomplished in the fragment program, because there are
dedicated instructions for both tasks.

Since the difference of starting and ending positions always result in a correct view-
ing vector for every possible viewing matrix, this scheme works for both orthogonal
and perspective projection, which qualifies this approach for a wide variety of ap-
plications. All the setup for perspective projection and computation of the viewing
vector, which takes quite some time in a software approach, is carried out by the
graphics hardware in almost no time, because rendering of two color cubes imposes
no challenge for a modern graphics processor.

With the generation of the direction texture, we have the perfect setup for the ray-
casting pass, which is still the computationally most expensive step of the algorithm.

3.1.3 Raycasting

For the actual raycasting to take place, the rays have to be started off by rendering
some kind of geometry that will call the respective fragment program for every
pixel. Rendering one quad filling the whole screen would be sufficient, but since the
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geometry of the bounding box is that simple, there is no reason not to render the
front faces of the color cube again, making sure that only those rays are started that
have a valid starting position thus avoiding unnecessary checks.

The raycasting fragment program gets the color value (i.e. starting position of the
ray) and the current pixel position as input and makes one texture lookup into the
direction texture, retrieving the normalized viewing vector and the length.

All that is left to do now is to calculate the sample positions along the ray by
multiplying the viewing vector with the respective sampling offsets and adding this
vector to the starting position, which results in the absolute position within the
volume. One lookup into the 3D volume texture retrieves the density value at this
position, which is automatically trilinear interpolated by the graphics hardware.

Depending on the rendermode, this density value is compared to an iso-value or
multiplied by the transfer function, usually stored as a 1D-texture. If shading is
to be applied, another six lookups into the 3D texture have to be performed to
calculate the gradient at the sampling position. Because video memory is precious
on the graphics hardware, storing precomputed gradients is not an option anymore
- even more since a gradient consisting of three floating point values takes six times
the space of the density value (three floats with four bytes each have to be stored
instead of one two-byte integer). The computed gradient serves as an estimation
of the surface normal for the lighting calculations, which are again carried out by
dedicated instructions on the GPU.

The final color contribution of the sample is summed up in a separate compositing
buffer, and the next sample is taken until the ray has left the volume. To make use

Figure 3.4: In the raycasting pass, the volume is sampled at regular intervals between
the precomputed starting (f0-f4) and ending (l0-l4) positions.
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of the advantage the image based approach offers, early ray termination should also
be implemented, terminating the ray if the summed alpha value exceeds a certain
threshold near 1.

In the case of iso-surface extraction, there is no compositing and the raycaster im-
mediately terminates after the first successful lookup retrieving a value greater than
the predefined threshold.

3.1.4 Blending

It should be noted that a separate blending pass is not a necessity, since all shader
model 3 enabled graphics cards can perform floating point compositing in the screen
buffer. Still, having a separate blending pass keeps the approach very flexible and
allows for post-processing effects for future applications. Additionally, it gives the
theoretical ability to blend together different volumes or even different parts of the
volume that were rendered separately for a certain reason.

At the moment, the only feature taking advantage of this is the geometry inter-
section, which will be presented in chapter 4.3. However, the separate blending
pass imposes no noticable performance hit and for this reason is performed even if
geometry intersection is deactivated.
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3.2 Implementation Details

So far we have introduced two ways of terminating a ray: The regular termination
takes place once the ray leaves the volume, and is calculated by comparing the
travelled distance to the length of the original viewing vector stored in the direction
texture. However, to do this in the same pass the GPU has to be able to execute
conditional breaks inside the loop, which requires a shader model 3 capable graphics
card.

The introduced early ray termination can also only be efficiently implemented on
such a GPU, since it requires one additional condition after every single sample,
checking whether the accumulated alpha values have exceeded a certain threshold.
By using the conditional registers introduced with the newest generation of graphics
cards, these two checks can be carried out together, resulting in only one conditional
break statement.

Implementing this with shader model 2 would require a separate ray termination
pass, where we face a trade-off between two techniques: Having a termination pass
after every sample requires 2 passes per sample, but provides the ability to exactly
terminate the ray where necessary thus only calculating samples that are part of the
final image. On the other hand, executing the termination pass only after a number
of raycasting passes, which could themselves again calculate a number of samples,
has less negative impact on performance but introduces the problem that the ray
may be sampled outside the bounding box.

For a simple bounding box setup, this may be a neglectable disadvantage, because
the volume outside the bounding box is empty anyway, leading only to a small
performance hit. But when introducing advanced techniques like cache textures
or geometry intersection, it often has to be made sure that rays are terminated
correctly, because samples after the termination position may already be invalid or
at least should not be part of the final image.

Thus, it makes sense to restrict the system requirements to shader model 3 enabled
graphics cards, to account for all future enhancements of the algorithm and keep the
pipeline as flexible as possible.

Another important point is that settings for the precision in the fragment pro-
gram should be changed from ARB precision hint fastest (the standard setting in
ARB fragment programs, employing only 16-bit interpolations on nVidia hardware)
to ARB precision hint nicest (forcing the driver to full 32-bit precision on current
nVidia cards) in order to get correct results. ARB Precision hint fastest is preset
because it represents a good trade-off between speed and quality. This is because
current hardware is very much optimized to get the maximum possible performance
out of regular applications, mostly games. ARB Precision hint nicest will make
sure that all values are interpolated with the maximum available precision, which is
a necessity for the calculations that are carried out in the process of raycasting.

However, this precision may still not be enough: Color values are usually not used to
store anything else than colors for screen rendering, where the precision that can be
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observed by the human viewer is limited. Thus, this is an obvious target for driver
optimizations and color values will normally be interpolated with less precision than
for example texture coordinates, where precision defficiencies would be immediately
detected. Thus, in addition to having to enable maximum precision, choosing color
values for storage of the data does not seem like a good idea.

The algorithm presented in this thesis relies heavily on view vector precision, and the
view vector itself is calculated from two interpolated color values. Even on highest
quality settings, the interpolation is not sufficient for our purpose, so another way
of calculating this vector is needed. For illustration purposes, all techniques in this
thesis refer to the color value of the geometry, and thus all images were created by
rendering intermediate results to the color buffer. The color buffer also provides
anough precision to store the results at the end.

But when rendering intermediate geometry, the position inside the dataset is actu-
ally encoded in the texture coordinates, retrieving full interpolation precision. The
change in the fragment program is trivial, because only the source of the input vector
has to be changed from the color to the texture coordinates register.



4. Advanced Raycasting

The basic algorithm presented in the last chapter is simple, elegant and reasonably
fast. However, there are a couple of shortcomings that limit the applicability for
all kinds of applications. First, because of the lack of optimization incorporated,
it is still rather slow when compared to slicing approaches, simply because these
techniques make better use of the GPUs architecture and especially the triangle
throughput. As mentioned earlier, the strength of image order approaches becomes
primarily visible once advanced features like empty space skipping are incorporated.

Second, the dataset to be rendered can be only as big as the video memory and
graphics driver permits. This not only restricts the applicability to datasets with an

Figure 4.1: Combining the advanced raycasting techniques presented in this chapter
allows for rendering of high-quality images from any angle within the volume.



36

overall size of less than about 400MB, but due to the state of the graphics drivers at
the time of writing also to no more than 512 voxels resolution in any axis, regardless
of overall size.

Third, the generation of rays on the border of the bounding cube makes sure that
no empty space outside the volume has to be skipped, but on the other hand intro-
duces additional sampling artifacts that resemble the outer shape of the bounding
geometry, making the situation on undersampled datasets even worse.

Figure 4.2: The enhanced rendering pipeling of the GPU raycaster. Throughout
this chapter, the different parts of this pipeline will be explained.
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And last, the generation of rays with normal OpenGL-geometry heavily relies on the
fact that this geometry is always visible on the screen. Moving the viewport around
- and especially into the volume - can cause serious problems as soon as parts of this
geometry are clipped against the near clipping plane, resulting in visible holes in the
image.

This chapter presents various techniques that help to deal with these shortcomings,
making this hardware raycasting flexible and versatile enough for almost every kind
of application. The enhanced rendering pipeline is presented in Figure 4.2, which
will be explained in the course of this chapter.
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4.1 Bounding Geometry Generation

When a visualization system is to be used in medical practice, overall performance
is one of the crucial factors. It is the feeling of a natural, truly interactive 3D-model
that sets a realtime visualization system apart from the old-fashioned stack of CT-
slices and gives an unparalleled insight into the three dimensional structure of the
object. Advanced shading techniques make for very impressive, almost artistical
looking renderings of medical datasets. But the primary use of light and shadow in
visualization renderings is that they give the human eye a hint of the property of the
surface, and the position and orientation of objects in three dimensional space. This
effect is dramatically stronger once an object starts to move and the human brain
starts to process all the light reflections and shadow movements on the surface.

Furthermore, the result is probably visualized on a non-stereoscopic computer mon-
itor, that lacks the most important hint the human eye needs when judging spatial
properties of objects in real life. Thus, the visualization system has to make up for
this and provide other important features of lifelike interaction in the best possible
way, and nothing destroys the illusion of a manipulable object more than an image
slideshow running at one or two frames per second.

Another important point is that a visualization system may not only be used for
diagnostic purposes or in pre-operative planning - Virtual Endoscopy for example
could also support the process of a surgery, delivering computer generated pictures
of the area of interest while the endoscope is moving forward and allowing the
surgeons to better estimate the consistency of the tissue they’re about to hit or even

Figure 4.3: Replacing the simple bounding box in the last chapter with a more
sophisticated bounding geometry implicitly skips all of the outer empty space at
almost no cost.
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see through it. If the system can not instantly react to every tiny movement the
operator is making, it is probably only of limited use.

Thus, developing a good system for medical practice is all about achieving interactive
framerates while not sacrificing image quality.

Various techniques have been published to speed up the process of raycasting, but
not all of them are suitable for a GPU based approach. Early Ray Termination

Figure 4.4: For incorporation of the complex bounding geometry, front and back
face generation have to be modified.
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has already been incorporated in the basic raycaster by constantly comparing the
current alpha value to a threshold and exiting the raycasting pass once this thresh-
old is reached. Empty Space Skipping is another suitable technique that can be
implemented very efficiently on the GPU. Effectively, in a hardware based raycaster
empty space skipping can be split up into two categories: Skipping outer empty
space - which is what this section is all about -, and skipping empty blocks between
two active blocks. The latter has to be performed in the raycasting program itself,
incurring a bit of a performance hit because the fragment program gets more compli-
cated and caching will not work as efficiently as before. Skipping of the empty space
around the object, however, which is normally about 90-100% of the empty space
present in the dataset, can be solved very efficiently on the GPU by modifying the
basic raycasting approach a little bit and extending the idea of the colored bounding
box. The necessary modifications to the pipeline are shown in Figure 4.4.

4.1.1 Considerations

In this section a blocked scheme for bounding geometry creation is introduced which
significantly speeds up rendering time of the standard raycaster presented in chap-
ter 3.

With the simple raycasting algorithm presented back then, only the pixel process-
ing pipeline of the GPU is used, while the vertex pipeline is mostly lying idle. So
whether the bounding box consists of twelve (as in our basic algorithm) or 100,000

Figure 4.5: Front and back faces of our blocked bounding geometry, with grey boxes
being active blocks, blue lines denoting front faces and green lines back faces. Note
that the ray always starts at the first front face and ends at the last back face, even
if there are inactive blocks inbetween as in the case of r3.
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triangles does not make much difference - even more since graphics cards nowadays
are specially designed to handle the massive (and ever increasing) amount of ge-
ometry of current games without suffering huge performance hits. Having this in
mind, increasing the complexity of the bounding box - making it a data dependent
bounding geometry - seems like a good idea.

When modern graphics cards render a scene, they try to process vertices and pixels
in parallel, in the best case leading to an equal distribution of the workload. Of
course, if there’s a small number of large triangles, the vertex processing engine will
be partly idle, while only the pixel processing engine is busy - such a scene is said
to be fill limited.

On the other hand, if there is a huge amount of visible triangles that consist of only
one or two pixels, then the vertex engine will be the bottleneck, making the scene
geometry limited. Both of this is of course undesirable, meaning that it is best to
keep the average triangle size at a very constant rate that is - in the best case - close
to the optimal size for the current generation of GPUs.

With todays graphics cards, this optimal pixel per triangle ratio is highly dependant
on GPU brand and shader complexity, but usually somewhere between four and
eight. Considering this, a blocking scheme with equally sized blocks (shown in
Figure 4.5) seems to be a good idea, which decides for every block consisting of a
number of voxels from the original dataset whether this block is of any interest or not.
This decision is based on the transfer function or the current isovalue, depending on
the rendermode. In the case of direct volume rendering, this means that if any voxel
in this block is mapped to an opacity value greater than 0, the whole block has to
be drawn.

4.1.2 Algorithm Overview

Culling against the iso-value or the current transfer function has to be performed
whenever one of these parameters changes. To handle this efficiently, the minimum
and maximum value for each block is stored and compared to the transfer function,
meaning that if opacity is always zero between those two values, the block can be
safely discarded.

It is important to note that one border voxel outside the current block has to be
tested as well, because the filtering could cause an interpolated value inside the block
to be greater than the threshold even if none of the voxel values inside the block is.

With this blocking scheme enabled, the border between empty and non-empty blocks
defines a surface that can be rendered as normal OpenGL geometry with the position
encoded in the color-channel, resulting in a bounding geometry of the volume. How-
ever, the separation into front and back faces is a little bit more complicated now,
because the possibly non-convex bounding geometry does not guarantee for exactly
one front and back face anymore. Thus, one needs to retrieve the first front face
to start the rays and the last back face to stop them. This can be solved efficiently
with a simple depth test of the OpenGL geometry.
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As shown in Figure 4.5 in the case of r3, this scheme does not necessarily skip all
inactive blocks - another lookup in the fragment shader is necessary to determine
whether there are empty blocks between the first front and last back face. However,
this check is easy and does not slow down the fragment program noticably, and the
implicit empty space skipping via the bounding geometry has no performance hit at
all.

4.1.3 Implementation

As mentioned in the previous section, the border between empty and non-empty
blocks defines the bounding geometry that is used multiple times in the process
of raycasting. Considering this, it should be stored as efficiently as possible and
in a way that it is always available for rendering. Using the Vertex Buffer Object
Extension (VBO), the array of vertices and color values can be forced to be kept in
the on-board video memory, avoiding unnecessary transfers of static geometry data.

The amount of memory available for these Vertex Buffer Objects is set in the BIOS
under AGP Aperture Size, meaning the size within the main memory that is re-
served for direct transfers to the graphics card. Unfortunately, only roughly half
the memory specified there can actually be used (with the rest being reserved for
caching), which means that an Aperture Size of 128MB is necessary for the algo-
rithm to be able to handle very large data sets. Since there is no way to change the
value in software later on, it has to be made sure that enough aperture memory is
available on the system, forcing the user to reset the value manually before installing
the application.

Coming to the actual algorithm, the first task is to render the front faces of the
bounding geometry with depth test set to GL LESS. This will make sure that in the
end, the nearest front fact will be visible in the image, starting the rays from the
nearest possible intersection with the bounding geometry.

Rendering the same scene with backfaces enabled and depth test set to GL GREATER
retrieves the farthest backfaces (i.e. the ending points for the viewing rays). Since
the bounding geometry can be assumed to be closed, all screen pixels that have a
valid front face color must also have a respective backface. This makes sure that the
subtraction of color values always produces a valid viewing vector.
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4.2 Rendering of Large Datasets

During the last couple of years, many existing algorithms have been reimplemented
- and sometimes reinvented - on the GPU. With the GPU being much more than
just a different processor, completely different ways of looking at the problem and
thus new sets of algorithms to exploit its full potential are required.

Video memory has always been the weak side of GPU based algorithms, and this
is mostly due to the fact that transferring data from the main memory more than
offsets the performance gain that such a technique can possibly achieve. Thus, using
the main memory even for parts of the storage required is not an option.

Figure 4.6: Rendering this 512x512x1112 dataset is possible even on a 256MB graph-
ics card, as long as the active blocks fit into the memory.
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Fortunately, there are two ongoing developments that put this disadvantage into
perspective again:

1. Video memory has been doubled with almost every graphics card generation for
quite a while now, and though current generation GPUs have already almost
as much onboard memory available as main memory present in the system,

Figure 4.7: The blocking scheme requires a modification of the fragment program,
where the simple texture lookup is replaced by a more complex series of position
lookup, coordinate translation and cache texture lookup.
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this trend does not seem to stop. Even more interesting, graphics cards have
begun to boost the memory chip market with their ongoing demands for more
memory on smaller chips at higher speeds. As of now, the memory technology
built into high-end graphics cards is one or two generations ahead of ’normal’
system memory specs.

2. With the introduction of PCI-Express, data transfer to (and especially from)
the graphics card has been speeded up significantly. Unfortunately, we did not
have the opportunity to test our algorithm on one of these systems, adapt it
and experiment with the possible speed gains, but the first figures that were
published throughout the web looked very promising. Furthermore, genera-
tion 2 PCI-Express is planned to be introduced next year, leading to another
doubling of actual transfer rate.

Whether this technology makes outsourcing of additional data into main memory
feasible remains to be seen - but with just roughly that kind of architecture we have
today, there will always be a speed penalty incurred when fetching data from main
memory.

That said, some kind of compression technique is needed that helps in storing the
dataset more efficiently in the video memory while not slowing down data access
too much. One approach to this is presented in the next section, which uses the
blocking approach already introduced in the previous chapter to achieve smarter
data storage. The altered pipeline can be seen in Figure 4.7.

4.2.1 Considerations

As mentioned in the introduction, video memory size keeps increasing with almost
every generation of graphics card. Right now, 512MB cards are starting to hit
the market, making it theoretically possible to store a 1024x512x512 dataset in 16-
bit. The question whether 16-bit is necessary or not to achieve sufficient quality is
unfortunately answered by a restriction of the texturing abilities of current GPUs.
While 8 bit would still be a rather acurate representation of the original 12-bit-data
in a CT-dataset, interpolation precision also falls back to integer when storing 8-bit-
textures. This leaves hardly any other choice than storing the data in 16-bit-textures,
leaving most of the available precision unused for now.

While it was not mentioned as one of the prime advantages of hardware-based ap-
proaches yet, the ability to composite at full floating point precision without slow-
ing down calculation considerably is definitely one of the most useful features of
this technique, which comes from the simple fact that GPUs are tailored towards
floating-point computations much more than CPUs. Because of this, most software
approaches have to use integer compositing to avoid the speed penalty involved with
float compositing.

Figure 4.8 shows the difference between integer and floating point composition, and
it can be clearly seen that only floating point compositing offers enough precision
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Figure 4.8: This comparison shows the difference between integer (left) and float
compositing (right).

to render certain images at adaequate detail and without visible precision artifacts.
When trying to visualize thin transparent structures (like the outer parts of this
hydrogen), using integer compositing not only leads to precision artifacts noticable
as visible banding in the left picture, but also to the loss of information where the
precision is insufficient to store the low alpha values. Note that in the left picture,
outer parts of the hydrogen seem to be missing and suddenly reappear when other
objects are visible behing the current one, leading to an inconsistent representation
of the volume.

Since applicability to all kinds of datasets and transfer functions is a requirement for
a fully versatile raycaster, no compromise should be made regarding the precision of
the stored data.

Having this in mind, there is still only 512MB of video memory available, and un-
fortunately not even all of this video memory can be reserved for the volume data -
the geometry information and the textures needed in the process of rendering take
up some space as well. In reality, only roughly 800x512x512 voxels can be stored on
the graphics card, which is not sufficient for all kinds of applications.

4.2.2 Algorithm Overview

Considering the way the bounding geometry was created in chapter 3, this concept
can be extended to data storage as well: Inactive blocks do not contain important
information, and thus besides not being rendered they should not be kept in memory
in the first place. The complete algorithm for caching and coordinate translation is
described in [Hadwiger et al., 2005].
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Figure 4.9: Rendering of Michelangelo’s David (1536x576x352) with our 2-level
blocking scheme - cache blocks are marked green and bounding blocks blue.

Storing the dataset in a 3D-texture is convenient for our algorithm, so the 3D-texture
should be preserved, but the blocks in this texture do not have to have the same
order as the original dataset, nor does the texture have to have the same size. Storing
only the active blocks in a new 3D cache texture would be one possible solution -
unfortunately, in order to preserve correct trilinear filtering, blocks have to be stored
with 1 extra border voxel. Otherwise a sample could be interpolated between voxels
from different blocks, which of course would result in a wrong value.

The key to this cache texture is a separate position lookup texture, that has exactly
one entry for every block of the original dataset. This entry stores the position the
block has in the cache texture.
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Figure 4.10 illustrates what this two-way blocking scheme looks like on a regular
dataset - in this particular example, only 30.5% of the cache blocks are active,
leading to a memory consumption of only 36.6% of the original volume size. Even
better, only 7.2% of the bounding blocks are active, meaning that 92.8% of the
dataset can be implicitly skipped via the bounding geometry.

4.2.3 Implementation

As stated before, blocks in the cache texture have to be stored with one additional
border voxel. This means that for every 43 block of data from the original dataset,
a 63 block has to be reserved in the cache texture. By adding an offset of 0.5 to
the coordinate texture, only one additional voxel has to be stored in each direction
to ensure correct interpolation, thus resulting in a 53 block. Still, a 53 block needs
roughly double the space of a 43 block - obviously, with a block size of four more
space would be lost than saved.

This suggests that the optimum for the bounding geometry (which is usually around
43) and the one for the cache texture are of a different magnitude. That said, a
two-way-blocking scheme looks like the best idea, with larger blocks (e.g. 323) for
caching and smaller structures (43) for the bounding geometry. For the sake of
efficiency (and simplicity), the small block size should be a factor of the large block
size.

To accommodate for the different texture setup, the fragment program has to be
slightly modified: Every lookup into the density texture has to be replaced with
an access to the position lookup texture, a recalculation of the texture coordinates
and finally one access to the cache texture with the modified coordinates. Original
volume and lookup texture are both accessed with texture coordinates between zero
and one, so the access to the lookup texture can be performed with the absolute

Figure 4.10: Rendering of a human hand with the caching scheme enabled. In this
example, only 30.5% of the cache blocks are active and thus stored, leading to a
memory consumption of only 36.6% of the original volume size.
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position in the volume, just as the normal density lookup. Since the entries in
the lookup texture point to specific coordinates, filtering has to be set to nearest
neighbour, ensuring that for all voxels of the current block the same pointer to the
cache texture block is returned.

With the block coordinates retrieved from the lookup texture, the second lookup in
the cache texture is performed. This requires coordinate translation from lookup
into cache texture, which basically means converting the offset inside the block into
the cache coordinate system, always considering the absolute dimensions of the cache
texture. This translation can be done with a couple of simple instructions in the
fragment program, incurring only a minimal performance hit for these instructions
and the additional texture lookup.

Again, culling against the iso-value or the current transfer function has to be per-
formed whenever one of these parameters changes, so both layers should be recalcu-
lated at the same time. The most obvious approach is to first test each block of the
bounding geometry, and later on mark all caching blocks as active that contain at
least one active bounding geometry block.
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4.3 Geometry Intersection

Being able to intersect the rendered volume with normal OpenGL geometry allows
for a number of interesting applications, like 3D-Pointers that correctly blend into
the scene, a 3D-grid that provides additional information about the position in
the dataset or arbitrary meshes that could cut away part of the dataset for easier
navigation.

In the case of virtual endoscopy applications this is an even more important fea-
ture, because of the need to visualize the endoscope and the tools attached to it.
Obviously, a voxelized representation would be inappropriate for a number of rea-
sons: First, the extreme perspective distortion of the endoscopy lens makes single
voxels appear huge on screen when moving the viewpoint through narrow structures
or tiny vessels, and this resolution would clearly be insufficient for medical tools.
Second, changing position and especially orientation of the tools - something that
happens probably every frame - would require some computational effort, since the
voxel representation would always need to be re-rasterized. And third, the question
of how to render the tools in different modes - like DVR and iso-surface rendering
- and where they fit in in terms of density and transfer function range would still
need to be answered. The final decisive argument is that common representations
of these tools are almost always in the form of triangle meshes.

4.3.1 Considerations

Considering the complexity of raycasting, unnecessary parts of the final image should
not be rendered at all, which is the way that most optimization strategies work.
Intersecting the volume with geometry will introduce another level of occlusion, and
it should again be taken care that parts of the volume that will not be visible because
of this geometry will not be rendered at all.

Figure 4.11: Modifying the ending geometry avoids rendering unnecessary parts of
the volume (left picture). Blending the clipped volume with the geometry then gives
the correct result.
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So before thinking about adding geometry, there should be a way to arbitrarily
clip away the parts that are cut off by the geometry and thus will not be visible.
Fortunately, the bounding geometry introduced in the first section of this chapter
offers a convenient way to do so. The differentiation between front and back faces
(i.e. starting end ending points of the rays) becomes crucial again now, so it is
important to know which of these has to be modified.

Figure 4.12: Geometry intersection changes the pipeline at two different locations:
The backface generation has to be altered and the geometry has to be drawn to the
back buffer before blending.
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Modifying the starting points would result in clipping parts of the dataset from the
viewer’s side, which could be useful for ’opening up’ the dataset if one wants to look
at the inside without modifying the transfer function accordingly. Changing the
ending points would result in clipping parts on the back side, which would be the
same as putting a completely opaque object - like OpenGL geometry - there.

4.3.2 Algorithm Overview

Clipping the volume from either side requires modification of the starting or ending
position of the rays. In the case of hitting an object, the ending geometry has to
be modified, thus terminating the ray once it intersects this object. This behaviour
can be achieved by changing the calculation of the bounding geometry (see Figure
4.12) - this way, the raycasting pass does not need to be altered. All that has to
be done is that whenever the intersection geometry is nearer to the viewpoint than
the backfaces of the bounding geometry (i.e. the ending positions of the rays), the
ending position has to be replaced with the position of the intersection (see Figure
4.13).

After that, the viewing vectors are calculated just like before, yielding a correct
direction and length until the intersection or bounding geometry is hit. The result
of this will be an image where the volume looks like it has been clipped against an
invisible wall (see Figure 4.11). All that is left to do now is to draw the intersection
geometry into the screen buffer before the volume is drawn and then blend the
clipped volume onto the screen accordingly, resulting in the correct image.

Figure 4.13: Adding intersection geometry to the scene modifies the ending position
of the rays. Whenever the intersection with the geometry (g0-g2) is nearer to the
viewpoint than the intersection with the back faces of the original bounding geometry
(l0-l3), the ray has to be terminated at the position of the intersection geometry.
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4.3.3 Implementation

Implementing this is straightforward: After rendering the front or back faces only
the direction of the depth test needs to be changed and the clipping geometry must
be rendered with the position inside the dataset encoded in the color channel (like
the bounding geometry). In the case of the back faces, this means that our initial
algorithm retrieved the last backface, so the depth test was set to GL GREATER,
which ensures that only pixels with a z-value greater than the current value are
drawn. Reversing this test to GL LESS now makes sure that the bounding geometry
is modified only where the clipping geometry is nearer to the viewpoint - all other
parts will be discarded. Color-coding the clipping geometry with its position in the
dataset ensures that whenever a value is modified, the correct ending positions for
the ray will be written into the texture.

It is important to note that with this extension to the initial algorithm, the ending
geometry could easily be in front of the starting geometry (because the clipping
geometry could even be in front of the front faces), yielding a negative direction
vector. This makes it neccessary to check the direction vector before casting.

To achieve this, the current view vector in volume coordinates needs to be calculated,
which can be done by transforming the initial view vector (0,0,-1) with the inverse
transpose of the modelview matrix. This view vector now has to be compared to the
direction vector, to check whether they point in the same direction or not. Taking
the dot product of the two vectors will do just this - if the result is negative, the
direction vector points away from the view vector and the ray should be terminated
immediately.



4.4. Fly-Through Applications 54

4.4 Fly-Through Applications

So far, perspective projection is implemented as an implicit feature of the basic
algorithm. Though this is not always immediately apparent on a rendered picture,
the perspective greatly enhances the appearance of the image and makes interaction
with the objects more lifelike, supporting the end user in estimating correct positions
and spacial differences.

However, for some applications it might be interesting to move the viewpoint into
the volume and explore the dataset in a fly-through mode like in Figure 4.14, espe-

Figure 4.14: Moving the viewpoint inside the dataset is especially important for
Virtual Endoscopy Applications. This sequence shows the process of flying through
the CT scan of a human head, entering at the nose and moving further into the
throat.
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cially for virtual endoscopy applications that were a specific aim of this raycasting
framework. This can be achieved with a modification of the front face generation
pass, which is outlined in Figure 4.15.

4.4.1 Considerations

Considering the way the bounding geometry algorithm worked (see chapter 4.1),
there is no problem moving the viewpoint as long as the camera does not touch the

Figure 4.15: Moving the viewpoint into the dataset can be achieved by a modification
of the front face generation, splitting this pass into three distinct steps.
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geometry. But as soon as the near clipping plane intersects the bounding geometry,
this intersection will generate holes in the geometry, resulting in rays not being
started where they should. Figure 4.16 illustrates this behaviour.

What needs to be done is that whenever such an intersecion happens, the ray must
be started on the intersection point with the near clipping plane. In practice this
means that all holes have to be filled with color values of the position of the near
clipping plane at this pixel.

4.4.2 Algorithm Overview

A simple way to do this is to draw the near clipping plane first (again with the
colors encoding the absolute position in the dataset) and the front faces afterwards,
ensuring that whenever there are no front faces to start from, the position of the
near clipping plane will be taken. Unfortunately, this approach can only detect holes
where no front faces are drawn at all (i.e. where the background color would shine
through). Since the non-convex bounding geometry leads to the possible case of
multiple front faces, a hole in the first front face would result in the next front face
in the line of sight to shine through. Just drawing the front faces after the near
clipping plane would then result in rays simply being started from the next front
face, skipping the current active block.

This behaviour comes from the fact that so far the depth buffer did all the work and
automatically retrieved the first front face. Now it has to be made sure that only

Figure 4.16: Moving the viewpoint into the dataset causes problems as soon as the
near clipping plane intersects the bounding geometry. As can be seen in the left
picture, the intersection causes visible holes where no rays are started, resulting in
the same regions of the final image to be empty. The holes have to be filled with the
respective position of the near clipping plane (right picture), resulting in a correct
starting image.
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the first front faces are drawn, even if the drawing fails because the geometry lies
behind the near clipping plane.

Figure 4.17 illustrates the three considerations that need to be taken into account
when determining the correct starting position:

1. Set starting position to the first front face in the line of sight

2. Set starting position to the near clipping plane if no front face exists

3. Set starting position to the near clipping plane anyway, if the current block is
active

The third point is the crucial one here: When the starting position on the near
clipping plane is inside an active block, then the ray has to be started at the near
clipping plane anyway, even if there is another front face in the line of sight. But
checking for each ray whether the starting position is inside an active block would
be a tiring task that would slow down rendering considerably, so there needs to be
a better criterion.

This criterion can be found with the following observation: A ray starts exactly then
inside an active block, if it hits the first back face before the first front face, because
since the ray is inside the geometry, it first has to leave it to be able to reenter.
This test can be performed much more efficiently, and leads to the following test for
determining of the correct starting position:

Figure 4.17: When moving the viewpoint into the dataset, the near clipping plane
(red) can easily intersect the bounding geometry, leading to rays not being started.
In this case, the ray must be started on the respective position of the near clipping
plane (n0-n4) instead from the bounding geometry.
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Figure 4.18: Adding intersection geometry to the scene works exactly the way it
did before. Whenever the intersection with this geometry is closer to the viewpoint
than the last back face of the bounding geometry, the position of the intersection
geometry will be written to the buffer thus terminating the ray.

1. Set starting position to the near clipping plane

2. Calculate position of first backface in line of sight

3. Calculate position of first frontface in line of sight

4. If the first frontface is nearer than the first backface, start the ray there

Testing for the ending geometry and possible intersection geometry is performed
like before, leading to the overall scheme for determining the viewing vector that is
outlined in Figure 4.18.

4.4.3 Implementation

As mentioned above, the first task is to calculate the starting positions at the near
clipping plane. To do this, all four bounding vectors of the current viewport have to
be transformed to the volume coordinate system and assigned their respective colors.
Then a simple quad is drawn with these four vertices, and since OpenGL interpolates
the color values, a starting position for each pixel is automatically generated. The
left picture in Figure 4.19 shows what such an image typically looks like, which
is a simple color gradient that almost looks like a constant color due to the small
difference in volume coordinates of the near clipping plane.

Rendering only the front faces of the bounding geometry with depth test set to
GL LESS will find the first front face in the line of sight whereas faces behind the
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current viewpoint will not be rendered and thus automatically discarded. Still, as
already observed, the rays should only be started at the next front face if there is
no back face of the bounding geometry in front of it.

This behaviour can be achieved by simply rendering the backfaces of the bounding
geometry to the depth buffer first with depth test set to GL LESS. Since the po-
sition values of the backfaces are not needed here, color buffer writes are disabled.
Rendering the front faces afterwards with GL LESS still enabled makes sure that
only those front faces are rendered that lie before the first backface, and in all other
cases the color value of the near clipping plane (which was rendered in the first pass)
is kept. Summarizing this, the generation of the starting positions is split into three
passes:

1. Enable color buffer, disable depth buffer, draw color-coded near-clipping plane.
This will start all rays at the near clipping plane where no other starting point
can be determined.

2. Disable color buffer, enable depth buffer. Draw backfaces of bounding geome-
try with depth-test set to GL LESS. This will set the depth buffer to the first
backface, making sure that nothing behind that will be rendered anymore.

3. Enable color buffer, enable depth buffer. Draw frontfaces of bounding geometry
with depth-test set to GL LESS. This will draw all front-faces between the near

Figure 4.19: Drawing the near clipping plane with volume coordinates encoded in
colors results in a simple color gradient, barely visible in the left picture because of
the small difference of coordinates within the volume. The right picture shows the
starting geometry rendered after the near clipping plane, resulting in all rays being
started on either of the two surfaces.
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clipping plane and the first backface. If there is no such frontface, the color of
the near clipping plane will be taken as starting position.

All this affects, of course, just the front face generation pass, which is split into three
separate passes itself now. Backface generation and raycasting are not affected by
this change. Even better, the starting geometry can always be generated this way,
whether the viewpoint is inside the volume or not, because drawing of the near
clipping plane introduces only minimal overhead. If the viewpoint is outside the
dataset, every valid starting position is overwritten with a front face anyway, always
starting the rays at the bounding geometry like they should.



5. Quality Improvements

The biggest problem that any raycasting algorithm faces is the appearence of sam-
pling artifacts due to undersampling. Since the process of raycasting is only an
approximation of the true integral along the viewing ray, there is almost always a
difference between the ideal integrated color value and the composited color consist-
ing of a number of discrete samples. These differences diminish once the sampling
distance is set to a small enough value, but usually this will result in a huge impact
on performance.

Figure 5.1: Rendering iso-surfaces at low sampling rates produces sampling artifacts
that resemble the outer shape of the starting geometry. While the simple geometry
(left) produces artifacts at regular intervals, the situation gets drastically worse with
the complex bounding geometry (right), where the angle of the bounding geometry
may lead to artifacts that completely destroy the three dimensional appearance.
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Unfortunately, the situation is even a bit worse with the algorithm presented in
this thesis: Normal texture based or software raycasting approaches may introduce
regular sampling artifacts that may give the image a ’sliced’ look. But since the rays
are started exactly at the bounding geometry in our approach, sampling artifacts
will also be aligned with the geometry and all the breaks in the geometry will make
the artifacts even more visible.

Figure 5.1 illustrates this issue, where the left image is rendered using the bounding
box of the volume as starting point for the rays and the right image uses a com-
plex bounding geometry. When moving the viewpoint into the dataset for virtual
endoscopy, things get even worse: One voxel may easily take up a huge part of the
screen now, making the artifacts even more annoying because they can completely
ruin the three dimensional effect the shading is trying to achieve.

Sampling everything with a higher sampling rate would be a possible solution, but
that only changes the result in areas where features were partly or fully missed
before, probably leaving huge parts of the image unchanged. Thus, increasing the
sampling rate for all parts of the image does not solve the whole problem.

An obvious approach would be to introduce an adaptive sampling rate dependent on
the gradient or the distance from the viewer. Unfortunately, this is an approach that
might be a good idea in software, but the parallel architecture of GPUs is heavily
dependent on efficient caching and highly parallelizable tasks. Having different sam-
pling rates for different rays would definitely prevent both strategies from working
efficiently, thus destroying the main performance advantage of the GPU.

So different techniques have to be developed that again take advantage of the nature
of the algorithm and do not add too many conditional statements to our fragment
program. Two techniques that solve these problems are presented in this chapter,
one is specially designed for iso-surface extraction and the other one is particularly
useful for direct volume rendering.
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5.1 Hitpoint Refinement

Hitpoint refinement tries to improve the image quality in iso-surface renderings.
The idea is based on the assumption that the current sampling rate is sufficient for
detecting all features in the dataset and that the ray will not miss an object that
should be rendered.

The reason why sampling artifacts look particularly bad in iso-surface renderings is
that this rendering mode calculates the whole shading for the pixel depending on
just one sample and thus one gradient. To define a smooth iso-surface, this gradient
should be calculated always as close to the surface as possible. Unfortunately, with a
sampling distance of 0.5, the ray might hit the object 0.01 units after the intersection
point, but also perhaps even 0.49 units. This results in completely different gradients,
which is why these huge ’steps’ are visible in undersampled renderings.

The idea is now to cast the ray with the normal sampling distance, and once the iso-
surface is hit to use this result as a first estimation of the real hitpoint and refine it
succesively. To do this, bisection steps back and forth are performed until a sufficient
precision is reached. This step has to be inserted right after the calculation of the
sample positions, as shown in Figure 5.3.

5.1.1 Considerations

As mentioned in the introduction, iterative changes to the sampling rate should be
avoided as well as implementations relying on too many conditional statements. This

Figure 5.2: Iso-surface extraction, especially on datasets with small features com-
pared to the sampling distance, is prone to producing sampling artifacts that destroy
the three dimensional appearance of the image especially in high frequency areas, as
shown in the left picture. Turning hitpoint refinement on eliminates those sampling
artifacts without any impact on performance (right picture).



5.1. Hitpoint Refinement 64

is especially important in the case of iso-surface raycasting, where framerates are
usually very high and a tiny change in the algorithm might very well cut performance
in half if the graphics pipeline is used inefficiently.

For this reason, a simple bisection scheme seems perfectly suitable. First, it can
be done in a few additional steps after the initial surface detection. Second, the
sampling rate is constantly changed but since it is always cut in half with every
further bisection step, there is again no out-of-order change in the iteration variable.

Figure 5.3: Hitpoint refinement is carried out in the fragment shader, where an
additional step is added after the sample position calculation.
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Third, since every bisection step effectively doubles the precision of the final hitpoint,
performing only five or six steps should be more than enough. If, for example, the
basic raycasting is performed with a sampling distance of 0.5, the possible error
after six bisection steps would be less than 0.01, which should be sufficient for our
purpose.

5.1.2 Algorithm Overview

Starting from the first estimation of the intersection (i.e. the first sample point along
the ray where the density is greater than the iso threshold), the algorithm goes one
halfstep back (half the previous sampling distance) and checks the density value at
the new position. The next step will again be half the previous stepsize (making this
one fourth of the original sampling distance), and will depend on the density on this
new position: If it is still above the threshold, the next halfstep will also be taken
backwards, otherwise forwards. If this bisection is repeated six times, we have an
intersection that is 64 times more precise than our original estimation, which should
be sufficient for most applications, no matter how low the original sampling distance
is.

As shown in Figure 5.4, hitpoint refinement dramatically increases the image quality
of iso-surface renderings - even more when the sampling distance is very low. Because
of this, it is easily possible to increase the sampling distance to 400 or 500%, as
long as no important features are completely missed by the ray. As can be seen
in Figure 5.5, the sampling distance can even be five times the voxel distance for

Figure 5.4: Moving the viewpoint within the dataset, sampling artifacts become even
more apparent as the size of the voxel footprint onscreen increases. This behaviour is
even worse when moving around, since the artifacts start to move with respect to the
ray starting positions, resulting in constant flickering. Enabling hitpoint refinement
results in a huge improvement in image quality without any impact on performance.
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certain datasets without any visible difference. This makes it extremely useful for
interaction renderings while the user is moving or rotating the dataset, because even
if tiny details were missing because they are skipped by the ray, the user would
hardly notice while moving around. As soon as the mouse is released, the sampling
distance should be reduced again to ensure that all the details are rendered correctly.

5.1.3 Implementation

Considering the above algorithm, there is obviously one condition that has to be
checked in each bisection step: If the new sample is still higher than the isovalue,
the next step is still performed backwards, otherwise the next step will go forwards.
At the same time the sampling distance must be cut in half, which means that overall
the current sampling distance has to be multiplied with either 0.5 or -0.5.

Fortunately, there is one limited ’conditional’ statement available in the fragment
program which does not slow down execution because no branching is performed:
Depending on whether a decision variable is below zero or not, one of two values can
be assigned to a variable. By subtracting the isovalue from the result of the volume

Figure 5.5: This comparison of two rendered images of a 512x512x333 dataset shows
the benefits hitpoint refinement can have on intermediate renderings. The results
for sampling distance 1.0 (left, about 24fps) and sampling distance 5.0 (right, about
66fps) are almost identical when hitpoint refinement is turned on.
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texture lookup (i.e. the current density), this decision variable can easily be created
and either -0.5 or 0.5 can be assigned to a multiplier of the sampling distance.

In our implementation, we’re always performing six bisection steps, which was
enough even for visualizing tiny structures in virtual endoscopy mode. Interest-
ingly enough, performance slightly increases on a current generation GeForece 6
when performing these six steps after the the first hitpoint determination. This was
surprising and there is still no completely sound explanation for that - apart from
the assumption that it is probably due to some pipelining issue - but this has been
reproduced in numerous tests on various systems. However, even with slightly dif-
ferent implementations there should not be a noticable performance loss if the six
steps are just unrolled at the end of the fragment program.
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5.2 Interleaved Sampling

Especially when moving the viewpoint into the dataset for exploration of small struc-
tures like blood vessels, we regularly face the problem of visible sampling artifacts.
One possible solution to this would be to increase the sampling rate, but this would
slow down overall performance unneccessarily, because the higher sampling rate is
not necessary in regions that are farther away from the viewer. Adapting the sam-
pling rate according to the distance from the viewpoint might be a solution to this -
unfortunately, the highly parallelized architecture of the GPU relies heavily on very
similar tasks being executed in every single step, and constantly changing a lookup
parameter in a loop trashes the caching scheme. Another alternative would be the
use of pre-integration, but in contrast to the simplification to a linear approximation
interleaved sampling delivers a result that is always true to the original data.

Interleaved sampling is a straightforward technique that significantly enhances the
visual quality of the final image without a noticeable impact on performance. Keller
and Heidrich proposed interleaved sampling as a solution to bridge the gap between
regular and irregular sampling patterns [Keller and Heidrich, 2001].

5.2.1 Considerations

The idea is based on the observation that regular sampling patterns are easy and
fast to compute, but prone to produce sampling artifacts, while irregular sampling
patterns achieve much better results at the cost of higher computational demands.
The solution is to use an irregular sampling pattern that covers multiple pixels, so
that two adjacent pixels will never have the same pattern. Though this approach
was basically meant to improve on the results of multisampling, the authors suggest
using interleaved sampling for volume rendering as well.

Since supersampling is not an option in computationally expensive algorithms like
raycasting, the sampling positions are only interleaved in z-direction (the view di-
rection of the camera). This means choosing a small offset in z-direction that is
different for adjacent pixels, but will repeat after a number of pixels. This can be
achieved by rendering for example four smaller images with different offsets into a
buffer and later combining them back to one large image. In our case, we modify the
rendering pipeline by simpling adding a small offset in z-direction when calculating
the sample position (see Figure 5.6).

5.2.2 Algorithm

The easiest way to do this would be to have some kind of modulo function of the
screen coordinate. This modulo function should deliver a dithering pattern that does
not degrade image quality too much but at the same time covers as much different
sample positions between this sample and the next one as possible, thus minimizing
the chance of missing a certain feature of an object.

However, choosing this pattern is not an easy task. Depending on the structure
of the object and the transfer function involved, interleaved sampling may solve a
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couple of problems and get rid of most of the sampling artifacts, but at the same
time not always deliver the most visually appealing result.

Consider the case of two very thin structures that map to completely different col-
ors in the transfer function and are roughly viewport-aligned. Without interleaved
sampling, only one of these colors may be visible, because the highest intensities of
the other color may be missed by the ray samples. Turning interleaved sampling on,
a strong dithering pattern consisting of these two colors will be visible, depending

Figure 5.6: Interleaved sampling requires only a small modification of the sample
position calculation, where a small offset in z-direction is added.
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Figure 5.7: Interleaved sampling provides an easy way of getting rid of annoying
artifacts, even when designing transfer functions with high peaks of semi-transparent
surfaces which are usually prone to produce sampling artifacts.

on which of the two structures was hit by the ray with a particular offset, as shown
in Figure 5.8.

Though the first result is definitely more appealing, the second picture is closer to the
correct rendering (which would be achieved by choosing an indefinitely small sam-
pling distance, or at least one that makes sure every tissue is adequately represented)
because it shows both colors that are present at these sampling positions. Interleaved
sampling can be taken then as an indication that given the current dataset and trans-
fer function, the present sampling rate is not sufficient and important features might
me missed.
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Figure 5.8: Turning interleaved sampling on does not always produce a more ap-
pealing result, but is a good indicator of undersampling in the other cases. In this
example, the thin white tissue over the red bone is hardly visible in the left picture,
except for a few sampling artifacts. Turning interleaved sampling on in the right
picture suggests that the sampling rate should be increased.

On the other hand, introducing only a very simple pattern with an offset of 0.5 at
every other pixel may not be the optimal solution for determining possibly missed
objects, but even this simple approach is able to get rid of most of the sampling
artifacts while introducing only minor dithering artifacts due to the simple pattern.

Whether interleaved sampling is suitable for iso-surface raycasting is probably a
matter of taste: The dithering will definitely introduce some new information about
the thickness of the tissue in areas where the offset will make the difference whether
the ray hits an object or not. On the other hand, the difference between hitting this
object and not hitting anything thus returning the background color is a significant
one, resulting in a strong visible dithering pattern which looks a bit odd compared
to the smooth shading that has been achieved with hitpoint refinement presented in
the last section.

Introducing the simple pattern with an offset of 0.5 at every other pixel makes the
image a bit more appealing, but at the same time introduces two visible layers at
the boundaries of very thin tissue. Thus, the applicability of this technique for iso-
surface extraction is highly dependent on the kind of application, the importance of
image quality vs. expressiveness and whether the visualization of thin structures is
necessary at all.

5.2.3 Implementation

As stated before, a good way of interleaving the ray offsets would be to calculate
some kind of modulo function of the pixel position. Unfortunately, in the fragment
shader this can only be done by using the FRC command, which returns the fraction
of a float value.
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Thus, calculating a repeating offset this way requires a simple function of the x and
y coordinate, which retrieves a float value where the fraction can be taken as an
offset. A couple of easy computations at the beginning of the fragment program can
achieve this by adding the coordinates with different coefficient, so there’s hardly
any performance hit.

Of course, the offset has to be scaled to the current sampling distance, meaning
that it would not make any sense if the offset would be farther away than one
sample distance. This also means that increasing the sampling rate will result in
lesser impact of the interleaved sampling, also leading to a reduction of the dithering
artifacts.

This makes interleaved sampling especially useful for interaction renderings, where
the dithering patterns are less visible because of the constant movement, and will
disappear as soon as the mouse is released and the image is rendered with a higher
sampling rate. This is even more important because the sampling artifacts are of
course unwanted in still renderings, but impose an even bigger problem when moving
around, because the constant flickering of sampling artifacts destroys the illusion of
closed surfaces.
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5.3 Iso-surface shaded DVR

Choosing the right rendermode for a particular application is crucial for being able
to view the important details at sufficient framerates. This thesis already showed
that using iso-surface rendering in order to achieve sufficient rendering speed is not
necessary anymore. However, once iso-surface rendering drops out because of the
limited expressiveness, there is still the major decision between shaded and unshaded
DVR.

Both of these techniques require some background knowledge from the user as well as
a little bit of experience in order to produce appealing images. Even worse, designing
suitable transfer functions is a bit different in both cases, making it infeasible to ’test’
both rendering modes before deciding which one is more meaningful.

Generally, shaded DVR offers more insight into the structure of a surface and delivers
images that look more natural. It has been established as the de-facto standard in
volume visualization, and every new algorithm is compared to previous ones by the
speed of a shaded DVR rendering. It should be noted, however, that certainly a part
of shaded DVRs popularity is due to the fact that the rendered images look much
more impressive than unshaded DVR and are a big eye-catcher on every title page.

Figure 5.9: Comparison of unshaded (left) vs. shaded DVR (right) reveals the
problems shaded DVR faces when visualizing semi-transparent tissue. Visibility
of blood vessels in the brain significantly suffers from the noise introduced by the
shading, making a segmentation via the transfer function extremely hard. Also,
the unshaded DVR looks noticably sharper, making it easier to distinguish object
boundaries.
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This is also due to the fact that most of these images use very steep ramps in the
transfer functions which leads to visualization of one (sometimes perhaps two) iso-
surfaces in the final image. Since this is missing the important point of direct volume
rendering - the visualization of different semi-transparent tissue - the question is still
which rendering mode is best for typical DVR images with large semi-transparent
regions.

Figure 5.10: Iso-surface shaded DVR is carried out in the fragment program, modi-
fying only shading and compositing of the sample values along the ray.



5.3. Iso-surface shaded DVR 75

With an unshaded DVR, special surface properties are hard to see, but on the
other hand the assigned color is not altered (and in some cases even covered) by
light and shadow, so that the user can always properly estimate the boundaries of
an object of interest. Furthermore, the plethora of lighting information in shaded
DVRs leads to a noticable blurring and thus a significant degradation of overall
image quality, which may not be welcome in medical applications where accuracy
of the representation is one of the primary goals. Figure 5.9 compares shaded and
unshaded DVR, where the defficiencies of shaded DVR especially in parts of the
image with semi-transparent tissue become obvious. The instability of the gradient
in homogeneous regions results in permanent changes of the lighting conditions,
leading to introduction of further noise that covers almost everything else in these
areas. Figure 5.11 is another example for this behaviour, where the masses of lighting
information renders all other inner structures almost invisible.

This behaviour comes from the fact that per definition of a shaded DVR, all samples
along the ray are shaded and only then composited to the final color. This means
that the algorithm actually simulates hundreds of transparent slices one after the
other, all correctly shaded and even highlighted. Of course this is far more lighting
information than the human eye can perceive, just registering blurred highlights and
shadows instead.

One reason for this is that this situation hardly ever occurs in nature, and we’re
more used to seeing transparent objects that have highlights only on the surface.
And even if we were faced with transparent objects of diverse densities more often
it would still be highly unlikely that the human eye could ever distinguish hundreds
of layers of lighting information to form a model of separate surface properties.

Figure 5.11: Rendering the human head from the outside again highlights the diffi-
culties shaded DVR has with semi-transparent surfaces. Inner structures are almost
completely lost due to the introduced noise.
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With all the above said, it seems logical to introduce a rendermode that shades
only a particular surface and uses unshaded DVR for the rest of the volume, leaving
the eye only one layer of lighting information to decypher. Additionally, this saves
a lot of computational power, since a lighting calculation is a costly process that
involves six additional texture lookups to start with (if central difference is used).
The rendermode introduced in this section will always presume that the shaded
surface surrounds the tissue of interest, only allowing shading on the outside. The
necessary modifications to the pipeline are shown in Figure 5.10. Extensions to this
algorithm could very well allow more shaded surfaces inside the tissue, which could
make sense as long as they can be clearly distinguished by a human observer.

Figure 5.12 highlights the differences between the three modes when rendering a CT
scan of a human head with identical settings and transfer functions. The unshaded
image lacks any information about the surface properties of the head thus not giving
the impression of a three dimensional model. On the other hand, the shaded DVR
generates a believable 3D-model with plenty of lighting and shading information,
but hides a lot of useful information of the dataset by introducing significant noise.
Iso-surface shaded DVR, however, combines the two advantages and produces a
believable, three dimensional rendering of the human head with all the detail present
in the unshaded representation.

5.3.1 Considerations

Knowing that a rendermode should be implemented that supports one shaded sur-
face followed by an area of unshaded DVR, we can revert to two of the already
implemented techniques that do just that, using all of the knowledge gained so far.

Figure 5.12: Comparing all three rendermodes shows the weaknesses of unshaded
and shaded DVR compared to ISO-surface shaded DVR.
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Through hitpoint refinement the estimation of the first iso-surface, and thus the
shading, will be far more precise than a normal shaded DVR would be. Interleaved
sampling will make sure that no feature is missed by simply ’stepping over it’.

By taking the refined position as starting position for the DVR raycaster, another
advantage of this rendering mode becomes obvious: Since the starting positions of
the DVR precisely resemble the shape of the object, and other density values inside
the object often follow roughly the same shape, the amount of sampling artefaces is
greatly reduced, as can be observed in Figure 5.13. Still, interleaved sampling can
be turned on in the DVR pass as well to get rid of as many artifacts as possible.

5.3.2 Algorithm

The beginning of the algorithm is identical to the isosurface raycaster presented
before. First, an offset for the interleaved sampling is calculated from the screen
coordinates. This offset is taken as starting position from which samples are taken
on regular intervals along the viewing ray until the density value exceeds a certain
threshold (i.e. the iso-value). A sometimes annoying sideeffect of this technique is
the fact that tissue intersecting with the near clipping plane will always result in
strong dithering patterns visible at the very front, since it is very likely that the
amount of tissue in front of the near clipping plane gets thin enough sooner or later
to be completely skipped by some rays. This case is of course very frequent in
virtual endoscopy applications, where the user is constantly moving through tissue
thus intersecting the current isosurface. To avoid this behaviour, the first sample

Figure 5.13: Almost all of the sampling artifacts in the left picture (which was
rendered without interleaved sampling for illustration purposes) have disappeared
in the iso-surface shaded mode, which was rendered using the same sampling distance
and resolution.



5.3. Iso-surface shaded DVR 78

should be taken at position 0 anyway, and the offset for interleaved sampling should
only be added if this first sample is still below the threshold.

The exact intersection point is calculated with hitpoint refinement as outlined in
chapter 5.1. From this intersection point, the interleaved sampling offset is again
added to the current position and given as starting position to the DVR raycaster.

The raycaster will finally continue until the ray has left the volume or another
criterion for early ray termination has been met. Finally, the shaded iso-surface
and the composited color from the DVR will be blended together depending on an
adjustable parameter. This makes sure that the user can change the transparency
of the isosurface to a level where it will not occlude important information and at
the same time give a good impression of the structure of the outermost tissue.

5.3.3 Implementation

The implementation of this rendering mode does not diverge too much from the
implementation of the two modes it incorporates. Whether these two modes are
executed one after another or in a single fragment program should not make too
much difference and is primarily a matter of taste. Having two separate passes
makes the approach more flexible and allows for future additions to the algorithm,
but of course has the overhead of a second rendering pass with complete geometry
setup. Having only one fragment program, on the other hand, seems simpler in the
additional setup but results in a far more complex fragment program that is prone to
driver errors and cache-inefficiencies. Having experimented with the latter approach
for some time, it exposed more errors in the graphics card drivers than any of the
other algorithms presented in this thesis.



6. Results

This chapter will present an overview of the results we were able to achieve and
can be taken as a quick reference to be able to compare our algorithm to similar
approaches. All figures were taken on a Pentium 4 3.2 Ghz with 2048MB of system
memory and a GeForce 6800 GT with 256MB of video RAM.

Figure 6.1: This iso-shaded DVR of a human hand is rendered at more than 50
frames per second.
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6.1 Performance

Image resolution for all renderings was 512x512 and sampling distance was set to
the voxel distance.

6.1.1 Bounding Geometry

This section compares rendering performance with and without the bounding ge-
ometry presented in chapter 4.1. Depending on how much outer empty space can
be skipped, enabling the bounding geometry can achieve significant performance
improvements.

Dataset BG disabled [fps] BG enabled [fps]
Hand (256x256x128) ISO 34.04 92.01
Hand (256x256x128) DVR 27.08 64.53
Head (512x512x333) ISO 4.98 11.18
Head (512x512x333) DVR 3.52 8.67
David (1536x576x352) ISO* 1.89 7.52
David (1536x576x352) DVR* 1.54 5.67

Table 6.1: Comparison of rendering speed with and without the complex bounding
geometry. *Michelangelo’s David was rendered with the blocking scheme enabled
due to its size. BG = bounding geometry.

For most datasets, enabling the bounding geometry results in a performance increase
of a factor two to three when visualizing the complete volume (i.e. no significant
parts of the volume are clipped via iso-value or transfer function). In the case
of large datasets like Michelangelo’s David that are more sparsely populated, the
comparatively small block size can lead to even greater speed-ups.

Dataset high ISO* BG disabled [fps] BG enabled [fps]
Hand (256x256x128) ISO 7.51 156.03
Head (512x512x333) ISO 2.96 165.95

Table 6.2: Comparison of rendering speed for sparsely populated volumes. *The
threshold was set to a very high iso-value in order to render only the innermost
structures.

Changing the threshold to an iso-value that will clip large parts of the volume high-
lights the problem of a standard raycaster: The need to cast through all of the
empty space that does not contribute to the final image will result in unacceptable
low framerates. On the other hand, enabling the bounding geometry will result in
casting only through the small visible parts of the volume, resulting in a speedup up
to a factor of 50.
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6.1.2 Rendering Modes

This section compares performance in different rendering modes, mainly showing
the huge performance hit shaded DVR imposes.

As can be seen in this comparison, shaded DVR slows down rendering by more than
60% compared to unshaded DVR due to the computational demand for gradient and
lighting calculations. In comparison, iso-shaded DVR imposes only a minor speed
penalty of about 15%.

Dataset ISO [fps] Unshaded [fps] Shaded [fps] Iso-shaded [fps]
Hand (256x256x128) 92.01 64.53 24.12 56.72
Head (512x512x333) 11.18 8.67 3.53 7.16

Table 6.3: Comparison of different rendering modes.

6.1.3 Hitpoint Refinement

Hitpoint refinement does not have a noticable impact on final rendering performance.
As noticed in chapter 5.1, enabling hitpoint refinement even leads to a small increase
in rendering performance - a fact that has been reproduced in numerous test on
different systems. This may very well be a pipelining issue and may change with
further iterations of the graphics driver, but even then the noticable performance
hit should be comparable to interleaved sampling.

Dataset HR disabled [fps] HR enabled [fps]
Hand (256x256x128) ISO 89.13 92.01
Head (512x512x333) ISO 10.54 11.18

Table 6.4: Comparison of hitpoint refinement speed penalty.

6.1.4 Interleaved Sampling

As mentioned in chapter 5.2, interleaved sampling has almost no impact on rendering
performance, resulting in a neglectable drop in framerates while at the same time
providing far superior image quality.

Dataset IS disabled [fps] IS enabled [fps]
Hand (256x256x128) DVR 11.18 11.13
Head (512x512x333) DVR 8.67 8.54
Hand (256x256x128) iso-DVR 56.72 55.48
Head (512x512x333) iso-DVR 7.16 7.03

Table 6.5: Comparison of interleaved sampling speed penalty.

For normal direct volume rendering, the performance drop is usually somewhere
around 1%. Iso-surface shaded DVR uses interleaved sampling for the surface de-
tection as well as for the DVR, resulting in a performance hit of about 2%.
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6.2 Quality Improvements

6.2.1 Hitpoint Refinement

Figure 6.2: Undersampling the dataset in first-hit renderings can lead to sampling
artifacts (left) that can be eliminated by turning hitpoint refinement on (right).
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Figure 6.3: More examples where hitpoint refinement substantially increases image
quality.
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6.2.2 Interleaved Sampling

Figure 6.4: Undersampling the dataset in DVR can lead to sampling artifacts (left)
that can be eliminated by turning interleaved sampling on (right).
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Figure 6.5: Especially for very demanding transfer functions, interleaved sampling
dramatically increases image quality.
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6.3 Medical Applications

As stated before, though the rendering pipeline was kept as versatile as possible, the
raycaster was designed especially for virtual endoscopy applications. Thus, cooper-
ation with hospitals and surgeons was essential in developing a system that would
fit their needs in the best possible way and would incorporate all the features that
are missing in other systems available at this time.

This cooperation lead to a constant exchange of pre-builds of the raycaster on the
one side, and impressive images of the use in daily clinical practice on the other side,
that was heavily influencing further development and provided most useful insights
into the work process that this system should be integrated into.

Some of the images that were the result of this cooperation will be presented in
this section, highlighting the improved visibility of important features that would be
difficult to detect otherwise.

Figure 6.6: Using the raycaster in pre-operative planning gives additional insight on
the position and structure of objects of interest. Image courtesy of S. Wolfsberger,
Department of Neurosurgery, Medical University Vienna.
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The difference of our raycaster compared to the enhanced iso-surfaces visualization
available in J-Visions virtual endoscopy plug-in [Neubauer et al., 2004] is shown
in Figure 6.6. In the top left picture, simple color-mapping is applied, giving an
indication about the rigidity of the visible iso-surface. The top right picture shows
the second rendering mode, double iso-surfacing, which identifies a second iso-surface
after the first one and combines them into one image. At last, in the bottom left
a limited volume rendering is applied, actually performing a couple of DVR steps
after the current iso-surface.

Figure 6.7: Comparison of different rendermodes from STEPS [Neubauer et al.,
2004] (top left: color-mapping, top right: double iso-surface, bottom left: volume
rendering) and our raycaster (bottom right).
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Especially the last mode represents a significant improvement over standard iso-
surface visualizations, but can not be compared to a full DVR due to its limited
range. Furthermore, though especially optimized, the software implementation does
not allow for higher framerates, requiring a reduction of resolution to achieve near-
interactive rendering speed.

As shown in the bottom right picture of Figure 6.6, employing a real DVR introduces
another level of expressiveness by visualizing different layers of transparent surfaces,
making navigation within the dataset a lot easier.
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Figure 6.8: Besides diagnosis and pre-operative planning, teaching purposes are an
important application of virtual endoscopy systems. Images courtesy of S. Wolfs-
berger, Department of Neurosurgery, Medical University Vienna.
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Figure 6.9: Interactive DVR allows for easier identification of certain structures and
objects of interest. Images courtesy of S. Wolfsberger, Department of Neurosurgery,
Medical University Vienna.



7. Conclusions and Future Work

This chapter concludes the work presented in this thesis and gives an outlook into
possible future work, including extensions to existing techniques, incorporation of
new features and restructuring of the existing pipeline to allow for even more flexible
handling of different applications.

Figure 7.1: Visualization of different objects - like skin and bones - could be enhanced
with the support for segmented datasets.
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7.1 Conclusions

This thesis tried to demonstrate that interactive perspective DVR is already possible
to achieve and thus speed concerns should not prevent the use of DVR renderings
in virtual endoscopy anymore. Additionally, several enhancements and additions to
the basic algorithm were presented that overall make for a full-fledged raycasting
environment capable of meeting a wide variety of visualization demands.

Specific algorithms were introduced that speed up rendering time to a level where no
compromise needs to be made regarding rendermode or transfer function, keeping
framerates constantly high for every possible combination of different datasets and
visualization strategies. Furthermore, a number of specialized techniques were pre-
sented that deal with additional issues that arise in the process of rendering volumes
in the context of different applications, like memory management for large datasets
and the possibility to correctly intersect the volume with OpenGL-geometry to al-
low rendering of 3D-pointers, grids and endoscopic tools - a necessity for a real-time
virtual endoscopy system. Also, arbitrary clipping can be applied to the volume at
any time to cut away parts of the dataset that are of no interest to the user.

At last, various quality problems were adressed and dealt with, mostly concerning
the visibility of sampling artifacts in the presence of tiny structures or high-frequency
transfer functions. Two techniques were presented here that significantly improve
rendering quality without a noticable speed penalty, one for iso-surface extraction
and one for direct volume rendering. Also, a new rendermode was presented that
combines the advantages of shaded and unshaded DVR and incorporates all exten-
sions that were presented in this thesis. This mode is especially useful for virtual
endoscopy, where one distinct iso-surface needs to be extracted together with a DVR
of the area behind this tissue, which enables the user to visualize areas of interest -
like a tumor that has to be removed - behind the iso-surface without the need for
pre-segmentation of the dataset.

Overall, this makes for a complete raycasting framework that can seamlessly switch
between orthogonal and perspective projection and enter fly-through mode at any-
time to explore the dataset from the inside while always delivering high-quality
full-resolution renderings from every viewpoint at interactive framerates. However,
there are still some limitations that can render this approach inferior to other tech-
niques for specific demands. In some cases, we have already tried to deal with these
limitations and will continue to do so, to make the hardware raycasting approach
as competitive as possible. Other limitations like the partially unflexible nature of
the graphics hardware will not likely disappear in the near future, since it will not
be easily possible to build a chip with all the advantages of a highly parallelized
architecture but none of the disadvantages.

That said, the GPU will never be the platform of choice for algorithms that are not
suitable for highly parallel environments, like a completely adaptive raycaster, and
systems that require similar visualization strategies should better revert to CPU-
based approaches. Still, a lot of future work may go into building algorithms that
combine the advantages of both worlds and can still be executed on a GPU, like a
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semi-adaptive raycaster that may be able to change sampling rates without com-
pletely destroying the caching strategy. This approach would be similar to what we
have done for the memory management, where the employed strategy loosens the
memory limitations while still saving enough of the hardware ’bonus’ to make this
approach more than competitive. Still, the work on the memory management to be
able to render even bigger datasets - which will be described in greater detail be-
low - will definitely be continued as long as the speed-up gained from the hardware
algorithm still outweighs the additional effort of additional data transfer.

To conclude all that was said before, the main point of this thesis was not to show
that a GPU is a better platform for graphical algorithms in general, but that it is
already flexible enough even for complex visualization systems and can be a very
powerful environment once certain algorithm criteria are met.
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7.2 Future Work

Our future work will mostly focus on removing the last limitations of the memory
management, making it possible to render any kind of dataset regardless of the size.
Other topics include the extension of the new rendermode, allowing for multiple
iso-surfaces that are independently colored and shaded, full support for segmented
datasets and further incorporation of deferred shading into the pipeline, making it
even more flexible.

7.2.1 Memory Management

The biggest limitation of the blocked memory management so far is the fact that
it still limits the overall size of the dataset. Employing this scheme, the available
video memory only has to be sufficient for storing all the active blocks in the dataset
anymore, which is a huge improvement. However, this also means that the user could
still be restricted when designing a transfer function for a very large dataset, because
as soon as this transfer function would result in more active blocks than fit into the
memory, some blocks would be randomly selected and removed from rendering.

Of course this is no desirable behaviour, and though this combination of a huge
dataset with a transfer function activating most of its blocks will be a rare one, it
still possibly limits the applicability of the framework. Thus, the last logical step
would be rendering multiple parts of the volume one at a time and then blending
these parts together at the very end. This will of course result in heavy traffic across
the graphics bus, which is why it seems like a perfect task for a PCI-Express equipped
system. The actual performance gains of this technology for an application like this
remains still to be seen, but it certainly will be faster than the AGP equivalent.

7.2.2 Surface Shaded DVR

The new rendermode that was introduced in this thesis was specially taylored to
the needs of virtual endoscopy applications, where the properties and structure of
the first iso-surface and the coloring of certain tissue behind this surface are or
primary interest. However, comparing normal outer renderings with this new mode
to traditional shaded DVs suggests that a couple of other interesting applications
could be found. Though the improved quality of the image compared to a shaded
DVR is clearly visible, there are certain circumstances where the surface shaded DVR
lacks shading of inner structures like blood vessels or bones that would contribute
to the clarity and applicability of the image.

Thus, the possibility of adding more than one shaded surface could add another
level of detail to the image, resulting in even more convincing renderings while not
sacrificing image quality. How many of these surfaces can clearly be distinguished
by the human eye remains to be seen, but the choice of adding additional layers
should probably be left to the user.
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7.2.3 Deferred Shading

Virtually all of the presented algorithms in this thesis are highly suitable for incor-
poration into a deferred shading pipeline, because all of them rely on precomputed
images giving them additional information about the calculations on the current
screen pixel. Completely separating the shading process from the rest of the algo-
rithm would only be another logical step that would unify all possible rendermodes
into one scheme.

The beauty of this approach lies in its extensibility, since from then on every surface-
based rendermode could be incorporated by simply changing the fragment program
that calculates the final shading after the first iso-surface extraction. The possibility
of multiple combinations of where to use which fragment program could then lead
to a framework in which there are no fixed rendermodes, but arbitrary combinations
of shaders for every single step of the algorithm.

7.2.4 Segmentation

At last, full support for segmentation is planned to be incorporated into the ray-
caster. This means that segmented objects can be assigned different iso-values and
transfer functions and can easily be hidden to improve the visibility of other objects
in the dataset.

Segmentation is of primary interest once important features cannot easily be detected
using only a specific transfer function. This is mostly due to the fact that the iso-
value of a region of interest is commonly represented in other tissue throughout the
dataset as well.

Regardless of that, many datasets in medical practice are pre-segmented anyway, and
simply ignoring this information while trying to reproduce the exact same result by
modifying the transfer function might not be such a good idea.
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flattening. In Data Visualization (Proc. of Symposium on Visualization), pages
127–136, 2001a.
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J. Krüger and R. Westermann. Linear algebra operators for GPU implementation of
numerical algorithms. In Proceedings of SIGGRAPH 2003, pages 908–916, 2003b.

P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization
of the viewing transformation. In Proceedings of SIGGRAPH ’94, pages 451–458,
1994.

A. Laghi, P. Pavone, V. Panebianco, I. Carbone, and L. Francone. Volume-rendered
virtual colonoscopy: Preliminary clinical experience. In Proc. of Computer As-
sisted Radiology and Surgery, pages 171–175, 1999.

S. Lakare, M. Wan, M. Sato, and A. Kaufman. 3d digital cleansing using segmenta-
tion rays. In Proc. of IEEE Visualization, pages 37–44, 2000.

E. LaMar, B. Hamann, and K. Joy. Multiresolution techniques for interactive
texture-based volume visualization. In Proceedings of IEEE Visualization ’99,
pages 355–361, 1999.

http://www.elsevier.com/cgi-bin/cas/tree/store/cag/cas_sub/browse/browse.cgi?year=1995&;volume=19&issue=5&aid=9500044
http://www.elsevier.com/cgi-bin/cas/tree/store/cag/cas_sub/browse/browse.cgi?year=1995&;volume=19&issue=5&aid=9500044


Bibliography 106

A. Lastra, S. Molnar, M. Olano, and Y. Wang. Real-time programmable shading.
In ACM Symposium on Interactive 3D Graphics, pages 59–ff., 1995.

M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and
Applications, 8(3):29–37, May 1988.

M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9
(3):245–261, 1990.

W. Li and A. Kaufman. Real-time volume rendering for virtual colonoscopy. In
Proc. of Volume Graphics, 2001.

W. Li and A. Kaufman. Accelerating volume rendering with texture hulls. In
Proceedings of IEEE VolVis 2002, pages 115–122, 2002.

W. Li and A. Kaufman. Texture partitioning and packing for accelerating texture-
based volume rendering. In Proceedings of Graphics Interface 2003, pages 81–88,
2003.

W. Li, K. Mueller, and A. Kaufman. Empty space skipping and occlusion clipping
for texture-based volume rendering. In Proceedings of IEEE Visualization 2003,
pages 317–324, 2003.

B. Lichtenbelt, R. Crane, and S. Naqvi. Introduction to Volume Rendering. Prentice-
Hall, New Jersey, 1998.

Y. Livnat and C. Hansen. View dependent isosurface extraction. In Proceedings of
IEEE Visualization ’98, 1998.

Y. Livnat, H.-W. Shen, and C. Johnson. A near optimal isosurface extraction algo-
rithm using the span space. IEEE Transactions on Visualization and Computer
Graphics, 2(1):73–84, 1996.

W. Lorensen and H. Cline. Marching cubes: A high resolution 3D surface construc-
tion algorithm. In Proceedings of SIGGRAPH ’87, pages 163–169, 1987a.

W. Lorensen and H. Cline. Marching cubes: A high resolution 3d surface construc-
tion algorithm. In Proc. of ACM SIGGRAPH, pages 163–169, 1987b.

W. Lorensen, F. Jolesz, and R. Kikinis. The exploration of cross-sectional data with
a virtual endoscope. In R. Satava and K. Morgan, editors, Interactive Technology
and New Medical Paradigms for Health Care, pages 221–230, 1995.

A. Lu, C. Morris, D. Ebert, P. Rheingans, and C. Hansen. Non-photorealistic volume
rendering using stippling techniques. In Proceedings of IEEE Visualization 2002,
pages 211–218, 2002.

E. Lum and K.-L. Ma. Hardware-accelerated parallel non-photorealistic volume
rendering. In Proceedings of the International Symposium on Non-Photorealistic
Animation and Rendering (NPAR) 2002, 2002.



Bibliography 107

S. Marschner and R. Lobb. An evaluation of reconstruction filters for volume ren-
dering. In Proceedings of IEEE Visualization ’94, pages 100–107, 1994.

N. Max. Optical models for direct volume rendering. IEEE Transactions on Visu-
alization and Computer Graphics, 1(2):99–108, 1995.

D. Mayer, D. Bartz, J. Fischer, S. Ley, A. del Ŕıo, S. Thust, H. Kauczor, W. Straßer,
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T. Theußl, H. Hauser, and E. Gröller. Mastering windows: Improving reconstruction.
In Proceedings of IEEE Symposium on Volume Visualization, pages 101–108, 2000.



Bibliography 112
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