
EUROGRAPHICS 2005 STAR – State of The Art Report

Image-based Representations
for Accelerated Rendering of Complex Scenes

Stefan Jeschke† and Michael Wimmer and Werner Purgathofer

Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria

Abstract

This paper gives an overview of image-based representations commonly used for reducing the geometric complex-
ity of a scene description in order to accelerate the rendering process. Several different types of representations
and ways for using them have been presented, which are classified and discussed here. Furthermore, the overview
includes techniques for accelerating the rendering of static scenes or scenes with animations and/or dynamic light-
ing effects. The advantages and drawbacks of the different approaches are illuminated, and unsolved problems and
roads for further research are shown.

Categories and Subject Descriptors (according to ACM CCS): [I.3.3] [Computer Graphics]: Picture/Image Genera-
tion - Display Algorithms [I.3.7] [Computer Graphics]: Three-Dimensional Graphics and Realism - Color, shading,
shadowing, and texture

1. Introduction

The interactive visualization of three-dimensional models is
a research area of big interest. Applications include com-
puter games, flight and driving simulations, virtual reality
scenarios, architectural visualization and computer aided de-
sign. During the exploration of a 3D model, a fluent anima-
tion is desired in order to allow a convincing immersion. One
challenge for interactive rendering systems is to provide ap-
propriate frame rates also for very complex 3D models. The
performance of consumer-level hardware has increased dra-
matically in recent years, allowing the rendering of several
million primitives per second. Furthermore, graphics hard-
ware has become more programmable, which allows better
scene realism. On the other hand, due to the continuing de-
sire for more detail and realism, the model complexity of
common scenes has not reached its peak by far. Because of
this fact, scenes are often too complex to be displayed at
real-time or even interactive frame rates. The rendering ac-
celeration of such scenes has been a hot topic in computer
graphics in recent years and it seems like this is not going to
change in the near future. Many algorithms for accelerating

† {jeschke|wimmer|wp}@cg.tuwien.ac.at

the rendering process have been proposed, according to one
of the following strategies:

• The complexity of today’s graphics drivers and hard-
ware behavior often leaves space for rendering pipeline
optimization. Removing so-called rendering bottlenecks
might dramatically increase the performance.

• Visibility calculations remove invisible portions of a scene
before they are sent to graphics hardware. While this
provides dramatic rendering acceleration for some cases
(for instance, indoor or urban scenes), the actually visible
geometry may already overwhelm the hardware.

• Geometric simplification techniques take advantage of the
fact that complex distant scene parts with small size on
screen contribute only little to the output image. Conse-
quently, representations with reduced geometric detail are
used with increasing distance. This may dramatically re-
duce the complexity of the visible scene (terrains are good
examples). Unfortunately, geometric simplification tech-
niques are not applicable for arbitrary scene parts. For in-
stance, if multiple objects should be merged during the
simplification process, preserving all individual appear-
ances (for instance, textural information) is not possible
in an efficient way.

c© The Eurographics Association 2005.

2 Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes

For those cases where geometric simplification techniques
cannot be applied, representations based on appearance
samples (typically color values, acquired by rendering the
scene part) have been successfully used. During rendering,
such representations are displayed instead of the original
(geometry-based) scene part. While this provides a simi-
lar visual output, the alternative representation can be ren-
dered much faster, because its rendering time depends on
its size on screen rather than on the geometric complexity
of the original scene part. This allows a very fast display
of objects with arbitrary geometric complexity. The advan-
tage compared to geometry-based simplification techniques
is that the generation process does not rely on any knowledge
about the geometric structure of the original scene part. Be-
cause of this, sample-based representations can be applied
for a much broader range of scenes.

There exist many types of sample-based representations,
mainly characterized by the type and amount of geometric
information. They are called either image-based or point-
based representations, depending on the format the data
is stored and processed. In literature, image-based rep-
resentations for rendering acceleration are often referred
as impostors [MS95]. Using images applied to simple
geometric models as texture maps (called billboards or
sprites [MH02]) for fast display of complex objects is an
old trick in computer graphics, as can be observed for in-
stance in the well known computer game ’Wolfenstein’ by
ID software from 1992. In many computer games, billboards
have been used to model trees, grass, fire, monsters, items
or static background images that show hills or city sky-
lines. However, in this paper we concentrate on temporary
replacements for geometric scene parts rather than on en-
tirely sample-based models. Furthermore, we concentrate on
image-based representations, because point-based rendering
is a separate research field which would go beyond the scope
of this paper.

The remainder of this paper is organized as follows: first,
Section 2 describes basic demands and characteristics of
image-based representations. Section 3 gives an overview
and characterization of existing representation types. The
last part (Section 4) focusses on the question when to ren-
der an impostor vs. an original (geometric) object in order to
accelerate the rendering process.

2. Basic Characteristics and Challenges

In order to generate an image-based representation from an
object, its appearance as well as a rough geometric structure
has to be acquired. In many cases, this is done by rendering
the object from a single viewpoint (called reference view-
point). The acquired information is combined with geome-
try in order to place the image into the scene. In the simplest
case, the scene part is rendered into a texture and this texture
is combined with a quadrilateral. The generation process can
either happen in a preprocess (a so-called static representa-

tion) or dynamically at runtime (called a dynamic represen-
tation).

2.1. Image Quality Issues

For a convincing representation, the original scene part
should be represented as correctly as possible. Figure 1
shows examples for image artifacts that can occur during dis-
play. The following particular aspects have to be considered

Figure 1: Examples for image artifacts caused by image-
based representations. Top-left: original scene part. Top-
right: undersampling visible as “blocky” texels. Bottom-left:
image gap (the representation was generated to the right of
the actual viewpoint). Bottom-right: parallax errors result in
wrong perspective and scene integration (the houses on the
right should be invisible).

in order to avoid such artifacts:

• The sampling resolution should not fall below the output
image resolution. Otherwise, “blocky” pixels or holes be-
come visible and the illusion of displaying a geometric
object is destroyed. This means that a minimum distance
to the representation must always be maintained. Further-
more, the acquisition of the appearance should provide a
similar result compared to the originally rendered object.

• If the viewpoint is changed, parallax effects (kinetic depth
effects) occur as nearby scene parts seem to move com-
pared to distant scene parts. This effect can be supported
by applying appropriate geometry, depending on a partic-
ular representation technique (see Section 3). Note that
visible parallax effects grow with increasing distance to
the reference viewpoint, which may limit the viewing re-
gion an impostor can be displayed for with sufficient ac-
curacy.

• Parallax movements cause new scene parts to appear. This
effect is called disocclusion. Of course, it is highly de-
sirable that all scene parts that may become visible are
included in the impostor. Otherwise, artifacts visible as
so-called image gaps or rubber-sheet effects occur. The
avoidance of these artifacts is not simple and most exist-
ing algorithms addressing this problem are computation-
ally very costly.

c© The Eurographics Association 2005.

Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes 3

• For a seamless integration into a scene, the border be-
tween image-based representations and adjacent geome-
try should not show any artifacts. This is especially im-
portant if objects are partially represented by images and
partially by the original geometry in the same output im-
age. Furthermore, the visibility between the original scene
and the image-based representations should be resolved.

• Scene dynamics have to be faithfully reproduced by the
image-based representation. This includes dynamic mod-
els like humans([ABT00]) and dynamic lighting ef-
fects([DDSD03]).

2.2. Limited Impostor Validity

The points stated in Section 2.1 have as a consequence that
the viewing region (called view cell) a particular impostor
can be displayed for is bounded: as long as the visual dif-
ference to the (hypothetically rendered) original object does
not exceed some threshold, the representation is called valid.
This threshold is defined depending on the impostor tech-
nique, as will be described in Section 3. The size and shape
of a view cell depends on how a particular representation
type addresses the image quality issues described in Sec-
tion 2.1. Box-shaped view cells have been widely used in
previous work. View cells are often defined implicitly as the
level sets of specific error metrics. If the error for a view-
point exceeds a certain threshold, the impostor is consid-
ered invalid. Frequently, such implicit view cells are shaft
shaped([Jak00, ABT99, SS96, SLS∗96]). Figure 2 shows
an example for a shaft in 2D. The shaft apex lies in the
center of the represented scene part. It is defined by a di-
rection, an apex angle and a minimum distance to the object
(see Figure 2). Shafts are consistent with the fact that the in-

Minimum distance

Apex angle

Shaft

Figure 2: A shaft-shaped view cell.

troduced errors are much less apparent when increasing the
view distance. Consequently, the impostor can be displayed
for a much larger view space region compared to box-shaped
view cells. Furthermore, there are view independent repre-
sentations [DDSD03], where the validity is only restricted
by a minimum distance to the impostor. This can also be
seen as a 360◦ shaft.

If an impostor is no longer valid, another representation
(impostor or original object) has to be displayed. This may
result in more or less noticeable popping artifacts, depend-
ing on how well the representation resembles the original
scene parts at the moment of switching. Another conse-
quence of the limited validity is that for typical applications,
numerous representations are required to provide sufficient

rendering acceleration for every view in a scene. Depending
on whether static or dynamic approaches are used, this may
result either in high memory requirements or frequent up-
dates during runtime. These are two fundamental issues for
an efficient usage of image-based representations.

2.2.1. High Memory Requirements for Static Impostors

For the static approach, each possible impostor needs to be
precalculated and stored. An impostor requires a relatively
large amount of memory. This is because a large amount
of appearance samples must be typically stored. In many
cases, all impostors together do not fit into graphics mem-
ory or even main memory. Thus the images must be suc-
cessively loaded from harddisk into main memory and into
graphics memory. This operation must be finished for every
impostor before it is needed for display. So-called prefetch-
ing strategies try to load the most probably needed sam-
ples in advance, often using predictions about future user
movement. However, in case of sudden viewpoint changes,
limited memory bandwidth might lead to missing samples
at display time. Restricting the user velocity or temporally
decreasing the image quality are solutions to this problem,
but they are not always tolerable. Furthermore, the widely
varying memory bandwidths of different hardware limit the
portability of such a rendering system.

Another related problem is the preprocessing time needed
to generate the images. In recent work [AL99, WM03], sev-
eral hours of preprocessing are reported even for moderately
sized scenes. This makes such approaches not useful for ap-
plications the impostors should be generated quickly, for in-
stance, when loading a level of a computer game.

2.2.2. Frequent Dynamic Impostor Updates

For dynamically generated impostors [Sch95], the rendering
resources are shared for model visualization and representa-
tion generation. An important point is that the rendering sys-
tem should not be overwhelmed by this generation process.
Therefore, impostor techniques with short generation times
are desired. However, because such impostors are typically
not valid very long, this in turn causes a frequent need for
updates, which decreases the efficiency of this approach. In
case of sudden viewpoint changes, too many images might
have to be updated, resulting in a frame rate drop. Again, re-
stricting the user velocity or decreasing the image quality in
order to avoid such cases is not always an option. This fact
makes the efficiency of dynamic techniques highly sensitive
to the target application and to the performance of the target
rendering system.

The issues above lead to similar demands for static and dy-
namic impostors: a large viewing region for which every im-
postor is valid, fast generation, and (especially for static im-
ages) low memory requirements. Furthermore, a high image

c© The Eurographics Association 2005.

4 Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes

quality without artifacts is desirable. Avoiding gaps due to
disocclusions is a special challenge in this connection. To-
day, there is still no technique that provides all these fea-
tures at the same time. Instead, a tradeoff must be found
between the contrary demands. Many approaches that use
image-based representations in order to accelerate the ren-
dering of typical scenes often accept a loss of image quality
to keep the amount of memory or the impostor update rate
to a tolerable level.

3. Impostor Types

Several types of impostors have been presented in literature,
each with the emphasis on different demands, for exam-
ple fast generation and display, low memory requirements
and/or good image quality for a large view cell (see Sec-
tion 2.1). Especially the problem of maintaining a high im-
age quality has been addressed by combining the images
with different amounts of geometry. The following subsec-
tions describe the individual techniques in more detail.

3.1. Planar Impostors

In 1995, Maciel and Shirley [MS95] described so-called
planar impostors. They basically consist of simple planar
geometry (for instance, a quad) with an alpha texture applied
to it, thus forming a billboard (see Figure 3). The generation

Figure 3: A planar impostor is an alpha texture acquired by
rendering the original object (left). The texture is applied to
a simple planar geometry (right). In this example the com-
plexity decreased from 108,526 to only 2 polygons.

of a planar impostor is not computationally expensive. Dis-
playing it is also very fast because of its very low geometric
complexity. This makes this technique ideal for dynamic im-
postors.

On the other hand, parallax movements are not accounted
for, so that the impostor needs to be updated frequently. In
order to quantify the error introduced if the viewpoint is
moved, Schaufler [Sch95] presents a fundamental criterion
for the validity of planar impostors: as long as the so-called
error angle between a point of the original object and its
impostor representation falls below the angle of one pixel

in the output image, the impostor is valid. Aliaga [Ali96]
(and also Shade et al. [SLS∗96]) mention that the error an-
gle can be computed for every texel. However, this opera-
tion is usually much too costly. Schaufler [Sch95] instead
estimates the error angle for the cases that the viewer moves
sidewards and towards the object by using a specific ori-
ented bounding box of the object. Shade et al. [SLS∗96]
basically use the same error metric, but instead of a spe-
cial oriented bounding cube, they simply use the bound-
ing box of the object. This is not conservative, but was re-
ported to be sufficiently correct in practice. In further re-
lated work [ABT99, Jak00, Ali96, SLS∗96], a simpler error
estimation was presented, based on the angle the observer
views an impostor in relation to the view position the impos-
tor was generated. Furthermore, Aubel [ABT00] presented a
special-purpose metric designed for impostors for animated
humans, which is based on distance changes between differ-
ent body parts.

In order to reduce discontinuities on the border between
geometry and impostor, Aliaga [AL98] proposes to distort
the geometry the same way the impostor does. Furthermore,
for reducing popping artifacts, Aliaga proposes smoothly
warping the represented scene part again. Although the out-
put image is by no means correct, the impostors are re-
ported to fit better into the scene. Ebbesmeyer [Ebb98] and
Jakulin [Jak00] achieve this by alpha-blending between dif-
ferent representations.

Another point is the visibility between the scene and a
flat impostor, which must be solved satisfactorily. There-
fore, Schaufler [Sch97] introduced the so-called nailboards,
which store per-pixel depth information in order to cal-
culate the visibility with a two-pass rendering algorithm.
Note that nailboards use depth information only for resolv-
ing visibility, while the impostor itself remains flat. Aubel
et al. [ABT99] instead split the object into multiple small
non-overlapping impostors. However, this leads to disturb-
ing discontinuities at the impostor borders [ABT00]. There-
fore, they propose storing all overlapping scene parts into
one single impostor (they call it factorized impostor), at the
cost of having to update the impostor frequently. As a sec-
ond solution, they propose to solve visibility when the im-
postor is generated and only store visible pixels (they call
it depth corrected impostors). However, this means that if
any occluding scene part or the camera moves, the impostor
has to be updated. Harris and Lastra [HL01] render clouds
as impostors generated using particle systems. For resolv-
ing visibility between a cloud and object, they split it into
a foreground and a background part and render an impostor
for each of them. Figure 4 shows an image of their rendering
system. In contrast to Aubel et al. [ABT00] (who rendered
solid objects), this method works sufficiently correct, due to
the fuzzy appearance of clouds.

c© The Eurographics Association 2005.

Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes 5

Figure 4: Planar impostors used to represent clouds[HL01].

3.2. Layered Impostors

The idea of using multiple texture layers (also called a
texture stack or shell textures) as a general representa-
tion for complex geometry was presented by Meyer and
Neyret [MN98]. Closely related to that technique, Schau-
fler [Sch98a] presented a layered impostor technique, which
allows simultaneously reproducing parallax movements, and
solving the visibility satisfactorily, therewith integrating
seamlessly into the scene. The basic idea is to use multi-
ple image layers at different distances from the viewer, each
representing a certain depth range. Schaufler shows how the
parallax errors decrease with an increasing number of layers.
In order to capture as many potentially visible scene parts as
possible, Schaufler [Sch98b] uses a view frustum centered
behind the object for the impostor generation process. In or-
der to avoid image gaps between the layers, slightly over-
lapping depth regions are rendered into each layer. How-
ever, no real guarantee is given for avoiding image gaps.
Compared to planar impostors consisting of only one im-
age layer, layered impostors provide a larger valid viewing
region. Jakulin [Jak00] shows that this technique can be used
for trees with high image quality by alpha blending between
different impostor representations.

Jeschke et al. [JWS02] extended the work of Schaufler in
several ways: a special spacing of the layers together with a
new layer recording method ensures that all parallax move-
ments are properly reproduced and the impostor is guaran-
teed to contain all scene parts that might become visible.
Furthermore, an efficient visibility algorithm removes invis-
ible scene parts from the impostor, and the visible portions in
every layer are encoded separately in order to avoid storing
most transparent texels. Figure 5 shows an example for that
impostor technique with 13 layers and 240 impostor poly-
gons.

Figure 5: Left: layered impostor from the viewer position.
Right: side view with impostor polygons made visible.

3.3. Billboard Clouds (BBC)

Decoret et al. [DDSD03] presented an impostor technique
called billboard clouds. The basic principle is to represent
an object by a set of alpha-textured planes (see Figure 6).
In contrast to the techniques described above, the position
and orientation of the planes is optimized for approximat-
ing the object geometry so that a given error tolerance in
object space (or in image space [DDSD02]) can be met for
arbitrary viewpoints. The advantage of this view indepen-
dent impostor technique is that the viewer is not restricted
to a bounded view cell, but only to a minimum distance to
the impostor. Another advantage is that it can be used di-
rectly for standard shadow mapping algorithms. Relighting
can also be applied to billboard clouds, as was shown by
Decoret et al. [DDSD03]. The technique can be used for ar-
bitrary geometry and shares concepts of image-based as well
as geometry-based simplification. Dynamic lighting effects
were obtained by computing online illumination with pre-
computed normal maps.

Current implementations of the technique show very
long preprocessing times and image artifacts, especially on
curved surfaces. Furthermore, high memory requirements as

Figure 6: A billboard cloud (top left) as a collection of 32
texture mapped quadrilaterals [DDSD03].

c© The Eurographics Association 2005.

6 Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes

well as relatively slow rendering are caused by large planes
containing many transparent texels. Andujar et al. [ABC∗04]
presented an algorithm that greedily selects planes in water-
tight models, each covering as large a portion of the model
as possible. However, the set of all planes is not guaranteed
to be optimal. Recently, Meseth and Klein [MK04] intro-
duced BTF textured billboard clouds, which increase the vi-
sual quality by preserving view and light dependent effects
while still achieving fast rendering performance. In addition,
they propose two new methods for billboard cloud genera-
tion, aimed at optimal texture memory usage.

3.4. Video-based Representations

Wilson et al. [WLY∗00] store planar impostors of adjacent
view cells in an MPEG2 video stream. The MPEG video
compression standard provides relatively high compression
rates for the representation. Although video encoding pro-
vides fairly good compression rates, resulting in low mem-
ory costs, high-frequency scene content causes aliasing arti-
facts and results in lower compression rates. Unfortunately,
aliasing artifacts occur often when rendering distant scene
parts. Another problem is that since video-based impostors
actually constitute flat images, a correct visibility calculation
is not possible for dynamic scene content.

One problem with the standard MPEG2 codec is that only
one continuous stream of defined size can be processed and
stored. If the viewer moves on a ground plane, a two dimen-
sional access in the video stream is needed. Therefore, Wil-
son et al. [WMPM01] present a modified codec supporting
this type of access.

3.5. Textured Depth Meshes (TDM)

The idea of textured depth meshes [DSV97, SDB97] is to tri-
angulate a rendered image with respect to the z-buffer. Pla-
nar image regions are represented using individual textured
polygons, whereas a tradeoff between approximation accu-
racy and mesh complexity must be found for non-planar re-
gions. TDMs provide good parallax movement reconstruc-
tion, and visibility is also solved satisfactorily for many
cases. They need only little additional geometry and storage
compared to planar impostors. Figure 7 shows an example
for a TDM.

Several methods have been proposed for TDM generation.
Darsa et al. [DSV97] use a Delauney triangulation based on
the Voronoi diagram of irregular sparse samples generated
by a ray tracer. In that work, every triangle of the TDM
is assumed to have only one color, so that color and depth
must be approximated simultaneously. In later work, Darsa
et al. [DC96, DCV98] obtain the triangulation only from the
depth component of the samples. Color is applied to the
depth mesh using textures. Sillion et al. [SDB97] extract sil-
houettes and depth discrepancy lines from the z-buffer, thus

Figure 7: Left: original model (108,526 polys). Right: tex-
tured depth mesh (177 polys).

creating several image regions. For triangulating these re-
gions, equally spaced points are inserted, followed by a con-
strained Delauney triangulation. Figure 8 shows a result of
this triangulation.

Figure 8: A TDM for a city district [SDB97].

Aliaga et al. [ACW∗99] instead build a very dense regular
mesh with image resolution, which is then simplified using
a fast greedy algorithm that merges planar regions. After-
wards, an accurate but also computationally expensive mesh
simplification algorithm [GH97] is applied, as was also used
by Jeschke et al. [JW02]. Wilson and Manocha [WM03] first
use the approach of Garland and Heckbert and afterwards
the view dependent simplification algorithm of Luebke and
Erikson [LE97].

In general, the simplification of a TDM is computation-
ally costly, so that a generation at runtime seems hardly pos-
sible. In order to reduce the required storage space on hard-
disk, Decoret et al. [DSSD99] suggest generating the mesh
geometry in a preprocess (because this is the most time-
consuming operation) but the textural information on the fly.
As a further interesting alternative, Chen et al. [CIKK99]
rendered a high-quality image of a terrain scene at runtime,
texture mapped it onto a simpler terrain geometry and reused
this representation over several successive frames.

c© The Eurographics Association 2005.

Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes 7

Many TDM methods suffer from disocclusion artifacts,
typically visible as rubber-sheet effects. They are caused by
distorted meshes that cover geometry which is not repre-
sented in the TDM. In order to avoid such artifacts, all poten-
tially visible scene parts should be captured with sufficient
sampling density. Therefore, Darsa et al. [DC96, DCV98]
use a measurement for every triangle that indicates the
quality of the sampling. If the quality is not sufficiently
high, triangles from multiple TDMs generated near the ac-
tual viewer position are displayed. They proposed differ-
ent mesh blending functions for optimizing the image qual-
ity with reasonable computational effort. Similarly, Wilson
and Manocha [WM03] sample the geometry incrementally.
This means that the visual error is estimated for a TDM,
and the sampling process is repeated for a new viewpoint
which is assumed to provide the missing information. This
process stops if the sampling density is sufficiently high. Af-
terwards, redundant information is removed, and textured
depth meshes are constructed from the sampled data. Dur-
ing runtime, multiple TDMs are rendered in order to min-
imize visual artifacts. Although the algorithm may provide
satisfying image quality in many situations, no real guaran-
tee is given that the error in image space is smaller than a
certain value, and many TDMs have to be rendered for com-
plex views.

Another method for avoiding disocclusion artifacts was
presented by Decoret et al. [DSSD99], who generate mul-
tiple meshes for scene parts at different distances from the
viewer. Visibility events are introduced in order to quantify
depth discrepancy and thereby disocclusion artifacts. Dur-
ing the mesh generation process, objects are treated succes-
sively. Every object is inserted into an existing mesh if the
depth discrepancy is low enough. If an object fits into mul-
tiple meshes, the one with the least wasted texture space is
used. If the object fits into no mesh, a new mesh is generated.
If rendering resources are available at runtime, the meshes
are dynamically updated, which further increases the accu-
racy of the representation.

Jeschke et al. [JW02] generate the TDM based on their
scene layering technique already mentioned in Section 3.2.
Since all visible scene parts are acquired with proper sam-
pling density, no image gaps or rubber sheet effects occur.

3.6. Per-Pixel Depth Information

Depth images (Shade et al. [SGHS98] called them sprites
with depth) contain per-pixel depth information for dis-
playing images for new viewpoints. The transformation for
projecting samples to a new image is called 3D image
warp [McM97]. The warp can be performed in forward di-
rection by projecting every sample into the output image.
McMillan and Bishop [MB95] provide an efficient method
for back-to-front ordered warping of a depth image, so that
visibilitiy is solved correctly without the need of a z-buffer.
In contrast, searching the correct representant for an output

pixel in the input image is called backward warping. The lat-
ter can be seen as a kind of ray tracing and is useful if only
few pixels have to be displayed because of the often costly
search operations.

For avoiding holes in the output image in case of magni-
fied viewing, depth images use techniques like point splat-
ting [SGHS98] or the triangulation to fine meshes. In fact, a
depth image can also be seen as a point cloud with a regular
grid structure. While both representations are based on a set
of appearance samples, the main difference is the format in
which the samples are stored and processed. Recent research
on point-based representations has focussed on high image
quality [ZPvBG01], fast and hardware-assisted point data
traversal [DVS03] and display [CH02], as well as memory-
efficient data structures [BWK02]. This last work discusses
important characteristics of points: they perform well com-
pared to polygons in terms of memory consumption if many
small geometric details have to be represented, as is the case
for statues or plants [DCSD02, MO95]. However, in the case
of lower geometric complexity but rich color detail, textured
polygons need by far less memory. Although displaying a
point cloud can be done by graphics hardware today, warp-
ing large depth images is a relatively costly operation com-
pared to polygon-based representations because many per-
sample transformations have to be performed. Popescu et
al. [PLAdON98] show how image warping can be paral-
lelized, which is unfortunately not supported by common
hardware.

The per-pixel depth information allows an accurate repro-
duction of parallax effects and makes it possible to correctly
resolve visibility with the surrounding scene. However, dis-
occlusion artifacts in the output image may arise during dis-
play. In order to reduce them, multiple images can be warped
to fill image gaps [RAL98, MMB97]. Another possibility is
to use layered depth images (LDI) [SGHS98], which con-
tain multiple color and depth values for every pixel posi-
tion [PLAdON98, AL99, Max96]. Figure 9 shows a compar-
ison of the image quality obtain with a single depth image
and an LDI. Because it is desirable to adapt an LDI’s level

Figure 9: Left: a single depth image, note the disocclusions
visible as black gaps. Right: an LDI constructed using 9 im-
ages [AL99].

of detail (i.e., its resolution) to different output image reso-
lutions, Chang presented the LDI tree [CBL99], where LDI

c© The Eurographics Association 2005.

8 Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes

samples are stored and processed using an octree-like data
structure.

More recently, a very high-quality impostor technique
was presented by Wimmer et al. [WWS01], so-called point-
based impostors. First, a set of points is obtained by ray cast-
ing from three viewpoints and removing redundant samples.
Wimmer provides a sampling algorithm that tries to make
sure that no holes become visible. They report on about two
points required per screen pixel for the impostor. For every
point, view dependent appearance is applied using Monte-
Carlo ray tracing, thus generating a small point light field
(see Section 3.7). This light field is encoded into a texture
so that the rendering can be done using graphics hardware.
The result is a high-quality anti-aliased impostor. However,
the reported preprocessing times are relatively high. Fur-
thermore, it might be argued that the high-quality impos-
tors may stand out if the rest of the scene is rendered us-
ing OpenGL rendering. Therefore, the impostor technique is
perfectly suited for applications that need very high-quality
rendering without aliasing artifacts.

3.7. View Dependent Appearance and Dynamic
Lighting: Lightfields and BTFs

Describing a complete scene with images can be intuitively
understood using the plenoptic function [AB91]. This func-
tion describes the radiant energy received at a viewpoint x in
view direction Θ and for wavelength Λ at time t:

µ = Plenoptic(x,Θ,Λ, t)

The output µ of this function can be any photometric unit
useful for describing the color intensity values of images.

An image-based primitive that describes a relatively large
subset of the plenoptic function [MB95] was introduced by
Levoy and Hanrahan [LH96], called light field. Simultane-
ously, Gortler introduced the same concept, calling it lumi-
graph [GGSC96]. A light field describes view dependent ap-
pearance. If wavelength and time are not considered, and the
domain of the light field is a convex region in space (either
“inside-out” or “outside-in looking”) without obstacles, four
dimensions are sufficient for a complete description of the
plenoptic function. Two planes with a regular grid of sam-
pling positions capture a light field: a camera is positioned at
the sampling positions on the entry plane and records sam-
ples on the exit plane. The storage costs of a whole light
field are high. Therefore, compression methods such as vec-
tor quantization and entropy encoding are applied [LH96].
Chai et al. [CTCS00] propose “plenoptic sampling,” which
gives a minimum sampling density of images needed for the
anti-aliased reconstruction of a light field if the minimum
and maximum scene depth is known. However, since occlu-
sions are not taken into account, image gaps are not avoided,
so that the practical usability of the approach is restricted. In
general, the huge amount of data still limits the use of light
fields for scenes with larger extents.

So-called surface light fields [WAA∗00] encode the direc-
tionally dependent radiance for points on an object surface.
Consequently, only the radiance per fixed sample position
is encoded, whereas the geometry is given separately. Be-
cause parallax effects and disocclusions are not encoded in
the light field but represented by the geometry, a much bet-
ter image quality compared to a standard light field can be
achieved.

The image-based scene representations mentioned so far
do not support relighting, i.e., dynamic light source modifi-
cations. Changing lighting conditions (such as moving shad-
ows, specular highlights or anisotropic effects like metallic
reflections) require the whole representation to be rebuilt.
To overcome this problem, Wong [WHON97] extends light
fields using the bidirectional reflectance distribution func-
tion (BRDF) [NRH∗77]. This function encodes the relation
between the incoming and outgoing light for every sample
point, so that arbitrary lighting conditions can be reproduced
at the cost of even higher memory requirements compared to
light fields. The bidirectional texture function (BTF) [Dis98]
is a discretized BRDF on an object surface. It is used for
complex object surface descriptions because it provides view
and illumination dependent appearance changes and can be
encoded so that it can be rendered with standard graphics
hardware. For small surfaces, it requires a tolerable amount
of memory and can also be tiled or instantiated just like com-
mon textures [SvBLD03, MNP01, MMSK03].

3.8. Summary of Impostor Types

In this section, impostor techniques with different character-
istics have been described. Table 1 summarizes the charac-
terization with respect to important criteria including mem-
ory requirements, generation time, image quality issues and
size of the validity region. Note that the memory require-
ments are listed here only for a single impostor. However, the
actual memory requirements must always be seen in com-
bination with the validity region. As an example, a single
planar impostor needs by far less memory than a billboard
cloud, many planar impostors are needed to represent an ob-
ject from all sides, so the billboard cloud is more memory
efficient in the end.

In summary it can be said that planar impostors are fast to
generate, but since they are only valid within a small region,
numerous updates are required. This makes them useful es-
pecially for runtime generation if storing numerous impos-
tors generated in a preprocess is not possible. The validity re-
gion of layered impostors is larger due to the support of par-
allax effects and disocclusions at the cost of slightly longer
generation time. Billboard clouds and textured depth meshes
are very slow to generate, but offer large valid viewing re-
gions. Especially the view independent characteristic of bill-
board clouds allows very large viewing regions and sim-
ple integration of the impostors into existing LOD systems.
Depth images are fast to generate (LDIs are slightly slower

c© The Eurographics Association 2005.

Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes 9

Impostor Memory Generation Support for Disocclusion Validity
type requirements time parallaxes artifacts region

Planar low fast no none small

Layered low/medium medium/fast yes image gaps medium

Billboard clouds low/medium very slow yes none large

Video low medium/slow yes none small/medium

TDM low slow yes rubber sheets medium

Depth images medium fast yes image gaps small

LDI medium/high medium/fast yes image gaps medium

Table 1: Characteristics of different impostor techniques. Note that disocclusion artifacts listed here concern viewpoints outside
the validity region.

to generate because more images have to be acquired), but
if the impostors are generated in a preprocess, compression
techniques have to be used in order to reduce the high mem-
ory consumption. Finally one can say that there is no best
technique for all demands and applications. This will also
become clear in the following section.

4. Using Image-based Representations for Rendering
Acceleration

After describing different types of image-based representa-
tions, this section gives an overview how these techniques
have been used in different systems for accelerating the ren-
dering process. Every rendering system has to decide for
every output view which scene parts to display with images,
and where to rely on the original geometric representation.
The goal is to maintain at least a reasonable image quality
while at the same time achieving a high rendering accelera-
tion for every output view.

4.1. Full screen methods

In a conventional rendering pipeline, every output image is
rendered from scratch. In contrast, the idea of the render-
ing acceleration techniques described in this section is to re-
display previously rendered output images in order to save
rendering time. In this way, frame-to-frame coherence is ex-
plored so that the rendering speed can be decoupled from
scene complexity to a certain degree. The main decisions to
be made are which scene parts to update and which kind of
image-based representation to use for them.

As a simple but effective approach, Bishop et
al. [BFMS94] presented frameless rendering. Here,
pixels are displayed instantly and in a random order using
ray casting. This allows displaying fluent animations if the
output images cannot be rendered sufficiently fast, at the

cost of reduced image quality due to varying times for the
update of every pixel.

Chen and Williams [CW93] presented an approach that
interpolates between images of different reference view-
points in order to generate an output image. This tech-
nique provides reasonable image quality for viewpoints
along the line between two reference images. McMillan and
Bishop [MB95] describe a system called plenoptic modeling
for acquiring cylindrical images and synthesizing new views
from them. By taking into account the relative camera posi-
tions, it allows exact view reconstruction for all interpolated
output images.

Reagan and Pose [RP94] presented a hardware architec-
ture called virtual address recalculation pipeline that shows
many aspects of image-based rendering acceleration. In that
approach, the scene is partitioned into depth layers with dif-
ferent distances to the viewer. Every layer has its own video
memory. Because changes occur more often for near scene
parts, the layers are updated at different frame rates (so-
called priority rendering). The acceleration was more than
one order of magnitude compared to the traditional render-
ing pipeline at that time. Lengyel and Snyder [LS97] en-
hanced this concept and partitioned the output image into
coherent image layers. The image layers are generated with
respect to object perception in the fore- and background,
different object movements, and efficient usage of texture
memory. Rendering resources are then adaptively distributed
so that fast-moving foreground objects get more rendering
resources than a hardly changing background. The render-
ing system was implemented on Talisman [TK96], a render-
ing hardware prototype that directly supports rendering with
such coherent image layers.

Mark et al. [MMB97] present a method called post-
rendering 3D image warping. Only every n-th output image
is rendered from geometry. Images in between are generated

c© The Eurographics Association 2005.

10 Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes

by composing two to three reference images rendered from
previous and predicted future viewpoints. This ensures that
most visible scene parts are present in the reference images
so as to avoid image gaps.

In the work of Larson and Simmons [LS99] and Simmons
and Sequin [SS00], graphics hardware is used to reproject
already cached radiance values by using a triangulated unit
sphere centered at the viewpoint. Figure 10 shows how im-
age quality is improved over time if many samples can be
reused. The render cache of Walter et al. [WDP99, WDG02]
is in the same spirit.

Figure 10: Improved image quality over time by reusing pre-
viously rendered samples [SS00].

Since images are generated at runtime, all methods de-
scribed here share the problem that too many scene parts
might need to be updated between two consecutive output
images. For that case, the rendering speed and/or the im-
age quality may drop significantly. This can be avoided by
using precalculated images. As an early related technique,
the Quicktime VR System developed by Chen [Che95]
stores cylindrical panoramic images that are obtained from
a fixed viewpoint. These images are stored on harddisk
and reprojected for display. User movement is restricted
to rotation around the viewpoint, zooming, and discrete
changes of the viewpoint. In contrast, the technique of Darsa
et al. [DC96, DSV97, DCV98] allows arbitrary continuous
movements while the scene is represented by multiple TDMs
recorded from multiple view points in the scene. Image gaps
and rubber sheet effects are avoided by simultaneously dis-
playing triangles of several TDMs in the output image.

4.2. Far field impostors

This strategy partitions the view space into a set of view
cells, and for every cell, the scene is split into a near field
and a far field. While the near field is rendered using geom-
etry, the far field is displayed using image-based represen-
tations. Distant scene parts often show complex geometry
that covers only few pixels on the screen. Such scene parts
allow high rendering acceleration and at the same time low
memory requirements for static impostors. Furthermore, the

images are valid for a large viewing region because of only
few apparent parallax movements due to the large distance
to the viewer.

Aliaga et al. [ACZ∗97] describe a method called tex-
tured box culling. In that approach, the far field is rep-
resented by a cube consisting of 6 precalculated textured
quads. This results in visible popping artifacts when the view
cell is changed at runtime. In subsequent work, Aliaga et
al. [ACW∗99] use textured depth meshes (see Figure 11) for
the far field representation. Wilson et al. [WLY∗00] instead

Figure 11: Distant geometry is represented using a texture
depth mesh [ACW∗99].

use video-based impostors (see Section 3.4) and Jeschke et
al. [JWS02] use layered impostors (see Section 3.2).

Sillion et al. [SDB97] and later Decoret et al. [DSSD99]
apply a similar strategy to an urban environment using
TDMs (see Section 3.5). However, instead of using a reg-
ular grid of view cells, the special scene characteristic is ex-
ploited: view cells coincide with street segments and TDMs
are placed at the end of street segments. The is done be-
cause they assume that facades close to the viewer com-
pletely occlude the scene behind. Exploiting visibility infor-
mation greatly reduces the required impostor memory. Fig-
ure 8 shows an output image generated with that system.

Wimmer et al. [WGS99] divide the scene into a near and a
far field during runtime. While the near field is rendered us-
ing conventional graphics hardware rendering, the far field is
rendered using ray casting. They argue that with increasing
distance, more geometric primitives cover an output pixel,
so that ray casting performs better than conventional render-
ing. A radiance cache in the form of a panoramic image was
used to keep the number of cast rays low for every frame.

c© The Eurographics Association 2005.

Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes 11

4.3. Object-centered approaches

In this impostor usage strategy, whether a scene part is ren-
dered from geometry or using an impostor is decided sep-
arately for each object. This decision is typically based on
the projected area of the object on screen and/or the dis-
tance between object and viewer. The image-based repre-
sentations efficiently display complex objects from a certain
distance, because in this case they cover only few pixels on
the screen and parallax effects are rather small so that the up-
date frequency is only low. For instance, in computer games,
impostors are typically used in conjunction with geometric
levels of detail: at very far distances, planar billboards are
displayed instead of geometric models. The following sub-
sections describe some special scenes where impostors have
been successfully applied.

4.3.1. Forests

Weber and Penn’s classic paper [WP95] on modeling and
rendering realistic trees also includes point-based rendering.
Although that publication focuses mainly on the modeling
aspect, they make use of point and line primitives for leaves
and branches, respectively. The representation created from
their model is not explicitly converted to geometry, but inter-
preted at runtime. At close distances, full-resolution polyg-
onal geometry is created, whereas at progressively increas-
ing distances, stems will be rendered as lines and leaves as
points. Heuristic methods are used for the transition between
these representations.

An algorithm proposed by Max and Ohsaki [MO95] uses
precomputed z-buffer views to approximate arbitrary view-
points. These views are acquired through parallel projection
from a number of viewpoints generated through a simple
longitude/latitude sphere partitioning scheme. Since there is
little coherence between leaves in a tree, the reconstruction
for an arbitrary view point is performed on a per-pixel ba-
sis. This typically leaves some pixels undefined where no
information can be extracted from the available views. The
authors have chosen to implement multiple z-buffer layers
to reduce these artifacts. Dynamic shading and shadowing
is supported by storing compressed normal vector and ma-
terial information for each pixel of the precomputed views.
During the shading post-process, these values are used to
compute diffuse and phong shading. Shadows can be found
by reconstructing a z-buffer view for the light source and
testing output pixels against this buffer. Since normal vec-
tor and material information is available, “deferred shading”
can be applied in a post-processing step once for each output
pixel. Later Max extended this work to hierarchical render-
ing [Max96] as well as utilizing texture mapping graphics
hardware [MDK99].

Jakulin [Jak00] records trees from six viewpoints using
a static layered impostor technique [Sch98b]. This results
in four megabytes per tree, so that impostors for numerous
trees can be stored in graphics hardware. By instantiating

the trees, a complete forest scene can be modelled using im-
postors without the need of enormous amounts of impostor
memory.

More recently, Decaudin and Neyret [DN04] presented a
similar forest modelling and rendering method that uses vol-
umetric textures. It is designed for forest flyovers. The volu-
metric texture consist of slices parallel to the ground plane.
In order to avoid artifacts at grazing angles near the horizon,
the volumetric texture is sliced differently for such viewing
angles. With that method they were able to render forests
consisting of about 37,000 trees at interactive frame rates.
Figure 12 shows a result of their system.

Figure 12: A forest scene rendered from volumetric tex-
tures [DN04].

Another interesting aspect when dealing with forest ren-
dering was described by Cohen-Or et al. [COSL∗04]: when
moving on the ground through a forest, close trees hide most
of the foliage behind them. Their method uses aggressive
visibility to tag large and mostly occluded portions of the
scene as background, which is rendered using planar im-
postors. The trick is to ensure that the foreground is always
dense enough so that errors in the impostors do not become
obvious.

Another aspect are dynamic lighting effects for allowing
for instance rendering a forest over a whole day with con-
vincing lighting changes. The image-based rendering system
proposed by Meyer et al. [MNP01] provides a framework
for rendering trees with effects such as shading, self shad-
owing, and dynamic illumination. They combine a hierarchy
of bidirectional textures (HBT) to provide planar images for
each given viewpoint and light direction with a hierarchical
visibility structure for self-shadowing and casting shadows.
This representation is efficient for trees, as it is hierarchical
and instancing is heavily used. BTFs (see Section 3.7) are
computed by associating a representation with each pair of
view and light directions. Between 6 and 258 different view
directions and light directions were used. During rendering,

c© The Eurographics Association 2005.

12 Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes

an arbitrary configuration can be approximated by interpo-
lating 9 BTFs. These BTFs are associated to each level in the
hierarchy either by creating a new, unique BTF or through
instancing. During rendering, either the BTF mapped im-
postor or the actual geometry is rendered depending on the
distance. To support dynamic lighting effects, approximate
visibility cube maps are computed for each level of the hi-
erarchy. Since occlusion depends on the position within the
hierarchy, separate cube-maps need to be generated for all
instances. Shadowing can then be computed during render-
ing by traversing the hierarchy of visibility cube maps. Cast-
ing shadows is supported through “traditional” shadow maps
rendered from the light source.

4.3.2. Hair and fur

Lengyel [Len00] used the idea of multiple texture layers pre-
sented by Meyer and Neyret [MN98] (see Section3.2) for
rendering shaded hair. While at very close distance the actual
hair geometry should be rendered, image layers represent it
from a certain distance. The number of layers scales with
the viewer distance in order to provide a sufficiently detailed
image. In later work, Lengyel et al. [LPFH01] extended the
method for rendering very large furry models without the
need for extensive texture memory, and they provided higher
image quality at object silhouettes.

4.3.3. Clouds

The efficiency of dynamic impostors [Sch95] depends on
how the speed gain obtained from the impostor display
makes up for the additional effort for impostor updates. Har-
ris and Lastra [HL01] represent clouds with dynamic impos-
tors. Because clouds are internally represented as a particle
system, impostors are also efficient for nearby clouds as they
are much faster to render than the particles. Furthermore, be-
cause clouds do not contain high-frequency details like sharp
edges, popping artifacts and blocky pixels are not a big prob-
lem. Here impostors are even used in order to avoid artifacts
that would occur when directly rendering the particles. Note
that their particle system also includes a cloud shading al-
gorithm that approximates multiple forward scattering in a
preprocess, and first order anisotropic scattering at runtime.
Figure 4 shows an output image of that rendering system.

More recently, Wang [Wan04] presented a cloud render-
ing system that allows easily creating and rendering many
different types of clouds. Similar to the approach of Harris
and Lastra, planar impostors are used to render the clouds.
Ambient light and a directional light is supported for cloud
shading. The system is mainly designed for artistic modeling
work rather than as being a physically valid model. However,
rendering the clouds is faster compared to the particle system
of Harris and Lastra and the visual quality is comparable.

4.3.4. Crowds

Aubel et al. [ABT98, ABT99] presented a rendering system
for human crowds which uses simple planar impostors that

were updated dynamically in order to accelerate the render-
ing process.

Tecchia and Chrysanthou [TC00] used static planar im-
postors for displaying humans. A snapshot of a human is
recorded at 16×8 positions, 16 in horizontal and 8 in ver-
tical direction. This is done for 10 human poses of a walk-
ing animation. At runtime, the right impostor is chosen de-
pending on the pose and view direction, thus reducing the
polygonal complexity of the human to only a single quad.
With this method, it was possible to render up to 10,000
humans interactively. In subsequent work [TLC02a], they
made better use of texture memory, applied texture com-
pression and varied the color of the shirts and trousers in
order to obtain more variability without significant addi-
tional rendering and storage cost. Furthermore, they added
dynamic lighting [TLC02b] to the characters by using pre-
computed normal maps. The humans were also able to cast
shadows [LCT01] on the ground and got shadowed by build-
ings, which further improved realism. They were able to
render about 2,000 shaded and shadowed people based on
multipass rendering. Recently, Dobbyn et al. [DHOO05] ex-
tended that work by switching to the original geometric rep-
resentation if a human comes close to the camera (thus form-
ing a 2-level representation). Furthermore, shadows were ap-
plied using the stencil buffer and programming capabilities
of modern graphics hardware was used to speed up the dis-
play process. Finally, they were able to render about 10,000
shaded and shadowed humans interactively. Figure 13 shows
an output image of their system.

Figure 13: Human crowd in the “Virtual Dublin”
project [DHOO05]. Note the planar impostors for humans
from a certain distance.

4.4. Architectural Models

For architectural models, approaches that partition the model
into cells (coinciding with rooms) and portals (coinciding
with open connections between cells like doors and win-
dows) [ARB90] provide efficient visibility culling. When
image-based representations are placed in portals so that
they represent the geometry of neighboring cells, only the
current cell has to be rendered from geometry. If the viewer
comes near a portal, the adjacent cell is also rendered from

c© The Eurographics Association 2005.

Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes 13

geometry in order to avoid disturbing image artifacts. Por-
tals are a convenient place for using impostors because the
complex geometry behind it covers only few pixels on the
screen. Furthermore, because the overall number of portals
in a model is quite limited, precalculated impostors may fit
into main memory or even in graphics hardware memory.

Aliaga and Lastra [AL97] use planar impostors placed
in the portals. In order to obtain a reasonable image qual-
ity, multiple impostors are generated from viewpoints on
a semicircle in front of the portal. In contrast, Rafferty
et al. [RAL98] warp depth images in order to reduce the
number of impostors needed for a convincing representa-
tion. For avoiding disocclusion artifacts, two depth images
are warped simultaneously to the output image. Popescu et
al. [PLAdON98] instead use a layered depth image (LDI)
for every portal. For fast LDI display, they use a paral-
lel warping algorithm and clip invisible samples using a
hierarchical data structure for the LDI. Simmons and Se-
quin [SS01] use textured depth meshes with three TDMs per
portal, each recorded from another viewpoint. Rubber sheet
artifacts are avoided by composing multiple TDMs during
rendering. Rafferty et al. [RAPL98] give a comparison of
the approaches from Aliaga, Rafferty and Popescu. Further-
more, while online generation of portal impostors would be
possible, Rafferty et al. [RAL98] reported “animation hick-
ups” due to the too time-consuming impostor generation
process parallel to the model display.

4.5. Hierarchical Image Cache

Schaufler and Stürzlinger [SS96] as well as Shade et
al. [SLS∗96] concurrently presented rendering systems us-
ing dynamic impostors, called hierarchical image cache.
The algorithm relies on a hierarchy of the model, with
nearby objects clustered first. During runtime, impostors are
dynamically generated for the leaf nodes of the hierarchy.
Impostors for intermediates nodes are generated from the
impostors of their children. The impostor update is con-
trolled by the error metrics mentioned in Section 3.1. In or-
der to render an output image, the tree is traversed, and the
first node containing an impostor that is valid for the current
view point is displayed, and subtree traversal is discarded.
Consequently, with increasing distance to the viewer, im-
postors are displayed for ever higher hierarchy nodes, thus
greatly accelerating the rendering process.

The hierarchical image cache relies on coherent output
images. A problem may arise if the viewer moves very fast
so that many nodes have to be frequently updated. In general
the update rate of nodes near the viewer is so high that they
are rendered from geometry. Shade et al. calculate the life-
time of each potential impostor based on the distance to the
viewer. It is only generated if its lifetime justifies the gener-
ation cost. Furthermore, they mention the possibility of gen-
erating impostors predictively in order to avoid sudden drops
of the output frame rate if many nodes need to be instantly

updated. Using visibility calculations for reducing the num-
ber of impostor updates might be an interesting extension to
that approach. However, in some situations the user move-
ment needs to be restricted to avoid too many impostor up-
dates or the image quality must be temporarily decreased.
This is the main drawback introduced by the use of dynamic
impostors.

4.6. Guaranteed Frame Rates

An interesting application is the guarantee of a frame rate
through the use of image-based representations. Note that
the object-centered approaches described in Section 4.3 are
not useful if too many objects should be visualized, so that
the sheer number of objects (and therewith rendering calls)
already overwhelms hardware capabilities.

4.6.1. Dynamic Representation Selection:
Enhancements of Funkhouser’s Adaptive Display
Algorithm

Funkhouser and Sequin [FS93] presented a predictive LOD
selection algorithm for maximizing the image quality and
meeting a desired frame rate. This is done using a cost-
benefit heuristic: the cost of an object basically describes the
time it needs to be rendered, while the benefit describes the
importance of an object for an output image. A greedy al-
gorithm is applied that preferably selects objects with high
benefit/cost ratio until a user-defined frame time budget has
been reached.

Maciel and Shirley [MS95] enhanced the work of
Funkhouser and Sequin by introducing static impostors into
the framework. They replace nodes of an input model hier-
archy with impostors, taking advantage of the fact that im-
postors can be applied to arbitrary scene parts. This allows
displaying many objects faster and with higher image quality
than graphics hardware capabilities would allow for a geo-
metric representation. However, huge texture memory re-
quirements were also experienced, and they also mentioned
prefetching impostors dynamically from harddisk. In subse-
quent work, Mason and Blake [MB97] provide a LOD se-
lection algorithm for hierarchically organized scenes with a
result that is at least half as good as the optimal solution.

Schaufler [Sch96] shows how dynamic impostors can be
incorporated into the framework of Funkhouser and Sequin.
Instead of just displaying an object with an appropriate level
of detail, an impostor is generated and displayed using a cer-
tain level of detail if the object is suitable for an impostor
representation. If impostors are displayed instead of origi-
nal objects, more frame time is left for generating higher
quality impostors from better LOD selections. This means
that the image quality is improved progressively over time
if the user stands still. In contrast, in the original framework
of Funkhouser and Sequin, the LOD selection is always the
same.

c© The Eurographics Association 2005.

14 Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes

4.6.2. Static Representation Selection

A possible way to maintain a desired frame rate is to use
far field representations (see Section 4.2) and shrink the
near field until the remaining geometry in the near field
together with the far field representation can be rendered
fast enough [WMPM01, WM03]. However, a problem arises
if the memory needed for the image-based representation
grows beyond what is tolerable. For such situations, a lower
number of samples can be used, thus decreasing the image
quality. For instance, Aliaga et al. [ACW∗99] balance the
image quality error caused by a TDM representation with
the error caused by a geometric LOD simplification in the
near field by adapting the distance of the border between
near and far field.

However, static image-based representations should not
be placed indiscriminately, but only where needed for a
frame rate guarantee in order to make best use of available
memory. Aliaga et al. [AL99] developed an algorithm for us-
ing LDIs only where they are necessary so that a prescribed
primitive budget is not exceeded, depending on the view po-
sition and direction. They hierarchically subdivide the view
space using a grid of points adapted to the local model com-
plexity. For every grid point and view direction, an optimiza-
tion algorithm selects a model subset which is represented
using an LDI so that the primitive budget is met. The model
subset is chosen using a cost-benefit heuristic aimed at low
memory requirements. This means that small, distant and
complex model subsets are preferred to large, nearby and
less complex ones. Figure 9 shows an output image from
that system.

A constraint of that approach is that only one single LDI
can be displayed per output view, which might lead to sit-
uations where scene parts are present in multiple LDIs at a
grid point. Furthermore, many similar impostors for distant
scene parts might be generated for adjacent grid points. To
overcome this drawback, Jeschke et al. [JW05] allow lay-
ered impostors (see Section 3.2) to be generated for arbi-
trary combinations of view cells and nodes of a model hi-
erarchy. First, they identify those views within a scene that
have to be accelerated (calling them problem views) even
after applying visibility culling and geometric levels of de-
tail. Afterwards, for every node of the model hierarchy, a
huge number of view cells are generated, each called an im-
postor candidate. Every candidate is rated with respect to
its combined rendering acceleration for all problem views
and the amount of memory the final impostor would need.
This means, that candidates that accelerate many problem
views and need only little memory have a better ratio than
memory costly impostors that accelerate only few problem
views. Finally, a greedy optimization algorithm successively
selects the candidates with the best ratio and generates the
respective impostors until all problem views can be rendered
sufficiently fast. The sensitive impostor selection algorithm
allows storing the impostors of a whole city model com-

pletely into graphics hardware, thus avoiding dynamic tex-
ture prefetching. Another interesting aspect in that work is
the use of a rendering time estimation heuristic [WW03] in-
stead of the simple polygon budget used by most previous
approaches.

4.7. Summary of Impostor Applications

In Section 4 we have described known strategies on how to
use impostors for different scenes so that the rendering ac-
celerations are high and the impostor updates/memory re-
quirements are low. Table 2 summarizes these methods. The
wide variety shows that the best use of impostors heavily
depends on the type of scene and interaction method. For
instance, layered impostors for forests as presented by De-
caudin [DN04] work fine for flyovers, whereas forest walk-
throughs need a different technique.

5. Summary and Future Challenges

In this STAR, an overview of impostors used for acceler-
ated rendering was given. First, general characteristics, de-
mands and challenges of image-based rendering acceleration
techniques have been stated. Afterwards, image-based prim-
itives presented in literature have been presented, ranging
from simple planar billboards to more complex techniques
like LDIs. In the last part, different ways for using impos-
tors for rendering acceleration for different scenes and de-
mands have been shown, mostly utilizing a priori scene in-
formation like visibility or geometric scene structure (e.g. in-
stantiated objects), or addressing frame-to-frame coherence.
There exists no impostor technique that should be favored
for all demands and types of scenes. A review on many
impostor-based rendering systems can be found in the PhDs
of Jeschke [Jes05] and Wilson [Wil02].

An increasingly important issue that has to be addressed
by impostors is scene dynamics: impostors should appear
like the original scene parts also if scene conditions change.
Especially the desire for more scene realism causes the de-
mand for a more flexible use of impostors. For instance, in
current games, every scene part may cast shadows, so it is
desirable that an impostor can cast shadows as well. Until
now, shadows were only presented for the billboard cloud
technique [DDSD03], which naturally supports the use of
shadow mapping algorithms due to its view independent
characteristic. However, solutions must be found to support
this feature also for view dependent impostors.

Another important aspect is the increasing use of pro-
grammable graphics hardware for realistic scene appear-
ances. The support of complex shading effects like metal
shading and environment map reflections is highly desir-
able for impostors. Many papers propose the use of normal
maps for online lighting calculations (an example was pre-
sented for the billboard cloud technique [DDSD03]). While
this allows the reproduction of dynamic lighting, a problem

c© The Eurographics Association 2005.

Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes 15

Planar Layered BBC Video TDM Depth images/LDI

Full screen static/dynamic dynamic - - static/dynamic dynamic

Far field static static - static static static/dynamic

General objects static/dynamic static/dynamic static - static -

Forest static static - - - static

Hair/Fur - static - - - -

Clouds static/dynamic - - - - -

Humans static/dynamic - - - - -

Architecture static - - - static static/dynamic

Hierarchical dynamic - - - - -
image caching

Guaranteed static/dynamic static - - - static
frame rates

Table 2: Overview of impostor rendering systems using static and/or dynamic impostor generation.

occurs if various objects with different shading effects are
represented by a single impostor. In this case, all shading
programs would have to be present in the shading program
for the impostor. The situation becomes even more difficult
if the appearance of an object is defined by a combination
of the vertex and pixel shader, as is the case for environ-
ment maps. Wimmer et al. [WWS01] presented a general
approach that is based on a light field for representing view
dependent appearance changes, mainly at the cost of long
impostor generation times and high memory requirements.
However, the inclusion of dynamic effects like for example a
skyscraper with moving clouds in the windows has not been
solved until now. Dynamic lighting makes the problem even
more difficult, because the appearance depends on the con-
figuration of the lights in a scene. No general solution for
this problem has been found until now and doing so seems to
be challenging, particularly with regard to memory require-
ments.

In conclusion, impostors as image-based representations
offer a convenient way to have the time needed to render a
scene part depend primarily on the number of pixels it covers
on screen rather than on the complexity of its geometric rep-
resentation. However, care has to be taken about the rapidly
rising amount of memory needed for storing the impostors.
Past work has shown different ways for doing so. The next
challenge is the development of techniques that increase the
flexibility of impostors with respect to dynamic shading ef-
fects which programmable graphics hardware offers.

References
[AB91] ADELSON E. H., BERGEN J. R.: The plenoptic

function and the elements of early vision. In Com-
putational Models of Visual Processing, Landy M.,
Movshon J. A., (Eds.). MIT Press, 1991, pp. 3–20.

[ABC∗04] ANDUJAR C., BRUNET P., CHICA A., NAVAZO I.,
ROSSIGNAC J., VINACUA A.: Computing maxi-
mal tiles and application to impostor-based simpli-
fication. Computer Graphics Forum 23, 3 (2004),
401–410.

[ABT98] AUBEL A., BOULIC R., THALMANN D.: An-
imated impostors for real-time display of numer-
ous virtual humans. In Proceedings of the 1st
International Conference on Virtual Worlds (VW-
98) (Berlin, July 1–3 1998), Heudin J.-C., (Ed.),
vol. 1434 of LNAI, Springer, pp. 14–28.

[ABT99] AUBEL A., BOULIC R., THALMANN D.: Lower-
ing the cost of virtual human rendering with struc-
tured animated impostors. In WSCG’99 Conference
Proceedings (1999), Skala V., (Ed.), Univ. of West
Bohemia Press, pp. 345–352.

[ABT00] AUBEL A., BOULIC R., THALMANN D.: Real-time
display of virtual humans: Levels of detail and im-
postors. In IEEE Transactions on Circuits and Sys-
tems for Video Technology (2000), pp. 207–217.

[ACW∗99] ALIAGA D., COHEN J., WILSON A., BAKER E.,
ZHANG H., ERIKSON C., HOFF K., HUDSON T.,
STÜRZLINGER W., BASTOS R., WHITTON M.,
BROOKS F., MANOCLIA D.: MMR: An interac-
tive massive model rendering system using geomet-
ric and image-based acceleration. In 1999 Sym-
posium on interactive 3D Graphics (Apr. 1999),

c© The Eurographics Association 2005.

16 Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes

Spencer S. N., (Ed.), ACM SIGGRAPH, ACM
Press, pp. 199–206. ISBN 1-58113-082-1.

[ACZ∗97] ALIAGA D., COHEN J., ZHANG H., BASTOS R.,
HUDSON T., ERIKSON C.: Power Plant Walk-
through: An Integrated System for Massive Model
Rendering. Tech. Rep. TR97-018, Department of
Computer Science, University of North Carolina -
Chapel Hill, 1997.

[AL97] ALIAGA D. G., LASTRA A. A.: Architectural
walkthroughs using portal textures. In Proceedings
of the conference on Visualization ’97 (Oct. 1997),
Yagel R., Hagen H., (Eds.), IEEE, pp. 355–362.

[AL98] ALIAGA D. G., LASTRA A. A.: Smooth tran-
sitions in texture-based simplification. Computers
and Graphics 22, 1 (Feb. 1998), 71–81. ISSN 0097-
8493.

[AL99] ALIAGA D. G., LASTRA A.: Automatic im-
age placement to provide a guaranteed frame rate.
In SIGGRAPH 99 Conference Proceedings (Aug.
1999), Rockwood A., (Ed.), Annual Conference Se-
ries, ACM SIGGRAPH, Addison Wesley, pp. 307–
316.

[Ali96] ALIAGA D. G.: Portal Textures: Texture Flip-
books for Architectural Models. Tech. Rep. TR96-
049, Department of Computer Science, University
of North Carolina - Chapel Hill, 1996.

[ARB90] AIREY J. M., ROHLF J. H., BROOKS, JR. F. P.:
Towards image realism with interactive update rates
in complex virtual building environments. In Sym-
posium on Interactive 3D Graphics (Mar. 1990),
Riesenfeld R., Sequin C., (Eds.), pp. 41–50.

[BFMS94] BISHOP G., FUCHS H., MCMILLAN L., SCHER

ZAGIER E. J.: Frameless rendering: Double
buffering considered harmful. In SIGGRAPH
94 Conference Proceedings (July 1994), Glassner
A., (Ed.), Annual Conference Series, ACM SIG-
GRAPH, ACM Press, pp. 175–176. ISBN 0-89791-
667-0.

[BWK02] BOTSCH M., WIRATANAYA A., KOBBELT L.: Effi-
cient high quality rendering of point sampled geom-
etry. In Proceedings of the 13th Eurographics work-
shop on Rendering (2002), Eurographics Associa-
tion, pp. 53–64.

[CBL99] CHANG C.-F., BISHOP G., LASTRA A.: LDI tree:
A hierarchical representation for image-based ren-
dering. In SIGGRAPH 99 Conference Proceedings
(Aug. 1999), Rockwood A., (Ed.), Annual Confer-
ence Series, ACM SIGGRAPH, Addison Wesley,
pp. 291–298.

[CH02] COCONU L., HEGE H.-C.: Hardware-accelerated
point-based rendering of complex scenes. In
Proceedings of the 13th Eurographics workshop
on Rendering (2002), Eurographics Association,
pp. 43–52.

[Che95] CHEN S. E.: Quicktime VR - an image-based ap-

proach to virtual environment navigation. In SIG-
GRAPH 95 Conference Proceedings (Aug. 1995),
Cook R., (Ed.), Annual Conference Series, ACM
SIGGRAPH, Addison Wesley, pp. 29–38.

[CIKK99] CHEN B., II J. E. S., KUO E., KAUFMAN A.:
Lod-sprite technique for accelerated terrain render-
ing. In Proceedings of the 10th IEEE Visualization
1999 Conference (VIS ’99) (1999), Ebert D., Gross
M.„ Hamann B., (Eds.), IEEE Computer Society,
pp. 291–298.

[COSL∗04] COHEN-OR D., SAYER E., LERNER

A., CHRYSANTHOU Y., DEUSSEN O.:
Aggressive visibility for rendering ex-
tremely complex foliage scenes, 2004.
http://www.cs.tau.ac.il/∼alan/aggressive.htm.

[CTCS00] CHAI J.-X., TONG X., CHAN S.-C., SHUM H.-
Y.: Plenoptic sampling. In SIGGRAPH 2000 Con-
ference Proceedings (2000), Akeley K., (Ed.), An-
nual Conference Series, ACM SIGGRAPH, Addi-
son Wesley, pp. 307–318.

[CW93] CHEN S. E., WILLIAMS L.: View interpolation
for image synthesis. In SIGGRAPH 93 Conference
Proceedings (Aug. 1993), Kajiya J. T., (Ed.), An-
nual Conference Series, ACM SIGGRAPH, Addi-
son Wesley, pp. 279–288. ISBN 0-201-51585-7.

[DC96] DARSA L., COSTA B.: Multi-resolution repre-
sentation and reconstruction of adaptively sampled
images. In SIBGRAPI’96 Proceedings (1996),
pp. 321–328.

[DCSD02] DEUSSEN O., COLDITZ C., STAMMINGER M.,
DRETTAKIS G.: Interactive visualization of com-
plex plant ecosystems. In Proceedings of the 13th
IEEE Visualization 2002 Conference (2002), Moor-
head R., Gross M.„ Joy K. I., (Eds.), IEEE Computer
Society, pp. 219–226.

[DCV98] DARSA L., COSTA B., VARSHNEY A.: Walk-
throughs of complex environments using image-
based simplification. Computers and Graphics 22,
1 (1998), 55–69.

[DDSD02] DECORET X., DURAND F., SILLION F. X.,
DORSEY J.: Billboard Clouds. Tech. Rep. 4485,
INRIA, Rhône-Alpes, 2002.

[DDSD03] DECORET X., DURAND F., SILLION F. X.,
DORSEY J.: Billboard clouds for extreme model
simplification. ACM Trans. Graph. 22, 3 (2003),
689–696.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: A real-time
geometry/impostor crowd rendering system. In
Proceedings of Symposium on Interactive 3D
Graphics and Games (2005), pp. 95–102.

[Dis98] DISCHLER J.-M.: Efficient rendering macro geo-
metric surface structures with bi-directional tex-
ture functions. In Rendering Techniques ’98
(1998), Drettakis G., Max N., (Eds.), Eurographics,
Springer-Verlag Wien New York, pp. 169–180.

c© The Eurographics Association 2005.

Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes 17

[DN04] DECAUDIN P., NEYRET F.: Rendering forest scenes
in real-time. In Eurographics Symposium on Ren-
dering ’04 (2004), H. W. Jensen A. K., (Ed.),
pp. 93–102.

[DSSD99] DECORET X., SILLION F., SCHAUFLER G.,
DORSEY J.: Multi-layered impostors for acceler-
ated rendering. Computer Graphics Forum (Proc.
Eurographics ’99) 18, 3 (Sept. 1999), 61–73. ISSN
1067-7055.

[DSV97] DARSA L., SILVA B. C., VARSHNEY A.: Navigat-
ing static environments using image-space simplifi-
cation and morphing. In 1997 Symposium on Inter-
active 3D Graphics (Apr. 1997), Cohen M., Zeltzer
D., (Eds.), ACM SIGGRAPH, ACM Press, pp. 25–
34. ISBN 0-89791-884-3.

[DVS03] DACHSBACHER C., VOGELGSANG C., STAM-
MINGER M.: Sequential point trees. ACM Trans-
actions on Graphics 22, 3 (2003), 657–662.

[Ebb98] EBBESMEYER P.: Textured virtual walls - achiev-
ing interactive frame rates during walkthroughs of
complex indoor environments. In Proceedings of
the Virtual Reality Annual International Symposium
(1998), IEEE Computer Society, p. 220.

[FS93] FUNKHOUSER T. A., SÉQUIN C. H.: Adaptive
display algorithm for interactive frame rates dur-
ing visualization of complex virtual environments.
In SIGGRAPH 93 Conference Proceedings (Aug.
1993), Kajiya J. T., (Ed.), Annual Conference Se-
ries, ACM SIGGRAPH, Addison Wesley, pp. 247–
254. ISBN 0-201-51585-7.

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R.,
COHEN M. F.: The lumigraph. In SIGGRAPH
96 Conference Proceedings (Aug. 1996), Rushmeier
H., (Ed.), Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, pp. 43–54. held in New
Orleans, Louisiana, 04-09 August 1996.

[GH97] GARLAND M., HECKBERT P. S.: Surface simplifi-
cation using quadric error metrics. In SIGGRAPH
97 Conference Proceedings (Aug. 1997), Whitted
T., (Ed.), Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, pp. 209–216. ISBN 0-
89791-896-7.

[HL01] HARRIS M. J., LASTRA A.: Real-time cloud ren-
dering. In EG 2001 Proceedings, Chalmers A.,
Rhyne T.-M., (Eds.), vol. 20(3) of Computer Graph-
ics Forum. Blackwell Publishing, 2001, pp. 76–84.

[Jak00] JAKULIN A.: Interactive vegetation rendering with
slicing and blending. In Proceedings of Euro-
graphics 2000 (Short Presentations) (Aug. 2000),
de Sousa A., Torres J., (Eds.), Eurographics.

[Jes05] JESCHKE S.: Accelerating the rendering process
using impostors. PhD thesis, University of Rostock,
2005.

[JW02] JESCHKE S., WIMMER M.: Textured depth meshes
for real-time rendering of arbitrary scenes. In

Proceedings of the 13th Eurographics workshop
on Rendering (2002), Eurographics Association,
pp. 181–190.

[JW05] JESCHKE S., WIMMER M.: Automatic impos-
tor placement for guaranteed frame rates and low
memory requirements. In Proceedings of Sympo-
sium on Interactive 3D Graphics and Games (2005),
pp. 103–110.

[JWS02] JESCHKE S., WIMMER M., SCHUMANN H.:
Layered environment-map impostors for arbitrary
scenes. In Proceedings of the Graphics Inter-
face 2002 (May 27–29 2002), Canadian Information
Processing Society, pp. 1–8.

[LCT01] LOSCOS C., CHRYSANTHOU Y., TECCHIA T.:
Real-time shadows for animated crowds in virtual
cities. In Proceedings of the ACM Symposium on
Virtual Reality Software and Technology (VRST-01)
(New York, Nov. 15–17 2001), Shaw C., Wang W.,
(Eds.), ACM Press, pp. 85–92.

[LE97] LUEBKE D., ERIKSON C.: View-dependent sim-
plification of arbitrary polygonal environments.
In SIGGRAPH 97 Conference Proceedings (Aug.
1997), Whitted T., (Ed.), Annual Conference Series,
ACM SIGGRAPH, Addison Wesley, pp. 199–208.
ISBN 0-89791-896-7.

[Len00] LENGYEL J. E.: Real-time hair. In Proceedings
of the Eurographics Workshop on Rendering Tech-
niques 2000 (London, UK, 2000), Springer-Verlag,
pp. 243–256.

[LH96] LEVOY M., HANRAHAN P.: Light field rendering.
In SIGGRAPH 96 Conference Proceedings (Aug.
1996), Rushmeier H., (Ed.), Annual Conference Se-
ries, ACM SIGGRAPH, Addison Wesley, pp. 31–
42.

[LPFH01] LENGYEL J., PRAUN E., FINKELSTEIN A., HOPPE

H.: Real-time fur over arbitrary surfaces. In Pro-
ceedings of the 2001 Symposium on Interactive 3D
graphics (2001), ACM Press, pp. 227–232.

[LS97] LENGYEL J., SNYDER J.: Rendering with coher-
ent layers. In SIGGRAPH 97 Conference Proceed-
ings (Aug. 1997), Whitted T., (Ed.), Annual Con-
ference Series, ACM SIGGRAPH, Addison Wesley,
pp. 233–242. ISBN 0-89791-896-7.

[LS99] LARSON G. W., SIMMONS M.: The holodeck in-
teractive ray cache. In ACM SIGGRAPH 99 Confer-
ence abstracts and applications (1999), ACM Press,
p. 246.

[Max96] MAX N.: Hierarchical rendering of trees from
precomputed multi-layer Z-buffers. In Rendering
Techniques ’96 (Proceedings of the Eurographics
Workshop on Rendering 96) (June 1996), Pueyo X.,
Schröder P., (Eds.), Eurographics, Springer-Verlag
Wien New York, pp. 165–174. ISBN 3-211-82883-
4.

[MB95] MCMILLAN L., BISHOP G.: Plenoptic model-

c© The Eurographics Association 2005.

18 Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes

ing: An image-based rendering system. In SIG-
GRAPH 95 Conference Proceedings (Aug. 1995),
Cook R., (Ed.), Annual Conference Series, ACM
SIGGRAPH, Addison Wesley, pp. 39–46.

[MB97] MASON A. E. W., BLAKE E. H.: Automatic hi-
erarchical level of detail optimization in computer
animation. Computer Graphics Forum 16, 3 (1997),
191–199.

[McM97] MCMILLAN L.: An Image-based Approach to
Three-Dimensional Computer Graphics. Ph.d. the-
sis, University of North Carolina at Chapel Hill,
1997. also available as UNC Technical Report
TR97-013.

[MDK99] MAX N., DEUSSEN O., KEATING B.: Hierarchical
image-based rendering using texture mapping hard-
ware. In Proceedings of the Eurographics Work-
shop on Rendering ’99 (June 1999), Eurographics,
Springer-Verlag, pp. 57–62.

[MH02] MÖLLER T., HAINES E.: Real-Time Rendering.
A. K. Peters Limited, 2002. 2nd edition, ISBN
1568811829.

[MK04] MESETH J., KLEIN R.: Memory efficient billboard
clouds for btf textured objects. In Vision, Modeling,
and Visualization 2004 (November 2004), Girod B.,
Magnor M.„ Seidel H.-P., (Eds.), Akademische Ver-
lagsgesellschaft Aka GmbH, Berlin, pp. 167–174.

[MMB97] MARK W. R., MCMILLAN L., BISHOP G.: Post-
rendering 3D warping. In 1997 Symposium on Inter-
active 3D Graphics (Apr. 1997), Cohen M., Zeltzer
D., (Eds.), ACM SIGGRAPH, ACM Press, pp. 7–
16. ISBN 0-89791-884-3.

[MMSK03] MESETH J., MÜLLER G., SATTLER M., KLEIN R.:
Btf rendering for virtual environments. In Virtual
Concepts 2003 (November 2003), pp. 356–363.

[MN98] MEYER A., NEYRET F.: Interactive volumetric tex-
tures. In Rendering Techniques ’98 (Proceedings of
the Eurographics Workshop on Rendering 98) (June
1998), Drettakis G., Max N., (Eds.), Eurographics,
Springer-Verlag Wien New York, pp. 157–168.

[MNP01] MEYER A., NEYRET F., POULIN P.: Interactive
rendering of trees with shading and shadows. In
Proceedings of the 12th Eurographics Workshop
on Rendering Techniques (2001), Springer-Verlag,
pp. 183–196.

[MO95] MAX N., OHSAKI K.: Rendering trees from pre-
computed Z-buffer views. In Rendering Techniques
’95 (june 1995), Springer, pp. 45–54.

[MS95] MACIEL P. W. C., SHIRLEY P.: Visual navigation
of large environments using textured clusters. In
1995 Symposium on Interactive 3D Graphics (Apr.
1995), Hanrahan P., Winget J., (Eds.), ACM SIG-
GRAPH, ACM Press, pp. 95–102. ISBN 0-89791-
736-7.

[NRH∗77] NICODEMUS F. E., RICHMOND J. C., HSIA J. J.,

GINSBERG I. W., LIMPERIS T.: Geometric Consid-
erations and Nomenclature for Reflectance. Mono-
graph 161, National Bureau of Standards (US), Oct.
1977.

[PLAdON98] POPESCU V. S., LASTRA A., ALIAGA D. G.,
DE OLIVEIRA NETO M. M.: Efficient warping for
architectural walkthroughs using layered depth im-
ages. In Proceedings of the conference on Visualiza-
tion ’98 (1998), Ebert D., Hagen H.„ Rushmeier H.,
(Eds.), IEEE Computer Society Press, pp. 211–216.

[RAL98] RAFFERTY M. M., ALIAGA D. G., LASTRA A. A.:
3d image warping in architectural walkthroughs. In
Proceedings of the Virtual Reality Annual Interna-
tional Symposium (1998), IEEE Computer Society,
p. 228.

[RAPL98] RAFFERTY M. M., ALIAGA D. G., POPESCU V.,
LASTRA A. A.: Images for accelerating architec-
tural walkthroughs. IEEE Comput. Graph. Appl. 18,
6 (1998), 38–45.

[RP94] REGAN M., POSE R.: Priority rendering with a vir-
tual reality address recalculation pipeline. In Pro-
ceedings of SIGGRAPH ’94 (Orlando, Florida, July
24–29, 1994) (July 1994), Glassner A., (Ed.), An-
nual Conference Series, ACM SIGGRAPH, ACM
Press, pp. 155–162. ISBN 0-89791-667-0.

[Sch95] SCHAUFLER G.: Dynamically generated impostors.
In GI Workshop on Modeling, Virtual Worlds, (Nov.
1995), Fellner D. W., (Ed.), pp. 129–135.

[Sch96] SCHAUFLER G.: Exploiting frame to frame coher-
ence in a virtual reality system. In Proceedings of
the 1996 Virtual Reality Annual International Sym-
posium (VRAIS 96) (1996), IEEE Computer Society,
p. 95.

[Sch97] SCHAUFLER G.: Nailboards: A rendering primitive
for image caching in dynamic scenes. In Rendering
Techniques ’97 (Proceedings of the Eurographics
Workshop on Rendering 97) (June 1997), Dorsey J.,
Slusallek P., (Eds.), Eurographics, Springer-Verlag
Wien New York, pp. 151–162. ISBN 3-211-83001-
4.

[Sch98a] SCHAUFLER G.: Image-based object representation
by layered impostors. In Proceedings of the ACM
symposium on Virtual reality software and technol-
ogy (1998), ACM Press, pp. 99–104.

[Sch98b] SCHAUFLER G.: Per-object image warping with
layered impostors. In Rendering Techniques ’98
(Proceedings of the Eurographics Workshop on
Rendering 98) (June 1998), Drettakis G., Max N.,
(Eds.), Springer-Verlag Wien New York, pp. 145–
156.

[SDB97] SILLION F., DRETTAKIS G., BODELET B.: Effi-
cient impostor manipulation for real-time visualiza-
tion of urban scenery. Computer Graphics Forum
(Proc. Eurographics ’97) 16, 3 (Aug. 1997), 207–
218. ISSN 1067-7055.

[SGHS98] SHADE J. W., GORTLER S. J., HE L., SZELISKI

c© The Eurographics Association 2005.

Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes 19

R.: Layered depth images. In SIGGRAPH 98 Con-
ference Proceedings (July 1998), Cohen M., (Ed.),
Annual Conference Series, ACM SIGGRAPH, Ad-
dison Wesley, pp. 231–242. ISBN 0-89791-999-8.

[SLS∗96] SHADE J., LISCHINSKI D., SALESIN D., DEROSE

T., SNYDER J.: Hierarchical image caching for ac-
celerated walkthroughs of complex environments.
In SIGGRAPH 96 Conference Proceedings (Aug.
1996), Rushmeier H., (Ed.), Annual Conference Se-
ries, ACM SIGGRAPH, Addison Wesley, pp. 75–
82.

[SS96] SCHAUFLER G., STÜRZLINGER W.: A three-
dimensional image cache for virtual reality. Com-
puter Graphics Forum (Proc. Eurographics ’96) 15,
3 (Sept. 1996), 227–235. ISSN 0167-7055.

[SS00] SIMMONS M., SÉQUIN C. H.: Tapestry: A dynamic
mesh-based display representation for interactive
rendering. In Rendering Techniques 2000 (Pro-
ceedings of the Eurographics Workshop on Render-
ing 2000) (June 2000), Péroche B., Rushmeier H.,
(Eds.), Eurographics, Springer-Verlag Wien New
York, pp. 329–340. ISBN 3-211-83535-0.

[SS01] SEQUIN C. H., SIMMONS M.: Portal
tapestries. The Pennsylvania State Uni-
versity CiteSeer Archives (Apr. 12 2001).
http://citeseer.ist.psu.edu/466318.html.

[SvBLD03] SUYKENS F., VOM BERGE K., LAGAE A., DUTRÉ

P.: Interactive rendering with bidirectional texture
functions. In Proceedings of the 24th Annual Con-
ference of the European Association for Computer
Graphics (EG-03) (Oxford, UK, Sept. 1–6 2003),
Brunet P., Fellner D., (Eds.), vol. 22, 3 of Com-
puter Graphics forum, Blackwell Publishing Ltd.,
pp. 463–472.

[TC00] TECCHIA F., CHRYSANTHOU Y.: Real-time ren-
dering of densely populated urban environments.
In Proceedings of the Eurographics Workshop on
Rendering Techniques 2000 (London, UK, 2000),
Springer-Verlag, pp. 83–88.

[TK96] TORBORG J., KAJIYA J.: Talisman: Commodity
Real-time 3D graphics for the PC. In SIGGRAPH
96 Conference Proceedings (Aug. 1996), Rushmeier
H., (Ed.), Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, pp. 353–364.

[TLC02a] TECCHIA F., LOSCOS C., CHRYSANTHOU C.:
Image-based crowd rendering. IEEE Computer
Graphics and Applications 22, 2 (Mar./Apr. 2002),
36–43.

[TLC02b] TECCHIA F., LOSCOS C., CHRYSANTHOU C.: Vi-
sualizing crowds in real-time. Computer Graphics
Forum 21, 4 (Nov. 2002), 753–765.

[WAA∗00] WOOD D. N., AZUMA D. I., ALDINGER K., CUR-
LESS B., DUCHAMP T., SALESIN D. H., STUET-
ZLE W.: Surface light fields for 3D photography. In
SIGGRAPH 2000 Conference Proceedings (2000),
Akeley K., (Ed.), Annual Conference Series, ACM
SIGGRAPH, Addison Wesley, pp. 287–296.

[Wan04] WANG N.: Realistic and fast cloud rendering. Jour-
nal of Graphics Tools: JGT 9, 3 (2004), 21–40.

[WDG02] WALTER B., DRETTAKIS G., GREENBERG D. P.:
Enhancing and optimizing the render cache. In
EGRW ’02: Proceedings of the 13th Eurographics
workshop on Rendering (2002), Eurographics As-
sociation, pp. 37–42.

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: Interac-
tive rendering using the render cache. In Render-
ing techniques ’99 (Proceedings of the 10th Euro-
graphics Workshop on Rendering) (New York, NY,
Jun 1999), Lischinski D., Larson G., (Eds.), vol. 10,
Springer-Verlag/Wien, pp. 235–246.

[WGS99] WIMMER M., GIEGL M., SCHMALSTIEG D.: Fast
walkthroughs with image caches and ray casting.
Computers and Graphics 23, 6 (Dec. 1999), 831–
838.

[WHON97] WONG T.-T., HENG P.-A., OR S.-H., NG W.-Y.:
Image-based rendering with controllable illumina-
tion. In Proceedings of the Eurographics Work-
shop on Rendering Techniques ’97 (1997), Springer-
Verlag, pp. 13–22.

[Wil02] WILSON A. T.: Spatially encoded image-space sim-
plifications for interactive walkthrough. PhD thesis,
University of North Carolina at Chapel Hill, 2002.

[WLY∗00] WILSON A., LIN M. C., YEO B.-L., YEUNG M.,
MANOCHA D.: A video-based rendering accelera-
tion algorithm for interactive walkthroughs. In Pro-
ceedings of the eighth ACM international confer-
ence on Multimedia (2000), ACM Press, pp. 75–83.

[WM03] WILSON A., MANOCHA D.: Simplifying com-
plex environments using incremental textured depth
meshes. In Proceedings of ACM SIGGRAPH 2003
(2003), Hodgins J., Hart J. C., (Eds.), vol. 22(3) of
ACM Transactions on Graphics, pp. 678–688.

[WMPM01] WILSON A., MAYER-PATEL K., MANOCHA D.:
Spatially-encoded far-field representations for in-
teractive walkthroughs. In Proceedings of the
ninth ACM international conference on Multimedia
(2001), ACM Press, pp. 348–357.

[WP95] WEBER J., PENN J.: Creation and rendering of re-
alistic trees. In Proceedings of the 22nd annual con-
ference on Computer graphics and interactive tech-
niques (1995), ACM Press, pp. 119–128.

[WW03] WIMMER M., WONKA P.: Rendering time estima-
tion for real-time rendering. In Proceedings of the
14th Eurographics workshop on Rendering (2003),
Eurographics Association, pp. 118–129.

[WWS01] WIMMER M., WONKA P., SILLION F.: Point-based
impostors for real-time visualization. In Rendering
Techniques 2001 (Proceedings of the Eurograph-
ics Workshop on Rendering 2001) (June 2001),
Myszkowski K., Gortler S. J., (Eds.), Eurograph-
ics, Springer-Verlag Wien New York, pp. 163–176.
ISBN 3-211-83709-4.

c© The Eurographics Association 2005.

20 Jeschke & Wimmer & Purgathofer / Image-based Representations for Accelerated Rendering of Complex Scenes

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: Surface splatting. In Proceedings of the 28th
annual conference on Computer graphics and inter-
active techniques (2001), ACM Press, pp. 371–378.

c© The Eurographics Association 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

