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Abstract

Volume rendering techniques are conventionally classified into two cate-

gories represented by direct and indirect methods. Indirect methods require

to transform the initial volumetric model into an intermediate geometrical

model in order to efficiently visualize it. In contrast, direct volume-rendering

(DVR) methods can directly process the volumetric data. Modern 3D scan-

ning technologies, like CT or MRI, usually provide data as a set of samples on

rectilinear grid points, which are computed from the measured projections by

discrete tomographic reconstruction. Therefore the set of these reconstructed

samples can already be considered as an intermediate volume representation.

In this diploma thesis a new paradigm for direct direct volume rendering

(D2VR) is introduced, which does not even require a rectilinear grid, since it

is based on an immediate processing of the measured projections. Arbitrary

samples for ray casting are reconstructed from the projections by using the

Filtered Back-Projection algorithm. The method presented in this thesis re-

moves an unnecessary and lossy resampling step from the classical volume

rendering pipeline. Thus, it provides much higher accuracy than traditional

grid-based resampling techniques do. Furthermore a novel high-quality gra-

dient estimation scheme, which is also based on the Filtered Back-Projection

algorithm is presented. Finally we introduce a hierarchical space partitioning

approach for projection-based volumetric data, which is used to accelerate

D2VR.
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Kurzfassung

Volumenvisualisierungs-Techniken werden normalerweise in direkte und in-

direkte Methoden unterteilt. Indirekte Methoden verwenden zur effizienten

Visualisierung eine geometrisch definierte Zwischenrepräsentation der volu-

metrischen Funktion. Im Gegensatz dazu, werden die volumetrischen Daten

von direkten Volumenvisualisierungs-Methoden (Direct Volume Rendering -

DVR) unmittelbar verarbeitet. Moderne 3D Scanner Verfahren, wie zum Bei-

spiel CT oder MRI, liefern eine Menge von Daten, die normalerweise auf

einem rektilinearen Gitter angeordnet sind. Diese Daten werden durch dis-

krete tomographische Rekonstruktion aus den ursprünglich gemessenen Da-

ten berechnet. Die Daten auf rektilinearen Gittern sind demzufolge bereits

eine Zwischenrepräsentation der volumetrischen Funktion. In dieser Diplom-

arbeit wird ein neues Paradigma für direkte direkte Volumenvisualisierung

vorgestellt (Direct Direct Volume Rendering - D2VR). D2VR basiert auf der

direkten Visualisierung der projektionsbasierten volumetrischen Funktion.

Zur Visualisierung der gemessenen Daten wird auf die Erstellung jeglicher

Zwischenrepräsentation der volumetrischen Funktion verzichtet. Die Rekon-

struktion an beliebigen Positionen erfolgt mittels des Algorithmus der gefil-

terten Rückprojektion (Filtered Back-Projection). Die in dieser Diplomarbeit

präsentierte Methode vermeidet einen unnötigen Abtastschritt der volume-

trischen Funktion, der in der traditionellen Volumenvisualisierungs-Pipeline

vorhanden ist. Deshalb wird mit der präsentierten Methode eine höhere Ge-

nauigkeit als bei gitterbasierten Methoden erzielt. Außerdem wird ein neues

hoch qualitatives Gradienten-Schätzverfahren präsentiert, welches ebenfalls

auf der gefilterten Rückprojektion basiert. Schließlich wird ein hierarchischer

Raumunterteilungs-Ansatz für projektionsbasierte volumetrische Daten vor-

gestellt, der zur Beschleunigung von D2VR verwendet wird.
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Chapter 1

Introduction

Everything should be made as

simple as possible, but not

simpler.

Albert Einstein

Modern 3D scanning technologies, like Computed Tomography (CT) or Mag-

netic Resonance Imaging (MRI), usually provide data values on rectilinear

grid points. These data values are computed from measured projections by

discrete tomographic reconstruction [19, 6]. The set of the reconstructed data

values (or samples) can be interpreted as a discrete representation of the un-

derlying continuous phenomenon. In order to authentically visualize the orig-

inal continuous signal, it has to be accurately reconstructed from the discrete

samples. In the traditional approach such a signal reconstruction is differ-

entiated from discrete tomographic reconstruction. From a signal-processing

point of view, the original signal can be perfectly reconstructed from discrete

samples if it is band-limited and the sampling frequency is above the Nyquist

limit [16]. Theoretically the perfect continuous reconstruction is obtained by

convolving the discrete volume representation by the sinc function. The sinc

function is considered to be the best reconstruction kernel, since it represents

an ideal low-pass filter. In practice, however, it is difficult to convolve a dis-

crete signal with the sinc kernel, because of its infinite support. Therefore,

1
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Rectilinear Grid

2. Resampling

DVR

D²VR

1. Resampling

Resampling

Projections

Figure 1.1: Data processing work flow of projection- and grid-based volume
rendering. The red line corresponds to the traditional volume rendering
pipeline. It requires two resampling steps in order to visualize the data.
First an intermediate grid is resampled and then this grid is resampled again
for rendering. The green line corresponds to the projection-based volume
rendering pipeline; the lossy first resampling step is avoided.

practical reconstruction filters either approximate it or truncate it with an

appropriate windowing function [11, 20]. Moreover, real-world signals can

hardly be considered band-limited. As a consequence, practical resampling

results in a loss of information. Figure 1.1 shows the signal-processing ap-

proach of the traditional volume rendering pipeline (follow the red line). The

first step of the traditional approach is the discrete tomographic reconstruc-

tion of a rectilinear volume representation from the measured projections.

Although there exist different algorithms for tomographic reconstruction, one

of the most popular techniques is the Filtered Back-Projection algorithm. It

first performs high-pass filtering on the measured projections and afterwards

the samples at rectilinear grid points are computed by back-projecting the

filtered signals. As the projections are acquired by measuring accumulated

attenuation by a limited number of sensors, they are actually available as

discrete representations of continuous projection functions. Therefore, high-

pass filtering is performed in discrete frequency domain, so the result is also

a discrete function. In the back-projection phase, however, the rectilinear

grid points are not necessarily projected exactly onto the discrete samples
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of the filtered projections. Therefore for back-projection resampling is nec-

essary, which results in the first loss of information in the pipeline. The

obtained rectilinear volume can be visualized by different rendering tech-

niques. Using indirect methods, like the classical Marching Cubes algorithm

[9], an intermediate geometrical model of an iso-surface is constructed from

the volumetric model. This geometrical model is then interactively rendered

by, for example, conventional graphics hardware. In contrast, Direct Volume

Rendering (DVR) approaches, like ray casting [7] or splatting [23, 24] di-

rectly render the volumetric model without any intermediate representation.

In both cases an interpolation technique is applied to define data values be-

tween the rectilinear grid points. In other words, a resampling of the discrete

volume representation is required. This resampling results in the second loss

of information in the traditional pipeline.

In order to minimize the loss of information we propose to modify the

traditional volume-rendering pipeline by simply removing an unnecessary re-

sampling step (follow the green line in Figure 1.1). To render the underlying

continuous phenomenon, data samples at arbitrary sample points need to be

defined, and for shading computation the corresponding gradients need to be

determined. As it will be shown, both tasks can be solved using directly the

filtered projections. This eventually leads to an alternative projection-based

volume representation. Thus, there is no need to compute samples at regular

grid points by discrete tomographic reconstruction, and as a consequence one

resampling step (see Figure 1.1) is unnecessary. Traditional direct volume-

rendering methods rely on such an intermediate grid representation, so in

this sense they are in fact indirect. In contrast to that, DVR directly from

the measured raw data is presented in this thesis. To distinguish from the

common DVR the novel approach is referred to as D2V R (pronunciation: [di-

skwerd vi ar]). In Chapter 2 previous work related to discrete tomographic

reconstruction and volume resampling is reviewed. In Chapter 3 the math-

ematical background of Computed Tomography is given. In Section 3.1 the

Fourier slice theorem is described. Filtered Back-Projection is based on the

Fourier slice theorem and derived afterwards in Section 3.2. In Section 3.2.2

a brief overview on filters is given. Finally, in Section 3.2.3 a novel gradient
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estimation scheme for projection-based volumetric data based on the Filtered

Back-Projection is described. Chapter 4 introduces D2VR, a volume render-

ing approach for projection-based volumetric data. It is based on raycasting

which is described in detail in Section 4.1. Furthermore, in Section 4.2.2,

an acceleration data structure, based on the principle of hierarchical space

partitioning, for projection-based volumetric data is presented. In Chapter 5

details on the implementation are given. In Section 5.1 the implemented

Computed Tomography scanner simulation is described and in Section 5.2

the implementation of D2VR is summarized. Chapter 6 reports the results

of D2VR. An error analysis as well as a visual comparison of grid-based and

projection-based volume rendering is given. Finally, in Chapter 7 the con-

tents of this diploma thesis are summarized.



Chapter 2

Related Work

Advice is what we ask for

when we already know the

answer but wish we didn’t.

Erica Jong

In most of the practical volume-rendering applications, especially in 3D

medical imaging, the input data is usually generated from measured projec-

tions by using tomographic reconstruction [19, 6, 15]. The set of projections is

referred to as the Radon transform of the original signal. Therefore the tomo-

graphic reconstruction is, in fact, the inversion of the Radon transform. The

inversion can be performed by using the classical Filtered Back-Projection

[3] algorithm, which is based on the Fourier projection-slice theorem [6, 10].

Although there exist alternative tomographic reconstruction techniques like

algebraic or statistical ones, Filtered Back-Projection is still the most popular

method used in commercial CT scanners.

The output of tomographic reconstruction is a discrete (or sampled) rep-

resentation of the underlying continuous phenomenon. The samples are con-

ventionally generated on rectilinear grid points. The rectilinear grid has

several advantages. For example, the sampled signal can be represented by

3D arrays, implicitly storing the locations of the samples. Furthermore, the

neighborhood of a certain sample can be efficiently addressed, which is im-

5
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portant for many volume-processing or volume-rendering algorithms.

Nevertheless, in order to render the underlying continuous 3D function,

data values need to be defined also between the rectilinear grid points. The

sinc kernel as ideal reconstruction filter is impractical because of its infinite

extent. In practice it is approximated by filters of finite support [11, 20].

Generally, the wider the support of the reconstruction filter, the higher the

quality of the reconstruction. On the other hand, the wider the support of

the filter, the higher the computational cost of a spatial-domain convolution.

Therefore several researchers analyzed different reconstruction filters, both

in terms of accuracy and computational cost [12, 11, 13, 14]. As the practical

filters only approximate the ideal low-pass filter they result in either aliasing

or smoothing [11], which can be interpreted as a loss of information. For

frequent resampling tasks, like rotation, or upsampling, frequency-domain

techniques can be alternatively applied [8, 1, 4, 5, 21, 22]. In frequency do-

main, it is exploited that a computationally expensive spatial-domain convo-

lution is replaced by a simple multiplication. Although the frequency-domain

resampling methods generally provide higher accuracy than spatial-domain

methods do, they assume that the new samples to be computed are also

located at regular grid points.

In order to avoid a lossy resampling step in the traditional volume-

rendering pipeline, we directly use the tomographic inversion in order to

reconstruct the underlying function at arbitrary sample positions. Therefore

we do not generate an intermediate rectilinear volume representation, but we

directly process the filtered projections as an alternative volume representa-

tion. Using this gridless or projection-based volume-rendering approach as a

new paradigm, the same accuracy can be ensured at all the sample positions.

In contrast, using the traditional grid-based approach, accurate samples are

available only at the grid points, while the accuracy of intermediate samples

depends on the quality of the applied imperfect reconstruction filter.



Chapter 3

Mathematical Preliminaries

If I had eight hours to chop

down a tree, I’d spend six

hours sharpening my ax.

Abraham Lincoln

In this chapter the mathematical background, in order to understand the

principles of a Computed Tomography scanner, is described. In Chapter 4

all formulas which are needed to implement D2VR are briefly reviewed again

and references to the mathematical derivation in this chapter are given.

In Section 3.1 the Fourier slice theorem is explained. It is the basis of the

Filtered Back-Projection which is described afterwards in section 3.2. The

Filtered Back-Projection is derived in its continuous version as well as in its

discretized version. It can be used to reconstruct the density function, see

Section 3.2.1, as well as to estimate the derivatives of the density function,

see Section 3.2.3. As the filtering is inherent in the Filtered Back-Projection

the accuracy of the discrete Filtered Back-Projection mainly depends on

the use of appropriate filters. Therefore in Section 3.2.2 a brief survey of

filters is given in order to improve the accuracy of the discrete Filtered Back-

Projection.

7
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3.1 Fourier Slice Theorem

The Fourier slice theorem was introduced by Charles Fourier (1772-1837).

Originally it has nothing to do with a Computed Tomography scanner, as

the first Computed Tomography scanner was presented in the year 1972.

However, it is very illustrative to explain the Fourier slice theorem by means

of a Computed Tomography scanner.

x

y

f(x,y)
P (t)
θ

s t

P 
(  

)t 1
θ

t 1

θ

Figure 3.1: Parallel projection for a specific angle θ. All values on the line
with constant t = t1 project onto the same point Pθ(t1). Pθ(t) is the line
integral along a line with direction (− sin θ, cos θ) and with a normal distance
t to the origin.

Consider a Computed Tomography scanner measuring the absorption of

x-rays cast through an object. Let us assume, that the measurements are

taken while the x-ray source and the detector are moving on parallel lines

on opposite sides of the object. These measurements are combined in a
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projection Pθ(t) where θ is the angle at which the measurements were taken.

This process is known as parallel projection and is shown in Figure 3.1. One

measurement Pθ(t1) for a specific t1 corresponds to the line integral of the

absorption of the x-rays along a line with direction (− sin(θ), cos(θ)) and a

normal-distance t1 to the origin. Let the object’s density function be denoted

f(x, y), then, a parallel projection can be written as

Pθ(t) =
∫

∞

−∞

∫

∞

−∞

f(x, y)δ(x cos θ + y sin θ − t) dx dy (3.1)

where δ denotes the delta function. The relations between the (x, y)- and

the (t, s)- coordinate system, see Figure 3.1, are given by:

x = t cos θ − s sin θ

y = t sin θ + s cos θ (3.2)

This leads to an alternative representation of Pθ(t):

Pθ(t) =
∫

∞

−∞

f(t cos θ − s sin θ, t sin θ + s cos θ)ds (3.3)

A parallel projection is also known as the Radon transform of a density

function.

The Fourier slice theorem states that:

The one-dimensional Fourier transform of the Radon trans-

form of a density function f(x, y) taken at angle θ is equal to a

line of the two-dimensional Fourier transform, F (u, v), subtend-

ing an angle θ with the u-axis.

In other words, the one-dimensional Fourier transform of Pθ gives the

values of F (u, v) along line Lθ, see Figure 3.2.

The one-dimensional Fourier transform of Pθ is given by:

Sθ(w) =
∫

∞

−∞

Pθ(t)e
−j2πwt dt (3.4)
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x

y

P (t)
θ

s t

u

v

Fouier transform
ation

Lθ

θ θ

Figure 3.2: Fourier slice theorem

Substituting Equation 3.3 into Equation 3.4 leads to

Sθ(w) =
∫

∞

−∞

[
∫

∞

−∞

f(t cos θ − s sin θ, t sin θ + s cos θ) ds
]

e−j2πwt dt (3.5)

In order to proof the Fourier slice theorem we have to change the coordinate

system. Changing variables of a double integral can be done by using the

following relation:

∫

∞

−∞

∫

∞

−∞

f(x, y) dx dy =
∫

∞

−∞

∫

∞

−∞

f(x(t, s), y(t, s))J(t, s) dt ds (3.6)

where J(t, s) denotes the determinant of the Jacobian matrix (i.e. the Jaco-

bian determinant) of the transformation, given by

J(t, s) =

∣

∣

∣

∣

∣

∣

∂x
∂t

∂x
∂s

∂y

∂t

∂y

∂s

∣

∣

∣

∣

∣

∣

(3.7)

According to the relations in Equation 3.2 the Jacobian determinant in our



CHAPTER 3. MATHEMATICAL PRELIMINARIES 11

case, is given by

J(t, s) =

∣

∣

∣

∣

∣

∣

cos θ − sin θ

sin θ cos θ

∣

∣

∣

∣

∣

∣

= cos2 θ + sin2 θ = 1 (3.8)

We can therefore rewrite Equation 3.5 using Cartesian coordinates:

Sθ(w) =
∫

∞

−∞

∫

∞

−∞

f(x, y)e−j2πw(x cos θ+y sin θ) dx dy (3.9)

The right-hand side of Equation 3.9 is the definition of the two-dimensional

Fourier transform of f(x, y) at a spatial frequency of (u = w cos θ, v =

w sin θ). It can be seen that:

Sθ(w) = F (w cos θ, w sin θ) = F (u, v) (3.10)

This Equation is the proof of the Fourier slice theorem and is therefore the

basis for Computed Tomography.

3.2 Filtered Back-Projection

For simplicity we illustrate the Filtered Back-Projection in 2D. Once, we

are able to reconstruct the two-dimensional density function f(x, y), and

therefore whole slices of the density function, it is straightforward to extend

the Filtered Back-Projection to three dimensions. In Section 3.2.1 and Sec-

tion 3.2.2 it is shown how to achieve accurate resampling using the Filtered

Back-Projection. Commonly the Filtered Back-Projection is used to resam-

ple the density function on a rectilinear grid. Derivatives of the underlying

density function are then approximated from the rectilinear grid. However,

the derivatives can also be computed directly from the filtered projections

using the Filtered Back-Projection algorithm, see Section 3.2.3.
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u

v

S (t)
θi

Figure 3.3: Alignment of one-dimensional Fourier transformed parallel pro-
jections in the two dimensional frequency domain.

3.2.1 Data Reconstruction

Let us again think of our Computed Tomography scanner: We want to recon-

struct the object’s density function f(x, y). We take parallel projections at

different angles. According to the Fourier slice theorem the one dimensional

Fourier transform of these projections is equal to radial lines of the two-

dimensional Fourier transformation of the underlying density function. In

Figure 3.3 the one-dimensional Fourier transformed projections can be seen.

They are arranged as radial lines in the two-dimensional frequency domain.

Instead of the Cartesian coordinate representation of the two-dimensional

Fourier Transformation we use in the following the polar coordinate repre-
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sentation which is defined as:

f(x, y) =
∫ 2π

0

∫

∞

0
F (w, θ)ej2πw(x cos θ+y sin θ)w dw dθ (3.11)

If we had an infinite number of continuous projections, taken around the

object, we would also have an infinite number of radial lines in frequency

domain, see Figure 3.3. Therefore we could perfectly reconstruct the under-

lying density function by simply applying the two-dimensional inverse Fourier

transform. In practice the number of projections is limited. Therefore we

have to find an appropriate approximation for Equation 3.11. If we consider

θ from 0 to π, the integral can be split as follows:

f(x, y) =
∫ π

0

∫

∞

0
F (w, θ)ej2πw(x cos θ+y sin θ)w dw dθ+

+
∫ π

0

∫

∞

0
F (w, θ + π)ej2πw(x cos(θ+π)+y sin(θ+π))w dw dθ (3.12)

Since F (w, θ + π) = F (−w, θ), the above expression can be written as:

f(x, y) =
∫ π

0

[
∫

∞

−∞

F (w, θ) |w| ej2πwt dw
]

dθ (3.13)

where t = x cos θ + y sin θ. By substituting Sθ(w) for the two-dimensional

Fourier transform F (w, θ) the above integral can be expressed as:

f(x, y) =
∫ π

0

∫

∞

−∞

Sθ(w) |w| ej2πwt dw dθ (3.14)

According to the Fourier slice theorem Sθ(w) is the Fourier transform of

Pθ(t). Let us define:

Qθ(t) =
∫

∞

−∞

Sθ(w) |w| ej2πwt dw (3.15)

which is the inverse Fourier transform of Sθ(w) · |w|. As multiplication in

frequency domain corresponds to a convolution in spatial domain, according

to Equation 3.15, Qθ(t) is obtained by high-pass filtering the measured pro-

jection Pθ(t).
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By substituting Equation 3.15 into Equation 3.14, we can derive

f(x, y) =
∫ π

0
Qθ(x cos θ + y sin θ) dθ (3.16)

In practice, as mentioned above the number of projections is limited and the

integral in Equation 3.16 is approximated by

f(x, y) ≈ f̃(x, y) =
π

K

K
∑

i=1

Qθi
(x cos θi + y sin θi) (3.17)

where Qθi
is the filtered representation of the projection Pθi

. The Pθi
are

taken at the K angles θi i = 1 . . .K. Thus, according to Equation 3.17 the

density function can be reconstructed from a fixed number of projections.

Equation 3.17 is the continuous version of the Filtered Back-Projection

The filtered projections Qθi
as well as the projections Pθi

have been as-

sumed to be continuous so far. However, in practice they are not. According

to the sampling theorem the continuous function Pθ can be perfectly recon-

structed if it is sampled above the Nyquist rate. If wc is a frequency higher

than the highest frequency component in each projection the projections are

bandlimited and therefore can be sampled at intervals of

T =
1

2wc

(3.18)

without introducing any error. On the other hand if the projections are

sampled with sampling intervals of T they cannot contain any frequency

higher than

wc =
1

2T
(3.19)

In other words the discrete projections are already bandlimited. In order to

get the filtered discrete projections Q̂θi
we can apply the Discrete Fourier

Transform (DFT) to the discrete projections P̂θi
The DFT of P̂θi

is obtained

by approximation of the integral in the Fourier transform. It is given by:

Ŝθi
(m

2wc

N
) = T

N
2
−1
∑

k=−
N
2

P̂θi
(kT )e−j2πkm 2wc

N (3.20)
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The bandlimited and filtered projections Qθi
are according to Equation 3.15

given by

Qθi
(t) =

∫ wc

−wc

Sθi
(w) |w| ej2πwt dw (3.21)

The integral in Equation 3.21 is approximated by

Q̂θi
(t) ≈ 2wc

N

N
2
∑

m=−
N
2

Ŝθi
(m

2wc

N
)

∣

∣

∣

∣

m
2wc

N

∣

∣

∣

∣

ej2πm 2wc
N

t (3.22)

Substituting the continuous filtered projections in Equation 3.17 by the dis-

crete filtered projections given in Equation 3.22 leads to the discrete version

of the Filtered Back-Projection:

f(x, y) ≈ f̃(x, y) =
π

K

K
∑

i=1

Q̂θi
(x cos θi + y sin θi) (3.23)

Note, that the filtering of the projections is performed in the frequency

domain. The filtered projections Qθ are derived in Equation 3.15 by multi-

plying the Fourier transformed projections Sθ with |w|. In order to derive

an alternative representation of Qθ we start with explicitly denoting |w| as a

filter:

Qθ(t) =
∫

∞

−∞

Sθ(w)H(w)ej2πwt dw (3.24)

where H(w) is a filter and simply the bandlimited version of |w|:

H(w) =







|w| |w| < wc

0 otherwise

This filter is shown in Figure 3.4. The impulse response of this filter is given

by the inverse Fourier transform of H(w):

h(t) =
∫

∞

−∞

H(w)ej2πwt dw (3.25)
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Figure 3.4: A ramp filter for a bandlimited function with a cutoff frequency
wc = 64.

The above integral can be evaluated analytically using Equation 3.18:

h(t) =
1

2T 2

sin 2π t
2T

2π t
2T

− 1

4T 2

(

sin π t
2T

π t
2T

)2

(3.26)

Since the projections are measured with a sampling interval of T , h(t) needs

only to be known at the same sampling intervals and therefore simplifies to:

ĥ(nT ) =



















1
4T 2 n = 0

0 n even

− 1
n2π2T 2 n odd

Using the convolution theorem, Equation 3.24 can be written as

Qθ(t) =
∫

∞

−∞

Pθ(t̄)h(t − t̄) dt̄ (3.27)

Since the filtering is only performed at discrete samples of Qθ(t) and due to
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the finite extend, we can derive:

Q̂θ(nT ) = T
N−1
∑

k=0

P̂θ(kT )ĥ(nT − kT ) (3.28)

where n = 0 . . . N − 1 and ĥ is the discretized filter. It can be seen that

the argument of ĥ, nT − kT , is in the range −(N − 1)T . . . (N − 1)T and

therefore the filter should be defined in this range. Due to the lack of any ap-

proximation in Equation 3.28 this leads us to a different, and more accurate

result than Equation 3.22. While it is more accurate to use Equation 3.28

the computational cost is approximately the same, since both Equations can

be implemented as a multiplication in frequency domain. For the frequency

domain implementation one has to keep in mind, that the convolution in

Equation 3.28 is aperiodic and therefore it leads to inter-period artifacts.

However, these artifacts can be avoided by zero-padding the projections with

a sufficient number of zeros. It can be shown, that for an implementation

based on an FFT algorithm the projections need to be zero-padded so that

they are 2N−1 elements long, for further details see [2]. For the implementa-

tion based on the generally faster base 2 FFT algorithm, the projections need

to be padded, so that each is (2N −1)2 elements long, where (i)2 denotes the

smallest integer that is a power of 2 and is greater than i.

3.2.2 Filters

In practice the measured data is noisy. Therefore superior results can be

achieved by smoothing the projections. This can for example be achieved

by multiplying the filter H(w) by a Hamming window. A Hamming win-

dow deemphasizes higher frequencies and therefore the noise is filtered. The

formula for a generalized Hamming window is as follows:

Wα(k) = α + (1 − α) cos(2π
k

N − 1
) (3.29)

where the parameter α controlls the deemphasizing of the higher frequencies.

While a multiplication of H(k) with a Hamming window W1(k) is equal
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Figure 3.5: Generalized Hamming windows. Top: Hamming windows with
different settings for the parameter α. The orange line (α = 0.5) is the so
called Hanning window; The red line (α = 0.54) is the original Hamming
window. Bottom: Multiplication of the Hamming windows with the filter
H(k) = |k| shown in Figure 3.4. All examples are for a filter in the range
−63 . . . 63.
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to H(k), a setting of α = 0.5 leads to a deemphasizing such that H(N −
1) · W0.5(N − 1) = 0. Therefore, with a setting of α = 0.5, the highest

frequency if forced to zero. A generalized Hamming window with α = 0.5

is called Hanning window. Figure 3.5 shows the multiplication of the filter

H(k) = |k| with different Hamming windows.

3.2.3 Derivative Estimation

Filtered Back-Projection is a practical approach to reconstruct the measured

density function. For many volume processing algorithms the density as

well as the derivatives of the underlying three-dimensional function need to

be known. The traditional approach resamples the density function onto a

rectilinear grid. This grid is used to estimate gradients. Commonly deriva-

tive estimation in rectilinear volumetric representations is done using a close

neighborhood of samples. In contrast to that, using a projection based volu-

metric representation, derivatives can be estimated directly from the filtered

projections using the Filtered Back-Projection.

For example the partial derivative f̃x according to variable x can be ex-

pressed by using Newton’s difference quotient:

f̃x = ∂f̃(x,y)
∂x

=

= lim
∆x→0

1
∆x

( π
K

(
K
∑

i=1
Qθi

(x cos θi + y sin θi)−

−
K
∑

i=1
Qθi

((x + ∆x) cos θi + y sin θi)))

(3.30)

Substituting ti := x cos θi + y sin θi we obtain:

f̃x = lim
∆x→0

1
∆x

( π
K

(
K
∑

i=1
Qθi

(ti) −
K
∑

i=1
Qθi

(∆x cos θi + ti))) =

= lim
∆x→0

1
∆x

( π
K

K
∑

i=1
Qθi

(ti) − Qθi
(∆x cos θi + ti)) =

= π
K

K
∑

i=1
lim

∆x→0

1
∆x

(Qθi
(ti) − Qθi

(∆x cos θi + ti))

(3.31)

The term

lim
∆x→0

1

∆x
(Qθi

(ti) − Qθi
(∆x cos θi + ti)) (3.32)
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is the partial derivative of the projections Qθi
, but scaled with cos θi. We

can therefore calculate the partial derivative f̃x directly as sum of scaled

derivatives of the projection data. Analogously, taking the difference quotient

with respect to y we obtain:

f̃y =
∂f̃ (x, y)

∂y
=

π

K

K
∑

i=1

lim
∆y→0

1

∆y
(Qθi

(ti) − Qθi
(∆y sin θi + ti)) (3.33)

It can be seen that applying Newton’s difference quotient directly on the

filtered projections is equivalent to applying Newton’s difference quotient to

the 2D density function f(x, y). Moreover, any higher order derivative can

be obtained by applying Newton’s difference quotient multiple times.

Using Filtered Back-Projection for gradient estimation we expect higher

accuracy than using the traditional gradient estimation schemes on the rec-

tilinear grid. Consider central differences on the continuous reconstruction

from a rectilinear representation. In order to calculate the gradient at an

arbitrary sampling point six additional samples have to be interpolated. As

interpolation usually causes loss of information, the introduced errors are

accumulated in the estimated gradients. In contrast, using Filtered Back-

Projection, the density values at the additional sample points are as accurate

as the density values at the grid points. Therefore, no interpolation error is

introduced.

3.3 Summary

In Section 3.1 we discussed the Fourier slice theorem. We defined a paral-

lel projection as a combination of line integrals of parallel lines. According

to the Fourier slice theorem a two-dimensional function can be perfectly

reconstructed from an infinite number of parallel projections. In order to

reconstruct the density function from a finite number of projections we ex-

plained the Filtered Back-Projection algorithm in Section 3.2.1. To achieve

high accuracy for reconstruction, we briefly discussed the filtering of the

discrete projections in Section 3.2.2. Finally, the estimation of derivatives
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directly from the projections was shown, in Section 3.2.3. Taking all the parts

together, we introduced a projection based volumetric data representation,

which will be exploited for Volume Visualization in the following chapters.



Chapter 4

D2VR

Science... never solves a

problem without creating ten

more.

George Bernard Shaw

In this chapter direct direct volume rendering (D2VR) based on an image

order rendering approach is presented. The image is computed by casting one

ray for each pixel of the image plane through the scene (Raycasting). Along

the ray resampling is performed at consecutive steps. The underlying 3D

volumetric function needs to be reconstructed at these resampling locations.

In case the data is given on a rectilinear grid the reconstructed function value

is computed from a close neighborhood of samples as shown in Figure 4.1a. In

contrast to that, for raycasting directly performed on the filtered projections

the reconstructed function value is computed from the filtered projections

at the corresponding positions, see Figure 4.1b. Furthermore, gradients at

these resample locations need to be determined in order to perform shading.

Each step of the raycasting pipeline is discussed in Section 4.1. Furthermore

in Section 4.2 a hierarchical space partitioning data structure is presented in

order to accelerate the volume rendering process.

22
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4.1 Raycasting

Raycasting is an approach to approximate the volume rendering integral for

every viewing ray. Raycasting can be split into four successive steps which

are described in the following:

4.1.1 Reconstruction

The Filtered Back-Projection algorithm, as it is presented in Section 3.2 is

conventionally used for discrete tomographic reconstruction in order to obtain

a rectilinear representation of the original density function. This intermedi-

ate representation is then usually resampled by many volume visualization

algorithms. However, it is not necessary to generate an intermediate recti-

linear grid representation for this purpose. In fact the additional resampling

step should be avoided, because each resampling step usually causes a loss

of information.

(a) (b)

Resample location
Grid Projections

Figure 4.1: (a) Resampling along a ray on rectilinear volumetric data. (b)
Resampling along a ray directly from the filtered projections
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1. Reconstruction 2. Classification 3. Shading 4. Compositing
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Figure 4.2: The raycasting pipeline: 1. The data reconstruction step evalu-
ates the density function, 2. Classification leads to an opacity value αi and
to a color ci, 3. The outcome of shading is a shaded color ci, 4. Compositing
accumulates the values of all samples along a ray.

Projection-Based Reconstruction

The first step in the raycasting pipeline is the reconstruction of the density

function, see Figure 4.2. The density function has to be evaluated along each

ray at intervals of ∆s (the object sample distance). As shown in Section 3.2.1

the density function can be reconstructed using the Filtered Back-Projection.

The formula in Equation 3.23 can be considered as a resampling scheme to

estimate the density value at an arbitrary sample point. In Section 3.2 we

explained the Filtered Back-Projection for a single slice. Consider this slice

as one out of many slices parallel to the x, y-plane. The projections Pθ(t, r) of

these parallel slices are taken at discrete intervals n∆r where n = 1 . . . N and

N is the number of parallel slices. In the following we use two-dimensional

filtered discrete projections Q̂θi
(t, r). They are obtained by filtering each

line of the two-dimensional projections Pθ(t, r) separately. We can extend

the Filtered Back-Projection to three-dimensions by interpolating between

these parallel slices. The formula for resampling at an arbitrary position is

given by:

f̃(x, y, z) =
π

K

K
∑

i=1

Q̂θi
(x cos θi + y sin θi, z) (4.1)
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where Q̂θi
are the discrete filtered two-dimensional projections and x cos θi +

y sin θi is the projection of the x and y coordinates onto the filtered projec-

tions. Q̂θi
is given as a set of discrete samples. The projection of the resample

location onto Q̂θi
does not necessarily correspond to a position where Q̂θi

is

given. Therefore Q̂θi
needs to be interpolated. As mentioned in [6] bilinear

interpolation is adequate, and due to it’s simplicity the method of choice.

The derivation of Q̂θi
can be reviewed in Section 3. Equation 4.1 is the

three-dimensional extension of Equation 3.23.

4.1.2 Classification

The second step in the raycasting pipeline is classification, see Figure 4.2.

Classification is the assigning of material properties to the reconstructed

density value. The function which maps the density onto a material property

is known as transfer function. We use two different transfer functions. The

first maps the density value onto the opacity of the given sample. Samples

with zero-opacity need not to be considered for any following computation,

since they do not contribute to the final appearance of the image. The second

transfer function assigns a color to samples with nonzero-opacity. After the

classification step the opacity αsi
and the color csi

of a given sample si are

available.

4.1.3 Shading

The third step in the raycasting pipeline is shading, see Figure 4.2. Shading

is the process to determine a sample’s light intensity. In our approach the

Phong illumination model is used for shading. The final light intensity of a

sample depends on the sum of the ambient term Iambient, the diffuse term

Idiffuse, and the specular term Ispecular. The shaded color csi
is obtained by

multiplying the sample color by the light intensity:

csi
= csi

(Iambient + Idiffuse + Ispecular) (4.2)



CHAPTER 4. D
2
VR 26

The ambient term is determined only by the ambient coefficient:

Iambient = Cambient (4.3)

Therefore the ambient term is constantly assigned to each sample. The

ambient coefficient can be predefined in order to determine the amount of

ambient light.

The diffuse term is used in order to simulate a diffuse reflection. Accord-

ing to Lambert’s law, diffuse reflections only depend on the angle between the

light vector L and the surface normal N . The light vector is the normalized

vector pointing from the sample position in the direction of the light source,

see Figure 4.3. Lambert’s law states that the portion of the diffuse reflected

light is equal to the cosine of the angle between N and L. Therefore, the

diffuse term depends on the diffuse coefficient Cdiffuse and the dot product

of N and L:

Idiffuse = CdiffuseN · L (4.4)

Note, that the dot product of two normalized vectors is equal to the cosine

of the angle between these two vectors. The diffuse coefficient is chosen in

order to control the intensity of diffuse reflections.

The specular term is used to simulate a specular reflection on the surface.

It depends on the specular coefficient Cspecular and the specular exponent

n. Both can be chosen to influence the appearance of specular reflections.

Furthermore, it depends on the angle between the surface normal N and the

halfway vector H . The halfway vector is the vector half way between the

light vector and the surface normal, see Figure 4.3. The specular term is

given by:

Ispecular = Cspecular(N · H)n (4.5)

Higher values of n lead to smaller highlights while lower values of n lead to

wider and softer highlights. The specular coefficient determines the amount

of light to be reflected.

All the terms are by definition positive. Negative values of the dot prod-

uct are therefore clamped to zero. It can easily be seen, that the diffuse
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L

N

V

H

P

E

S

Figure 4.3: Vectors used in the Phong illumination model: N is the surface
normal at point P . V is the vector pointing to the eye point E. L is the
light vector pointing to the light source S. H is the halfway vector, half way
between V and L.

term as well as the specular term depend on the surface normal. Due to

the lack of surface normals in volumetric data they need to be approximated

by a gradient estimation scheme. In case of a grid based representation the

straightforward way is to estimate the gradient from a certain voxel neigh-

borhood. To determine the gradient, common methods, such as intermediate

difference gradient, central difference gradient, or higher order gradient es-

timation schemes are applied. In case of projection based volumetric data,

computing the derivatives from a certain 3D neighborhood of samples re-

quires to perform a large number of back projections. Especially for higher

order gradient estimation schemes, which need a large neighborhood of sam-

ples, the computational costs would be significantly high. As presented in

Section 3.2.3 the Filtered Back-Projection reconstruction scheme can also be

exploited to compute derivatives directly. The partial derivative with respect
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to x is given by

f̃x = ∂f̃(x,y,z)
∂x

=

= π
K

K
∑

i=1
lim

∆x→0

1
∆x

(Q̂θi
(ti, z) − Q̂θi

(∆x cos θi + ti, z))
(4.6)

where Q̂θi
(t, r) are the two-dimensional filtered projections and ti = x cos θi+

y sin θi. Analogously, the partial derivative with respect to y is given by:

f̃y = ∂f̃(x,y,z)
∂y

=

= π
K

K
∑

i=1
lim

∆y→0

1
∆y

(Q̂θi
(ti, z) − Q̂θi

(∆y sin θi + ti, z))
(4.7)

And finally the partial derivative with respect to z is given by:

f̃z = ∂f̃(x,y,z)
∂z

=

= π
K

K
∑

i=1
lim

∆z→0

1
∆z

(Q̂θi
(ti, z) − Q̂θi

(ti, z + ∆z))
(4.8)

After the shading step the shaded color csi
is available. Again, the projection

of the sample position onto the discrete filtered projections Q̂θi
, calls for inter-

polation. As already described for data reconstruction, bilinear interpolation

is an adequate method.

4.1.4 Compositing

Compositing is the last step in the raycasting pipeline, see Figure 4.2. While

the first three steps of the raycasting pipeline determine the appearance of a

single sample, the compositing step accumulates the results of all evaluated

samples of a ray. Raycasting can either be performed in back-to-front order or

in front-to-back order. Back-to-front order starts the evaluation of samples at

the background and continues in the direction of the eye-point. It describes

the way of the light from back to front. The result of front-to-back order

is equivalent to the result of back-to-front order. It starts the evaluation of

samples at the image plane and continuous through the volume along the

ray. In order to get the composited color of all the samples along a ray an



CHAPTER 4. D
2
VR 29

iterative front-to-back approach is used. Let cin be the current composited

color of the ray (initialized with black) and let further csi
be the color of the

current sample, then the composited color cout is given by:

cout = cin + csi
αsi

(1 − αin) (4.9)

where αin is the accumulated opacity (initialized with zero). The composited

opacity αout of the ray is given by:

αout = αin + αsi
(1 − αin) (4.10)

After the compositing step cin is set to cout and the next sample of the ray

has to be evaluated until the ray reaches the end of the volume. If the whole

volume is processed and αout is still less than one, the background color

cbackground with full opacity is applied to cout:

cout = cin + cbackground(1 − αin) (4.11)

After the termination of the ray the composited color for one image pixel is

available.

4.2 Accelerating D2VR

In order to speed up volume rendering, computations without any impact on

the resulting image, needs to be avoided. In order to accelerate D2VR two

different techniques are described in this Section.

4.2.1 Early ray termination

If raycasting is performed in front-to-back order the evaluation of samples

along the ray can be stopped if the ray has nearly full opacity. If the opacity

of the ray αout reaches a certain threshold αaccum the ray is terminated. The

threshold αaccum is less than but close to one. The evaluation along a ray

is continued as long as αout < αaccum. If αout ≥ αaccum the contribution
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of the samples behind the current sampling position can be neglected and

therefore the ray can be terminated. Due to early ray termination, occluded

parts of the volume are not processed and the volume rendering is accelerated

considerably.

4.2.2 Hierarchical Space Partitioning

For almost all volumetric processing approaches a hierarchical space parti-

tioning data structure is essential for efficient processing. The performance

gain which can be achieved with such a data structure mainly depends on

its granularity. An octree is one of the most widely used data structures

for organizing three-dimensional space. An octree is based on the princi-

ple of hierarchical space partitioning. Each node of the octree represents a

Invisible Visible Inhomogeneous

Depth 2

Depth 3

Root Node Depth 1

Figure 4.4: Octree nodes are classified as visible, invisible or inhomogeneous.
Inhomogeneous nodes at depth level i are subdivided into 8 subnodes of
depth level i + 1.
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cuboid cell. In a min-max octree for volumetric data each node contains

the minimum and maximum of the enclosed data. Due to this information

an octree node is classified as visible, invisible or inhomogeneous, see Fig-

ure 4.4. The octree is created starting with a root cell which encloses the

whole volume. The content of the root cell is classified as visible, invisible

or inhomogeneous. If it is inhomogeneous the cell is subdivided into eight

sub cells, see Figure 4.4. This subdivision is repeated recursively as long as a

certain depth of the octree is reached. The complete octree consists of visible

cells and invisible cells. Inhomogeneous leaf cells are treated as visible.

The first step during rendering is to find cells which contain visible data.

It is important to note, that the visibility of cells only changes when the

transfer function is modified. In a second step the visible cells are rendered

into the z-buffer using OpenGL. The values in the z-buffer are then used to

determine the position where the evaluation of the rays needs to be started.

The octree can be used to efficiently skip data which is classified as transpar-

ent. Therefore the sampling process starts near the data of interest. As the

evaluation of samples is a computational expensive task the use of a hierarchi-

cal space partitioning data structure for empty space skipping, significantly

increases the performance of volume rendering. It is straightforward to find

the minimum and maximum value of an octree cell in case of grid-based vol-

umetric data as long as trilinear interpolation is assumed as reconstruction

method. It is important to note that the minimum and maximum values

enclosed by a cuboid cell of the octree depend on the used data reconstruc-

tion method. The convex nature of trilinear interpolation ensures that all

function values within a cuboid are bounded by the minimal and maximal

values at the grid positions.

Projection-Based Octree

The convexity condition is not valid for reconstruction based on the Filtered

Back-Projection. However, it is still possible to generate a min-max octree

for projection-based volumetric data.

Consider an octree cell C projected onto all filtered projections Pθi
, see



CHAPTER 4. D
2
VR 32

Octree

cell  C

θiC

θi
P

Figure 4.5: Cθi
is the octree cell C projected onto projection Pθi

.

Figure 4.5. The resulting projections of C are referred to as Cθi
. According

to Equation 3.17 an upper bound of the maximum value contained in the

octree cell C can be determined by:

max Cf̃ ≤ π

K

K
∑

i=1

max Cθif̃
(4.12)

where

Cf̃ =
{

v = f̃(~x)|~x ∈ C ⊆ <3
}

are all possible function values within the cuboid cell C and

Cθif̃
=
{

v = Qθi
(~t)|~t ∈ Cθi

⊆ <2
}

are all projection values within the enclosing rectangle of the cell C projected

onto the projection Pθi
. Analogously a lower bound of the minimum of the
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octree cell C can be determined by:

min Cf̃ ≥ π

K

K
∑

i=1

min Cθif̃
(4.13)

Note, that the projections of cell C onto the filtered projections are rectan-

gles. As mentioned above the two-dimensional reconstruction scheme used

on the filtered projections is bilinear interpolation. Due to the convex nature

of bilinear interpolation the minimal and maximal value within a projected

cell Cθif̃
are bounded by the minimal and maximal value at the grid points

enclosed by the projected cell C. The algorithm to generate an octree for

Figure 4.6: Octree up to depth 8 of the stag beetle data. Red octree cells
are classified as visible.

projection-based volumetric data, is using a bottom-up approach and is as

follows: Starting with a root cell, which encloses the entire volumetric func-

tion defined by the projections, we recursively, subdivide the octree cells.

Once we reach a desired octree depth we compute the maximum respectively

the minimum using Equation 4.12 and 4.13. These values are then prop-

agated to the higher levels. Instead of propagating these minimums and

maximums to the higher levels, it would have been also possible to compute

the minimum and maximum directly for each of these higher levels using

Equation 4.12 and 4.13. However, this would lead to a much less efficient ap-

proximation. The algorithm to generate a projection-based octree is given in

pseudo code in Section 5.2. Although this space partitioning is a conservative
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approximation, it works very well in practice, as shown in Figure 4.6.

4.3 Summary

In this Chapter D2VR based on an image order approach was presented.

In Section 4.1 the raycasting pipeline was described. All the steps of the

pipeline are carried out using projection-based volumetric data. In order to

accelerate D2VR two different techniques were described in Section 4.2. In

Section 4.2.1 early ray termination was briefly reviewed and in Section 4.2.2

an acceleration data structure based on the principle of hierarchical space

partitioning was presented. In Chapter 5 details about the implementation

of the concepts presented in this Chapter, are given.



Chapter 5

Implementation

A theory is something nobody

believes, except the person

who made it. An experiment

is something everybody

believes, except the person

who made it.

Albert Einstein

In Chapter 4 we presented all the necessary components for D2VR. First,

in Section 4.1 we presented an approach for data reconstruction as well as

the computation of gradients directly from filtered projections at arbitrary

sample positions. In Section 4.2 we presented acceleration techniques for

D2VR. We described early ray termination and presented a hierarchical space

partitioning data structure for projection-based volumetric data, which is

used in the following as acceleration data structure for D2VR. All these

approaches do not employ an intermediate grid representation.

35
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5.1 Computed Tomography Scanner Simula-

tion

For a proof of concept implementation of all the presented approaches, a

projection based representation of the volumetric function needs to be given.

Unfortunately, we did not have access to the projection data of Computed To-

mography scanners. Therefore a Computed Tomography scanner simulation

was implemented. In order to estimate the accuracy of the data reconstruc-

tion scheme and the proposed gradient estimation method different types of

density functions had to be implemented. The goal was to estimate the ac-

curacy as well as the visual quality of our approach. We tested D2VR using

artificially generated projections. A simulation of a Computed Tomography

scanner was implemented using C++. The CT scanner simulation is able

to cope with analytically defined continuous density functions. Furthermore,

it is able to handle so called phantoms. Finally, high resolution rectilinear

grids in combination with trilinear interpolation are used as input for the CT

scanner simulation. In Figure 5.1 the work flow of the CT scanner simula-

tion can be seen. First of all a three-dimensional density function is defined.

This function is then used as input for the CT scanner simulation. The scan-

ner simulation generates parallel projections of the three-dimensional input

function. In order to get a projection Pθi
the density function f(x, y, z)

needs to be integrated along parallel lines. Each of the possible 3D functions

is implemented as a separate class derived from the class 3DFunction. The

class 3DFunction provides an interface LineIntegration which is implemented

differently for each of the 3D functions. This interface is used by the class

CTScanner in order to compute the line integral. The line integral is denoted

Iθ(t) in the following. If possible the line integration is implemented analyt-

ically. However, if no analytical line integral is given the density function’s

integral is numerically approximated. For the numerical approximation of

the line integral an algorithm based on the trapezoidal rule is used. The line

integral of a line with a given normal distance to the origin t0 in the interval
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f(x,y,z)f(x,y,z)f(x,y,z)f(x,y,z)f(x,y,z)

I. 3D Function

II. Computed Tomography Scanner Simulation

Rectilinear GridPhantomAnalytic Function

III. Projections of 3D Function

Figure 5.1: Work flow (part one). I: Three different types of density functions
are defined. II: The Computed Tomography scanning process is simulated, it
takes a three-dimensional density function as input and generates projection
images as output. III: Projections are saved to disk.
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s0 to s1 can be numerically approximated with:

Iθ(t) =
∫ s0

s1

f(sθ, t0) dsθ ≈
N−1
∑

i=0

εs

2
f(s0 + iεs, t0) (5.1)

where N is the number of samples and εs is the sampling distance given by:

εs =
s1 − s0

N − 1
(5.2)

The accuracy of the trapezoidal rule integration mainly depends on the num-

ber of samples. The greater the number of samples the higher the accuracy

but also the computation time. In order to simulate the Computed Tomogra-

phy scanning process a large number of line integrals needs to be computed.

Therefore the faster Romberg integration is used. Romberg integration is

based on the idea of performing the numerical integration for various values

of εs, and then extrapolating the result to the continuum limit εs = 0. As

described in [18] Romberg integration is one or even two magnitudes faster

than brute force numerical integration and achieves the same accuracy.

In the following the three different types of three-dimensional functions

are described:

Marschner & Lobb Function As a continuous analytically defined test

function the well known Marschner & Lobb function is used. In Figure 5.2

an iso-surface rendering of the Marschner & Lobb function can be seen. The

density function is given by:

f(x, y, z) =
1 − sin (1/2 π z) + α

(

1 + cos
(

2 π fM cos
(

1/2 π
√

x2 + y2
)))

2 + 2 α
(5.3)

where fM and α are parameters which influence the appearence of the func-

tion. The original setting [11] is fM = 6 and α = 0.25. All following results

were attained with these settings. In Figure 5.2 an iso-surface rendering of

the Marschner & Lobb function is shown. The Marschner & Lobb function is

integrated using Equation 5.1. Since the partial derivatives of the Marschner

& Lobb function can be analytically computed, it is used to estimate the ac-
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Figure 5.2: Analytical iso-surface rendering of the Marschner & Lobb func-
tion with the isovalue f(x, y, z) = 0.5

curacy of the gradient estimation scheme. The partial derivative with respect

to x is given by

fx(x, y, z) =
α sin

(

2 π fM cos
(

1/2 π
√

x2 + y2
))

π2fM sin
(

1/2 π
√

x2 + y2
)

x
√

x2 + y2 (2 + 2 α)
(5.4)

Analogously the partial derivative with respect to y is given by

fy(x, y, z) =
α sin

(

2 π fM cos
(

1/2 π
√

x2 + y2
))

π2fM sin
(

1/2 π
√

x2 + y2
)

y
√

x2 + y2 (2 + 2 α)
(5.5)

Finally, the partial derivative of the Marschner & Lobb function with respect

to z is given by

fz(x, y, z) = −1/2
cos (1/2 π z) π

2 + 2 α
(5.6)

The results of the comparison of different gradient estimation schemes are

presented in Chapter 6.
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Figure 5.3: Slice of a 3D Phantom. Phantoms are defined as a collection of
primitives each with a given density. The density of the Phantom is defined
as the sum of densities of the primitives.

Phantoms The Phantoms are analytically defined density functions. In

contrast to the Marschner & Lobb function, they are not continuous and

therefore not differentiable. They are defined as a set of geometrical prim-

itives such as cylinders, spheres, ellipsoids, boxes, etc. In Figure 5.3 an

example of a phantom is shown. The geometrical primitive pi has a defined

density di inside. The density function of a geometrically defined primitive

is given by:

fpi
(x, y, z) =







di if (x, y, z) is inside pi

0 otherwise
(5.7)

The density function of the phantom at a certain sample position is defined

as the sum of the density values of the geometrical primitives containing this

sample position.

f(x, y, z) =







f̃(x, y, z) if f̃(x, y, z) ≥ 0

0 otherwise
(5.8)
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where

f̃(x, y, z) =
K
∑

i=1

fpi
(x, y, z) (5.9)

and K is the number of geometrically defined primitives. While the density

function of the phantom is by definition always positive, the density of single

geometrical primitives may also be negative. Due to the simplicity of the

primitives the line integral of the phantom can be analytically evaluated.

An intersection of the line and each geometrically defined primitive has to

be computed. The length of the intersecting line segment of a line and the

primitive pi is denoted as li. The line integral of the phantom is given by:

Iθ(t) =







Ĩθ(t) Ĩθ(t) ≥ 0

0 otherwise

where Ĩθ(t) is

Ĩθ(t) =
K
∑

i=1

lidi (5.10)

The phantoms are used to estimate the accuracy of the data reconstruc-

tion scheme. The results are summed up in Chapter 6.

Figure 5.4: Example of a dataset given on a rectilinear grid.

Rectilinear Volumetric Data As a proof of concept the visual quality

of D2VR is tested on high resolution rectilinear grids. In Figure 5.4 an

example of a dataset given on a rectilinear grid can be seen. It has to be



CHAPTER 5. IMPLEMENTATION 42

taken into account, that the density function of the rectilinear grid is only

given at the sample positions. In order to evaluate line integrals, the density

function f(x, y, z) has to be defined using a certain reconstruction scheme.

We define f(x, y, z) by using trilinear interpolation of the rectilinear grid.

Let f000 . . . f111 be the eight samples of the cubic cell enclosing the sample

position (x, y, z)T and let further (xs, ys, zs)
T be the sample location within

the cubic cell. According to trilinear interpolation f(x, y, z) is then:

f(x, y, z) = f000(1 − xs)(1 − ys)(1 − zs) +

f100xs(1 − ys)(1 − zs) +

f010(1 − xs)ys(1 − zs) +

f001(1 − xs)(1 − ys)zs +

f011(1 − xs)yszs +

f101xs(1 − ys)zs +

f110xsys(1 − zs) +

f111xsyszs

(5.11)

The line integrals are computed with the numerical integration method de-

scribed above.

During the scanning process the results of the line integration are stored

in projection images. The result of the scanning process are the projections

of the density function. They are visualized as two dimensional textures.

All intermediate as well as all final results are visualized using OpenGL. In

Figure 5.5, 64 projections of a human head can be seen. Each row corresponds

to the projections taken within an angle range of 45 degrees. All values of

the projections are scaled for the visualization to the range 0 . . . 1. White

corresponds to the highest value of the line integrals and black corresponds

to zero. While the projections in Figure 5.5 are shown side by side they can

also be arranged in their 3D spatial context, see Figure 5.6.

In order to compare the accuracy of different filters, all the filters de-

scribed in Section 3.2.2 are implemented. The filtering is implemented in

frequency domain as well as in spatial domain. The filtering in frequency

domain is much faster and the results are, as one would expect, equivalent.
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Figure 5.5: 64 projections of a rectilinear grid. The values of the projections
are scaled for the visualization.
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Figure 5.6: 3D arrangement of 64 projections.

5.2 D2VR Implementation

While the first part of the implementation deals with the generation of the

filtered projections, the second part of the implementation deals with the

visualization of the projection based volumetric data. The work flow of the

second part of the implementation can be seen in Figure 5.7. The projection

based volumetric data is either visualized directly from the filtered projec-

tions using D2VR or resampled on an intermediate rectilinear grid and visu-

alized using DVR. In order to compare the visualization results the original

density function (which was used as input for the scanning process) can also

be visualized using raycasting.

We implemented a CPU-based as well as a GPU-based prototype for or-

thographic and perspective projection. The CPU implementation is based

on the raycasting approach. For each pixel of the image plane, rays are cast

through the volumetric space enclosed by the filtered projections. At each

resample location the underlying 3D density function is reconstructed accord-

ing to Equation 3.17 and gradient estimation is done using Equation 3.32.
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D²VR

IV. Filtered Projections

V. Visualization

Intermediate rectilinear grid

DVR

Original 3D Function

R
esam

p
lin

g

Figure 5.7: Work flow (part two). IV: The projections are loaded from disk
and filtered. V: Three representations of the density function are visualized:
Left: The analytically defined function is visualized; Middle: A rectiliner grid
is resampled from the projections and visualized using DVR (this corresponds
to the traditional volume rendering pipeline); Right: The projection-based
volumetric function is visualized using D2VR.
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The final color and opacity of the image pixel is determined by the over-

operator [17] in front-to-back order. The GPU version is implemented in

C++ and Cg using OpenGL. We are aware that the current Cg compiler

does not always produce optimal code. We did not manually optimize the

code by using assembly as this is a proof of concept implementation. We im-

plemented D2VR on the GPU (NVidia GForce 6800 GT, 256 MB) utilizing

texture-based volume rendering with view-aligned slices in combination with

filtered projection textures. All the filtered projections are linearly stored

in a 3D texture. Basically we compute texture slices parallel to the view-

ing plane. As the newest NVidia hardware supports dynamic branching, the

slices are directly computed in a for -loop using Equation 3.17 from all the

filtered projections. The same is done for the gradient computation using

Equation 3.32. The volumetric space enclosed by the filtered projections is

thereby cut by polygons parallel to the viewing plane. The polygons are then

projected by the graphics hardware onto the image plane and composited us-

ing alpha blending. In order to accelerate the rendering process, we utilized

the octree described in Section 4.2.2. We project all visible octree cells onto

the image-plane. The resulting z-buffer image is then used for early z-culling,

a capability of modern hardware, implementing empty space skipping. On

the average, for example, we measured for 128 projections (1282 sized) using

a 2562 view-port four seconds per frame for an iso-surface rendering. Further

optimization, such as early ray termination, are not employed due to the

lack of graphics hardware support. In the future we will develop alternative

acceleration approaches in order to provide fully interactive projection-based

volume rendering. In order to get an impression of the quality of the con-

servative approximation of the min-max octree the visible and invisible cells

were rendered in a 3D as well as in a 2D wire-frame mode using OpenGL. In

Figure 5.8 an example of an octree is shown in 3D. The creation of such an

octree is achieved by recursive calls to the function CreateOctreeNode. The

implementation of the function CreateOctreeNode is given in pseudo-code in

Algorithm 1. Note that the argument cuboidCell is an instance of a class Cell,

that holds a geometric description of the bounding cuboid of the cell. The

class Cell implements a method createSubCell(i) which returns an instance



CHAPTER 5. IMPLEMENTATION 47

(b)
(a)

Figure 5.8: Wire-frame mode rendering of visible and invisible octree cells.
(a) Gray cells are classified as visible, green cells are classified as invisible.
(b) Same rendering as (a) overlaid with a slice through the octree. The red
cells are visible 2D cells on the slice, the yellow cells are invisible cells on the
slice.
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Algorithm 1 Recursive octree creation

CreateOctreeNode(currentDepth, maxDepth, cuboidCell)
if (currentDepth < maxDepth) then

child[1].Create(currentDepth+1, maxDepth, cuboidCell.CreateSubCell(1))
child[2].Create(currentDepth+1, maxDepth, cuboidCell.CreateSubCell(2))
child[3].Create(currentDepth+1, maxDepth, cuboidCell.CreateSubCell(3))
child[4].Create(currentDepth+1, maxDepth, cuboidCell.CreateSubCell(4))
child[5].Create(currentDepth+1, maxDepth, cuboidCell.CreateSubCell(5))
child[6].Create(currentDepth+1, maxDepth, cuboidCell.CreateSubCell(6))
child[7].Create(currentDepth+1, maxDepth, cuboidCell.CreateSubCell(7))
child[8].Create(currentDepth+1, maxDepth, cuboidCell.CreateSubCell(8))

else

GetMinMaxValueWithin(cuboidCell)
end if

if (HasChildren) then

minV alue = child [1] .minV alue
maxV alue = child [1] .maxV alue
for i = 2 . . . 8 do

if (minV alue > child [i] .minV alue) then

minV alue = child [i] .minV alue
end if

if maxV alue < child[i].maxV alue then

maxV alue = child[i].maxV alue
end if

end for

end if

of the class Cell with a geometric description of the sub-cell i.

In order to create a min-max octree a root node has to be initialized and

its method CreateOctreeNode has to be called.
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Results

Once you replace negative

thoughts with positive ones,

you’ll start having positive

results.

Willie Nelson

In order to show the differences between projection-based and grid-based

data reconstruction and gradient estimation we simulated a Computed To-

mography scanner. We scanned several different density functions, such as

the Marschner & Lobb function, a phantom, a stag beetle, a human head

and a carp. The Marschner & Lobb function is analytically defined. For the

other data sets, an analytical representation is not given, therefore we took

high resolution grids in combination with trilinear interpolation as ground

truth. The Marschner & Lobb function is scanned taking 64 projections,

each projection with a resolution of 642. From this projections a grid is re-

constructed, using the same amount of samples (643). Additionally we also

reconstructed a grid with eight times more samples (1283). Furthermore

we computed an iso-surface directly from the analytical Marschner & Lobb

function. Figure 6.1a shows the differences between the analytical value

and the reconstructed value using trilinear interpolation on the grid (643)

and Figure 6.1b shows the differences between the analytical value and the

49
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reconstructed value using Filtered Back-Projection. To encode the data re-

construction error on the iso-surface a color coding is applied. Green encodes

low error, on the other hand red encodes higher errors.

0% 100%5% 10% 50%

(a) (b)

Figure 6.1: Color encoded differences between analytical value and (a) the
reconstructed value using trilinear interpolation on the grid (643), (b) the
reconstructed value using Filtered Back-Projection.

Figure 6.2a shows the orientation differences in degrees between the an-

alytically computed gradients and the estimated gradients using central dif-

ference gradient estimation. Figure 6.2b shows the orientation differences

in degrees between the analytically computed gradients and the estimated

gradients using our new projection-based gradient estimation method.

Figure 6.3 shows a comparison of iso-surface renderings of the Marschner

& Lobb function: Figure 6.3a shows an analytical rendering. Figure 6.3b

shows DVR of the 643 grid. Figure 6.3c shows DVR of the eight times bigger

grid. And finally in Figure 6.3d our D2VR from 64 filtered projections, each
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0° 20° 45° 90° 180°

(a) (b)

Figure 6.2: Color encoded orientation differences in degrees between ana-
lytically computed gradients and (a) the estimated gradients using central
difference gradient estimation on the grid, (b) the estimated gradients using
our new projection-based gradient estimation method.

projection with a resolution of 642 is shown.

Furthermore, we rendered a carp, a human head, and a stag beetle. In

Figure 6.4, Figure 6.5, and Figure 6.6 the differences between rendering from

projection-based and grid-based volumetric data can be seen. In order to

visualize the influence of the filters on the data reconstruction, a slice of a

phantom was reconstructed. In Figure 6.7 the influence of the different filters

can be seen. The slice of the phantom was reconstructed from 256 projec-

tions, each with a resolution of 2562. In Figure 6.7a the filter H(w) = w

was used for reconstruction. In Figure 6.7b the filter from Equation 3.2.1 in

Section 3.2.2 was used for reconstruction. In Figure 6.7c the same filter as

in Figure 6.7b was used but multiplied by a Hanning window. In order to
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(a)

(d)(c)

(b)

Figure 6.3: Comparison of an iso-surface of the Marschner & Lobb function:
(a) Analytically computed. (b) DVR rendering of a 643 grid. (c) DVR
rendering of an eight times bigger grid (1283). (d) D2VR from projection-
based volumetric data (64 projections, each projection with a resolution of
642). Grids are reconstructed from 64 filtered projections, each projection
with a resolution of 642.

compare the different results, difference images were rendered. In Figure 6.7d

the difference image between the analytically defined phantom and the re-
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(d)

(a)

(b)

(c)

Figure 6.4: CT scan of a Carp (256x256x512): (a) DVR of a 128x128x256
grid, reconstructed from 128 filtered projections, each projection with a res-
olution of 128x256. (b) D2VR of projection-based volumetric data (128 pro-
jections, each projection with a resolution of 128x256). (c) Zoom in of DVR.
(c) Zoom in of D2VR.
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(b)(a)

Figure 6.5: CT scan of a human head (512x512x333): (a) DVR of a
128x128x128 grid, reconstructed from 128 filtered projections, each projec-
tion with a resolution of 128x128. (b) D2VR of projection-based volumetric
data (128 projections, each projection with a resolution of 128x128). Note,
that due to the second resampling step of the traditional volume rendering
pipeline many details are lost in (a).

constructed slice in Figure 6.7a can be seen. In Figure 6.7e the difference

image between the analytically defined phantom and the reconstructed slice

in Figure 6.7b can be seen; and finally in Figure 6.7f the difference image

between the analytically defined phantom and the reconstructed slice in Fig-

ure 6.7c can be seen. All difference images are contrast enhanced in order to

make the differences between them visible.

In order to estimate the average data reconstruction error we recon-

structed a 1283 grid from the filtered projections for all the shown data sets.

From this grid as well as from the filtered projections we also reconstructed

a rotated grid. In Table 6.1 the root mean squared data reconstruction error

with respect to the analytical function respectively to the corresponding high

resolution grid in combination with trilinear interpolation is shown.

We estimated the average computation time for a 2562 image rendered
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(d)(c)

(b)(a)

Figure 6.6: CT scan of stag beetle (832x832x494): (a) DVR of original grid.
(b) DVR of a 643 grid. (c) DVR of a 1283 grid. (d) D2VR of projection-
based volumetric data (64 projections, each projection with a resolution of
642). Grids are reconstructed from 64 filtered projections, each projection
with a resolution of 642.
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Top: Slices of a phantom, reconstructed with different filters (a)
the filter H(w) = |w| was used, (b) the filter of Equation 3.2.1 was used,
(c) the filter of Equation 3.2.1 multiplied by a Hamming window was used.
Bottom: Difference images: (d) difference of analytically defined phantom
and (a), (e) difference of analytically defined phantom and (b), (f) difference
of analytically defined phantom and (c). The used slice of the analytically
defined phantom can be seen in Figure 5.3. All difference images are contrast
enhanced.
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Data RMS of RMS of filtered Ratio
grid projections

Marschner & Lobb 0.0624 0.0537 1.1620
Phantom 0.0720 0.0641 1.1232
Fish 37.5486 26.9216 1.3947
Human head 89.8823 73.3274 1.2258
Stag beetle 80.2559 77.8378 1.0311

Table 6.1: Root Mean Squared (RMS) data reconstruction error with re-
spect to the analytical function respectively to the corresponding high reso-
lution grid in combination with trilinear interpolation. Data values for the
Marschner & Lobb data set are between zero and one, and for the other data
sets between zero and 4095. In column three the ratio of column one and
two is shown.

from 128 projections each of size 1282, as well as for a 5122 and a 10242 image

for a brute force CPU implementation of raycasting. The results can be seen

in Table 6.2.

Image size 2562 5122 10242

Computation time 1453 5982 24037
in Seconds

Table 6.2: Computation time for images of different size. All computations
were performed on 128 projections each of size 1282.
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Summary

It is done.

Jesus Christ

7.1 Introduction

Medical visualization of volumetric datasets is a powerful tool to under-

stand a patient’s pathological conditions, to improve surgical planning, and

to support medical education. The most widely used techniques for three-

dimensional medical visualization are direct volume rendering methods. All

direct volume rendering methods are based on rectilinear grid representa-

tions of the volumetric function. These rectilinear grids are usually provided

by modern 3D scanning technologies, like Computed Tomography (CT) or

Magnetic Resonance Imaging (MRI). These data values are computed from

measured projections by discrete tomographic reconstruction. The set of

the reconstructed data values (or samples) can be interpreted as a discrete

representation of the underlying continuous phenomenon. In order to au-

thentically visualize the original continuous signal, it has to be accurately re-

constructed from the discrete samples (note that such a signal reconstruction

is differentiated from discrete tomographic reconstruction). From a signal-

processing point of view, the original signal can be perfectly reconstructed
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from discrete samples if it is band-limited and the sampling frequency is above

the Nyquist limit. Theoretically the perfect continuous reconstruction is ob-

tained by convolving the discrete volume representation by the sinc function.

The sinc function is considered to be the best reconstruction kernel, since

it represents an ideal low-pass filter. In practice, however, it is difficult to

convolve a discrete signal with the sinc kernel, because of its infinite support.

Therefore practical reconstruction filters either approximate it or truncate it

with an appropriate windowing function. Moreover, real-world signals can

hardly be considered to be band-limited. As a consequence, practical re-

sampling results in a loss of information. The first step in the traditional

volume visualization pipeline is the discrete tomographic reconstruction of a

rectilinear volume representation from the measured projections. Although

there exist different algorithms for tomographic reconstruction, one of the

most popular techniques is the Filtered Back-Projection algorithm. It first

performs high-pass filtering on the measured projections and afterwards the

samples at rectilinear grid points are computed by back-projecting the fil-

tered signals. As the projections are acquired by measuring accumulated

attenuation by a limited number of sensors, they are actually available as

discrete representations of continuous projection functions. Therefore high-

pass filtering is performed in discrete frequency domain, so the result is also a

discrete function. In the back-projection phase, however, the rectilinear grid

points are not necessarily projected exactly onto the discrete samples of the

filtered projections. Therefore for back-projection resampling is necessary,

which results in the first loss of information in the pipeline. The obtained

rectilinear volume can be visualized by different rendering techniques. Us-

ing indirect methods, like the classical Marching Cubes algorithm [9], an

intermediate geometrical model of an iso-surface is constructed from the vol-

umetric model. This geometrical model is then interactively rendered by, for

example, conventional graphics hardware. In contrast, Direct Volume Ren-

dering (DVR) approaches, like ray casting or splatting directly render the

volumetric model without any intermediate representation. In both cases

an interpolation technique is applied to define data values between the rec-

tilinear grid points. In other words, a resampling of the discrete volume
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representation is required. This resampling results in the second loss of

information in the traditional pipeline. In order to minimize the loss of in-

formation we propose to modify the traditional volume-rendering pipeline by

simply removing an unnecessary resampling step. To render the underlying

continuous phenomenon, data samples at arbitrary sample points need to

be defined, and for shading computation the corresponding gradients need

to be determined. As shown, both tasks can be solved using directly the

filtered projections. This eventually leads to an alternative projection-based

volume representation. Thus, there is no need to compute samples at regular

grid points by discrete tomographic reconstruction, and as a consequence one

resampling step is unnecessary. Traditional direct volume-rendering meth-

ods rely on such an intermediate grid representation, so in this sense they

are in fact indirect. In contrast to that we presented Direct Direct Volume

Rendering, a high quality volume rendering of projection-based volumetric

data. In most of the practical volume-rendering applications, especially in

3D medical imaging, the input data is usually generated from measured pro-

jections by using tomographic reconstruction. The output of tomographic

reconstruction is a discrete (or sampled) representation of the underlying

continuous phenomenon. The samples are conventionally generated on recti-

linear grid points. The rectilinear grid has several advantages. For example,

the sampled signal can be represented by 3D arrays, implicitly storing the

locations of the samples. Furthermore, the neighborhood of a certain sample

can be efficiently addressed, which is important for many volume-processing

or volume-rendering algorithms.

Nevertheless, in order to render the underlying continuous 3D function,

data values need to be defined also between the rectilinear grid points. The

sinc kernel as ideal reconstruction filter is impractical because of its infinite

extent. In practice it is approximated by filters of finite support. Generally,

the wider the support of the reconstruction filter, the higher the quality of

the reconstruction. On the other hand, the wider the support of the filter,

the higher the computational cost of a spatial-domain convolution. As the

practical filters only approximate the ideal low-pass filter they result in either

aliasing or smoothing, which can be interpreted as a loss of information.
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For frequent resampling tasks, like rotation, or upsampling, frequency-

domain techniques can be alternatively applied. In frequency domain, it

is exploited that a computationally expensive spatial-domain convolution is

replaced by a simple multiplication. Although the frequency-domain resam-

pling methods generally provide higher accuracy than spatial-domain meth-

ods do, they assume that the new samples to be computed are also located

at regular grid points.

7.2 Mathematical Preliminaries

The set of projections is referred to as the Radon transform of the original

signal. Therefore the tomographic reconstruction is, in fact, the inversion of

the Radon transform. The inversion can be performed by using the classical

Filtered Back-Projection algorithm, which is based on the Fourier projection-

slice theorem. Although there exist alternative tomographic reconstruction

techniques like algebraic or statistical ones, Filtered Back-Projection is still

the most popular method used in commercial CT scanners. In order to avoid

a lossy resampling step in the traditional volume-rendering pipeline, we di-

rectly use the tomographic inversion in order to reconstruct the underlying

function at arbitrary sample positions. Therefore we do not generate an

intermediate rectilinear volume representation, but we directly process the

filtered projections as an alternative volume representation. Using this grid-

less or projection-based volume-rendering approach as a new paradigm, the

same accuracy can be ensured at all the sample positions. In contrast, using

the traditional grid-based approach, accurate samples are available only at

the grid points, while the accuracy of intermediate samples depends on the

quality of the applied imperfect reconstruction filter.

7.3 D2VR

We presented D2VR based on a raycasting approach. In order to perform

raycasting the underlying 3D volumetric function needs to be reconstructed
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at arbitrary resampling locations. In case the data is given on a rectilinear

grid the reconstructed function value is computed from a close neighborhood

of samples. In contrast to that, for raycasting directly performed on the

filtered projections the reconstructed function value is computed from the

filtered projections at the corresponding positions. Furthermore, gradients at

these resample locations need to be determined in order to perform shading.

7.3.1 Data reconstruction

Data reconstruction from projection-based volumetric data requires Filtered

Back-Projection. For simplicity we illustrated the Filtered Back-Projection

in 2D based on a computed tomography scanning process using orthographic

projection, and later extended it to three dimensions.. Parallel projections

are taken by measuring a set of parallel rays for a number of different an-

gles. A projection is formed by combining a set of line integrals. The whole

projection is a collection of parallel ray integrals as is given by Pθ(t) for a

constant angle θ. The line integrals are measured by moving a x-ray source

and detector along parallel lines on opposite sides of the object. In order to

reconstruct the underlying density function we proposed to use the discrete

Filtered Back-Projection as a resampling scheme. According to discrete Fil-

tered Back-Projection the density function can be reconstructed from a fixed

number of projections by the following formula:

f(x, y) ≈ f̃(x, y) =
π

K

K
∑

i=1

Qθi
(x cos θi + y sin θi) (7.1)

The Filtered Back-Projection algorithm is conventionally used for discrete

tomographic reconstruction in order to obtain a rectilinear representation of

the original density function. This intermediate representation is then usually

resampled by many volume visualization algorithms. As shown in this thesis

it is unnecessary to generate an intermediate rectilinear representation by dis-

crete tomographic reconstruction. In fact it should be avoided to reconstruct

an intermediate rectilinear representation, as each resampling step usually

causes a loss of information. By avoiding the unnecessary intermediate grid
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representation, the quality of reconstruction can be improved. Previous re-

construction techniques assume that accurate samples are available at the

grid points. In practice these samples are obtained by tomographic recon-

struction. In order to maintain the same accuracy at any arbitrary sample

location, we suggested to apply the Filtered Back-Projection to reconstruct

the density value.

7.3.2 Derivative Estimation

In order to process or render volumetric data in many cases derivatives of the

original density function are necessary. For example, for volume rendering

the estimated gradients are used as surface normals to perform shading. In

case of a grid-based representation the straightforward way is to estimate the

derivatives from a certain voxel neighborhood. To determine the gradient,

common methods, such as intermediate difference gradient, central differ-

ence gradient, or higher order gradient estimation schemes are applied. In

our case, computing the derivatives from a certain 3D neighborhood of sam-

ples requires to perform a large number of back projections. Especially for

higher order gradient estimation schemes, which need a large neighborhood

of samples, the computational costs would be significantly high. However,

the Filtered Back-Projection reconstruction scheme can also be exploited to

compute derivatives. We first presented derivative estimation in two dimen-

sions and extended the gradient estimation scheme to three dimensions later.

It was shown, that the partial derivatives of the density function are equal to

the sum of scaled partial derivatives of the projections. Therefore applying

Newton’s difference quotient directly on the filtered projections is equivalent

to applying Newton’s difference quotient on the 2D density function f(x, y).

Moreover, any higher order derivative can be obtained by applying Newton’s

difference quotient multiple times.

We showed that using Filtered Back-Projection for gradient estimation

leads to higher accuracy than using the traditional central differences gradient

estimation scheme. In order to calculate the central difference gradient at

an arbitrary sampling point six additional samples have to be interpolated.
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As interpolation usually causes loss of information, the introduced errors are

accumulated in the estimated gradients. In contrast, using Filtered Back-

Projection, the density values at the additional sample points are as accurate

as at the grid points. Therefore, no interpolation error is introduced.

7.3.3 Hierarchical Space Partitioning

For almost all volumetric processing approaches a hierarchical space parti-

tioning data structure is essential for efficient processing. The performance

gain which can be achieved with such a data structure mainly depends on

its granularity. An octree is one of the most widely used data structures for

organizing three-dimensional space. An octree is based on the principle of

hierarchical space partitioning. Each node of the octree represents a cuboid

cell. In a min-max octree for volumetric data each node contains the min-

imum and maximum of the enclosed data. The minimum and maximum

value of an octree cell, in case of grid-based volumetric data, depends on the

used data reconstruction method. The most widely used data reconstruction

method is trilinear interpolation. The convex nature of trilinear interpolation

ensures that all function values within a cuboid are bounded by the maximal

and minimal values at the grid positions.

This convexity condition does not hold for reconstruction based on the

Filtered Back-Projection. However, it is still possible to generate an min-

max octree for projection-based volumetric data. Consider an octree cell

C projected onto all filtered projections Pθi
, see Figure 4.5. The resulting

projections of C are referred to as Cθi
. According to Equation 3.17 an upper

bound of the maximum value contained in the octree cell C can be determined

by:

max Cf̃ ≤ π

K

K
∑

i=1

max Cθif̃
(7.2)

where

Cf̃ =
{

v = f̃(~x)|~x ∈ C ⊆ <3
}
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are all possible function values within the enclosing cuboid of cell C and

Cθif̃
=
{

v = Qθi
(~t)|~t ∈ Cθi

⊆ <2
}

are all projection values within the enclosing rectangle of the projected cell

C onto projection Pθi
. Analogously a lower bound of the minimum of the

octree cell C can be determined by:

min Cf̃ ≥ π

K

K
∑

i=1

min Cθif̃
(7.3)

The algorithm to generate an octree, using a bottom-up approach, for projection-

based volumetric data is as follows:

Starting with a root cell, which encloses the entire volumetric function de-

fined by the projections, we recursively subdivide the octree cells. Once we

reach a desired octree depth we compute the maximum respectively the min-

imum using Equation 7.2 and 7.3. These values are then propagated to the

higher levels. Instead of propagating these minimums and maximums to the

higher levels, it would have been also possible to compute the minimum and

maximum directly for each of these higher levels using Equation 7.2 and 7.3.

However, this would lead to a much less efficient approximation. Although

this space partitioning is a conservative approximation, it was shown that it

works very well in practice.

7.4 Implementation

The implementation was split into two major parts. First the implenentation

of a Computed Tomography scanner simulation was described. The simula-

tion is able to handle three different types of density functions. Analytically

defined continuous density functions, so called phantoms, and finally high

resolution rectilinear grids were used. Secondly, an implementation of D2VR

based on a raycasting approach was described.

We implemented a CPU-based as well as a GPU-based prototype for or-

thographic and perspective projection. The CPU implementation is based
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on a raycasting approach. For each pixel of the image plane, rays are cast

through the volumetric space enclosed by the filtered projections. At each

resample location the underlying 3D density function is reconstructed accord-

ing to Equation 3.17 and gradient estimation is done using Equation 3.32.

The final color and opacity of the image pixel is determined by the over-

operator [17] in front-to-back order. The GPU version is implemented in

C++ and Cg using OpenGL. We are aware that the current Cg compiler

does not always produce optimal code. We did not manually optimize the

code by using assembly as this is a proof of concept implementation. We im-

plemented D2VR on the GPU (NVidia GForce 6800 GT, 256 MB) utilizing

texture-based volume rendering with view-aligned slices in combination with

filtered projection textures. All the filtered projections are linearly stored

in a 3D texture. Basically we compute texture slices parallel to the view-

ing plane. As the newest NVidia hardware supports dynamic branching, the

slices are directly computed in a for -loop using Equation 3.17 from all the

filtered projections. The same is done for the gradient computation using

Equation 3.32. The volumetric space enclosed by the filtered projections is

thereby cut by polygons parallel to the viewing plane. The polygons are

then projected by the graphics hardware onto the image plane and compos-

ited using alpha blending. In order to accelerate the rendering process, we

utilized the octree described in Section 4.2.2. We project all visible octree

cells onto the image-plane. The resulting z-buffer image is then used for early

z-culling, a capability of modern hardware, implementing empty space skip-

ping. In average, for example, we measured for 128 projections (1282 sized)

using a 2562 view-port four seconds per frame for an iso-surface rendering.

Further optimizations, such as early ray termination, are not employed due

to the lack of graphics hardware support.

7.5 Results

In order to show the differences between projection-based and grid-based

data reconstruction and gradient estimation we simulated a Computed To-

mography scanner. We scanned several different density functions, such as
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the Marschner & Lobb function, a phantom, a carp, a human head, and a

stag beetle. The Marschner & Lobb function is analytically defined. For the

other data sets, an analytical representation is not given, therefore we took

high resolution grids in combination with trilinear interpolation as ground

truth. The Marschner & Lobb function is scanned taking 64 projections,

each projection with a resolution of 642. From these projections a grid is

reconstructed, using the same amount of samples (643). Additionally we

also reconstructed a grid with eight times more samples (1283). Further-

more we computed an iso-surface directly from the analytical Marschner &

Lobb function. The differences between the analytical value and the recon-

structed value using trilinear interpolation on the grid (643) and the differ-

ences between the analytical value and the reconstructed value using Fil-

tered Back-Projection were shown. To encode the data reconstruction error

on the iso-surface a color coding was applied. Furthermore, the orientation

differences in degrees between the analytically computed gradients and the

estimated gradients using central difference gradient estimation and the ori-

entation differences in degrees between the analytically computed gradients

and the estimated gradients using our new projection-based gradient esti-

mation method were shown. Finally a comparison of iso-surface renderings

of the Marschner & Lobb function was shown. Furthermore, we rendered

a stag beetle a human head and a carp The differences between rendering

from projection-based and grid-based volumetric data were presented. Ad-

ditionally for all the shown data sets we reconstructed a 1283 grid from the

filtered projections. From this grid as well as from the filtered projections

we also reconstructed a rotated grid and showed the root mean squared data

reconstruction error with respect to the analytical function respectively to

the corresponding high resolution grid in combination with trilinear interpo-

lation.

7.6 Conclusion

In this thesis a new direct volume-rendering paradigm has been introduced. It

has been shown that volumetric raw data measured as a set of projections can



CHAPTER 7. SUMMARY 68

be directly rendered without generating an intermediate grid-based volume

representation by using tomographic reconstruction. As our method avoids

an unnecessary and lossy resampling step, it provides much higher image

quality than traditional direct volume-rendering techniques do. Furthermore,

our novel projection-based gradient estimation scheme avoids the accumula-

tion of interpolation errors. Traditional methods ensure accurate samples at

the grid points, while the accuracy of intermediate samples strongly depends

on the quality of the applied interpolation method. In contrast, our approach

provides an accurate data value for an arbitrary sample position.

In order to accelerate D2VR a hierarchical data structure for empty space

skipping was presented. Furthermore, as the filtered projections can be in-

terpreted as 2D textures, conventional graphics cards can be exploited to

efficiently accumulate the contributions of the filtered projections to view-

aligned sampling slices. Inspite of these optimizations D2VR is still slower

than previous presented direct volume rendering methods. On the other

hand, in the last two decades, a huge research effort was spent to accelerate

traditional direct volume rendering, which was far from interactive in the

beginning. As the new introduced approach tries to open a completely new

research direction, it would not be fair to compare the current performance

of the presented technique to that of a well developed technology.
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