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Dipl.-Ing. Stefan Bruckner

durch

Leopold Kühschelm

Wolkersdorferstr. 23

2122 Ulrichskirchen

10. Dezember 2005

Datum Unterschrift



Leopold Kühschelm

Advanced Image-based Transfer

Function Design

Master’s Thesis

supervised by

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
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Abstract

In volume visualization the definition of transfer functions is a critical task

for the generation of informative images. We have the fact nowadays that

the complexity of the images increases. So the problems of designing proper

transfer functions are growing too. In this work an image-based approach

is presented, which tries to simplify this task by providing multiple preview

images for different function settings, so that the user can imagine more

easily how the final image will look like.

Kurzfassung

Eine wichtige Aufgabe in der Volumensvisualisierung ist die Definition von

Transferfunktionen, die es ermöglichen, Bilder mit einem hohen Informa-

tionsgehalt zu erstellen. Auf Grund der zunehmenden Komplexität in den

Bilder wachsen auch die Schwierigkeiten bei der Definition der Transferfunk-

tion. In dieser Arbeit wird eine Lösung für dieses Problem präsentiert, welche

auf der Erstellung von Gallerien von Bildern basiert, die als Vorschau auf das

endgültige Resultat dienen und verschiedene Einstellungen der Transferfunk-

tion(en) repräsentieren. So wird es dem Benutzer ermöglicht, sich eine Vor-

stellung zu machen, wie das Endresultat aussehen wird und von Änderungen

in der Transferfunktion auf Änderungen im Bild zu schließen.
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Chapter 1

Introduction

See things as you would have

them be instead of as they are

Robert Collier

The first part of this introduction will give a quick overview of the visual-

ization process in volume visualization and in the second part we will present

an outlook to the further chapters.

1.1 The Visualization Process

In the volume visualization process we want to enhance and transform the

information in such a way, that the user has a better and more detailed

insight what is covered in the data. We can identify different steps in this

process (Figure 1.1). The first step is the data acquisition, followed by the

data enhancement, the visualization mapping and finally the rendering of the

information.

1.1.1 Data Acquisition

The data we operate on in volume visualization is a collection of sampled

data points, which describe the density values of an object at discrete sam-

1
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Data Acquisition

Data Enhancement

Visualization Mapping

Rendering

Figure 1.1: Visualization Pipeline

pling positions. This sampled data is usually created by tomographic imagin-

ing techniques like computed tomography (CT), magnetic resonance imaging

(MRI), single-photon emission computed tomography (SPECT) or positron

emission tomography (PET). Sometimes datasets are also created from geo-

metric descriptions, this process is then called voxelization.

In CT imaging one important measure are the Hounsfield units, which

describe the translucency of substance to x-ray irradiation . By definition

the Hounsfield unit [39] of distilled water is zero - for more Hounsfield values

of other substances see Table 1.1 .

1.1.2 Data Enhancement

Sometimes it is necessary to preprocess the acquired data. This preprocess-

ing can include resampling or interpolation of additional data points, the

calculation of gradients, or we have to correct motions of the object, which

happend during the sampling process.

So the data enhancement step is extremely important for good results,

because all the further calculations are based on the data, which is generated

in this step. Therefore the quality of the data which is produced in this step
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Substance Hounsfield Unit

Air -1000
Water 0
Bone 1000
Blood 40
Muscle 10 to 40

White Matter 46
Grey Matter 43

Cerebrospinal Fluid 15
Kidney 30
Liver 40 to 60
Fat -50 to -100

Table 1.1: Hounsfield Units (values taken from [37])

is an upper bound of the quality of the final visualization.

1.1.3 Visualization Mapping and Rendering

Visualization mapping and rendering the information are densely coupled,

so we will discuss this issues in one section. In volume visualization we have

two main groups of rendering algorithms [8] and therefore also two different

tasks in the visualization mapping.

The first group are the so called surface fitting or feature extracting algo-

rithms. These algorithms produce surfaces by fitting lines of constant value

with polygon patches together.

We have to specify in the visualzation mapping step the data value for

which the surface should be extracted. After the generation of these patches

we can use common rendering algorithms [2, 3, 4] for these patches to generate

an image. Some algorithms of this group are cuberille [13], contour tracking

[15], marching cubes [7] or marching tetrahedra [33]. The main drawback of

these algorithms is that because of the decision of just one threshold value

for the surface a large amount of information is lost.

The second group of algorithms are the direct volume visualization ren-

dering techniques. In the direct volume rendering process the volume is seen
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as a cloud of particles [22]. If a ray of light goes through a cloud there must

be several effects measured like absorption, emission, scattering and shading.

For simplification the resulting color is normally only computed by a model,

which takes absorption and emission into account. So an approximation of

the volume rendering integral is given by [23]:

Iλ(x, r) =

∫ L

0

Cλ(s)µ(s)e−
R

s

0
µ(t)dtds (1.1)

Here Iλ is the intensity of the light with wavelength λ received at the

position x of the imageplane from the direction r. L is the length of the ray

in direction r and Cλ(s) is light of wavelength λ at the position s, which

is emitted or reflected in the direction r. µ(s) is the density of the optical

particles at position s and the term e−
R

s

0
µ(t)dt calculates the transparency of

the volume along the ray until the position s.

Because the Equation 1.1 cannot be evaluated analytically [22] we have

to approximate the integral with a numerical solution. So we discretize the

integral into a series of intervals with a width of 4s and compute the expo-

nential term using a Taylor series. We get in that way an equation which

can be solved more easily and is known as the common compositing equation

[20]:

Iλ(x, r) =

L/4s∑

i=0

Cλ(si)α(si) ·
i−1∏

j=0

(1 − α(sj)) (1.2)

Here α(si) are the opacity samples along a ray and Cλ(si) are the local

color values derived from the illumination model. We can relate C and α to

the local density value of the volume or other data properties like the density

gradient there. So we can define a mapping between data properties and

optical properties. This relation is commonly known as transfer function.

In general transfer functions can be seen as functions of a Cartesian prod-

uct of data properties to a Cartesian product of optical properties [18]:

D1 × D2 × D3 × ... × Dm → O1 × O2 × O3 × ... × On (1.3)
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Normally transfer functions are implemented as lookup tables. This

means that for a tupel of values of data properties, values of the optical

properties are assigned. The simplest and most commonly used case is to

define the density as data property (m=1) and the opacity and color values

(red green and blue) as optical properties (n = 4). So we get a great variety

of freedom to handle. A common implementation of an editor of such trans-

fer functions will be a graphical tool where we can define piecewise linear

functions through control points. We can assign opacity and color values at

each control point. Here the intermediate values in the lookup table between

the control points are calculated by linear interpolation. Even if we assume

this restrictions we have a great variety of possible transfer functions. To

demonstrate this we will look at some simple case i.e., one control point in

the parameter space of the densities between density 0 and density 4095,

256 quantization levels for opacity and color values. So we get 4096 ∗ 2554

possibilities to define a transfer function of this group of rather simple func-

tions. Most of the time we want to define more complex transfer functions

than a function with just one controlpoint, so we can see that there is a large

parameter space, where we have to find out the best function for our purpose.

Another problem is that the relationship between transfer functions and

the resulting image is often a non linear one. This means that small changes

in the transfer functions often result in big changes in the final image, and

sometimes if there are bigger changes made in the transfer function, there is

nearly no effect in the image.

Before we will go on explaining some direct volume rendering techniques,

we will show an example where a minor change in the transfer function makes

a big effect in the image (Figure 1.2).

In the field of direct volume rendering we can divide the algorithms

in three different groups: image-order, object-order and hybrid-order tech-

niques.

In the image-order algorithms the image pixels are traversed and for each

pixel the color is calculated (Figure 1.3). An image-order algorithm is ray-

casting [20]. This method sends for every pixel of the image-plane a ray

and depending on which voxels will be hit - the color of the pixel will be
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(a)

(b)

opacity

density

opacity

density

Figure 1.2: Comparing transfer functions and resulting images: (a) First
transfer function and resulting image (b) Second transfer function and re-
sulting image
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Figure 1.3: Image Order Traversal

calculated.

The object-order algorithms traverse through the volume and project each

data sample to the image plane - see Figure 1.4. Members of this group are

splatting [36] or texture mapping [27, 6] algorithms.

The hybrid-order algorithms try to combine the advantages of both groups

(the object-order and image-order methods), one member of this group is the

shear-warp algorithm [19]. It is based on a shear and warp factorization of

the viewing transformation. The shear transformation has the property that

after it has been applied all viewing rays are parallel to the viewing direction

in the sheared object-space. So after the shear transformation the image-

and object-space can be traversed simultaneously to produce an interme-

diate image. This intermediate image undergoes a two dimensional warp

transformation to produce the final image.

1.2 Outlook to the next Chapters

In Chapter 2 we will present the state of the art method of transfer function

definition. Corresponding to the image based approach, with the help of
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Figure 1.4: Object Order Traversal

design galleries, we will present different methods of generating such galleries

efficiently in chapter 3. In Chapter 4 the implementational issues of this work

are described. We will present the results in Chapter 5, which are not already

presented in Chapter 3 to describe the methods there. Finally we will give a

short summary of this work in Chapter 6.



Chapter 2

Transfer Function Design

The wisdom of life consists in

the elimination of

nonessentials.

Lin Yutang

We have already mentioned in the previous chapter the problems of defin-

ing an appropriate transfer function. So in this chapter we will introduce the

four main groups of solutions to define a transfer function.

2.1 Four principal approaches specifying Trans-

fer Functions

There are four main types of solutions to define transfer functions [26]. All

these solutions have different advantages and disadvantages, which will be

explained in the following parts of this chapter.

The first is the Trial-And-Error approach. Here the user tries to find

an appropriate transfer function by manipulating the function by hand and

rendering the image, to see what result comes out of the rendering process.

The second approach is the data-centric without data model technique.

This method analyses the structure of a data-set in a first step and then

9
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creates a transfer function based on this information.

The third approach (data-centric with data model) is mostly based on

a mathematical model of boundaries between materials. Based on these

detected boundaries the transfer function is created.

The last method is a quite simple approach (image centric). Here multi-

ple images are rendered, with different transfer functions which are created

through organized sampling through the data spectrum.

2.1.1 Transfer Function Specification through Trial-And-

Error

As mentioned before the transfer function specification through Trial-And-

Error approach is easy to handle but time consuming. The user has a lot of

possibilities to create different transfer functions (color parameter, opacity,

etc.). Therefore it is a hard task to find a transfer function which produces

an appropriate image which meets the user’s expectations. But the user gets

a lot of knowledge about the data. So this method of defining a transfer

function leads to an iterative process:

1. define the transfer function

2. render the image

3. assess the image - if it does not contain the information we wanted to

visualize go back to 1 otherwise we are finished

The visualization pipeline gets one more step - the assessment of the image

and an additional link backward to the visualization mapping step is added

to model the iterative process (Figure 2.1).

Training can reduce the time to find a good transfer function using this

method.
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Data Acquisition

Data Enhancement

Visualization Mapping

Rendering

Image Assessment

Figure 2.1: Visualization Pipeline for the Trial and Error Approach

2.1.2 Data centric Transfer Function Specification with

no underlying data model

In a first step in most of these algorithms there are critical isosurfaces ex-

tracted. In a second step the topological structure of these surfaces is anal-

ysed and based on this data the transfer function will be generated.

One example of this type of method is transfer function design based on

Hyper-Reeb-Graphs [9], which will be presented in the next part. An equal

algorithm, which also works with topological analysis, is presented in [35].

In this paper the authors detect critical values by comparing the incident

points (Figure 2.2).

The transfer function is created based on the critical values (these are the

data values at the critical points) with the same method as described in the

following section (Figure 2.5). Another method which corresponds to this

group is described in [1].
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(a) (b) (c) (d)

Figure 2.2: Critical Property
(a) Around a regular point the isosurface divides the volume into one single
connected part with smaller and a single connected part with higher values,
(b) Around a minimum all other points have a bigger value, (c) Around a
maximum all other points have a smaller value, (c) At saddle points there
are more than one single connected parts with smaller or higher values. The
points in the cases (b), (c), (d) are called critical whereas the point in (a) is
named regular as mentioned above. (Image taken from [35])
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0

1

0

1

1

2

1

1

Figure 2.3: Double Torus with Cross-sections and resulting Reeb-Graph (im-
age taken from [5]). The numbers stand for types of critical points (0 for
minima, 1 for saddle points, 2 for maxima)

Transfer Function Design with the Help of Hyper-Reeb-Graphs

The transfer function design with the help of Hyper-Reeb-Graphs method

interprets the volume dataset as a scalar field and specifies a metric on it, to

analyse the structure of this scalar field and model this structure with the

help of a hyper-reeb graph.

A reeb graph [5, 32, 10] is a structure, which depicts the topological struc-

ture of a manifold with the help of critical points. The definition of these

critical points is based on the morse theory [41]. This theory is named after

Marston Morse [24], an American mathematician. In his work on calculus

of variations he introduced the technique of differential topology, which de-

scribes analysing a manifold based on differentiable functions. With this

method substantial information on the manifold can be retrieved. This the-

ory distinguishes between 3 types of critical points (pits, passes, peaks) also

known as minima, saddle points and maxima - often indexed by the numbers

0, 1, and 2. One easy method to extract these critical points is to generate

the cross-sections [32] of the object along a height function. For a better

understanding see Figure 2.3. Here we see a torus with its cross-sections on

the left and on the right you see the reeb representation of the torus.
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Here we can see that on every critical point (pit-, saddle-, and peak-point)

there is a topological change when taking the height function into account:

at pit-points the figure starts, at saddle points the structure is split into or

merged from two or more parts, at the peak-point the objects ends.

Going back to our dataset we can decompose it into multiple isosurfaces

by its field values. For each surface we can obtain a reeb graph. By examining

these graphs we can extract the information of critical isosurfaces in such a

way, that we compare this surfaces on homo-topic equivalence. If we identify

homo-topic changes we have found a critical isosurface and the referring field

value is called critical field value.

A hyper-reeb-graph [9, 10] is a graph consisting of 2 layers. The top layer

connects nodes with critical field values and the second layer depicts for each

node or better for the node’s critical value the reeb graph of the isosurface

of the volume dataset. The figure 2.4 shows the 3Bloobies dataset and its

hyper reeb representation [9].

In the design of the transfer function based on this graph Issei Fujishiro

et al. [9] want to emphasis the critical surfaces, so they create a color transfer

function which is uniform except at the critical value’s position and an opacity

transfer function which is constant except an elevation at the critical value’s

position (Figure 2.5).

2.1.3 Data centric Transfer Function Design with an

underlying data model

An example of the next class of methods of defining transfer functions was

published in [16]. It is based on an underlying data model - in this case the

model tries to represent boundaries in the data-set.

The Boundary Model

The boundary model is used to detect changes of material based on the

data values. As boundaries are always perceived as some rapid change of

continuous areas, for instance in images, we can approximate a boundary by

nothing other than a step function. But boundaries in real life are not always
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Figure 2.4: Critical isosurfaces of 3Bloobies dataset and resulting Hyper-
Reeb-Graph (image taken from [9])

α 1

1

β

β

β

β
0

1

2

3

1

a

1 1
0

1

1δ

0δ

α

b
c

1α  −ε 1α  +ε

hue opacity

ρ ρ

Figure 2.5: Transfer function design based on critical values (image taken
from [9]) a) color function b) opacity function for critical field value α1
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(c)(b)(a)

Figure 2.6: Boundaries blurred with Gaussian (image taken from [16])
(a) step function for representation of the boundary between different objects
in the dataset (b) Gaussian function (c) Blurred Boundary Model

that sharp as modelled by a step-function therefore to get an appropriate

function for boundaries we have to smooth it - in this case it was done with

a Gaussian filter (Figure 2.6)

The Histogram Volume

An assumption made by Kindlmann et al. [16] is that they are visualizing

continuous data. But they also use an inherent property of isosurfaces and

gradients: gradients are always perpendicular to an isosurface. So the gradi-

ent direction is used as path through the volume to find the boundaries. The

directional derivatives of first and second order along the gradient’s direction

are calculated to get a deeper understanding of the data.

Kindlmann et al. set the three data properties (data value, first and

second derivative) in relation in a so called histogram volume. This is a three

dimensional representation of the three properties, so that each property has

its own coordinate axis:

1. The position of each bin in the histogram volume represents the three

values at a small range

2. The value of the bin itself represents the number of voxels, which cor-

respond to the three values of the bin’s position.
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As it is very important how to calculate the first and second directional

derivatives and we also will need this values again in a later chapter we

will shortly present how this values are measured. Mathematically the first

directional derivative is calculated in the following way by Kindlmann et. al

[16]:

Dvf = Of · v (2.1)

According to the description above they go along the gradient therefore

v = Of and so the first derivative is [16]:

DOff = Of · Of

‖ Of ‖ =‖ Of ‖ (2.2)

This means that the first directional derivative along the gradient direc-

tion is the same as the magnitude of the gradient. Because of this property

they interpret in [16] the second directional derivative as the gradient of

the gradients’ magnitudes. This measure is easy and computationally inex-

pensive to calculate, because in visualization the gradients can be used to

compute the shading. The second derivative therefore can be defined in the

following way [16]:

D2
∇ff = D∇f(‖ ∇f‖) = ∇(‖ ∇f‖) · ∇f =

1

‖∇f‖∇(‖∇f‖) · ∇f (2.3)

We can calculate the histogram volume by the following algorithm (Al-

gorithm 1).

Creating Opacity Transfer Functions

The next question is how to use the information from the histogram volume

to generate transfer functions. Therefore we take a look at the boundary

model, which can be defined mathematically in the following way in respect

to the data value v of a boundary:
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Algorithm 1 Histogram Volume Generation

1. Initialize the histogram volume to zero

2. Make one pass through the volume looking for the highest values of f’
and f”, and the lowest for f’ and f”. After that set the ranges of f’ and
f” accordingly

3. On a second pass: Measure f,f’ and f” at each voxel, determine which
bin corresponds to the values and increase the bin’s value by one

v = f(x) = vmin + (vmax − vmin)
1 + erf( x

σ
√

2
)

2
(2.4)

Where erf() is the error function defined by erf(z) = 2√
π

∫ z

0
e−t2dt, vmin

and vmax are the data values on both sides of the boundary and σ is the

amount of Gaussian blurring of the boundary (Figure 2.6). So the first and

second derivative are [16]:

f ′(x) =
vmax − vmin

σ
√

2π
exp(− x2

2σ2
) (2.5)

f ′′(x) = −x (vmax − vmin)

σ3
√

2π
exp(− x2

2σ2
) (2.6)

The next functions Kindlmann et al. need are g(v), which is the average

first directional derivative function of f , at the position where f(x) = v and

h(v) which is likewise the same for the second directional derivatives. They

also recalculate the boundary thickness through the maxima of f ′and f ′′in

[16]:

f ′(0)

f ′′(−σ)
= σ

√
e (2.7)

Knowing the boundary thickness σ they calculate a function p(v), which

is used to determine on which side a voxel with value v lies - if it is closer to

vmin it is negative, and otherwise if it is closer to vmax it is positive. We can

calculate the function in the following way [16]:
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p(v) =
−σ2h(v)

g(v)
(2.8)

With the help of a function b(x), which is only non-zero around zero

(Figure 2.7) we can define the opacity function [16]:

α(v) = b(p(v)) (2.9)

Also see Figure 2.7 for the results of Kindlmann et al. using this method

to define transfer functions.

2.1.4 Image centric Transfer Function Design

In this group of methods it is common to render multiple images and let the

user choose some of them, to create a transfer function. It is an intuitive

way for the users, but takes a lot of time for computational processing while

the images the user can choose from are rendered. We will present in this

chapter mainly one publication [18], which uses Volume Pro [25] technology

to speed up the rendering process. It also shows clearly the main points of

such algorithms for transfer function specification. Also Marks et al. [21]

describe the use of this method by application of design galleries.

The definition process of a transfer function is divided into three steps by

König et al. [18]:

1. Selection of the data range

2. Color selection

3. Select the opacity for the different data ranges

In the first step the user uses different geometric shapes to select which por-

tion of density values should be selected. This geometric shapes are trape-

zoids, tents, boxes and ramps (Figure 2.8), which are defined round a peak

point. The user can define multiple of these shapes with different positions

and width by hand or he can choose a predefined selection. The system

provides a preview image of each of these selections, so that the user can
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α = b(x)

α

α = b(x)

0

v

x

x

v

α

Figure 2.7: Examples for b(x) and α(x) and their results (image taken from
[16])
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imagine how the final image would look like. The predefined selections are

generated by the system first or can be loaded from a file by the user.

After the user has selected some of these shapes for further use, he has to

define the color for these items. Again the user is supported by prerendered

images and suggestive choices. As in step one he can select such a suggestion

or modify a suggestion, or define a color for the shape by hand.

When the user is satisfied with the selections of the color settings for the

shapes he has selected, he has to specify the opacity for them in the last step.

Here again the user has the option to manually specify the opacity. He also

can select and modify a predefined choice by the system.

The advancement in this approach is to separate the complex task of

specifying a transfer function in three less complex subtasks. This technique,

coupled with the idea of rendering preview images, makes it easier for the

user to imagine how changes in the transfer function affect the final image.
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Figure 2.8: geometric shapes used to define data regions(image taken from
[18])



Chapter 3

Design Gallery Generation

Read the folklore masters. Go

to galleries. Walk in the

woods. That’s what you need

to be an artist or storyteller.

Terri Windling

3.1 What are Design Galleries

We have already seen, it is rather difficult to define proper transfer functions,

because of the large parameter space. We have discussed the four main ap-

proaches to cope with this problem. First we talked about an Trial-And-Error

approach, which is rather simple but time consuming. The second solution

were methods based on structural analysis of the data. The third approach

we discussed was a solution based on a mathematical model of boundaries

of objects and their representation in the data. The fourth approach was an

image-based method. A series of images are generated using different auto-

matically generated transfer functions. Then the user can select the image

which matches best his expectations. This solution is easy to handle but

is computationally rather expensive, because of the rendering of multiple

images. The Design Gallery approach is a member of this class of solutions.

23
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The interface usually provides an overview of the images and a function

for their selection. Sometimes advanced functions are provided like selecting

different viewpoints or generating additional resulting images from two se-

lected ones [18]. The overview of the items of the gallery is provided through

small thumbnail images and sometimes also in combination with a map where

for all items some representatives are viewed [21].

In our raycasting system (see Chapter 4) we use this method for the

definition of transfer functions of multiple objects rendered in one image. In

this case the definition of transfer functions is even more difficult, than in

the simpler case with one object, because of the interaction of two or more

objects in one image, each having its own transfer function.

These difficulties lead the use of a design gallery. We generate transfer

functions with the help of organized sampling. The resulting images of these

functions are displayed in the gallery.

3.2 Generating Transfer Functions

This section describes the basic algorithm for transfer function generation.

The core algorithm is presented in the next section and some additional re-

finements are then discussed in the further sections. The transfer function

implementation we are talking about in the next sections is based on piece-

wise linear functions. This means there are some controlpoints which can be

changed and the values (opacity, red, green, blue color) between the incident

controlpoints are linearly interpolated. In this work’s figures the opacity is

depicted as the ordinate value of a controlpoint (Figure 3.1). The algorithms

we are talking about in the following chapters will focus on manipulating

the opacity to enhance the visibility of objects in the dataset. The color

can be defined in the following step (see Section 4.2 the section about the

Gallerymodule for more details).
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Figure 3.1: Schematic description of the piecewise linear transfer function

3.2.1 Transfer Function Generation through Organized

Sampling

The basic idea of generating a sequence of transfer functions is to create some

patterns (e.g. tent, box, ramp) at some specific points along the data axis

for every transfer function. The first and easiest approach is to generate this

sampling points at discrete intervals along the data axis.

Algorithm 2 Generate Transfer Function sequence with a constant offset
between the data values, where the patterns (e.g. box, tent, ramp) are
created

1. Initialize the sample-point to minimum value

2. As long as the sample-point is smaller or equal the maximum value do
the following

3. Create a transfer function with zero opacity along the data axis

4. Set controlpoints for the selected pattern at the sample-position

5. Save the transfer function to a list

6. Go back to 2
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This Algorithm (Algorithm 2) is the very basic step of generating the

transfer function sequence. In some further refinement methods another al-

gorithm was used which takes a list of specific sample points and creates the

sequence of the transfer function not with constant offset between the sam-

ples, but with the positions from the list as creation points for the patterns.

The idea of using the patterns (box, tent and ramp) was already used by A.

König and E. Gröller [18]. In this paper an algorithm like Algorithm 2 is

used for generating multiple transfer functions, which cover the whole data

range. We took this idea and tried to improve it in different manners.

First we have to take a look on the essential aspect of these algorithms,

and that are the patterns. We will reproduce the the properties of the pat-

terns which were already discussed by König et al. [18]. We will introduce

first the different geometric shapes.

The box pattern is rather simply defined: the height defines the opacity

and the width the covered region of data values. Data values which lie

at a distance of the half of the width of the box in both directions from the

position are affected by this pattern (see Figure 3.2). The opacity is constant

for the whole covered data region.

The tent pattern is defined around its peak in the middle. So the height

is the opacity there. The covered data region is again defined by half of the

width around the position, which is just in the middle of the tent

(Figure 3.3). The opacity is obviously not constant for the region, but we

have not such steep ascends and descends compared to the box.

The ramp pattern is well known in volume visualization as a windowing

function. Beneath a certain limit all data values will be cut out (zero opacity)

and therefore the values will not be represented in the image. The opacity of

the data values which are in the scope of the slope are increased successively

until the final opacity is reached, which is defined by the height of the ramp.

The factor of height/width defines the ramp’s slope. The reference point for

the position of the ramp lies in the middle of the slope (Figure 3.4).

If we compare the achieved results from the box, tent and ramp pattern

(Figure 3.5), we see that we get rather bad results from the box pattern,

because it produces a lot of noise. This goes back to the fact, that if we use
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Figure 3.2: Description of the Box Pattern
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Figure 3.3: Description of the Tent Pattern

the box pattern we get a reconstruction kernel with a lot of high frequencies,

which leads to a lot of noise. We can achieve nearly the same results with

the tent pattern, only the quality is better, because we do not have the steep

ascends and descends in this case. The ramp pattern shows the windowing

behaviour we have discussed first. It shows the surfaces in a good quality,

but we cannot see what lies beneath them. In this case the tent pattern is

better, because it gives also some information of the interior.

As conclusion of this section we will now present a graphical representa-

tion of the algorithm. We use in this case the tent pattern (Figure 3.6). In

this figure we see in the first row a line with the sampling points marked with
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Figure 3.4: Description of the Ramp Pattern

(a) (b) (c)

Figure 3.5: Results: (a) box pattern, (b) tent pattern, (c) ramp pattern
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one, two and three. Above you see the transfer function sequence which will

be generated (TF1, TF2, TF3). Another thing we can see is that the trans-

fer functions of the sequence are nearly similar. This means each succeeding

function in the sequence differs only from the function before by an offset of

the pattern creation point.

To get galleries using the transfer function generation through organized

sampling method which sufficiently cover every object in the dataset, we have

to sample rather often. This increases the size of the galleries and they will be

hard to handle and rendering them costs a lot of time. Our intention was to

reduce the number of rendered images. But our focus was not only to reduce

the number, we even wanted to have a meaningful spectrum of images. This

means they have to be different and should depict as much information of

interest as possible. In datasets are mostly some features we want to extract

(e.g. bone, tissue, vessels, etc.). We wanted to design methods, which will

enhance these features. We can achieve this enhancement through different

approaches. The first method which comes in mind is based on the data

value. The next section deals with this idea.

3.2.2 Refinement based on the data values

We search for big differences in neighbouring volume elements. This can be

a hint, that there is a boundary between two objects. We use the density

values there as sampling point in the data space of the transfer function. For

the search of these differences we use the gradients. We can compute the

gradient by

5f(x, y, z) =
∂f

∂x
x̂+

∂f

∂y
ŷ+

∂f

∂z
ẑ =




f(x + 1, y, z) − f(x − 1, y, z)

f(x, y + 1, z) − f(x, y − 1, z)

f(x, y, z + 1) − f(x, y, z − 1)


 (3.1)

where x̂, ŷ and ẑ are the unit vectors in the x-, y- and z-direction. This

means the longer the gradient magnitude, the bigger is the value difference

between adjacent voxels. We can assume on a position with a large gradient,
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Figure 3.6: Overview of transfer function generation: Here by example the
generation of the first three transfer functions of the sequence are depicted.
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there is also a change in the material. As far as we want to display the differ-

ent materials or better the border between them to distinguish the features

in the dataset this can be a good measure to find this feature. So we can

define a method for finding transfer functions to emphasize borders in the

following way:

1. Specify a threshold (highest and smallest value) of the gradient mag-

nitude

2. Go through the volume and calculate the gradient magnitude at every

voxel

3. If the magnitude is between the threshold values and a transfer function

using this density value as sampling point has not been already created,

we create a transfer function with a pattern at this value.

The gradient magnitude can be seen as the first directional derivative (com-

pare Equation 2.2) based on the voxel values. We can go one step further and

calculate the second derivative. Then we can interpret the second derivative

as magnitude of the gradient of the gradients’ magnitudes - the curvature

(compare Equation 2.3). Therefore we define an algorithm in nearly the

same way as before, but instead of using the gradient’s magnitude, we now

use the magnitude of the curvature as reference value for comparing with the

threshold values (low and high).

Both methods produce nearly the same result, but the algorithm for the

second derivatives has a significantly higher runtime. As we can see in Figure

3.7 these methods generate very good results if we want to find isosurfaces.

But both algorithms depend extremely on the underlying data. One problem

is that there are usually a lot of differences, so we have a lot of different data

values, for which the gradient value falls in the threshold interval. So if we

choose for example the threshold values from 2350 to 2400 it produces a large

gallery with 552 items. But if we choose a smaller interval with difference

values of about 2000 we get a result like it is shown in Figure 3.7. Gradient

values with values lower than 1000 even increase this problem, because the

number of data values in the threshold interval even increases if we use smaller
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Figure 3.7: Gradient based method: Here a high threshold value of 2100,
a low value of 2098 and the ramp pattern are used for transfer function
generation

threshold values. But if we choose the threshold values too high (above 4000)

we usually only get features with high densities (e.g. teeth) or no items.

Because of the small threshold intervals these two methods are rather

limited. We tried another approach with the help of the data histogram to

work around this problem.

3.2.3 Refinement based on the histogram

The data histogram is an array of scalar values, which lists for each density

value the number of voxels which occur in the dataset. This array can be
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easily produced by going through the volume and checking for each voxel the

data value and increment the number of voxels which have been found with

the same value in the array.

The first attempt was to apply a threshold method to the histogram,

which was rather simple to implement by comparing each value in the his-

togram array with the threshold value. But this method does not lead to a

good result, because of two reasons:

1. The characteristic of most datasets in medical visualization is that there

are a lot of datapoints with low density values in it, because of the air

which usually surrounds the scanned objects. This data is normally

not wanted because it does not contain any useful information about

the scanned object. These data items affect the thresholding method

very strongly, because they represent far the most units in the dataset.

2. The thresholding process itself prerequesites a lot of knowledge, because

we cannot state generally acceptable threshold values that will always

lead to good results.

We have to think of a method to overcome this bad dataset characteristics.

Our next idea was to use a method which measures differences of consecu-

tive histogram values. The consideration behind that was that the different

objects in the data are limited to some specific interval of data values and

the following values should be very low until we reach the range of values for

another object. We implemented a method which compares the difference

of two consecutive histogram values with a threshold value. If the difference

is bigger than the threshold value, we will place a pattern in the transfer

function at the position of the first value. But as we can see in Figure 3.8

this method does not yield a good result. There are two reasons why this

method does not work well:

1. The characteristic of the datasets, that we have a large amount of low

data values of no interest also leads to big differences in this data range.

So a lot of data values there are chosen for the patterns position.
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Figure 3.8: Result of Histogram Difference Thresholding with a threshold
value of 3000
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2. Our assumption that there are steep steps in the histogram between

the data ranges of different objects is wrong. So the histogram seems

to be more continuous between different objects.

The next method is based on finding local maxima in the sequence of his-

togram values. This algorithm extracts the peaks in the histogram as creation

positions of the patterns in the transfer functions. We compute these posi-

tions by comparing consecutive histogram values and if we have a change

from a monotonic increasing values to monotonic decreasing values, we have

found a local maximum. This peak point is then used as creation position

of the pattern in the transfer function. This method usually produces rather

large galleries, because there are usually a lot of peaks in a histogram of

a dataset. But we can use some image based method (these methods are

discussed in the next section) to downsize the gallery (Figure 3.9). The local

maxima method itself produces in this case a gallery of 990 items.

As conclusion of this section we can say that we have not found a method

based on histograms to overcome the problem of the large amount of data

with low density values. But even the last method seems to extract a lot

of interesting images. The size of this gallery is far too big to provide the

user a good overview. This leads us to the idea to add an extra processing

step based on the produced images, to sort out similar images. We can

generate galleries which give a representative summary of these large image

collections. These image based methods for gallery reduction are discussed

in the next section.

3.2.4 Refinement based on images

The following algorithms are based on a sequence of transfer functions like

they are defined in a gallery configuration file and try to optimize this con-

figuration for a special dataset. With these methods images are rendered,

which are defined by the dataset and the transfer functions, and then these

images are assessed according to some image measure or compared with an-

other to get distinct images and reduce the size of the gallery in that way.
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Figure 3.9: Result of Local Maxima Method: Here the local maxima method
was combined with the pixel-difference method (Section 3.2.4) with a thresh-
old value of 2500
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We will discuss first the image measures and then we will go forward to their

application in the different methods.

Image Measures

First of all we have to investigate the properties of the RGB-colorspace

[34, 38], because the resulting images of our rendering system are RGB val-

ues. This colorspace consists of three stimuli for red green and blue, which

are the three primary colors for an additive color system. This color system is

mainly based on the color perception of the human eye. The photo-receptors

for viewing colors are called cones. These cones respond to yellowish-green

(564nm), green (534nm) and blue (420nm) light - in brackets we have men-

tioned the wavelength for each. The three primary colors result from the

fact, that with light of red-, green- and blue-wavelengths these three type

of cones can be stimulated nearly independently. We can now interpret this

color system as a space with a three dimensional coordinate system. We can

refer each of this three values to one coordinate axis. Each R,G,B-Triple

has its point in this space (see Figure 3.10). Along with this information we

can define a measure for the distance between two colors by the euclidean

distance in that space:

dist(c1, c2) =
√

(rc1 − rc2)2 + (gc1 − gc2)2 + (bc1 − bc2)2 (3.2)

Because of the fact, that algorithms sometimes work on luminance data,

we have to calculate this value from the red green and blue values. For this

task the following equation is commonly used [40]:

lum(c) = 0.3 ∗ rc + 0.59 ∗ gc + 0.11 ∗ bc (3.3)

As we can see in the following image (Figure 3.11) this formula corre-

sponds to the perception of the human visual system, where the blue factor

contributes the fewest amount to the final luminance of the color and the

green factor the most.

During the work of C. E. Shannon on information-theory [30] he defines

the information content of a symbol or message by:
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Figure 3.10: RGB Coordinate-system and euclidean distance

Figure 3.11: red, green, blue to gray level conversion
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I(m) = − log2 p(m) (3.4)

where p(m) is the probability of the occurrence of m in the output. So

if the symbol or other pattern m occurs very often it has fewer meaning

to the complete information, than a symbol that occurs fewer times. But

also symbols which have nearly no occurance in the message have a lower

meaning than others. So the complete information content of a string or

another sequence of symbols with n different symbols (patterns) is defined

by:

H(x) =
n∑

i=1

p(i) ∗ I(i) = −
n∑

i=1

p(i) ∗ log2 p(i) (3.5)

This formula is also known as entropy. Our intention is to use this formula

as a measure for information content in an image. For this topic we defined

Algorithm 3.

Algorithm 3 Entropy of an image

1. We convert the RGB-image into a gray-level-value image with 255 gray-
levels with the help of equation 3.3

2. In a first pass through the image the number of occurrences of each
gray level is counted. After that we calculate the possibility of the
occurrence of each gray level by dividing this value by the number of
pixels of the image

3. Now we can use equation 3.5 to calculate the entropy of the image

Another measure based on images, which detects certain features like

edges are gradients. For this task of finding gradients we again use the conver-

sion of the RGB image to a luminance intensity image

(see Equation 3.3). We can interpret this luminance image as a scalar field

of values:

f : N × N → [0; 255] (3.6)
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This means we can define an operator to calculate gradients except at

the boundaries of our image. We have to set a boundary condition. We

can use that the gradient magnitude is zero at the boundary or forward and

backward differencing as boundary condition. For the other positions we can

define the gradient in the following way:

5f(x, y) =
∂f

∂x
x̂ +

∂f

∂y
ŷ =

(
f(x + 1, y) − f(x − 1, y)

f(x, y + 1) − f(x, y − 1)

)
(3.7)

where x̂ is the unit vector in x-direction and ŷ is the unit vector in y-

direction. We can use this operator to calculate the maximum or average

gradient magnitude of an image to measure if there are strong edges in the

image.

If we have defined the gradient magnitude as first order derivation of our

scalar luminance image, we can go one step further. As we have defined

the first order derivatives over the whole region of the image (including the

boundary conditions), we can now define in nearly the same way a second

order derivative of the luminance image. We can define the second order

derivative in the context of the following scalar field:

g : N × N → R : g(x, y) = ‖∇f(x, y)‖ (3.8)

Because of this identity (Equation 3.8), the gradients of these field are

defined by:

∇g(x, y) =
∂g

∂x
x̂ +

∂g

∂y
ŷ =

(
‖∇f(x + 1, y)‖ − ‖∇f(x − 1, y)‖
‖∇f(x, y + 1)‖ − ‖∇f(x, y − 1)‖

)
(3.9)

Refinement based on Image Entropy

The first idea was to use some measure for the information in an image.

For this task we used the entropy [30] of an image. The method we use

here compares the calculated entropy (see Algorithm 3) with a threshold

value. If the entropy is bigger than this value the image is taken for the

new gallery. We can manipulate the size of the gallery indirectly by defining
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a bigger or smaller threshold value. This method can be used to sort out

low information images of an existing gallery with the help of a threshold

value. Because it is applied to an existing gallery the size of this collection

is an upper bound for the size of the new gallery. For example we can

generate a gallery first and reduce it to the images with the most information.

Here we generated a gallery with the transfer function generation through

organized sampling method with a sampling distance of 100 and the ramp

pattern. Then we apply the entropy method to sort out the images with less

information content. These are the images which only consist of a limited

number of gray level values. You can see the results of this test in Figure

3.12. This method works very good and can be used quite easily to sort

out low information images by using a small threshold value (e.g. 0.02). To

verify this we tested the method on various datasets and the main viewing

position along the x- y- and z-axis.

Refinement based on Image Gradient Magnitudes

The next idea was to design a method to detect edges in images, because

edges are usually a structure, which separate different objects in images. So

our consideration was that if there are a lot of edges in the image, the image

contains a lot of information of different objects in the dataset.

We have defined how to calculate image gradients (Equation 3.7). We

will use that definition to design two algorithms based on gradients. The one

algorithm measures the maximum gradient magnitude in an image and the

other the average gradient magnitude. Both methods compare the calculated

value with a threshold value. The significant difference in the results between

them can be seen in Figure 3.13. We see that in the images of the maximum

method we get finer details, whereas the average method selects also images

which have a lot of small gradients.

We have also designed algorithms which are based on the curvature

(Equation 3.9). We have again implemented methods to compute the max-

imum and the average value of this measure in an image. These values are

again compared to a threshold value. If we compare both of these methods
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(a)

(b)

Figure 3.12: Filtering images by image Entropy: (a) First we created a
gallery with the transfer function generation through organized sampling
method with a sampling interval of 100 and the ramp pattern (b) Then the
images of less information are filted out with the help of the entropy method
with a threshold value of 0.02
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(a) (b)

Figure 3.13: Comparison of Maximum and Average Gradient Magnitude
Methods: We see that in (b) the maximum method selects more images with
fewer objects which have high gradients than the average method in (a)
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again, we can see the same effect as in the results of the methods which are

based on the gradients: The maximum method usually shows finer detail

than the average method, which selects images with more smaller gradients

(Figure 3.14). We can also compare the results of the gradients methods and

those of the curvature information methods. So we see that in the second

group of algorithms there are more images with finer details selected. This

corresponds to the fact that in the calculation of the curvature we emphasise

edges more in the image by the second differential step. We can use these

methods easily to create smaller galleries with the help of the threshold value.

Refinement based on Image Difference Calculation

We can consider that usually succeeding transfer functions in this sequence

will create more similar images in the gallery than compared to the other

functions in the sequence. Therefore our next idea was to design methods

which compare the images of these neighbouring functions. These algorithms

use difference calculation between images to select appropriate images. The

question now is how do we measure the difference between images. As our

images consist of pixels, which are defined by RGB-colors, we can use the

RGB-RMS-color-difference formula (Equation 3.2) to measure the difference

between two pixels. We can use this to define methods to compute the

difference between two images. The first algorithm - the summed difference

method - sums up the pixel differences and returns this sum as a measure of

the difference between these two images. This is easy to implement:

1. We resample the two images to the same resolution.

2. We compare the pixel at each position from ”image one”with the pixel

of ”image two”and calculate the difference

3. We sum up these measured differences

This calculation ends in some for the user unintuitive value and is therefore

difficult to use, but it is a more precise measure than the second one we

have implemented: In this method - the pixel-difference method - we define
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(a) (b)

Figure 3.14: Comparison of Maximum and Average Curvature Method: We
see that in (b) the maximum method selects more images with fewer objects
which have high gradients than the average method in (a)
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a threshold which is used to measure above which value the pixels should

be identified as different. Then we count the pixels over an image which

are different, this means the distance of their colors are greater than the

threshold value.

We can use these measures to reduce the gallery size. We define a thresh-

old value to measure how different the images in the gallery should be. In

these methods we take the first image and put it in the final gallery. If the

difference between this image and the next image is bigger than the threshold

value we add the next image also to the gallery. If the difference is smaller

than the threshold value we do not put the image in the final gallery. The

next comparison is made between the image which was chosen last for the

gallery and the next which was not already measured. We continue this

procedure until we have reached the end of the gallery.

In this application the distance measure of counting different pixels will

be more easily to handle - which means to define a threshold value. For the

user this value is more obvious than the summed difference of color values.

But as we have stated before the summed difference method is more precise

(Figure 3.15). We can see in the figure, that the last two images were not

chosen by the pixel-difference method, because the values of that images were

smaller than the threshold value. The summed-difference method gives us

more power to fine tune between the images which we would like to have and

is not bound that much on the image resolution given by the system.

A third more advanced algorithm - advanced image selection method - was

also created, which uses the summed-difference method. With this algorithm

we can determine the final gallery-size explicitly and precisely by a number.

Whereas in the other algorithms this can only be handled indirectly over the

threshold value.

The method first selects the image from the middle of the source gallery

for the final gallery. Then it tests which image in the source gallery is the

most different from it and puts this image in the final gallery. The images

which have already been taken into the final gallery are removed from the

source gallery. So that we do not select the same image twice. The following

images are tested against the images which are already in the final gallery.
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(a) (b)

Figure 3.15: Comparison of Pixel- and Summed Image Difference Method:
(a) Pixel Difference Method (b) Summed Image Difference Method
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(a) (b)

Figure 3.16: Advanced Image Selection Method Comparison: (a) shows the
Advanced Image Selection Method applied on the gallery which was created
by the brute force method with the ramp pattern. (b)shows the same method
except that the gallery was before preprocessed with the average gradient
method with a low threshold value (0.01).

This procedure is continued until we have reached the final gallery size. This

method has some problem if there are too many black images in the source

gallery. It selects black images multiple times because they are often the

most distant to the images which have some content (Figure 3.16 (a)). This

is the fact because we sum up the differences to the images in the final gallery.

We can overcome this problem by removing the black images first from the

source sequence of images. For this task we can use for instance the image

entropy or gradient methods with a low threshold value (Figure 3.16 (b)).
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3.2.5 Refinement based on Genetic Algorithm

In the following section we will present a genetic algorithm for searching

the space of possible transfer functions [12] to find a population of transfer

functions for which the rendered images correspond best to our expectation

of finding different objects in the dataset.

First we will talk about genetic algorithms in general and then we will

discuss the specific problems in our task of finding informative images.

Genetic Algorithms in General

Genetic algorithms [31, 17, 28, 29] try to copy the evolution process of nature

to find solutions not only for combinatorial problems, but also for optimiza-

tion of non-linear structures and continuous parameter optimization. It was

introduced by Holland [14]. It is a general principle and can therefore be

applied in different fields of problem solving. One common fact in these al-

gorithms is that we are not only operating on a single item, but on a group of

items (the individuals). This group of individuals is also called population.

As already mentioned we try to copy the evolutionary process, which is used

in nature. So we have to re-engineer this process for the problem we want to

solve. We will present here a short summary of the most important principles

of the evolutionary process in nature:

1. Selection: As Charles Darwin has defined in his work “On the origin

of species by means of natural selection or the preservation of favoured

races in the struggle for life” in 1859, selection is the process of choos-

ing the individuals, which are the best (strongest) to survive and for

reproduction.

2. Recombination: Process of reproduction of new individuals from the

old ones.

3. Mutation: Random event which can lead to a new development in

the reproduction process. If it leads to better individuals these are

preferably chosen in the selection process otherwise the mutation does

not take any effect.
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As we have already come across the term individuals it is clear that we

need some encoding for the individuals which form the population. Often

this encoding is named chromosome and contains all parameters of possible

solutions of the problem. These chromosomes are often represented as a

vector of items, which are also named genes. Because a chromosome is the

encoded form of a solution, which is also named genotype, there is obviously

also the decoded form of this genotype - the phenotype, which is the solution

of the problem we want to solve.

Next we will present how such an genetic algorithm works (Algorithm 4)

then we will present some recombination operators and make some remarks

on the use of genetic algorithms.

Algorithm 4 Genetic Algorithm
1. set generation g to zero

2. initialize the population: P(g)

3. evaluate the population P(g)

4. As long as termination condition is nor met do

(a) g = g + 1

(b) Ps(g) = select(P (g − 1))

(c) Pr(g) = recombine(Ps(g))

(d) P (g) = mutate(Pr(g))

(e) evaluate(P (g))

5. end

In a genetic algorithm we select chromosomes then recombine them, then

mutate them and finally evaluate the new population. We have to provide

a calculation of the fitness of each individual to evaluate the population.

We have to define a measure how good the chromosome approximates the

solution of the problem we want to solve. This fitness function can also be

used in the selection to do a fitness proportional selection, which corresponds

to Darwin’s definition of selection.
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Figure 3.17: 1-Point-Crossover

The termination condition of the genetic algorithm can be for instance

a maximum generation limit or a maximum / minimum fitness value. This

depends on the fitness calculation and the problem we want to solve - if this

fitness value should be maximized or minimized.

For the recombination of two chromosomes there are usually crossover-

operators used. We can distinguish between 1-point-crossover, 2-point-crossover,

multipoint-crossover.

1-point-crossover is rather simple: We divide the chromosomes in two

parts for each chromosome at the same position and exchange the last parts

(Figure 3.17). 2-point-crossover just selects 2 positions where the part in

between these two points is exchanged (Figure 3.18). Multi-point-crossover

is a generalization of these process to more partitions. One more operator

is the uniform-crossover operator. It decides for every gene if it is kept or

exchanged.

For mutation there should be an operator implemented which generates

small random changes in the chromosomes. As a consequence we get for

instance a new direction in searching our space of solutions. If the changes,

which are made in this step, are too big, the genetic algorithm continuously

jumps to different positions in the search space. The local solutions at each

position will not be properly examined. The search process will degenerate to

a random search of the whole space of solutions, which has nearly no chance

to find the optimum in a big parameter space.
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Figure 3.18: 2-Point-Crossover

One important factor in genetic algorithms is the selection pressure, which

identifies how much a better individual is preferred over an individual with

a worse fitness. If the selection pressure is too high the best individuals will

increase too fast and therefore the different individuals in the population

will decrease very fast - this means that the algorithm will often converge

too fast to a locale optimum and cannot find the global optimum. If the

pressure is to low there is nearly no increase in the best individuals and a

lot of chromosomes with a bad fitness will be in the population. This means

that the genetic algorithm converges very slowly.

Genetic Algorithm for the selection of informative images

The first issues we will meet are the issues regarding encoding of the geno-

types and how to get the phenotypes. Then we will talk about different

fitness functions and how we have implemented the selection task, followed

by the definition of the recombination and mutation operators.

The phenotype is the final image, because this is the goal we want to reach

- a good informative rendering. In our case the genotype is also obvious, it is

the transfer function, as this is the main structure we can manipulate to get a

different output in the images. We have defined the genotype as a piecewise

linear function and the phenotype as an RGB-image. Now we have to specify

a fitness function which should be applied on the phenotype to judge how

go the result is. We have already defined such estimators in the previous
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chapter, so it is an easy task to use them again. We use the entropy as a

measure of how much information is in the image and the average gradient

magnitude estimation as a measure of how many edges are depicted in the

image. So we can again apply the methods of the previous section for this

task.

The next topic we have to think about is the selection. We have imple-

mented a fitness proportional selection. We implement this by generating

an array of multiple individuals from the population. The number of each

individual in this array depends on the fitness of the individual. The higher

the fitness value is, the higher is the number of items of this individual in the

array. Then we select a random number and take the item which is at the

specified position in the array. This method is also known as roulette-wheel

selection. So we select the individuals from the current population which

should be recombined with each other. The number of selected individuals

for recombination depends on the recombination rate, which is a factor of

how many items of the new population should be created through recombi-

nation. The other items will be selected randomly from the old population

to get again a population of the old size.

We have already talked about recombination with the help of the crossover

operation. Here we will specialize the 1-point and 2-point-crossover for our

domain ( transfer functions ). In the 1-point-crossover method we have to

select a position where we want to separate the two transfer functions to

exchange the second part with each other. This position is randomly chosen.

We have to add controlpoints at the separating position and right before

it, before we can exchange these parts which is simply done by exchanging

the controlpoints in this part of the functions. The color and opacity val-

ues at these positions can be looked up in the lookup table of the transfer

functions. So we create two new transfer functions out of the selected ones.

These individuals are therefore usually named children of the two selected

individuals.

The algorithm for 2-point crossover works analog except we have two more

pairs of additional controlpoints to set we have two seperating points. We

randomly choose two positions for the separating points. Then the internal
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section between these points is swapped between the two transfer functions.

After the recombination and we have to refill the new population to the

size of the old one by adding randomly chosen individuals from the previous

generation. Afterwards we can apply the mutation. For this operation we

have designed two algorithms: one which adds a controlpoint at a random

position and another which randomly changes the existing controlpoints in

opacity. The chromosomes, which should be mutated are selected randomly

from the population. The number of selected individuals for the mutation is

controlled by the mutation factor.

We have also applied another feature to this algorithm which is not gener-

ally part of a genetic algorithm: We have added a forward factor. This means

we add for a specified number of the whole population the best individuals of

the old to the new population. This increases the selection pressure. So this

feature should be used with caution, because as we have explained before

this can yield to an unwanted restriction of the search area.

The disadvantage of these stochastic search techniques is in general, that

it always takes a lot of time until the algorithm converges to a final result,

and the algorithm is very sensitive on the initial parameter settings So some

parameter settings lead to a faster converging search process, but the solu-

tion would only be the local optimal solution of a small search space. We

see that the result of such a fast converging search process is that there is

no improvement in the fitness value (Table 3.1 the result with 30% forward-

ing). Or the setting can lead to a search process which continuously jumps

to different positions in the search space. So the local neighbourhood of solu-

tions at each position is not properly examined. This degenerates the search

process to a complete random search, which has nearly no chance to find a

good solution. We can see that in Table 3.1 the result with 90% mutation

produces such a search procedure and therefore the resulting fitness (3.414)

is not much higher than the initial one (3.115).

In the test runs we have made with different datasets, we have found out

that setting the mutation rate to about 30 percent and the recombination

rate to 70 to 80 percent are good values and will lead to a good convergency

behaviour. The tests also showed that the two different fitness functions
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For Fitness : Init. Fit. Recombination Mutation Gen Runtime Final Fit.
1-Point 2-Point Man. Ins.

0% Ent.: 3.113 70% 30% 100 3m 51.515sec 4.227
0% Ent.: 3.113 70% 30% 1000 35m 18.394sec 4.098
0% Grad.: 0.137 70% 30% 1000 34m 39.49sec 0.312
0% Ent.: 3.113 70% 30% 10000 6h 46m 49.03sec 5.344
0% Ent.: 3.113 70% 30% 10000 6h 40m 20.05sec 3.211
30% Ent.: 3.113 70% 30% 1000 35m 20.05sec 3.113
0% Ent.: 3.113 70% 90% 10000 6h 48m 14,15s 3.414
0% Ent.: 3.113 70% 30% 10000 6h 19m 40,323s 3.115

Table 3.1: Test-runs of Genetic Algorithm (For = Forwarding Factor, Init.
Fit. = Initial Fitness of the best individual, Ent. = Entropy Method, Grad.
= Average Gradient Method, Man. = Controlpoints Manipulation Method,
Ins. = Controlpoint Insertion Method, Gen. = Generations, Final Fit. =
Final Fitness of the best individual

Figure 3.19: Best Result of the Gradient Fitness Function after 10000 Gen-
erations, Viewaxis: Z-Axis

(the first optimizes the average gradient magnitude of the resulting images

and the second the entropy of the images) will lead to rather different best

results (compare Figure 3.19 and Figure 3.20). This can be explained by

the different goals of the gradient fitness function (improving edges) and

entropy fitness function (improving information content in the image). In

the tests it was also found out that the 1-point-crossover method will lead to

a slower convergence of the genetic algorithm than the 2-point-crossover. In

the context of the mutation algorithms it turned out, that the controlpoint

insertion is better and leads to a faster convergence of the algorithm than

the controlpoint manipulation method.
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Figure 3.20: Best Result of the Entropy Fitness Function after 10000 Gen-
erations, Viewaxis: Z-Axis

Figure 3.21: Best Result of the Entropy Fitness Function after 10000 Gen-
erations, Viewaxis: Y-Axis
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We have not discussed until now that the image based methods are very

dependent to the viewpoint. This leads also to big differences in the results

of the genetic algorithm (compare Figure 3.19 and 3.21). We see that this

leads to different results in the images and in the transfer functions. It is

usual to genetic algorithms that the best results differ from time to time even

if we start with the same initial solution. But we can see that in this case

the differences are too big that we can assume that this variance in the fanal

solution is based on the random behaviour of the genetic algorithm.

We have seen through out this chapter that the image based methods

help a lot to avoid similar results in a gallery. The great disadvantage of

these methods is the view dependency. We cannot be sure if we lose some

good transfer functions through the fact that these functions will produce

informative images by viewing the object from another viewpoint. Even

more there can be cases that the results of the transfer functions are rather

good from one viewpoint, but not from another one.



Chapter 4

Implementation

When there were no

computers programming was

no problem. When we had a

few weak computers, it became

a mild problem. Now that we

have gigantic computers,

programming is a gigantic

problem

E. W. Dijkstra

In the following chapter we will give a short overview of the main frame-

work (Figure 4.1) for volume visualization, which was programmed as part

of this diploma thesis. Then we will present the tools which were used to

analyse the different methods of gallery generation.

4.1 The Main Application

The idea was to design a framework for different methods in the field of

medical visualization. Therefore the system has to be easily extendable, this

means we need a modular design to integrate new functionality. We have

created a scalable concept which is based on mainly five parts (Figure 4.2):

58
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Figure 4.1: The Application
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• Configurations

• Views

• Modules

• Renderers

• Actors

We will begin to describe them at the Renderers. These modules create the

images, which are displayed in the View to which the renderer is applied to.

The actors manage user interactions which are directly created at the space

inside of the views like mouse moves and clicks and keyboard events. These

events are forwarded to the renderers to set the necessary parameters there.

The View is the visible GUI-frontend of one or multiple renderers and can be

resized and has a basic menu where the user can save the current contents

of the view in an image or create short movies. Some special views also

have a toolbar to switch between different interaction modes - especially for

manipulation of camera or object positions in 3D.

The top-level container which can group such views is the configuration.

A configuration can have multiple views and modules. The modules and

views which form such a configuration are defined in a separate file.

Modules are the items positioned at the sidebar, these items can be hid-

den or fully displayed by switching the arrows button (Figure 4.3). These

items can be used to define parameters for the whole application (e.g. the

preferences module to define the colors of different GUI-parts of the applica-

tion) or just a single renderer (e.g. SlicerRenderer or DVRRenderer).

The user can manipulate the layout of such configurations by defining

which modules and views should be loaded. In the application a user can

then load and unload these different configurations at runtime by selection

of the configuration in the Configurations-menu from the main menubar

(Figure 4.3). If a user loads two or more configurations the views will con-

nect and disconnect the signals to slots of the modules as the user switches

between this configurations. This connect- and disconnect-process is also
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CModuleManager

CConfigManager

CConfig

DVRActor

SlicerActor

Actor

CModule

CView

Raycaster

DVRRenderer

SlicerRenderer

Renderer

SegmentationDVRView

SegmentationSlicerView

SlicerView

DVRView

GalleryModule

RaycasterModule

SegmentationModule

ObjectModule

DatasetModule

TransferFunctionEditorModule

VolumePaintingModule

PreferencesModule

SlicerModule

1

*

1

*

1

1

1

*

1 *

1 *

1

1

Figure 4.2: Class-diagram of Views, Modules, Actors, Renderers and Con-
figurations
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applied if a user switches in a configuration between two views. If we have

loaded multiple SlicerViews for instance we can activate one View by click-

ing on it. We can for instance define which main-direction the slicer should

view or which position. If the user then switches to another SlicerView the

signals for manipulating the SlicerView through the SlicerModule are discon-

nected and connected to the currently activated SlicerView. If the user then

switches back again the old settings in the module will be restored.

This extensive use of signals and slots mechanism makes it necessary to

design an appropriate class to manage all this signals and slots. For this issue

we have designed the SignalManager. So if a module sends a signal it must

first connect this signal to this signal handler, which dispatches the signal

to all slots of the views which are currently connected to this signal at the

SignalManager.

Another problem is the management of datasets. For this task we have

designed a module where the user can load and unload volumes and also add

and remove objects for segmentation. The VolumeManager was programmed

to load and manage these datasets at the different renderers. The renderers

which are currently active are registered at the VolumeManager. The active

renderers are those which interact with the currently active views. If the

user switches between the views, the renderers will be registered and unreg-

istered. If there was a dataset loaded or unloaded since the last time the

renderer was active, the dataset is loaded or unloaded at the renderer. The

information (the signals) from the dataset module are directly processed in

the VolumeManager.

In the following section we will explain the tools for gallery manipulation,

which are mainly standalone applications except the gallery module which is

part of the framework and will also be presented next.

4.2 The Gallery Manipulation Utilities

We will describe the gallerymodule interface first to provide a basic knowledge

how we use the galleries. It is part of the framework which was described

in the previous section and helps the user in the transfer function designing
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Figure 4.3: Sidebar
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process. The interface is shown in Figure 4.4 and has two different parts.

The upper part consists of one or multiple folders which correspond to

the datasets which are currently loaded. In this folder there are three ra-

diobuttons provided to select different viewing positions (X-Direction, Y-

Direction and Z-Direction). Also on the folder is a button to load a gallery-

configuration-file, where the transfer functions are defined. For each transfer

function a button with an image as content is generated in the view below

the Load Gallery-button. This image shows the result if the dataset is ren-

dered with the transfer function which corresponds to the button. We can

navigate through this collection of preview images by using the scrollbar on

the right-hand side of this view. We can click a button to select it and the

image is rendered in the lower part of the module on the left side. Along

with the image a checkbox is provided to choose which functions should be

used for the final transfer functions. If we click on the image a dialog will be

opened and we can manipulate the transfer function (colors and opacities of

the controlpoints) which correspond to the image there. We can first select

some candidate items by clicking in the upper part and then manipulate this

items by clicking on the images in the lower part. The final result we will see

just on the right side, because there is an imagebox which provides a preview

of the selected images so far. In a last step we can set the current settings

to the datasets in the framework by clicking on the Attach Settings-Button.

Along with the last selection step a problem comes up: We can already

render different datasets with different transfer functions in one image by the

multivolume rendering extension of the raycaster [11]. But to provide the

full power of this way to define transfer functions, we have to design a system

to render also different transfer functions for the same dataset in one image.

This means we have to merge the transfer functions, which is achieved by

merging the controlpoints and calculating the color and opacity at each point

with the following equations:

α = max(α1, α2) (4.1)
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Figure 4.4: GalleryModule
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Figure 4.5: GalleryEditor

c =
α1c1 + α2c2

α1 + α2
(4.2)

We get an environment which makes it easy to design transfer functions,

but the next task will be to create gallery-configuration-files, so that we

can use the GalleryModule efficiently. The theoretical background of these

methods was already presented in Chapter 3, so we will give a quick overview

here of the tools which provide a frontend for these methods.

The first program is the basic GalleryEditor (Figure 4.5). It provides the

functionality for creating gallery-configurations with regular sampled pat-

terns ( as it was described in Section 3.2.1). We have three radiobuttons to

select the pattern and can change the width and the height of the pattern.

We can also manipulate the sampling distance between the patterns, which

influences the gallery size.

The next program is the gallery generator for the data oriented methods

( Section 3.2.2): like gradient magnitude thresholding and the thresholding

method for the magnitude of the curvature ( Figure 4.6). Here we can again
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Figure 4.6: GalleryGenerator Data
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select the patterns, and their width and length. We have two more input

fields for the specification of the high and low threshold value. And last but

not least we can select the method through radiobuttons. We have to select a

file to load the dataset from, because for these methods also a specific dataset

is needed. As before we have to select the configuration-file where we want

the result to save.

In the next figure ( Figure 4.7) we can see the interface for the histogram

based methods. We can select the gallery configuration-file, the dataset the

methods and the patterns again. Also the input fields for the width and the

height of the pattern and for the threshold value are provided.

The second but last group of methods we have to provide an interface for

is the one for the image based algorithms (Figure 4.8). These methods are

based on a gallery configuration which was created before we can select such

a configuration-file (Load Gallery File). We again provide widgets for the

selection of the method, the dataset, and the threshold which again depends

on the selected method. We can also specify the number of elements in the

final gallery - this option is related to the advanced image selection method.

The last graphical frontend provides an interface for the genetic algorithm

method (Figure 4.9). We can specify the dataset we want to work on. Then

we can create a new population with the regular sampling method or load it

from an existing configuration-file. The next option we have is to specify the

factor of the best items of the last population which should be forwarded to

the next as percentage of the population size. Then we can choose different

methods of fitness calculations , recombination and mutation along with the

factors of mutation and recombination. And as termination condition for the

genetic algorithm we have to specify the number of generations. Finally we

can select the file where we want to save the new configuration to.
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Figure 4.7: GalleryGenerator Histogram
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Figure 4.8: GalleryGenerator Image
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Figure 4.9: GalleryGenerator Genetic Algorithm



Chapter 5

Results

Truth hurts. Maybe not as

much as jumping on a bicycle

with a seat missing, but it

hurts.

Drebin, Naked Gun 2 1/2

The results of the methods were already presented in Chapter 3, because

they are used there to explain improvements and problems with certain meth-

ods.

The final conclusion to all these results would be that there is no single

method which leads to a good gallery, with informative and different transfer

functions.

One attempt to generate a really good representative gallery may be

to combine some methods. First we can use the brute force with a dense

sampling interval - this does not cost much time, as there is no additional data

dependant processing needed. Then we can run an image based algorithm

(like entropy estimation or gradient magnitude estimation) to sort out black

images or other images with less information in it. Finally we can use one of

the image difference calculation methods to further reduce the gallery size.

We will use this strategy now in an example, where we want to visualize

a stag beetle. In this case we do not know exactly the density values which

72
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Figure 5.1: Transfer Functions of the generated Gallery used for the final
Transfer Function: (a) 7th (b) 13th (c) last Transfer Function

show interesting features so the use of a design gallery wold be a good idea.

In general in medical visualization of CT-datasets the interesting Hounsfield

values are well known (see Table 1.1).

We first generate a gallery with a dens sampling interval. In our case

we created the first gallery with the transfer function generation through

organized sampling method (Section 3.2.1). We used a sampling intervall

of 4 and generated the transfer functions with the help of the tent pattern

with a width of 200 and a height of 200. The resulting gallery has a size of

1098 transfer functions. Then we reduced the gallery by the pixel-difference

method (Section 3.2.4) with a difference threshold of 2000. This reduced

the gallery to 51 transfer functions. After that we used the GalleryModule

of our framework to assemble the final transfer function. For this task we

choose the seventh, thirteenth and last transfer function in the gallery (see

Figure 5.1 for images of these functions). We have to adapt the color and the

opacity of these transfer functions and finally generated the image in Figure

5.2. The lower part of this figure shows the final transfer function.



CHAPTER 5. RESULTS 74

Figure 5.2: Stag beetle Visualization and final Transfer Function



Chapter 6

Summary

I may not have gone where I

intended to go, but I think I

have ended up where I needed

to be.

Douglas Adams

6.1 Introduction

In volume visualization the definition of transfer functions is a critical task

for the generation of informative images. Even more as we have a growing

complexity in the images, because it is possible nowadays to interact with

multiple volumes in one image. This is on one side a benefit for creating

interesting visualizations, but on the other hand this will increase the prob-

lems we have already in designing proper transfer functions in mono-volume

visualization.

The problem of defining a transfer function consists of two main subprob-

lems:

1. The parameter-space of all possible transfer functions is large, so that

finding the transfer function which visualizes the information we need,

is hard to find in a Trial-and-Error approach.

75



CHAPTER 6. SUMMARY 76

2. There exists no bijective relation between data properties and the ob-

jects in the data we want to view.

There are several solutions to handle this problem and design transfer func-

tions:

1. The Trial-and-Error approach: It is an iterative process between chang-

ing the transfer function and looking which effect this change produces

in the image. As everybody can imagine this is a rather time-consuming

procedure.

2. The data-centric approach without an underlying mathematical model:

This solution is based on the analysis of a dataset (e.g., topology anal-

ysis) and creation of a model of the data on which the definition of

the transfer function is based. Examples of such an approach were

presented before [9, 1, 35].

3. The data-centric approach with an underlying mathematical model: In

the work of Kindlmann and Durkin [16] such a solution was based on

the mathematical model of boundaries between materials. It is less time

consuming but a lot of parameters have to be set to use this solution

efficiently.

4. The image-centric approach usually uses multiple preview images for

different settings to help the user in the creation of transfer functions.

This solution is rather simple, but needs a lot of computational power,

to render the preview images first. Examples of this kind of solution

were already presented [21, 18].

This work presents a solution which belongs to the group of image centric

approaches and focuses mainly on the generation of informative galleries for

different datasets. We will give a short description of the gallery framework

we have programmed in the next section. Then the algorithms, which were

designed to create efficient galleries, will be presented in the section “Gallery

Generation Algorithms”. In the last section we will present a short conclusion

and the results.
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6.2 The Gallery Framework

The definition of a transfer function with the help of the gallery framework

is done in three steps:

1. Selecting previously rendered items which represent different opacity

functions. These items can be from different galleries and datasets.

2. Define the colors to the opacity items.

3. Do a final selection between the previously selected and colored items

to get the final result.

With this three step strategy we can handle complex settings, like multiple

transfer functions and functions for viewing different objects in one volume.

The crucial task in this process is how to generate galleries with repre-

sentative items in it. This issue will be discussed next.

6.3 Gallery Generation Algorithms

The first method for creating galleries is defining the collections of transfer

functions in such a way that in every function a pattern like a box or tent or

ramp is placed at a specific point along the data axis. The transfer functions

in the sequence are generated by shifting this pattern along the data axis

with a constant offset.

We can see that these patterns have different properties [18]. The ramp

can be used to get images with good representation of the surfaces in the

datasets, the box and tent pattern on the other hand show more of the

interior, whereas the box pattern produces because of its steep ascends and

descends reconstruction artifacts (pixelization at hard boundaries between

materials). So we should avoid using this pattern.

We can improve the method of transfer function generation by regular

sampling by further processing the data or the final images.

The image based methods work rather simple. Here the predefined trans-

fer functions are used in context of a specific dataset to render the images
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of the gallery. Then based on these images different image measures can be

applied. For instance we can calculate the entropy of an image, which is a

measure for the information content, and sort out all images which have a

too low value. The same can be done for the magnitude of image gradients

and curvature information. The difference is that in the methods based on

curvature the edges in the image are more emphasised. We have built meth-

ods for computing the average and the maximum magnitude of the curvature

information and the gradient respectively. In general the maximum methods

prefer images with finer detail than the average methods, which results in

different selected images. The other variant of image based methods com-

pares images to each other with an image difference calculation. So we can

eliminate images which are nearly equal and so reduce the gallery size.

The data based methods can be divided into two groups:

1. Algorithms based on data

2. Algorithms based on the histogram of the data

In the first group there we have two algorithms, which are working nearly

equally. One algorithm is based on data gradients and the other on the

curvature. In both algorithms we can apply a high and a low threshold

value. If the measure lies between these delimiters, we are saving the data

value of the voxel which corresponds to the gradient or curvature. After

processing the whole dataset we can place at the saved positions the pattern

of our choice. During testing this method it became quite clear that this

methods produce a lot of transfer functions even with small threshold ranges

and therefore the galleries will not be easy to handle, because of their size.

Perhaps a solution with a combination of multiple data properties will be

better here.

The second group are the algorithms based on the data histogram. The

simplest approach here is a thresholding based on the histogram value, but

this will not lead to good results. In commonly used dataset there are a lot of

voxels with low density values, which are not of interest, so these will not cre-

ate a small and representative gallery of the data. Another algorithm which
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works on histogram differences can be created if we again take a threshold

value and check if the difference of two neighbouring histogram values lies

above this value. In this case we create a transfer function with one of the

patterns at this position for our gallery. This method produces large galleries,

because a lot of items in these galleries lie in the unwanted low data value

range, which represents the air in the datasets. So these galleries will still be

very big and if we are changing to a bigger threshold value we are usually

losing the interesting items before the uninteresting ones are removed. In

the unwanted data range are there are a great number of items, which also

leads to big differences between the histogram values there. So they will

be removed only at the end. One more algorithm we created was based on

the extraction of data values where the histogram shows a local maximum,

but the histogram values are rapidly changing and so we get a lot of local

maxima, which are producing too big galleries.

These methods produce rather simple transfer functions. The last at-

tempt was to use a genetic algorithm to produce more complex transfer

functions. A genetic algorithm usually has the following steps (see Algo-

rithm 4).

The population consists of chromosomes, which are in our case the trans-

fer functions. The genes of the chromosomes are the controlpoints of the

transfer function. The phenotype are the rendered images which are based

on the transfer functions (chromosomes). For the evaluation of a population

we have to evaluate the images, this calculation is based on a fitness function.

In our implementation we have realized two different fitness functions:

• Fitness function based on the average magnitude of the image gradient

• Fitness function based on the entropy of the image

The selection process of the chromosomes for recombination is a fitness pro-

portional selection method. This means that the possibility of selecting chro-

mosomes is proportional to the fitness, but has still some random factor in

it.

For the recombination we have designed two crossover operators:
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• Operator 1 divides the two selected transfer function in two parts at

a special point and exchanges the second part of both functions with

each other

• Operator 2 chooses two points and exchanges in both functions the part

which lies between these two points

In the testing we have found out that the second operator leads to a better

convergence behaviour than the first operator.

For the mutation we have also created two methods:

• Method 1 inserts a random controlpoint in the transfer functions which

were selected for mutation

• Method 2 randomly chooses new opacity values for all existing control-

points in the transfer function

We have seen in the tests that the second method has a worse convergency

behaviour. This is a result of the bigger changes in the transfer function,

which leads to a more random behaviour of the search process defined by the

genetic algorithm.

The runtime of such genetic algorithms is rather long. They are designed

to find an optimal solution corresponding to maximizing the fitness function

in our case, this will not lead to images in the galleries which represent all

different object in a dataset. So this will in general not provide a good gallery

if we are comparing the expense of the runtime to the other methods.

6.4 Conclusion

We can see from the description before that there is no single method which

produces representative galleries in general of every dataset, but if we com-

bine two or more methods we can produce an informative selections of trans-

fer functions. A good initial attempt for a gallery of a dataset will be first

creating a gallery with the method of transfer function generation through

regular sampling with a small sampling interval, which will lead to a big
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gallery. Then we can apply some of the image based algorithms to reduce

the gallery size. It is also a good idea to vary the patterns and pattern sizes.
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