
Accelerating the Rendering Process
Using Impostors

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik

der Universität Rostock

vorgelegt von

Stefan Jeschke, geb. am 7. Mai 1977 in Rostock

aus Dändorf

Rostock, Dezember 2004

Gutachter:
Prof. Dr.-Ing. habil. Heidrun Schumann, Universität Rostock
Prof. Dr. techn. habil. Werner Purgathofer, Technische Universität Wien
Prof. Francois Sillion, INRIA Rhône-Alpes

Datum der Verteidigung: 31.03.2005

Abstract

The interactive rendering of three-dimensional geometric models is a research
area of big interest in computer graphics. The generation of a fluent animation
for complex models, consisting of multiple million primitives, with more than
60 frames per second is a special challenge. Possible applications include ship-,
driving- and flight simulators, virtual reality and computer games. Although the
performance of common computer graphics hardware has dramatically increased
in recent years, the demand for more realism and complexity in common scenes
is growing even faster.

This dissertation is about one approach for accelerating the rendering of such
complex scenes. We take advantage of the fact that the appearance of distant scene
parts hardly changes for several successive output images. Those scene parts are
replaced by precomputed image-based representations, so-called impostors. Im-
postors are very fast to render while maintaining the appearance of the scene part
as long as the viewer moves within a bounded viewing region, a so-called view
cell.

However, unsolved problems of impostors are the support of a satisfying visual
quality with reasonable computational effort for the impostor generation, as well
as very high memory requirements for impostors for common scenes. Until today,
these problems are the main reason why impostors are hardly used for rendering
acceleration.

This thesis presents two new impostor techniques that are based on partition-
ing the scene part to be represented into image layers with different distances to
the observer. A new error metric allows a guarantee for a minimum visual qual-
ity of an impostor even for large view cells. Furthermore, invisible scene parts
are efficiently excluded from the representation without requiring any knowledge
about the scene structure, which provides a more compact representation. One
of the techniques combines every image layer separately with geometric informa-
tion. This allows a fast generation of memory-efficient impostors for distant scene
parts. In the other technique, the geometry is independent from the depth layers,
which allows a compact representation for near scene parts.

The second part of this work is about the efficient usage of impostors for a
given scene. The goal is to guarantee a minimum frame rate for every view within
the scene while at the same time minimizing the memory requirements for all im-
postors. The presented algorithm automatically selects impostors and view cells
so that for every view, only the most suitable scene parts are represented as impos-
tors. Previous approaches generated numerous similar impostors for neighboring
view cells, thus wasting memory. The new algorithm overcomes this problem.

i

The simultaneous use of additional acceleration techniques further reduces the re-
quired impostor memory and allows making best use of all available techniques
at the same time. The approach is general in the sense that it can handle arbitrary
scenes and a broad range of impostor techniques, and the acceleration provided
by the impostors can be adapted to the bottlenecks of different rendering systems.

In summary, the provided techniques and algorithms dramatically reduce the
required impostor memory and simultaneously guarantee a minimum output im-
age quality. This makes impostors useful for numerous scenes and applications
where they could hardly be used before.

ii

Kurzfassung

Die Darstellung dreidimensionaler geometrischer Modelle zur Erzeugung glaub-
würdiger Bilder ist in der Computergrafik ein Gebiet von großem Interesse. Eine
besondere Herausforderung ist hierbei die Erstellung einer flüssigen Animation
mit mindestens 60 Bildern pro Sekunde für sehr komplexe Modelle. Anwendun-
gen hierfür finden sich in vielfältigen Bereichen wie zum Beispiel in Schiffs-,
Fahr-, oder Flugsimulationen, virtuellen Realitäten oder auch Computerspielen.
Obwohl gebräuchliche Grafikhardware in den vergangenen Jahren an Leistung
stark zugenommen hat, wachsen die Ansprüche nach realistischeren und damit
komplexeren Modellen in noch höherem Maße.

Diese Dissertation beschäftigt sich mit einem Ansatz zur beschleunigten Aus-
gabe solch komplexer Modelle. Es wird ausgenutzt, daß sich das Erscheinungs-
bild insbesondere entfernter Szenenteile über mehrere Ausgabebilder kaum ver-
ändert. Diese Szenenteile werden durch vorberechnete bildbasierte Repräsen-
tationen, sogenannte Imposter, ersetzt. Imposter bieten den Vorteil der schnelle-
ren Darstellbarkeit bei gleichem oder zumindest ähnlichem Erscheinungsbild für
einen räumlich abgegrenzten Bereich, dem sogenannten Sichtbereich. In bishe-
rigen Ansätzen hierzu wurde jedoch die visuelle Qualität der Impostor (d.h. die
visuelle Unterscheidbarkeit zur Originalgeometrie) für den Sichtbereich nur unter
sehr hohem Aufwand sichergestellt, und die Speicherplatzanforderungen für alle
Imposter einer Szene sind oft unerwünscht hoch. Diese Punkte sind beim heuti-
gen Stand der Impostertechnik als Hauptprobleme einer breiten Anwendbarkeit
zu sehen.

In dieser Arbeit wurden zwei neue Impostortechniken entwickelt, die auf einer
Einteilung des zu repräsentierenden Szenenteils in Bildschichten mit unterschied-
lichem Abstand zum Betrachter basieren. Durch die Einführung spezieller Feh-
lermetriken wird die visuelle Qualität der Imposter für einen großen Sichtbereich
quantifizierbar und garantierbar. Gleichzeitig können unsichtbare Szenenteile ef-
fizient entfernt werden, was den Speicherbedarf für die Repräsentation verringert.
Dabei werden keinerlei Informationen über die Struktur des originalen Szenen-
teils benötigt. Bei der einen Technik wird jede Bildschicht separat mit Geometrie-
information verknüpft. Hierdurch wird eine schnelle Impostererstellung sowie ein
sehr geringer Speicherbedarf für entfernte Szenenteile erreicht. Bei der anderen
Technik erfolgt die Verknüpfung der Geometrieinformation unabhängig von den
Bildschichten. Dies reduziert die geometrische Komplexität und den benötigten
Speicherplatz für die Repräsentation nahe gelegener Objekte wesentlich.

Der zweite Teil der Arbeit beschäftigt sich mit dem effizienten Einsatz von Im-
postern. Das Ziel ist hierbei, durch den Impostereinsatz eine Mindestbildwieder-
holrate für jeden möglichen Blickpunkt in einer Szene zu garantieren und gleich-

iii

zeitig den Speicherplatzbedarf für alle Imposter zu minimieren. Dazu wurde ein
Algorithmus entwickelt, der automatisch Imposter und dazugehörige Sichtberei-
che so auswählt, daß nur solche Szenenteile als Imposter für jeden Blickpunkt
repräsentiert werden, die sich hierfür besonders eignen. Speziell wird dabei der
Fehler bisheriger Ansätze vermieden, für benachbarte Sichtbereiche mehrere sehr
ähnliche Imposter für entfernte Objekte zu generieren. Außerdem werden parallel
zu Impostern weitere Darstellungsbeschleunigungsverfahren eingesetzt, was den
Speicheraufwand für die Imposter weiter reduziert. Der Algorithmus ist dabei so
allgemein gehalten, daß ein effizienter Impostereinsatz in beliebigen dreidimen-
sionalen Szenen sowie auch mit unterschiedlichen Impostertechniken ermöglicht
wird.

Zusammenfassend erlauben die entwickelten Techniken and Algorithmen ei-
ne flüssige Animation bei einer garantierbaren Mindestausgabebildqualität sowie
einen wesentlich geringeren Speicheraufwand für Imposter in einer Szene. Dies
erlaubt den Einsatz von Impostern in verschiedenen Szenen und Applikationen,
in denen diese Technik bisher nicht anwendbar war.

iv

Acknowledgements

This work was financially supported by the German Research Foundation (DFG)
in the frame of the postgraduate program “Graduiertenkolleg 466: processing, ad-
ministrating, visualization and transfer of multimedia data–technical basics and
social implications” at the University of Rostock.

First of all, I would like to express my gratitude to my supervisor Heidrun
Schumann, who offered me a position in the postgraduate program, always helped
me with problems I encountered during my PhD studies and allowed me room for
development. Great thanks go to Werner Purgathofer for many useful hints and
comments that influenced my scientific development, and for reviewing this thesis.
The same applies to François X. Sillion, who was willing to review this work in
spite of the short notice.

Special thanks go to Michael Wimmer for countless fruitful discussions, his
great help for publishing the results of this work and excellent proof reading of this
dissertation. I also thank Peter Wonka and Jiřı́ Bittner for interesting discussions,
Gerke Preussner for implementing a helpful optimization framework, and Konrad
Engel for interesting discussions and insights on optimization problems.

I would also like to thank all people at the Institute of Computer Graphics at
the University of Rostock, and the people at the RVR Group at the Institute of
Computer Graphics and Algorithms at the Vienna University of Technology. I
profited greatly from the creative atmosphere and enthusiasm these two research
groups offered to me.

Finally, I would like to thank Mariya who gave me much strength for my work,
and my parents for always supporting me in everything I did.

v

Contents

Abstract i

Kurzfassung iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Impostor Definition . 3
1.3 Impostor Basics . 3
1.4 Problems and Challenges . 6

1.4.1 Image Quality vs. Efficiency 6
1.4.2 Efficient Impostor Usage 8

1.5 Contributions . 9
1.5.1 Efficient Impostor Techniques 9
1.5.2 Automatic Impostor Placement 10

1.6 Models used in this Thesis . 10

2 Related Work 13
2.1 Image-Based Scene Descriptions 13
2.2 Real-Time Rendering Acceleration 16

2.2.1 Eliminating Hardware Bottlenecks 17
2.2.2 Visibility Culling . 18
2.2.3 Geometric Simplification 21
2.2.4 Point-based Representations 22
2.2.5 Addressing Frame to Frame Coherence Using IBR 24

2.3 Impostors . 26
2.3.1 Impostor Techniques . 26
2.3.2 Impostor Placement Strategies 31

2.4 Summary and Conclusion . 36

vi

3 Memory-Efficient Layered Impostors without Image Artifacts 38
3.1 Introduction . 38
3.2 Overview . 38
3.3 Scene Layering with Prevention of Image Artifacts 40

3.3.1 Layer Placement Calculation 41
3.3.2 A Rasterization Method for Guaranteed Layer Connectivity 50
3.3.3 Discussion on the Number of Layers 52

3.4 Occlusion Culling Within the Impostor 54
3.4.1 Improved Culling Addressing Penumbra Overlapping . . . 55

3.5 Memory-Efficient Layer Encoding 58
3.6 Efficient Graphics-Hardware Treatment Using Texture Atlases . . 60
3.7 Results . 61

3.7.1 Image Quality . 62
3.7.2 Memory Requirements 63
3.7.3 Generation Time . 65

3.8 Applications . 66
3.8.1 Layered Environment Map Impostors 66
3.8.2 Layered View-Independent Impostors 66

3.9 Discussion . 67

4 Textured Depth Meshes for Near Scene Parts 69
4.1 Introduction . 69
4.2 Overview . 69
4.3 Voxel Grid Generation . 70
4.4 Initial Mesh Generation . 71
4.5 Mesh Simplification . 74
4.6 TDM Texture Generation . 76
4.7 Placement of the TDM into the Scene 77
4.8 Results . 77
4.9 Discussion . 80

5 Automatic Impostor Placement 82
5.1 Introduction . 82
5.2 Preceding Considerations and Requirements 83

5.2.1 Definition of the Rendering Time 83
5.2.2 Definition of the Impostor Image Quality 84
5.2.3 Observations for a Good Impostor Placement 84

5.3 Formal Problem Definition . 85
5.4 Algorithm Outline . 87
5.5 Problem View Space Approximation 88

5.5.1 3D View Space . 88

vii

5.5.2 2D View Direction Space 89
5.6 Impostor Candidate Generation 90
5.7 Impostor Placement Optimization 91

5.7.1 Rendering Acceleration 92
5.7.2 Candidate Ranking . 93
5.7.3 Greedy Choices . 94
5.7.4 Lazy Recalculation . 94
5.7.5 Overlapping Impostors 95

5.8 Results . 95
5.8.1 Test Setup . 95
5.8.2 Test Results . 98
5.8.3 Power Plant Results . 102

5.9 Discussion . 103

6 Conclusions and Future Work 106
6.1 Summary of Impostor Techniques 106
6.2 Summary for the Impostor Placement Algorithm 108
6.3 Future Work . 109
6.4 Conclusions . 110

Bibliography 111

Curriculum vitae 130

Theses 132

viii

List of Figures

1.1 Types of artifacts that can occur during impostor display 4
1.2 Definition of a shaft-shaped view cell 6
1.3 The Vienna model . 11
1.4 The UNC Power Plant model . 12

3.1 Main steps for layered impostor generation 39
3.2 Texel movements between successive layers 42
3.3 Setup for the layer placement calculation 43
3.4 Layer spacing for different reference viewpoints 45
3.5 Equally distributing the parallax angle between two layers 47
3.6 Parallax angle for a depth range 48
3.7 Parametrization for the 3D case for calculating the depth ranges

concerning parallax angles . 50
3.8 Connected layers for eliminating image cracks 51
3.9 Example for an artifact-free layered impostor 52
3.10 Varying layer numbers . 53
3.11 Required impostor layer number for different object distances . . 54
3.12 Inter-layer occlusion culling algorithm 55
3.13 Examples for inter-layer occlusion culling 55
3.14 Umbrae and penumbrae occlusion 56
3.15 Improved occlusion culling using overlapping penumbrae 57
3.16 Different amounts of geometry for a layered impostor 59
3.17 Memory overhead introduced by the packing algorithm 61
3.18 Artifact-free layered impostors 62
3.19 “Bloated” impostor representation for a tree 63
3.20 Different memory requirements for layered impostors 64
3.21 Layered environment map impostor 66
3.22 View-independent layered impostor 67

4.1 Steps for generating textured depth meshes 70
4.2 Uniform voxel grid . 71
4.3 Voxel neighbor connections . 72

ix

4.4 12 initial mesh generation rules 73
4.5 Constraint mesh simplification 75
4.6 Avoidance of mesh boundary cracks 76
4.7 Avoidance of mesh boundary enlargement 76
4.8 Varying complexity for a textured depth mesh 78
4.9 Example for a TDM for the Tenochtitlan model 80
4.10 Example for a TDM for the car model 81

5.1 View spaces for impostor generation and use 86
5.2 The concept of enclosing frusta 89
5.3 View direction space subdivision 90
5.4 Original and approximated rendering acceleration 92
5.5 Setup for the rendering time estimation 96
5.6 Setup for impostor parameter estimation 97
5.7 Preprocessing times for the impostor placement algorithm 99
5.8 Rendering times for a walkthrough for different target frame times 100
5.9 Rendering times for a walkthrough without occlusion culling . . . 101
5.10 Two different viewing regions in the UNC Power Plant model . . 102
5.11 Texture atlases for the Vienna model and the UNC Power Plant

model . 105

x

List of Tables

3.1 Statistics for layered impostors with varying geometry complexity 59

4.1 Statistics for textured depth meshes and layered impostors 78
4.2 Examples for textured depth meshes for various models 79

5.1 Statistics for the tests with the Vienna model. 98

xi

Chapter 1

Introduction

1.1 Motivation

In computer graphics, the interactive visualization of three-dimensional models
is a research area of big interest. The basic concept is that a user interactively
explores a 3D model, thus taking advantage of immersion, which is not possible
for still images. Applications include computer games, flight and driving sim-
ulations, virtual reality scenarios, architectural visualization and computer aided
design. The 3D models are indoor (for instance, architectural scenes) or out-
door (for instance, urban scenes) environments, or single objects (for instance,
molecular structures). The user navigation consists of either object exploration,
on-ground navigation (so-called walkthrough) or flying through a scene (so-called
flythrough).

Nowadays, visualization uses specialized graphics hardware that comes with
practically every off-the-shelf personal computer and games console. The target
output resolution lies between 640x480 pixel resolution for NTSC video games
and about 1280x1024 pixel displays of today’s personal computers. During the
interaction with the model, a smooth animation is desired in order to allow a
convincing immersion. We understand output frame rates of at least 10 frames
per second as interactive and of at least the refresh rate of the output display as
real-time. Real-time frame rates range from 50 Hz for TV display over 60 Hz
for a thin-film transistor display (TFT) up to more than 85 Hz for a cathod ray
tube (CRT) monitor. While interactive frame rates are necessary to give the user
a rough feeling for scene exploration, real-time frame rates provide much better
immersion into the virtual scene. This way, Temporal aliasing effects noticeable
as “jerky” animations are avoided.

3D models consist of graphical primitives including points, lines, polygons

1

Chapter 1 Introduction

or splines. These primitives are typically organized in a data structure, called a
scene graph. One main challenge for real-time rendering systems is to provide
appropriate frame rates even for very complex 3D models. The performance of
consumer-level hardware has increased dramatically in recent years, allowing the
rendering of several Million graphical primitives per second. Furthermore, graph-
ics hardware has become more programmable, which allows better scene realism.
On the other hand, due to the continuing desire for more detail and realism, the
model complexity for common scenes has not reached its peak by far. Because
of this fact, scenes are often too complex to be displayed at interactive or even
real-time frame rates. The rendering acceleration of such scenes has been a hot
topic in computer graphics in recent years and it seems like this is not going to
change in the near future.

The main problem is that the output frame rate for a rendering system is bound
to the scene complexity. Consequently, the only way to obtain high frame rates is
to reduce this complexity for every output image. Many relevant algorithms have
been proposed, following one of four main strategies:

• The complexity of today’s graphics drivers and hardware behavior leaves
much space for optimization in many cases. Removing so-called bottle-
necks in the rendering process might dramatically increase the performance.

• Visibility calculations remove invisible portions of a scene before they are
sent to graphics hardware. While this provides dramatic rendering acceler-
ation for some cases, the actually visible geometry may already overwhelm
the hardware.

• Geometric simplification techniques take advantage of the fact that distant
scene parts are highly complex but contribute only little to the output image.
Consequently, coarser geometric representations are used with increasing
distance without loss of image quality. Unfortunately, these techniques are
not applicable for arbitrary scene parts. For instance, if multiple objects are
merged during the simplification process, preserving the appearance (for
instance, textural information) is not possible in an efficient way.

• If geometric simplification techniques cannot be applied, image-based rep-
resentations (so-called impostors) can be used instead.

The term “impostor” has been used in literature in different ways. It is defined
and characterized for this thesis in the following section.

2

Chapter 1 Introduction

1.2 Impostor Definition

In 1995, Maciel and Shirley [Maci95] defined impostors as entities that are faster
to draw than the true object, but retaining the same visual characteristics. In this
definition, geometry-based levels of detail (see Section 2.2.3) are a special kind of
impostors. In subsequent literature, impostors were usually referenced as image-
based representations in contrast to geometry-based simplifications. The term
image based means that the representation is generated from appearance sam-
ples, typically acquired by rendering the scene part. Today, the name impostor is
loosely used in the computer graphics community, mostly for referring to image-
based scene descriptions. Because this thesis deals with the acceleration of ren-
dering, impostors are defined here as replacements of geometry-based scene parts.
This means, the geometry-based representation is treated as the true object in Ma-
ciel’s definition described above. The following informal definition of impostors
is used throughout this thesis:

Impostors are image-based entities used as alternative representa-
tions for 3D scene parts for accelerating their rendering process.

Note that the definition excludes common billboarding techniques often used in
computer games for representing fire, smoke, trees and grass, or static background
images that show hills or city skylines. In these cases, the image-based represen-
tation is already considered as the original (true) object, rather than a replacement
we concentrate on.

1.3 Impostor Basics

An impostor can either be generated in a preprocess (a so-called static impostor)
or dynamically at runtime (a so-called dynamic impostor). During the model vi-
sualization, the impostor is displayed instead of the original scene part. While this
provides the same visual output, the impostor can be rendered much faster. The
rendering time of an impostor basically depends on the size of the impostor on
screen rather than on the geometric complexity of the original scene part. This
allows a very fast display of objects with arbitrary geometric complexity.

In order to generate an impostor, the respective appearance as well as the geo-
metric structure is acquired. This is typically done from a single viewpoint, called
the reference viewpoint. The acquired information is combined into an impos-
tor representation. There exist a number of different impostor techniques, mainly
characterized by the type and amount of geometric information associated with

3

Chapter 1 Introduction

an impostor. In the simplest case, the scene part is rendered into a texture (the
impostor texture) and combined with a quadrilateral (the impostor geometry) for
placing it into the scene.

The main advantage of impostors compared to geometry-based simplification
techniques is that the generation process does not rely on any knowledge about
the geometric structure of the original scene part. Because of this, they can be
used for arbitrary scenes.

For a convincing representation, the original scene part should be represented
as correct as possible. In general, the region a particular impostor can be displayed
for is bounded. Figure 1.1 shows examples for image artifacts that can occur

Figure 1.1: Image artifacts caused by impostors. Top-left: original image rendered with-
out impostors. Top-right: blocky impostor texels. Bottom-left: image gap (the impostor
was generated to the right of the actual viewpoint). Bottom-right: parallax errors result in
wrong perspective and scene integration (the right row of houses should be invisible).

during impostor display. The following aspects have to be considered in order to
avoid such artifacts:

• The impostor texture resolution should not fall below the output image res-
olution. Otherwise, “blocky” pixels become visible and the illusion of dis-
playing a true object is destroyed. This means that a minimum distance
to the impostor must be maintained. Furthermore, the acquisition of the ap-
pearance should provide a similar result compared to the originally rendered
object.

4

Chapter 1 Introduction

• If the viewpoint is changed, parallax effects (kinetic depth effects) occur
as nearby scene parts seem to move compared to distant scene parts. This
effect can be supported in an impostor by applying appropriate impostor
geometry, depending on a particular impostor technique. Because visible
parallax effects grow with increasing distance between the reference view-
point and the position of the viewer, this effect further limits the viewing
region an impostor can be displayed for with sufficient accuracy.

• Parallax movements cause new scene parts to appear. This effect is called
disocclusion. Of course, it is highly desirable that an impostor includes all
scene parts that may become visible. Otherwise, so-called image gaps or
rubber-sheet effects occur. The avoidance of these artifacts is not simple
and current solutions to this problem are computationally very costly. It is
furthermore desirable to exclude scene parts that never can become visible
in order to keep the amount of memory needed for the impostor as low as
possible.

• For a seamless integration of an impostor into a scene, the border between
impostor and adjacent geometry should not show any artifacts. This is es-
pecially important if objects are partially represented by impostors and par-
tially by the original geometry in the same output image. Furthermore, for
scenes containing non-static content such as human characters, cars etc., the
visibility between this dynamic content and the impostor must be solved.
Several related application-dependent approaches have been presented in
recent literature. For instance, Harris and Lastra [Harr01] show an exam-
ple for clouds represented as impostors and an aeroplane flying through the
clouds.

If the difference between an impostor and the original rendered object is not no-
ticeable, the impostor is called valid. The viewing region an impostor is valid
for is called view cell. The size and shape of a view cell depends on how a par-
ticular impostor technique implements the image quality issues described above.
Two view-cell shapes that have been used for different impostor techniques are
considered throughout this thesis. Box-shaped view cells have been widely used
in previous work (see Chapter 2). Shaft-shaped view cells have often been used
implicitly [Jaku00, Aube99, Scha96b, Shad96]. Figure 1.2 shows an example for
a shaft in 2D. The shaft apex lies in the center of the represented scene part. It is
defined by a direction, an apex angle and a minimum distance to the object (see
figure 1.2). Shafts address the fact that errors introduced by the impostor are much
less apparent when increasing the view distance. Consequently, the impostor can
be displayed for a much larger view space region compared to box-shaped view
cells.

5

Chapter 1 Introduction

Minimum distance

Apex angle

Shaft

Figure 1.2: A shaft-shaped view cell.

If an impostor is no longer valid, another representation (impostor or original
object) is displayed. This results in more or less noticeable popping artifacts,
depending on how well the impostor resembles the original scene parts at the
moment the representation is switched.

1.4 Problems and Challenges

Several rendering systems using impostors for research purposes have been pre-
sented. But until today, they were hardly used in commercial applications. This is
caused by a number of problems and challenges introduced by adopting impostors
into a rendering system. These problems are described in this section.

1.4.1 Image Quality vs. Efficiency

A consequence of the limited impostor validity described in Section 1.3 is that
for typical applications, numerous impostors are required to provide sufficient
rendering acceleration for every view in a scene. Depending on whether static or
dynamic impostors are used, this results either in very high memory requirements
or frequent impostor updates during runtime.

High Memory Requirements for Static Impostors

An impostor representation requires a relatively large amount of memory. This is
because a large amount of appearance samples are typically stored. In contrast,
the impostor geometry usually requires only little memory. Numerous impostors
for a whole scene let the required memory grow of an enormous pace. In typical
cases, the impostors do not fit into graphics memory nor into main memory. Re-
cent research [Alia99c, Deco99] reported on several gigabytes even for mid-range

6

Chapter 1 Introduction

scenes, which would not even fit on a DVD. Furthermore, the impostors have to be
successively loaded from harddisk into main memory and into graphics memory.
This operation must be finished for every impostor before it is needed for display.
So-called prefetching strategies try to load the most probably needed impostors in
advance, often using predictions about future user movement. However, in case
of sudden viewpoint changes, the limited memory bandwidth might lead to miss-
ing impostors at the display time. Restricting the user velocity is one solution
to this problem, but this is not always tolerable. Furthermore, the widely varying
memory bandwidths of different hardware limit the portability of such a rendering
system. These facts reduce the practical usability of impostors significantly.

Another related problem is the time needed to generate an impostor. More
involved impostor techniques have been presented that provide a larger region
the impostors are valid for. While this reduces the required memory for a whole
scene, such techniques in turn need very long preprocessing times that might be
unacceptable for some applications. In recent work [Alia99c, Wils03], several
hours of preprocessing even for moderately sized scenes are reported. This makes
impostors not useful for applications where they could be generated on the fly, for
instance, when loading a level of a computer game.

Frequent Dynamic Impostor Updates

For dynamically generated impostors, the rendering resources are shared for
model visualization and impostor generation. An important point is that the
rendering system must not be overwhelmed by the impostor generation process.
Therefore, impostor techniques with short generation times are desired. How-
ever, because such simple impostor techniques are not valid very long, this in
turn causes numerous impostor updates, which decreases the efficiency of this ap-
proach. In case of sudden viewpoint changes, too many impostors might have to
be updated, resulting in a frame rate drop. Restricting the user velocity in order
to avoid such cases is not always an option. This fact makes the efficiency of
dynamic impostor techniques highly sensitive to the target application and to the
performance of the target rendering system.

The issues above lead to similar demands for static and dynamic impostors: a
large view region every impostor is valid for, fast generation, and (especially for
static impostors) low memory requirements. Furthermore, a high image quality
without artifacts is desirable. Avoiding gaps due to disocclusions is a special
challenge in this connection. Today, there is still no technique that provides all
these features at the same time. Instead, a tradeoff must be found between the

7

Chapter 1 Introduction

contrary demands. Previous approaches that use impostors in order to accelerate
the rendering of typical scenes often accept a loss of image quality to keep the
immense amount of memory to a tolerable (but still not desirable) level. This
typically results in visible image gaps and popping artifacts.

In summary, an impostor technique that provides a large view region without
showing artifacts, that is fast to generate and requires only little memory seems to
be one key issue for a more efficient impostor use.

1.4.2 Efficient Impostor Usage

A rendering system dealing with impostors has to decide for every output view
which scene parts to display with impostors and where to rely on a geometric
representation. We call this task impostor placement. The goal of an impostor
placement is to make optimal use of the impostors. This means, a reasonable
image quality with only little memory requirements should be provided while at
the same time achieving a high rendering acceleration for every output view.

Placing impostors manually is hardly an option, even for moderately sized
scenes. Instead, previous approaches used impostors either for complex objects
like for instance trees [Jaku00], or the scene was partitioned into a set of view
cells, each associated with a separate set of impostors. Practically all approaches
address the fact that distant scene parts are amenable for being replaced by impos-
tors because a lot of geometry covers only few pixels in the output image. This
favors a high rendering acceleration with low memory requirements and large
view cells with only few noticeable image artifacts. Furthermore, a priori knowl-
edge about visibility was successfully used for architectural scenes [Raff98b] and
urban environments [Sill97] to further lower the memory needed for impostors.

However, using impostors per object might lead to situations where too many
impostors have to be displayed so that the rendering system is still overloaded.
While a placement per view cell avoids such situations, this strategy leads to
many similar impostors for representing distant scene parts for adjacent view
cells, which constitutes a waste of memory. Furthermore, impostors should not
be placed indiscriminately but only were needed for rendering acceleration in or-
der to reduce memory requirements. These issues have not been addressed in a
satisfying way in recent work and there still exists no general impostor placement
strategy that is useful for arbitrary scenes and addresses all aspects of the impostor
placement problem.

8

Chapter 1 Introduction

1.5 Contributions

This dissertation contributes to the field of computer graphics by addressing the
challenges stated in Section 1.4. New techniques and algorithms are presented for
making impostors useful for a wide range of scenes and applications.

1.5.1 Efficient Impostor Techniques

In Chapter 3 we present a new layered impostor technique that combines the fol-
lowing desirable features:

• It provides a guarantee that all scene parts visible from a particular view
cell are represented with adequate resolution. This eliminates artifacts like
image gaps.

• Invisible scene parts are efficiently excluded with practically no additional
computational effort and without relying on any knowledge about the geo-
metric model structure. This further reduces the required impostor memory.

• The impostor generation is very fast.

• The memory requirements and geometric complexity of the impostors are
fairly low for distant scene parts. The technique is also efficient for large
view cells.

• Since the impostors only consist of few textured polygons, it naturally sup-
ports graphics hardware for very fast impostor display.

In Chapter 3 the individual steps of the layered impostor generation algorithm
are explained and respective results are discussed. Parts of this work have been
presented at the Graphics Interface 2002 [Jesc02b]. In Chapter 5 this impostor
technique will be used for accelerating the rendering of a larger scene. This will
demonstrate the potential of the technique for an application that is of practical
interest.

Chapter 4 presents a textured depth mesh impostor technique that allows effi-
ciently representing scene parts near the view cell. Features like the elimination
of image artifacts, low memory requirements and geometric complexity as well
as fast display using graphics hardware are equally supported by this technique.
The cost for the compact representation is mainly the longer impostor generation
time. This work has been presented at the Eurographics Workshop on Rendering
2002 [Jesc02a].

9

Chapter 1 Introduction

We believe that the combination of the desirable features mentioned above
is beneficial for a wider use of impostors. Especially the elimination of image
artifacts for a large viewing region with only very little computational effort is an
important step to make impostors beneficial for many applications.

1.5.2 Automatic Impostor Placement

Chapter 5 introduces a new impostor placement approach that automatically de-
cides for every output view which scene parts should be represented as impostors
and which are rendered using the original representation. The aim is to guarantee a
minimum frame rate and image quality, while the amount of memory required for
all impostors is minimized. The contribution of the algorithm is that it addresses
all aspects of the impostor placement problem so that it provides a reasonable
impostor placement in practically all scenes. The individual aspects are:

• Impostors are only generated for views where they are actually needed for
sufficiently fast rendering. This is done in a general way so that the algo-
rithm is not tied a particular rendering system, type of scene or impostor
technique.

• It breaks the rigid correlation between impostors and view cells as was ap-
plied by all previous approaches. This avoids the generation of similar im-
postors for distant scene parts for adjacent view cells, which greatly reduces
the required impostor memory.

• It seamlessly integrates into common rendering systems: additional tech-
niques like visibility culling and geometric simplification are simultane-
ously used in a way so that best use is made of all available approaches.

The fact that all of these issues are addressed leads to better placements than
achieved before. The results will show that in combination with the new layered
impostor technique, the impostors needed for mid-range scenes can completely
fit into graphics hardware memory. Because prefetching tasks are then no further
an issue, impostors become useful for a number of new applications, for instance,
computer games. This work was submitted to the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games 2005.

1.6 Models used in this Thesis

The “Vienna” model (Figure 1.3) is publicly available at the Vienna University of
Technology (www.cg.tuwien.ac.at/research/vr/urbanmodels/).

10

Chapter 1 Introduction

We enhanced the model with numerous street objects in order to obtain a higher

Figure 1.3: The Vienna model, consisting of 10.4 Million textured polygons.

scene realism, so that the final model consists of 5287 objects with 10.4 Million
polygons in total. Although visibility culling was available [Wonk00] and geo-
metric simplification techniques were used for some objects like trees, the model
cannot be rendered in real time with current graphics hardware. Note that geomet-
ric simplification techniques are not efficiently applicable for this model, because
it consists of numerous individual textured objects. In contrast, impostors can be
efficiently applied for accelerating the rendering of this model, as will be shown
in Chapter 5.

The second model is the “UNC Power plant” (Figure 1.4), which is freely
available at the University of North Carolina at Chapel Hill
(www.cs.unc.edu/∼geom/Powerplant/). For this model, neither visibil-
ity culling nor geometric simplification techniques were used. The original model
consists of 12.7 Million polygons that are arranged in 14 individual large sections.
Because of this, view-frustum culling could not be applied efficiently. Therefore,
we split the model into several parts using an octree. Note that because no scene
parts are instantiated, the model already requires approximately 700 MB of main

11

Chapter 1 Introduction

Figure 1.4: The UNC Power Plant model, consisting of 12.7 Million colored polygons.

memory, which makes the application of acceleration techniques hard without
causing memory swapping.

12

Chapter 2

Related Work

Impostors consolidate two major research areas in computer graphics: image-
based representations and real-time rendering acceleration. The following sec-
tions provide an overview of these two topics. Afterwards, a more in-depth analy-
sis of previous work on impostors is given.

2.1 Image-Based Scene Descriptions

The basic principle of image-based modeling and rendering is to describe a scene
with a collection of images instead of polygonal geometry. Here, the term image
means a set of appearance samples (mainly color values), typically arranged in
a regular grid. A general advantage of images over geometry-based representa-
tions is that their complexity hardly depends on the geometric complexity of the
represented scene.

The first image-based appearance description in the form of textures applied
to object surfaces was proposed by Blinn and Newell in 1976 [Blin76]. The time
it takes to render a texture depends on the number of pixels the texture covers
on the screen and not on the complexity of the represented detail. This feature
allows fast rendering of numerous small details, which would be hard to do us-
ing a purely polygonal description. Furthermore, minification and magnification
filtering for high-quality image reconstruction of pictorial information is well es-
tablished and a standard feature in current rendering hardware. High-quality fil-
tering for geometry-based representations in order to avoid staircase artifacts is
nowadays done with full-screen oversampling in graphics hardware at the cost of
increased fill rate requirements.

13

Chapter 2 Related Work

Describing a complete scene with images can be intuitively understood us-
ing the plenoptic function [Adel91]. This function describes the radiant energy
received at a viewpoint x in view direction Θ and for wavelength Λ at time t:

µ = Plenoptic(x, Θ, Λ, t)

The output µ of this function can be any photometric unit useful for describing
the color intensity values of images. Storing the complete plenoptic function for a
nontrivial scene is hardly possible. Instead, images can be interpreted as subsets of
the plenoptic function. Deriving new views from existing ones is then a function
reconstruction problem. McMillan and Bishop [McMi95] were the first to realize
the importance of the plenoptic function for image-based rendering in computer
graphics.

Images from real-world objects can easily be acquired by taking photographs.
As an early attempt of using images for 3D scene exploration, Lippman [Lipp80]
presented the “Aspen Movie Map System” in 1980. It consisted of static
panoramic images in an interactive slide show presenting the city of Aspen. The
view position could be changed at fixed intervals and in order to change the view
direction, the excerpt from a panoramic image was shifted. At that time this tech-
nique was the only way to provide an interactive walkthrough of a city. Videodisc
technology was used to store the huge amount of data.

In the Quicktime VR System developed by Chen [Chen95], cylindrical
panoramic images are obtained from a fixed viewpoint. They are stored on hard-
disk and reprojected for display. User movement is restricted to rotation around
the viewpoint, zooming, and discrete changes of the viewpoint. Despite the quite
limited functionality, this principle provides a certain degree of immersion and is
very popular because modern digital cameras provide a fairly low effort for image
acquisition.

Chen and Williams [Chen93] presented an approach that interpolates between
samples of different reference viewpoints in order to generate an output image.
This technique provides reasonable image quality for viewpoints along the line
between two reference images. McMillan and Bishop [McMi95] describe a sys-
tem called plenoptic modeling for acquiring cylindrical images and synthesizing
new views from them. By taking into account the relative camera positions, they
allow exact view reconstruction for all interpolated output images. All these tech-
niques can also be seen as special cases of view morphing [Wolb94], where the
main difference is in the definition of corresponding samples.

If multiple color and depth values are stored for every pixel position, the image
is called a layered depth image (LDI) [Shad98, Max96]. An LDI can be generated
by either merging multiple images using image warping (which also works for

14

Chapter 2 Related Work

real-world scenes from registered photographs) or by using ray casting in a syn-
thetic scene and storing the intersections of every ray with the scene. Because it is
in general desirable to adapt an LDI’s level of detail (i.e., its resolution) to differ-
ent output image resolutions, Chang presented the LDI tree [Chan99], where LDI
samples are stored using an octree-like data structure. Popescu et al. [Pope00]
presented a special hardware, called the “warp engine,” for displaying depth im-
ages.

Another image-based primitive called light field was introduced in 1996 by
Levoy and Hanrahan [Levo96]. Simultaneously, Gortler introduced the same con-
cept, calling it lumigraph [Gort96]. A light field describes a relatively large subset
of the plenoptic function as a 4D function. If wavelength and time are not consid-
ered and the domain of the light field is a convex region in space (either “inside-
out” or “outside-in looking”) without obstacles, four dimensions are sufficient for
a complete description of the plenoptic function. Two planes with a regular grid of
sampling positions capture a light field: a camera is positioned at the sampling po-
sitions on the entry plane and records samples on the exit plane. The storage costs
of a light field are high. Therefore, compression methods like vector quantization
and entropy encoding are applied [Levo96]. Chai et al. [Chai00] propose “plenop-
tic sampling,” which gives a minimum sampling density of images needed for the
anti-aliased reconstruction of a light field if the minimum and maximum scene
depth is known. However, since occlusions are not taken into account, image gaps
are not avoided, so that the practical usability of the approach is restricted. In
general, the huge amount of data still limits the use of light fields for scenes with
larger extents.

So-called surface light fields [Wood00] encode the directionally dependent
radiance for points on an object surface. Consequently, only the radiance per fixed
sample position is encoded, whereas the geometry is given separately. Because
parallax effects and occlusions are not encoded in the light field but represented
by the geometry, a much better image quality compared to a standard light field
can be achieved.

The image-based scene representations mentioned so far do not support re-
lighting, i.e., light source modifications. Changing lighting conditions (such as
moving shadows, specular highlights and anisotropic effects like metallic reflec-
tions) requires the whole representation to be rebuilt. To overcome this problem,
Wong [Wong97] extends light fields using the bidirectional reflectance distribu-
tion function (BRDF) [Nico77]. This function encodes the relation between the
incoming and outgoing light for every sample point, so that arbitrary lighting con-
ditions can be reproduced at the cost of even higher memory requirements com-
pared to light fields. The bidirectional texture function (BTF) [Disc98] is a dis-
cretized BRDF on an object surface. It is used for complex object surface descrip-

15

Chapter 2 Related Work

tions because it provides view- and illumination-dependent appearance changes
and can be encoded so that it can be rendered with standard graphics hardware.
For small surfaces it requires a tolerable amount of memory and can also be tiled
or instantiated just like common textures [Suyk03, Meye01, Mese03].

2.2 Real-Time Rendering Acceleration

The process of generating images from a geometric scene description is carried
out in the rendering pipeline. The typical rendering pipeline consists of three
major stages:

• Scene traversal: The application manages a database in main memory
and—in case of out-of-core rendering—also on harddisk. During the scene
traversal, the geometry that is necessary to render an output image is ex-
tracted from the database and sent to the graphics hardware.

• Geometry processing: In order to generate an image of the scene, a trans-
formation from world coordinates into device coordinates is performed for
every graphical primitive. Clipping on the view frustum, lighting, texture
coordinate calculation etc. are also performed in this step.

• Rasterization: Finally, every geometric primitive is rasterized, and color
values for the covered pixels are stored in the frame buffer. A z-buffer test
[Catm75] resolves the visibility between individual primitives. Additional
operations in this stage include per-pixel lighting, texturing, blending, sten-
cil operations etc.

In traditional rendering architectures, every primitive is processed separately. This
means the computational effort grows with the number of primitives. Current
hardware is able to render several million primitives per second, depending on
the graphics driver, the geometry characteristics and hardware behavior. In the
past, the main bottleneck in rendering systems was the sheer number of polygons
sent down the pipeline. Therefore, many proposed rendering acceleration tech-
niques aim on reducing the number of primitives already in the traversal stage.
However, in order to accelerate the rendering process today, all aspects of the ren-
dering hardware must be taken into account as will be described in Section 2.2.1.
Rendering acceleration algorithms can be performed either in a preprocess or di-
rectly at runtime. The following issues must be considered when comparing the
efficiency of different rendering acceleration techniques:

16

Chapter 2 Related Work

• Acceleration: Different approaches provide different orders of rendering
acceleration. For instance, some algorithms provide rendering times sublin-
ear in the number of primitives, whereas others provide only small increases
of the frame rate under certain conditions. The additional effort introduced
by the acceleration technique must always be balanced for the actual appli-
cation.

• Generality: Some algorithms make assumptions about the input data.
Other approaches exploit coherence between consecutive frames [Gröl93],
allowing only limited changes of the output image over successive frames.
Another point is how well the algorithm scales with extremely large scenes
consisting of several million primitives. Whether such assumptions and/or
concessions can be made mainly depends on the application.

• Additional computational effort: Acceleration algorithms may require
unacceptably long preprocessing times. For online algorithms, the addi-
tional computational effort at runtime might or might not be worth the ob-
tained acceleration.

• Memory requirements: The memory requirements for an acceleration data
structure must be kept low on harddisk as well as in main memory and/or in
graphics memory.

• Image quality: Reduced image quality for faster rendering is not tolerable
for many applications. Some approaches progressively enhance the image
quality at runtime if free resources are available.

Most acceleration algorithms allow trading off some of these issues to a certain
degree. For instance, in case of impostor rendering, image quality and/or process-
ing time can be traded for impostor memory.

We divide rendering acceleration techniques into 4 main categories: elimi-
nation of bottlenecks in the rendering pipeline, visibility calculations, level-of-
detail techniques, point-based representations, and approaches that address frame
to frame coherence using image-based techniques. The following sections de-
scribe these main strategies in more detail. Although in principle impostors also
address frame to frame coherence, they are discussed in more detail in a separate
section.

2.2.1 Eliminating Hardware Bottlenecks

Today, the performance of graphics hardware is growing at an enormous pace.
On the other hand, the complexity of the graphics driver and hardware behavior

17

Chapter 2 Related Work

leaves much space for optimization in many cases. For instance, the geometry
format (indexed geometry, display lists, etc.) can influence the output frame rate
up to an order of magnitude because graphics drivers do not support all formats
in an efficient way. Further important issues in this connection are hardware state
changes (textures, shaders etc.), vertex caching performance and shader program
complexity.

Three main bottlenecks in the rendering process can be identified. If the CPU
cannot serve the GPU fast enough, the rendering is called CPU bound. In the
graphics hardware, either the vertex transformation stage and/or the rasterization
stage are the slowest stage of the pipeline. The small cache between transforma-
tion and rasterization stage means that only a certain triangle size lets both units
work in parallel for a longer time. This causes shifting bottlenecks even during
the rendering of a single object [Wimm03].

These facts show that several partly interacting aspects must be considered
when optimizing the hardware rendering pipeline. Unfortunately, a hard guaran-
tee for the maximum rendering time an output image needs cannot be given with
current graphics hardware architectures. However, a soft rendering time limit can
be met for a fixed 3D model and target rendering system by estimating the render-
ing time per frame as described by Wimmer and Wonka [Wimm03]. In Chapter 5,
such an estimation will be used for the impostor placement algorithm, guarantee-
ing a maximum rendering time for each frame in a scene by using impostors.

2.2.2 Visibility Culling

Visibility culling algorithms calculate an estimation of invisible primitives to
avoid sending (i.e. cull) them down the rendering pipeline. As a simple exam-
ple, hierarchical view-frustum culling [Clar76] provides very effective visibility
culling for many cases. View frustum culling tests a bounding volume (a box or
a sphere) of an object against the view frustum. If the bounding volume is com-
pletely outside the view frustum, the object is culled. If this is done for nodes
of a scene graph in a top-down fashion, large scene portions can be culled very
efficiently.

Backface culling [Suth74] removes polygons whose normal does not face the
viewer. Today this operation is performed in graphics hardware. If polygons with
similar normals are grouped in a hierarchical way [Kuma96], larger scene portions
can be culled before they are sent to the graphics hardware. Backface culling is
used today in almost every real-time rendering system.

Occlusion culling culls scene parts (so-called occludees) that are occluded by
closer ones (so-called occluders). This operation can be performed during runtime

18

Chapter 2 Related Work

or in a preprocess.

If the occlusion is computed at runtime, the problem reduces to a from-point
visibility problem that can be solved in image space. In 1993, Greene et al.
[Gree93] presented an online-occlusion culling algorithm called the hierarchical
z-buffer. The scene is hierarchically organized using an octree, and the z-buffer is
hierarchically partitioned using a quadtree (the so-called z-pyramid). The scene
hierarchy is rendered in a front-to-back fashion, allowing efficient culling of in-
visible scene hierarchy nodes using the z-pyramid. Although the approach is con-
ceptually very general and efficient, the practical usage of this approach is still not
feasible with today’s graphics hardware, since a lot of depth information would
have to be read back from the z-buffer at every frame. Unfortunately, this is still
a time-consuming operation. However, the idea has spawned a number of derived
approaches, low resolution software implementations for coarse culling and frag-
ment block culling in current graphics hardware. The hierarchical occlusion map
presented by Zhang et al. [Zhan97] stores opacity values instead of depth values.
Relying on a careful selection of occluders, only little information has to be read
back from the graphics hardware. Because of this it achieves better acceleration
compared to the hierarchical z-buffer, although it is conceptually less powerful.

On modern graphics hardware, so-called occlusion queries can be performed
parallel to the rendering process. These allow the calculation of visibility for an
object in image space, dependent on the content of the depth buffer. A good
strategy for drawing good occluders first and then testing occludees is the key for
an effective acceleration, in order to avoid the inherent latencies of the queries.
This was shown in recent research by Bittner et al. [Bitt04].

Other online occlusion culling algorithms work in object space. Hudson et
al. [Huds97] test a bounding volume scene hierarchy against shadow frusta of few
large occluders in the foreground. Coorg and Teller [Coor97] also perform hier-
archical tests using supporting and separating planes, while Bittner et al. [Bitt98]
construct a shadow volume BSP-tree.

Calculating occlusion in a preprocess has the advantage of requiring only mar-
ginal online computation. To this end, the view space is partitioned into view cells,
and for every cell from-region visibility is calculated. The result is a set of primi-
tives that are likely to be visible, called the potentially visible set (PVS) [Aire90].
During runtime, only the PVS of the actual view cell is rendered.

For certain types of scenes, occlusion culling can be very effectively applied.
For instance, architectural models provide excellent potential for occlusion culling
because large scene parts are hidden by walls. This fact is utilized by Airey et
al. [Aire90] as well as Teller and Sequin [Tell91]. View cells coincide with rooms,
and portals are open connections between the cells, like for instance doors and

19

Chapter 2 Related Work

windows. Visibility between cells (so-called cell-to-cell visibility) is computed in
a preprocess. Luebke and Georges [Lueb95] propose an efficient online method
that accumulates portal intersections in image space until no intersecting region
is left. The image-space bounding box of every object is then tested against the
portal intersection of its cell and culled if invisible.

Visibility culling can also be efficiently used in urban scenes with 2.5-
dimensional characteristic. Nearby building facades serve as excellent occluders,
as was shown by Wonka et al. [Wonk00]. Occluder shadows are rendered into
an orthographic map parallel to the ground. After reading back the map (which
can be a bottleneck of this approach), depth values are used to decide on the vis-
ibility of every object. This occlusion-culling algorithm can also be performed
at runtime [Wonk99] or in parallel to the rendering pipeline by another rendering
system [Wonk01]. It will also be used in Chapter 5 in this thesis.

The calculation of effective occlusion culling for arbitrary models is quite dif-
ficult. Many algorithms assume large single primitives or large water-tight objects
to serve as good occluders [Scha00]. Durand et al. [Dura00] propose extended
projections as an extension of the hierarchical z-buffer algorithm for from-region
visibility culling. Visibility is computed in image space using several occlusion
maps for different scene parts. The intersection of all possible projections of an
occluder in image space when seen from any point in a view cell is defined as its
extended projection, while for an occludee, it is the union. Graphics hardware can
be used for fast computation of the projections. The occlusion-culling technique
for the layered impostor technique presented in Chapter 3 is conceptually related
to this technique.

All from-region visibility algorithms mentioned above are conservative in the
sense that they calculate a superset of the geometry actually visible from a view
cell. For some scenes, a conservative solution does not provide enough occlusion
and computing an exact visible set is by far too complex. Vegetation models
are an example for such scenes. For those cases, Andujar et al. [Andú00] compute
approximate visibility by allowing a certain amount of visibility error with respect
to the output image. The approximative set of primitives is called hardly visible
set.

To conclude, there is a huge amount of literature on visibility-culling tech-
niques. Recent work of Bittner [Bitt02] as well as Nirenstein et al. [Nire02] even
propose exact from region visibility algorithms with reasonable computational
effort. Further examples as well as in-depth discussions on proposed visibility
algorithms can be found in the theses of Durand [Dura99], Wonka [Wonk02] or
Bittner [Bitt02].

20

Chapter 2 Related Work

2.2.3 Geometric Simplification

Geometric level-of-detail (LOD) techniques address the fact that small details are
hardly noticeable from a distance, so less geometric primitives can be used per
object in order to generate a similar output image. Clark [Clar76] was the first
who made use of this fundamental issue in 1976.

In traditional geometry-based LOD techniques, several independent represen-
tations with different complexity and approximation quality are used for a polyg-
onal model. We give a brief overview on LOD generation methods and LOD
selections at runtime.

Much work has been published in recent years treating the generation of dif-
ferent level-of-detail representations. The proposed methods differ mainly in the
simplification operations and the used error metrics. Algorithms working on man-
ifold surfaces (so-called mesh simplification algorithms) use knowledge about
topology for the simplification process. Local operations are performed on the
mesh while keeping the introduced error as small as possible. Vertex removal
and edge collapsing are common examples for such operations. Proposed error
metrics include energy functions [Hopp93], the quadric error metric [Garl97] and
simplification envelopes [Cohe96], to name but a few. A broad overview of these
techniques is given in numerous tutorials, for instance [E. P97].

During runtime, an appropriate representation is chosen for model display.
Various level-of-detail selection algorithms have been published that trade image
quality for rendering acceleration.

One possibility for LOD selection is to set a desired image quality and min-
imize the number of primitives for display. Unfortunately, it seems to be prac-
tically impossible to include all relevant human perception issues for such a se-
lection. In many cases, a simple distance-based metric is used: the farther the
object is away, the less polygons are used for its representation. Schaufler and
Stürzliner [Scha95a] and Luebke and Erikson [Lueb97] independently developed
methods for using a hierarchy of representations to provide the desired image
quality. A pixel-based screen-space error threshold was used in order to select the
desired level of detail. Furthermore, these methods allow very high compression
of arbitrary geometric scenes at the cost of significantly decreased image quality
in case of a higher compression ratio.

Another approach is to meet a primitive budget and maximize the image qual-
ity. Funkhouser and Sequin [Funk93] presented a predictive algorithm for max-
imizing the image quality while maintaining a desired frame rate. This is done
using a cost-benefit heuristic: the cost for an object basically describes the time
it needs to render, while the benefit describes the importance of an object for an

21

Chapter 2 Related Work

output image. The resulting optimization problem is a special variant of the well-
known knapsack problem [Maso99].

One important issue for LODs are smooth transitions when switching between
different representations in order to avoid popping artifacts. Blending provides
smooth switching, but both representations have to be drawn during the blending
phase, which increases the number of primitives to be drawn [Möll02]. If geo-
metric correspondences are established between different levels of detail, a geo-
morphing operation [Hopp98a, Alia96b, Alia98b] can be applied to overcome this
problem. However, geometric morphing often looks unnatural on solid objects.

So-called progressive meshes [Hopp96], on the other hand, automatically
avoid popping artifacts because no separate representations are generated, but
the objects are either represented as wavelets [Loun97], using subdivision con-
nectivity [Eck95], or a sequence of edge collapses. The method of Garland is
most widely used today because of its satisfying results for many applications and
its free availability on the internet. Improvements of progressive meshes allow
an adaption of the mesh following special criteria: view-dependent simplification
methods [Hopp97, Xia96] simplify a mesh with respect to the current viewpoint.
This means, visually important parts like object silhouettes are tesselated finer
than regions outside the view frustum or those facing backwards from the viewer.
This approach is mainly useful for terrain rendering [Hopp98b] because of the
high CPU overhead of maintaining the simplification data structure. Another cri-
terium is the preservation of attributes such as material indices, color values or
texture coordinates. Cohen et al. [Cohe98a] use textures and bump-maps for rep-
resenting details for lower geometrical levels of detail. In this method, a para-
meterization of the model is necessary, which is only available for objects with
known topology. Further information on this research is provided in the thesis of
Cohen [Cohe98b].

Although much research has been done in the field of LODs, a general efficient
simplification method which works on arbitrary geometry while at the same time
preserving appearances is still not available. More specifically, an unsolved prob-
lem is the preservation of textural information when simplifying multiple objects
simultaneously. The problem is that a common parameterization is not available
for this case. The problem is exacerbated if different objects use different vertex
and pixel shaders.

2.2.4 Point-based Representations

Polygonal model descriptions are powerful and efficient representations for 3D
models. Different tasks like visibility calculations and collision detection were

22

Chapter 2 Related Work

largely solved with this representation. On the other hand, arbitrary distant scene
parts covering only few pixels with millions of polygons cannot be displayed ef-
ficiently even today. For such cases, point-based representations have been a hot
discussion topic in the scientific community in recent years.

In fact, points constitute a convenient representation for several classes of
complex objects. By completely leaving topology information aside, relatively
low storage requirements and fast rendering become possible. This is espe-
cially true for “soft” objects like explosions, fire, smoke etc., which were ren-
dered using particle systems in the 80’s by Reeves [Reev83]. Another exam-
ple is vegetation, as was shown in the work of Reeves and Blau [Reev85], We-
ber and Penn [Webe95], and more recently by Deussen et al. [Deus02]. Max
and Ohsaki [Max95] rendered trees from precomputed images with z-values,
which can also be interpreted as a point-based representation but also as an LDI.
This shows the close connection between point-based and image-based computer
graphics. While both rendering techniques are based on a set of appearance sam-
ples of a model, the main difference is the format in which the samples are stored
and processed.

When using points for representing a surface, one challenge is the adequate
sampling, filtering and reconstruction of the surface in order to generate an output
image. The aim is to support a properly filtered surface appearance for minified
views and no holes for magnified views. The first work in this direction was done
by Levoy and Whitted in 1985 [Levo85] for the special case of continuous and
differentiable surfaces. They also addressed filtering issues for that case. In 1998
Grossman and Dally [Gros98] presented a point sample rendering approach for
geometric models. They give a theoretical condition for the adequate sampling
of an object and show that it can hardly be achieved in practice. Based on this
insight, they present a sampling approach using orthographic cameras. Rendering
is done using an incremental block-warping method with visibility computation
based on a hierarchical pull-push algorithm.

Pfister et al. [Pfis00] obtained high-quality point-based rendering with surfels:
points with shape and shading attributes that locally approximate a surface. The
geometric object is sampled into three orthogonal LDIs. This structure is called
layered depth cube (LDC). They generate a hierarchy of LDCs with precomputed
texture information. The higher output image quality compared to conventional
graphics hardware rasterization comes at the cost of usually huge storage require-
ments for the surfels and a high computational effort for the image generation
process.

Points also allow a simple and natural generation of different levels of detail
independently from the represented geometry. Catmull [Catm74] proposed al-

23

Chapter 2 Related Work

ready in 1974 that any geometric simplification may finally lead to points. The
QSplat rendering system by Rusinkiewicz and Levoy [Rusi00] uses a bounding-
sphere hierarchy for this. Similarly, an earlier approach by Chamberlain et
al. [Cham96] already used a spatial hierarchy of colored boxes for representing
far-away scene parts.

Recent research has focussed on high image quality [Zwic01], fast and
hardware-assisted point data traversal [Dach03] and splatting [Coco02] for fast
display, as well as memory-efficient point representations [Bots02]. This last
work discusses further important characteristics of points. Points perform well
compared to polygons in terms of memory consumption if many small geometric
details have to be represented, as is the case for statues or trees. However, in the
case of lower geometric complexity but rich color detail, textured polygons need
by far less memory. Furthermore, until today there is no solution for occlusion
culling for point-rendered geometry except in the special case of terrains, as was
described by Stamminger and Drettakis [Stam01].

A different approach for the rendering acceleration of geometric models using
points was presented by Wand et al. [Wand01]. Points are dynamically generated
at runtime for the nodes of a hierarchy in a random fashion. The point sampling
density of every node is chosen so that the resulting image contains no holes.
Every node contains information that guides the algorithm for the efficient view-
dependent choice of points. Unfortunately, visible scene parts may not be sam-
pled sufficiently, leading to gaps in some objects. While this is hardly noticeable
in vegetation environments, artifacts become visible in urban scenes, resulting in
mixed fore- and background appearances. However, scenes of extreme complex-
ity (up to 1014 triangles were reported) can be rendered at interactive frame rates,
also by addressing frame-to-frame coherence. Wand and Straßer [Wand02] im-
pressively show that random point sampling can also be used for the interactive
display of dynamic scenes with over 90,000 moving objects.

2.2.5 Addressing Frame to Frame Coherence Using IBR

In a conventional rendering pipeline, every output image is rendered from scratch.
In contrast, the idea of rendering acceleration techniques that are described in this
section is to redisplay previously rendered output images in order to save render-
ing time. Frame-to-frame coherence [Gröl93] is explored so that the rendering
speed can be decoupled from scene complexity to a certain degree. The main de-
cisions to be made are which scene parts to update and which kind of image-based
representation to use for them.

Reagan and Pose [Rega94] presented a hardware architecture called virtual

24

Chapter 2 Related Work

address recalculation pipeline that already shows many aspects of image-based
rendering acceleration. In that approach, the scene is partitioned into depth lay-
ers based on the distance to the viewer. Every layer has its own video memory.
Because changes occur more often for near scene parts, the layers are updated at
different frame rates (the so-called priority rendering). The approach decouples
the output frame rate from the rendering speed. The acceleration was more than
one order of magnitude compared to the traditional rendering pipeline at that time.

Lengyel and Snyder [Leng97] enhance the concept of partitioning the output
image into coherent image layers. The image layers are generated with respect to
object perception in the fore- and background, different object movements, and
efficient usage of texture memory. Rendering resources are then adaptively dis-
tributed so that fast-moving foreground objects get more rendering resources than
a hardly changing background. The rendering system was implemented on Talis-
man [Torb96], a rendering hardware prototype that directly supports the rendering
with such coherent image layers.

Mark et al. [Mark97] present another method called post-rendering 3D image
warping. Only every n-th output image is rendered from geometry. Images in
between are generated by composing two to three reference images rendered from
previous and predicted future viewpoints. This ensures that most visible scene
parts are present in the reference images so as to avoide image gaps. Another
approach in this spirit is the work of Simmons and Sequin [Simm00]. Here the
graphics hardware is used to reproject already cached radiance values by using a
triangulated unit sphere centered at the viewpoint.

Chen et al. [Chen99] present a method that smartly incorporates geometric
levels of detail with image-based techniques. A high-quality rendered image is
mapped as a texture to a simplified mesh obtained from a conventional mesh sim-
plification approach. The high-quality image is updated if a user-defined image
quality is not met anymore. The authors show results of this technique for a ter-
rain.

Wimmer et al. [Wimm99] divide the scene into a near and a far field. While
the near field is rendered using conventional graphics hardware rendering, the far
field is rendered using ray casting. They argue that with increasing distance, more
geometric primitives cover an output pixel, so that ray casting performs better than
conventional rendering. A radiance cache in the form of a panoramic image was
used to keep the number of cast rays low if the viewer moves.

As a very simple but effective approach, Bishop et al. [Bish94] presented
frameless rendering. Here, pixels are displayed instantly and in a random order.
This allows displaying fluent animations if the output images cannot be rendered
sufficiently fast, at the cost of reduced image quality due to varying times for the

25

Chapter 2 Related Work

update of every pixel.

In all methods described above, images are generated at runtime. A problem
arises if too many scene parts must be updated between two consecutive output
images. For that case, the rendering speed may drop significantly. If it is desired
to keep the rendering speed high, a common way is to temporarily decrease the
image quality.

2.3 Impostors

The border between impostors and the techniques discussed in Section 2.2.5 is
not very sharp. For instance, the work of Mark et al. [Mark97] can also be seen
as a “full-screen impostorization”. However, the work described in this section is
closer related to this thesis. We distinguish between the impostor technique that
defines the impostor representation, and the impostor placement that defines the
strategy for replacing scene parts with impostors in every output image.

2.3.1 Impostor Techniques

Impostors have to fulfil several demands like fast generation and display, low
memory requirements and good image quality for a large viewing region (see Sec-
tion 1.3). Several impostor techniques have been presented in recent work, each
with the emphasis on different demands. Especially the problem of insufficient
image quality (examples for this have been given in Section 1.3) has been ad-
dressed with combining different amounts of impostor geometry and appearance
information. The following subsections describe previous impostor techniques in
more detail.

Planar Impostors

In 1995, Maciel and Shirley [Maci95] introduced so-called planar impostors.
They basically consist of simple planar geometry (for instance, a quadrilateral)
with an alpha texture applied to it. Schaufler [Scha95b] generates such planar
impostors dynamically at runtime. This is possible because the generation of a
planar impostor is computationally not expensive. Displaying it is also very fast
because of its very low geometric complexity.

On the other hand, parallax movements are not accounted for, so that the im-
postor needs to be frequently updated. In order to quantify the introduced error
if the viewpoint is moved, Schaufler [Scha95b] presents a fundamental criterion

26

Chapter 2 Related Work

for the validity of planar impostors: as long as the so-called error angle between
a point of the original object and its impostor representation falls below the angle
of one pixel in the output image, the impostor is valid. Aliaga [Alia96a] (and
also Shade et al. [Shad96]) mention to compute the error angle for every texel.
However, this operation is usually much too costly. Schaufler [Scha95b] instead
estimates the error angle for the cases that the viewer moves sidewards and to-
wards the object by using a specific oriented bounding box of the object. This
metric was also used later by Harris and Lastra [Harr01] for rendering clouds. In
further related work [Aube99, Jaku00, Alia96a, Shad96], a simpler error estima-
tion was presented, based on the angle the observer views an impostor in relation
to the view position the impostor was generated. Furthermore, Aubel [Aube00]
presented a special-purpose metric designed for impostors for moving humans,
which is based on the distance between different body parts.

Another problem are discontinuities on the border between geometry and the
impostor. Aliaga [Alia98b] proposes to distort the geometry the same way the
impostor does it. In order to reduce popping artifacts that occur when switch-
ing from impostor to geometry and vice versa, Aliaga furthermore proposes to
smoothly warp the represented scene part again. Of course, the output image is
by no means correct, but the impostors are reported to fit smoother into the scene.
Ebbesmeyer [Ebbe98] and Jakulin [Jaku00] achieve this by blending between dif-
ferent representations.

Furthermore, the visibility between the scene and a flat impostor must be
solved satisfactorily. Therefore, Schaufler [Scha97] introduced the so-called Nail-
boards, which store per-pixel depth information in order to calculate the visibility
with a two-pass rendering algorithm. Note that Nailboards use depth informa-
tion only for resolving visibility and not for supporting parallax effects. Aubel
et al. [Aube99] instead split the object into multiple small non-overlapping im-
postors. However, this leads to disturbing discontinuities at the impostor bor-
ders [Aube00]. Therefore, they mention to store all overlapping scene parts into
one single impostor (they call it factorized impostor), at the cost of having to
update the impostor frequently. As a second solution, they propose to solve vis-
ibility when the impostor is generated and only store visible pixels (they call it
depth corrected impostors). However, this means that if any occluding scene part
or the camera moves, the impostor has to be updated, which might be very costly.
Harris and Lastra [Harr01] render clouds as impostors generated using particle
systems. For resolving visibility of a cloud with an object, they split it into a
foreground and a background part and render an impostor for each of them. In
contrast to Aubel et al. [Aube00] (who rendered solid objects), this method works
sufficiently correct, due to the fuzzy appearance of clouds.

27

Chapter 2 Related Work

Layered Impostors

In 1998, Schaufler [Scha98a] presented layered impostors, which are able to si-
multaneously reproduce parallax movements, solve the visibility satisfactorily
correct and integrate seamlessly into the scene. The idea of layered impostors
is to use multiple image layers at different distances from the viewer, each repre-
senting a certain depth range. Schaufler shows how the parallax error decreases
with increasing numbers of layers. In order to capture as many potentially visible
scene parts as possible, Schaufler [Scha98b] uses a view frustum centered behind
the object for the impostor generation process. In order to avoid image gaps be-
tween the layers, slightly overlapping depth regions are rendered into each layer.
However, no guarantee can be given for avoiding image gaps, as will be seen in
Chapter 3. Compared to planar impostors consisting of only one image layer,
layered impostors provide a larger valid viewing region. Jakulin [Jaku00] shows
that this technique can be used for complex objects with impressive image qual-
ity. However, the memory requirements for the image layers are quite high. In
Chapter 3 we will present a new variant of layered impostors that guarantee both,
a representation without any image gaps and very low memory requirements.

Video-based Representations

Wilson et al. [Wils00, Wils01] stored planar impostors of adjacent view cells
in an MPEG2 video stream. The MPEG video compression standard provides
relatively high compression rates for the representation. Although video encod-
ing provides fairly good compression rates resulting in low memory costs, high-
frequency scene content causes aliasing artifacts and results in lower compression
rates. Unfortunately, aliasing artifacts occur often when rendering distant scene
parts. Another problem is that since video-based impostors actually constitute flat
images, a correct visibility calculation is not possible for dynamic scene content.

Textured Depth Meshes (TDM)

The basic concept of textured depth meshes [Dars97, Sill97] is to triangulate
a rendered image with respect to depth discontinuities (like object silhouettes)
based on the z-buffer. Planar image regions are represented using individual tex-
tured polygons, whereas a tradeoff between approximation accuracy and mesh
complexity must be found for non-planar regions. TDMs provide good parallax
movement reconstruction and visibility is also solved satisfactorily. They need
only little additional geometry and storage compared to planar impostors.

28

Chapter 2 Related Work

Several methods have been proposed for TDM generation. Darsa et
al. [Dars97] use a Delauney triangulation based on the Voronoi diagram of ir-
regular sparse samples generated by a ray tracer. In that work, every triangle is
assumed to have only one color, so that color and depth must be approximated
simultaneously. In later work, Darsa et al. [Dars96, Dars98] obtain the triangu-
lation only from the depth component of the samples. Color is applied to the
depth mesh using textures. Sillion et al. [Sill97] extract silhouettes and depth
discrepancy lines from the z-buffer, thus creating several image regions. For tri-
angulating these regions, equally spaced points are inserted, followed by a con-
strained Delauney triangulation. Aliaga et al. [Alia99a] instead build a very dense
regular mesh with image resolution which is then simplified using a fast greedy
algorithm that merges planar regions. Afterwards, an accurate but also computa-
tionally expensive mesh simplification algorithm [Garl97] is applied. Wilson and
Manocha [Wils03] use first the approach of Garland and Heckbert and afterwards
the view-dependent simplification algorithm of Luebke and Erikson [Lueb97].

In order to reduce the required storage space on harddisk, Decoret et
al. [Deco99] suggest to generate the mesh geometry in a preprocess (because this
is the most time-consuming operation) but the textural information on the fly.

Textured depth meshes suffer from disocclusion artifacts, typically visible as
rubber-sheet effects. They are caused by distorted meshes that cover geometry
not represented in the TDM. In order to avoid such artifacts, all potentially visi-
ble scene parts should be captured at a reasonable sampling density. Therefore,
Darsa et al. [Dars96, Dars98] use a measurement for every triangle that indicates
the quality of the sampling. If the quality is not sufficiently high, triangles from
multiple TDMs generated near the actual viewer position are displayed. Similarly,
Wilson et al. [Wils03] sample the geometry incrementally. This means, the visual
error is estimated for a TDM, and the sampling process is repeated for a new
viewpoint that is assumed to provide the missing information. This process stops
if the sampling density is sufficiently high. Afterwards, redundant information
is removed and textured depth meshes are constructed from the remaining data.
During runtime, multiple TDMs are rendered in order to minimize visual artifacts.
Although the algorithm may provide satisfying image quality in many situations,
no real guarantee is given that the error in image space is smaller than a certain
value, and many TDMs have to be rendered for complex views.

Another method for avoiding disocclusion artifacts was presented by Decoret
et al. [Deco99], who generate multiple meshes at different distances from the
viewer. Visibility events are introduced in order to quantify depth discrepancy and
thereby disocclusion artifacts. During the mesh generation process, objects are
treated successively. Every object is inserted into an existing mesh if the depth
discrepancy is low enough. If an object fits into multiple meshes, the one with

29

Chapter 2 Related Work

least wasted texture space is used. If the object fits in no mesh, a new mesh is gen-
erated. Furthermore, if rendering resources are available at runtime, meshes are
dynamically updated, which further increases the accuracy of the representation.

In Chapter 4, we present an approach for generating TDMs that guarantees
that no rubber sheet effects become visible in the first place while at the same
time keeping the mesh complexity and texture memory reasonably low.

Per-Pixel Depth Information

Depth images contain per pixel depth information for displaying images for
new viewpoints. The transformation for projecting samples to a new image is
called 3D image warping [McMi97] and is a special case of general image warp-
ing [Wolb94] in 3D space. The warp can be performed in forward direction by
projecting every pixel into the output image. In contrast, searching the correct
representant for every output pixel in the input image is called backward warping.
The latter can be seen as a kind of ray tracing and is only useful if few pixels
have to be displayed because of the often costly search operations. For avoiding
holes in the output image in case of magnified viewing, depth images use the same
techniques as point-based representations, like for instance point splatting or the
triangulation to fine meshes. Both methods were already discussed in the context
of image-based rendering [McMi97]. In fact, a depth image can also be seen as a
point cloud with a regular grid structure.

The per-pixel depth information allows a correct reproduction of parallax
movements and makes it possible to resolve visibility with the geometric scene.
However, although the impostor display can be done in graphics hardware to-
day, warping depth images is a relatively costly operation compared to polygon-
based representations because many per-sample transformations are performed.
Popescu et al. [Pope98] shows how image warping can be parallelized, which is
unfortunately not supported by common hardware.

Depth images also suffer from disocclusion artifacts in the output image. In
order to reduce them, multiple images can be warped to fill image gaps [Raff98a,
Mark97]. Another possibility is to use layered depth images that contain mul-
tiple samples for every sampling position [Shad98, Pope98, Alia99c] (see Sec-
tion 2.2.5). More recently, a very high-quality impostor technique was presented
by Wimmer et al. [Wimm01], so-called point-based impostors. First, a set of
points is obtained by ray casting from three viewpoints from within the view cell
and removing redundant information. Wimmer provides a sampling algorithm that
tries to make sure that no holes become visible. They report on about two points
required per screen pixel for the impostor. For every point, view-dependent ap-

30

Chapter 2 Related Work

pearance is applied using Monte-Carlo ray tracing, thus generating a small point-
light field. This light field is encoded into a texture so that the rendering can be
done using graphics hardware. The result are high-quality anti-aliased impostors
without image gaps. However, the reported preprocessing times are relatively
high. Furthermore, it might be argued that the high-quality impostors may stand
out in the output display if the rest of the scene is rendered using OpenGL ren-
dering. Therefore, the impostor technique is perfectly suited for applications that
need very high-quality rendering without aliasing artifacts.

Billboard Clouds

Decoret et al. [Deco03] recently presented an impostor technique called billboard
clouds. The basic principle is to represent an object by a set of alpha-textured
planes. In contrast to planar impostors, the position and orientation of the planes
is optimized for approximating the object geometry so that a given error tolerance
in object space (or in image space [Deco02]) is met. The main advantage of
this view-independent impostor technique is that the viewer is not restricted to
a bounded view cell, but only to a minimum distance to the impostor. Another
advantage of view independent-techniques is that they can also be used directly
for standard shadow mapping algorithms. Relighting can also be applied to the
billboard clouds, as was shown by Decoret et al. [Deco03]. The technique can
be used for arbitrary geometry and shares concepts of image-based as well as
geometry-based simplification. Current implementations of the technique show
very long preprocessing times and image artifacts, especially on curved surfaces.
Furthermore, high memory requirements as well as relatively slow rendering are
caused by large planes containing many transparent texels. However, the basic
idea is promising and it seems like many of the problems can be overcome in
further research.

2.3.2 Impostor Placement Strategies

The basic aim for an efficient impostor placement is the efficient use of memory
for static impostors and keeping the computational effort for the impostor update
as low as possible for dynamic impostors. The decision in what way impostors
are placed into a scene mainly depends on the scene characteristics: a priori scene
information is typically utilized for an efficient impostor placement. In the follow-
ing subsections, we discuss previous impostor placement strategies for different
types of scenes.

31

Chapter 2 Related Work

Per-Object Impostor Placement

In this type of impostor placement, whether a scene part is rendering from geom-
etry or using an impostor is decided separately for every object. This decision is
typically based on the size of the object and/or the distance between object and
viewer. The impostors efficiently represent complex objects from a certain dis-
tance, because in this case they cover only few pixels on the screen and parallax
effects are rather small so that the update frequency is low.

When using precalculated per-object impostors, view-independent tech-
niques [Deco03] have the advantage that they represent the object from all sides,
which can save much memory. Maciel and Shirley [Maci95] also described some
view-independent impostors that were designed for special objects like textured
boxes for box-shaped objects. For view-dependent impostors, multiple impostors
are necessary for a complete object representation, each representing a certain an-
gular range. At runtime, the one generated from the reference viewpoint nearest
to the actual viewpoint is displayed. Depending on the application, the reference
viewpoints can be distributed on a sphere [Alia99b] (a so-called image sampling
sphere) or on a circle [Jaku00] in case of ground-level movement. Such static
impostors are especially useful if the represented object is very complex and in-
stantiated in the scene. Jakulin [Jaku00] shows this for the case of trees that are
recorded from six viewpoints using a layered impostor technique [Scha98b]. This
results in four megabytes per tree, so that impostors for numerous trees can be
stored in graphics hardware. By instantiating the trees, a highly complex forest
scene can be efficiently represented using impostors without the need of enormous
amounts of impostor memory.

In contrast, the efficiency of dynamic impostors [Scha95b] depends on how
the speed gain obtained from the impostor display makes up for the additional
effort for impostor updates. Harris and Lastra [Harr01] represent clouds with dy-
namic impostors. Because the clouds are internally represented as particle system,
impostors are also efficient for nearby clouds because they are much faster to ren-
der than the particles. Furthermore, because clouds do not contain high-frequency
appearances like sharp edges, popping artifacts and blocky pixels are not a big
problem. In contrast, the impostors are even used in order to avoid artifacts that
would occur when directly rendering the particles.

Impostor Placement in Architectural Models

For architectural models, cell and portal approaches provide efficient visibility
culling (see Section 2.2.2). When impostors are placed in portals so that they rep-
resent the geometry of neighboring cells, only the current cell has to be rendered

32

Chapter 2 Related Work

from geometry. If the viewer comes near a portal, the adjacent cell is also ren-
dered from geometry in order to avoid image artifacts. Portals are a convenient
place for using impostors because the complex geometry behind a portal covers
only few pixels on the screen. Furthermore, because the overall number of por-
tals in a model is quite limited, precalculated impostors often fit completely into
main memory or even on graphics hardware. Aliaga and Lastra [Alia97b] use
planar impostors placed in the portals. In order to obtain a reasonable image qual-
ity, multiple impostors are generated using reference viewpoints distributed on a
semicircle in front of the portal. In contrast, Rafferty et al. [Raff98a] warp depth
images in order to reduce the number of impostors needed for a convincing rep-
resentation. In order to avoid disocclusion artifacts, two depth images are warped
simultaneously to the output image. Popescu et al. [Pope98] instead use a layered
depth image (LDI) for every portal. For fast LDI display, they use a parallel warp-
ing algorithm and clip invisible samples using a hierarchical data structure for the
LDI. In contrast, Simmons and Sequin [Sequ01] use textured depth meshes with
three TDMs per portal, each recorded from another viewpoint. Rubber sheets
are avoided by composing the TDMs during rendering. Rafferty et al. [Raff98b]
give a comparison of the approaches from Aliaga, Rafferty and Popescu. Fur-
thermore, while online generation of portal impostors is also possible, Rafferty et
al. [Raff98a] reported “animation hickups” due to the too time-consuming impos-
tor generation process parallel to the model display.

Placing Impostors in Distant Scene Parts

This impostor placement is done by partitioning the view space in a set of view
cells and for every cell, the scene is split into a near field and a far field. While the
near field is rendered using geometry, the far field is displayed using impostors.
Distant scene parts often show complex geometry that covers only few pixels on
the screen. Such scene parts allow high rendering acceleration and at the same
time low memory requirements for impostors. Furthermore, such impostors are
valid for a large view region because of only few apparent parallax movements
due to the large distance to the viewer.

Aliaga et al. [Alia97a] describe a simple method called textured box culling,
were the far field is represented by a cube consisting of 6 textured quads. This
results in visible popping artifacts when the view cell is changed. In later work,
Aliaga et al. [Alia98a] use textured depth meshes similar to Darsa et al. [Dars98].
Wilson et al. [Wils00] instead use video-based impostors (see Section 2.3.1).

In contrast to these approaches, Sillion et al. [Sill97] place textured depth
meshes in an urban environment at the end of street segments. They assume that
facades close to the viewer completely occlude the scene behind. This greatly

33

Chapter 2 Related Work

reduces the required impostor memory, because visibility is calculated before im-
postors are generated (similar to portal impostors).

Another interesting application is the guarantee of a frame rate through the
use of far-field impostors. A common way to obtain this is to shrink the near field
until the number of contained primitives falls below a certain threshold [Wils01,
Wils03]. Aliaga et al.[Alia99a] instead balance the image quality error caused by a
TDM representation with the image error caused by geometric LOD simplification
in the near field by adapting the distance of the border between near and far field.

In 1999, Aliaga et al. [Alia99c] describe a far-field impostor placement that
uses impostors (i.e., LDIs) only where they are necessary so that a prescribed
primitive budget is not exceeded, depending on the view position and -direction.
They subdivide the view space using a grid of points adapted to the local model
complexity. For every grid point and view direction, an optimization algorithm
selects a model subset which is represented using an LDI so that the primitive
budget is met. The model subset is chosen using a cost-benefit heuristic aimed
at low memory requirements. This means that small, distant and complex model
subsets are preferred to large, nearby and less complex ones.

However, all placement algorithms discussed above share some limitations:
first, the placement is always done on a per view-cell basis. Consequently, for
distant scene parts, many similar impostors are generated for every cell, which is
of course highly inefficient. Second, the algorithms are aimed to limit the num-
ber of primitives, which is hardly coincident with the frame rate as was discussed
in Section 2.2.1. Furthermore, additional acceleration techniques to reduce the
required impostor memory, like visibility calculations, were only used in one pre-
vious approach [Sill97]. The impostor placement approach presented in Chapter 5
overcomes these drawbacks and achieves much better placements.

Hierarchical Image Cache

Schaufler and Stürzlinger [Scha96b] as well as Shade et al. [Shad96] concurrently
presented rendering systems using dynamic impostors, called hierarchical image
cache. In these approaches, impostor placement is done based on the nodes of a
hierarchy of the input model, with nearby objects clustered first. During runtime,
impostors are dynamically generated for the leaf nodes of the hierarchy. Impostors
for intermediates nodes are generated from the impostors of their children. The
impostor update is based on the image-space error metric of Schaufler [Scha95b].
In order to render an output image, the tree is traversed, and the first node con-
taining a feasible impostor is displayed and subtree traversal is discarded. Conse-
quently, with increasing distance to the viewer, impostors are displayed for ever

34

Chapter 2 Related Work

higher hierarchy nodes, thus greatly accelerating the rendering process.

The hierarchical image cache relies on coherent output images. A problem
may arise due to numerous impostor updates if the viewer moves very fast or the
view is rotated so that many previously invisible nodes have to be generated. Fur-
thermore, the nodes close to the viewer need to be updated frequently. Very close
nodes are rendered from geometry due to the inefficiency of impostors in close
range. Shade et al. calculate the lifetime of an impostor based on the distance to
the viewer, and an impostor is only generated if its lifetime justifies the generation
cost. Furthermore, they mention the predictive generation of impostors in order
to avoid sudden drops of the output frame rate if many impostors need to be in-
stantly updated. Using visibility calculations for reducing the number of impostor
updates might be an interesting extension to that approach. However, the user
movement needs to be restricted to avoid too many impostor updates for a frame.
This is the main cost introduced by the use of dynamic impostors.

Impostor Placement using Funkhouser’s Adaptive Display Algorithm

Maciel and Shirley [Maci95] enhanced the work of Funkhouser and Se-
quin [Funk93] by introducing static impostors into the predictive level-of-detail
selection algorithm (see Section 2.2.3). They replace nodes of an input model
hierarchy with impostors, taking advantage of the fact that impostors can be ap-
plied to arbitrary scene parts. This allows displaying many objects faster and
with higher image quality than graphics hardware capabilities would allow for a
geometric representation. However, huge texture memory requirements were also
experienced, and they also mentioned prefetching impostors dynamically from
harddisk.

In contrast, Schaufler [Scha96a] shows how dynamic impostors can be in-
corporated into that framework. In addition to just displaying an object with an
appropriate level of detail, an impostor is generated and displayed using a certain
level of detail if the object is suitable for an impostor representation. If impostors
are displayed instead of original objects, more frame time is left for generating
higher quality impostors from better LOD selections. This means that the image
quality is improved progressively over time if the user does not move. In contrast,
in the original framework of Funkhouser and Sequin, the LOD selection is always
the same if the output image does not change, so that the image quality cannot be
improved over time.

35

Chapter 2 Related Work

2.4 Summary and Conclusion

In this chapter, an overview of impostor-related research was given. Impostors
are a form of image-based rendering (Section 2.1). Common problems include
high memory requirements, image artifacts caused by disocclusions and a strong
reliance on coherence in image space.

Section 2.2 gave a brief overview over other rendering acceleration techniques
related to this thesis. Although visibility culling often provides dramatic frame
rate increases, it cannot provide any guarantee about the output frame rate, be-
cause the visible geometry might still exceed the capabilities of the rendering sys-
tem. In such cases, additional acceleration techniques are required. Theoretically,
visibility culling together with geometric simplification techniques could solve
the problem. However, this latter technique does not work for arbitrary geometry,
i.e., disconnected textured objects cannot be merged efficiently while preserving
their textures. One option is to use point-based representations. While points
work very well for instantiated geometry as was shown for plants in ecosystems,
high memory requirements prevent points generated in a preprocess from being
used for arbitrary scenes. In this context, the idea of generating the point samples
at runtime from internal representations [Wand01] is promising. This allows a
simple tradeoff between image quality and frame rate.

The image-based rendering acceleration techniques presented in Section 2.2.5
strongly rely on coherence in image space. If this is not provided, they perform
poorly. In general, it is not possible to give any frame rate guarantee for such
techniques without limiting the user velocity, or significantly lowering the image
quality. This fact is also true for the hierarchical image cache, where simple pla-
nar impostors are used for fast online generation. Generation in a preprocess, on
the other hand, entails large impostor databases due to the number of required
impostors. In order to reduce the number of impostors, more complex impostor
representations with support for parallax movements are used. However, such
more sophisticated impostor methods still struggle with problems like huge mem-
ory requirements and/or long preprocessing times. Another problem is image
quality: visibility gaps often occur due to insufficient scene information. Up to
now there is no general approach for guaranteeing the prevention of such artifacts
with reasonable effort. In Chapter 3 and Chapter 4 we present solutions to this
problem.

Impostor placement algorithms have been presented that try to give a guaran-
tee for a minimum output frame rate for every view in a scene. This was done
by bounding the number of primitives visible in every output image, but today,
this measure is hardly related to the frame time (see Section 2.2.1). Furthermore,
all approaches share problems like long preprocessing times, very high memory

36

Chapter 2 Related Work

requirements and uncertain image quality. This comes due to the fact that not all
aspects of the impostor placement problem were addressed, and additional ren-
dering acceleration techniques have not been used in order to reduce impostor
memory. In Chapter 5, we present an impostor placement approach that takes all
aspects of the problem into account. We will show that for moderately complex
scenes, a sensible impostor placement together with new efficient impostor tech-
niques can provide both, guaranteed frame rates and low memory requirements
so that the whole impostor database can usually be stored in graphics memory. In
this case, it is not necessary to restrict the user movement speed, because there are
not memory prefetching issues.

37

Chapter 3

Memory-Efficient Layered
Impostors without Image Artifacts

3.1 Introduction

Several impostor techniques for accelerating the rendering of complex distant
scene parts have been proposed in previous work (see Section 2.3.1). However,
there is still no technique that simultaneously addresses all problems stated in
Section 1.4. More specifically, the problem of generating an impostor that is guar-
anteed to show no artifacts for a large viewing region and needs only a small
amount of memory in reasonable time has not been solved in a satisfying way.

In this chapter, a new impostor technique for representing distant scene
parts is described which addresses all these issues simultaneously. It is based
on partitioning the relevant scene part into multiple image layers with varying
depth [Scha98b, Lacr94, Meye98, Rega94]. We introduce a special sampling
method for the impostor generation process which guarantees that all visible scene
parts are acquired without having any knowledge about the scene structure. In
combination with a new layer arrangement, this guarantees the absence of image
gaps in the final impostor. We will present a number of algorithms for efficiently
combining the acquired information with impostor geometry in order to obtain a
compact representation in a very short time. We will also show the suitability of
the impostor technique for a number of different applications.

3.2 Overview

The layered impostor generation process requires as input

38

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

• the scene part to be represented,

• the view cell (shape, size and position),

• the output image resolution and the field of view used for impostor display.

Before the impostor generation starts, the camera for recording the impostor is set
to a fixed position within the view cell, the so-called reference viewpoint. The
camera frustum is defined so that it tightly encloses the scene part to be rep-
resented (Figure 3.1 (a)). Using this setup, a layered impostor is generated by

Invisible
regions

Visibility culling

Impostor geometry Texture atlas Final impostor

(c)

(d) (e) (f)

Layer recording

(b)

View cell

Original scene

(a)

Figure 3.1: Main steps for layered impostor generation.

applying the following steps (see Figure 3.1):

1. Layer setup calculations: The positions and depth ranges of the individual
impostor layers are calculated (see Section 3.3.1) so that in combination
with a special rendering technique for recording a layer, the final impostor
will show no image gaps.

2. Layer recording: Render the geometry for every layer into a texture (Fig-
ure 3.1 (b)) with the near and far clipping plane set so as to define the re-
spective depth range. Impostor texels that contain no information are set
transparent via the stencil-buffer functionality of current graphics hardware.
Furthermore, all available features of current graphics hardware like shad-
ing effects are automatically applied. A special rendering technique guar-
antees that no scene information is missed (see Section 3.3.2).

39

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

3. Visibility culling: Exclude scene parts that are not visible from the view
cell (Figure 3.1 (c)), which helps reducing texture storage requirements of
the impostors. The special layering allows doing this in a very fast and
effective way (see Section 3.4).

4. Impostor geometry generation: Partition every layer into a set of tex-
tured polygons (i.e., quadrilaterals) that are “well filled” (Figure 3.1 (d)).
The exclusion of transparent texture areas reduces the impostor memory re-
quirements to a tolerable level, while the additional polygons required place
no burden on the graphics hardware (see Section 3.5).

5. Texture atlas generation: Combine the textures of all polygons into a large
texture atlas (Figure 3.1 (e)), because a separate rendering of all small tex-
tures is not efficient due to numerous hardware texture switches (see Sec-
tion 3.6).

Finally, the impostor polygons are inserted into the scene so that every texel ap-
pears in the output image exactly at the position it was recorded (Figure 3.1 (f)).

The advantages over previous impostor techniques (see Section 2.3.1) are an
artifact-free representation (which is provided by step 1 and 2) and very low mem-
ory requirements (provided by steps 3 and 4). This is achieved while providing a
very fast impostor generation. Also note that in order to save memory during the
preprocess, steps 2 to 4 can be performed successively if the layers are processed
in front to back order.

3.3 Scene Layering with Prevention of Image Arti-
facts

In this section, we describe a method for preventing image gaps in a layered im-
postor representation. The basic idea consists of two issues:

• Appropriate layer spacing: The distance between two adjacent impostor
layers is chosen so that they do not move more than one texel against each
other when seen from within the view cell. We call this property the one-
texel layer spacing (see Section 3.3.1).

• Complete scene recording: The rasterization process used for impostor
layer recording is modified so that no scene parts are missed (see Sec-
tion 3.3.2). In addition, scene parts that are present in two adjacent layers,
the transition between the layers is drawn using identical texel positions.

40

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

In summary, because every texel exposes not more than the texel behind it and
all layer transitions are represented with identical texels, it is not possible to look
“through” a transition from the view cell. For this reason we can guarantee that
no scene part shows any image gaps, even if it is represented by multiple layers.

3.3.1 Layer Placement Calculation

This section describes the calculation of the position and the depth range of every
impostor layer. Two issues have to be taken into consideration in this connec-
tion. First, the one-texel layer spacing must be fulfilled in order to guarantee an
artifact-free representation. Therefore, the following subsection gives a scheme
for calculating the positions of the impostor layers so that this requirement is al-
ways fulfilled. The second issue are parallax errors introduced by the impostor
which must be quantified and limited. This issue is important for calculating the
depth range of every layer, as will be presented further below.

One-Texel Layer Spacing

The goal is to place the layers close enough so that for every view within the view
cell, each texel uncovers at most the texel behind it in the following layer. Without
loss of generality, for all further illustrations the object is assumed to be centered
in front of the view cell. Furthermore, the reference viewpoint is positioned at
a vertical line through the view-cell center as is shown in Figure 3.2 (left and
middle). This is the best horizontal position because all errors introduced by the
impostor are equally distributed to the left and right side. The optimal vertical
position will be discussed further below. For this symmetric setup, all following
considerations can be reduced to one side of the view cell (we choose the left side
for explanation).

Figure 3.2 ((a) and (b)) shows for every texel in a layer a line indicating where
the texel in the following layer is completely uncovered when moving to the left.
This means an image gap will occur behind a texel when viewed from a position
to the left of this line. The one-texel layer spacing has to be calculated so that no
such line crosses the view cell.

First we will show that all these lines meet in a point at the same height as the
reference viewpoint, because this reduces the consideration to only the outermost
lines. Assume a given reference viewpoint P and two impostor layers with dis-
tances a and a + c as shown in Figure 3.2 (c). The size of a texel in the layer with
distance a is defined as p. For every texel, a triangle is formed by the line that
indicates when the texel behind it is completely uncovered, and a line from P to

41

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

p

b

a

c

P
P'

(a) (b) (c)

Figure 3.2: Movements of one texel when seen from within a rectangular (a) and shaft-
shaped (b) view cell. The lines indicate for every texel when the texel behind it is com-
pletely uncovered when moving to the left. (c) shows the setup for the derivation of texel
movements between two layers.

the right border of that texel. This triangle is shown in different colors for every
texel in Figure 3.2 (c). From similar triangles we get:

c

a + c
=

p

b
.

Because p, c and a are constant, b is also constant, i.e., independent from the actual
texel position in the layer. Consequently, all lines meet the single point P ′ as can
be observed in Figure 3.2 (c).

This in turn means that the line of the leftmost and the rightmost texel define
the right boundary of all lines (see Figure 3.2). In order to avoid image gaps,
it is sufficient to ensure that these two lines do not cross the view cell. For the
following considerations we will call them left boundary line and right boundary
line, respectively.

The layer calculation assumes the following input parameters (see Figure 3.3
(left)):

• Either a rectangular view cell with width n and depth m, or a shaft-shaped
view cell with an apex angle β. Furthermore, the distance s from the refer-
ence viewpoint to the view-cell border.

• The distance t0 between the object and the view cell, and the width w of the
object. The frustum used for the impostor generation is assumed to tightly
fit the bounding box, as is depicted in Figure 3.3 (left).

• The impostor texture resolution res, which is chosen so that the impostor
texture is not magnified when seen from any viewpoint within the view cell.

42

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

br

bl

bh

bs

(b)

(a) (c)

(d)

�

cr

al

ah

as

cl

ch

cs

2

p

t

m

n

s

ar

c

t0

w

�
2

p

p p

p

Figure 3.3: Left: setup for the layer spacing calculation based on the maximum allowable
texel movement. Right: (a) for the right boundary line (identical for rectangular and shaft
shaped view cell), (b) and (c) for the left boundary line for a rectangular view cell, (d) for
the left boundary line for a shaft shaped view cell.

The resolution can be calculated using the method of Schaufler [Scha95b].
The size of a texel p at distance t (see Figure 3.3 (left)), is then defined as:

p =
w(t + s)

res(t0 + s)
.

Given a layer distance t, the distance c from that layer to the following one is
calculated so that the boundary lines just touch the view cell. c is calculated
independently for the left and right boundary line, and the smaller value is used.
This is done for all cases by using similar triangles:

c

a + c
=

p

b
, (3.1)

Figure 3.3 ((a)-(d)) shows the respective configurations for a and b for the left and
right boundary line, which are now discussed.

43

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

For the right boundary (see Figure 3.3, (a)) the definition is

ar = t,

br =
n

2
+

sw

2(t0 + s)
.

Substituting a and b in Equation 3.1 results in the distance cr:

cr =
t

res
2(t+s)

(
n(t0+s)

w
+ s

)
− 1

. (3.2)

This equation holds for the right boundary of rectangular as well as of shaft-
shaped view cells.

For the left boundary line, the layer computation is first considered for a rec-
tangular view cell. A distinction must be made depending on whether the left
boundary of the impostor layer ends to the left or to the right of the left boundary
of the view cell. This indicates whether the left boundary line touches the lower
(see Figure 3.3 (b)) or upper (see Figure 3.3, (c)) view-cell corner.

The definition of a and b for the lower view-cell corner (Figure 3.3, (b)) is

al = t + m,

bl =
n

2
+

(m − s)
(

w
2
− w

res

)
t0 + s

.

Equation 3.1 results in the distance cl:

cl =
t + m

res
2(t+s)

(
n(t0+s)

w
+ (m − s)

(
1 − 2

res

)) − 1
. (3.3)

The definition for the upper view-cell corner is analogous (Figure 3.3, (c))

ah = t,

bh =
n

2
− s

(
w
2
− w

res

)
t0 + s

,

with Equation 3.1 resulting in the following distance ch:

ch =
t

res
2(t+s)

(
n(t0+s)

w
+ s

(
2

res
− 1

)) − 1
. (3.4)

44

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

For shaft-shaped view cells, in order to ensure that the view cell is not inter-
sected by the left boundary line, the line must be parallel to the left border of the
shaft (see Figure 3.3, (d)). a and b are defined as follows for this case:

as = t + s,

bs =
(t + s)w

2(t0 + s)
+ (t + s) tan

(
β

2

)
.

Equation 3.1 results in cs:

cs =
t + s

res
(

1
2

+ t0+s
w

tan
(

β
2

)) − 1
. (3.5)

Up to now, the layer placement calculation was presented for one dimension. The
extension to the general 2D case is quite simple because all texel movements are
independently for the x and y direction. This means that c must be calculated for
both directions and the smaller value is used in order to ensure that no gaps occur
in any direction.

An interesting question is the choice of an optimal reference viewpoint, i.e.,
the choice of s. The best choice maximizes the inter-layer spacing for the left and
right boundary line, because the smaller value has to be used. Figure 3.4 (a-c)
shows an example how the position of the reference viewpoint affects the inter-
layer spacing. The spacing cr for the right boundary line always decreases with

(a) (d)(c)(b)

Figure 3.4: Layer spacing for different reference viewpoints: (a) too close to the object,
(b) optimal placement, (c) too far from the object. (d) If the impostor width is smaller
than the view-cell width, the optimal viewpoint is always nearest to the object.

increasing s. This can be shown using the derivation c′r(s) of Equation 3.2 which
is

c′r(s) =
2reswt(n(t0 − t) − wt)

(res(n(t0 + s) + ws) − 2w(t + s))2
.

The denominator is always positive and the numerator is always negative, because
t > t0 holds. Consequently, cr decreases monotonically with increasing s. There-
fore, the best value for s for the right boundary line is 0. Note that placing the

45

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

reference viewpoint in front of the view cell (i.e., s < 0) is not possible, because
distant impostor layers would appear magnified in the output image. Fortunately,
if s = 0, Equation 3.4 always results in exactly the same value for ch as Equa-
tion 3.2 does for cr. This means, as long as the left boundary of every layer does
not exceed the left boundary of a rectangular view cell, the optimal viewpoint is
s = 0 as is shown in Figure 3.4 (d). This is also the best viewpoint considering
the sampling of the impostor texture: if the viewer moves to the view-cell bor-
der nearest to the impostor (where s = 0), the texels in every impostor layer are
equally-sized on the screen, thus making best use of texture memory. In contrast,
if the reference viewpoint is placed further apart from the object (i.e., s > 0), dis-
tant layers are never viewed at full resolution which is a (minor) waste of memory.
For all other cases (for the lower rectangular view-cell corner and a shaft-shaped
view cell), no general optimum can be found. This is because the optimal refer-
ence viewpoint is different for each layer (as it depends on the layer distance t).
However, changing the position of the reference viewpoint for different layers is
not compatible with the artifact-free layer recording technique (see Section 3.3.2).
However, in practice, a value for rectangular view cells of s = m

2
and for shaft-

shaped view cells of s = n
2

was found to provide satisfying results.

Parallax Errors

The layering technique provides a reproduction of parallax movements within the
represented scene parts. However, because every texel represents a certain depth
range, parallax errors still occur within every layer. This error is quantified with
the parallax angle α, which is the angle between the true 3D position of the
point and its projection to the impostor [Scha98b]. The goal is to limit α for
the whole impostor, typically to the angle of a pixel in the output image. In order
to achieve this for layered impostors, the depth range for every layer has to be set
up appropriately.

For the following considerations, we distinguish between two cases: first, we
derive the depth ranges between two adjacent layers, i.e., where to place the border
between two impostor layers. Afterwards, we determine the depth ranges of the
outermost layers, i.e., in front of the first (nearest) layer and behind the last (most
distant) layer.

Concerning the depth ranges between two layers, the one-texel layer spacing
(see Section 3.3.1) already guarantees that the parallax errors that occur between
adjacent impostor layers are always smaller than α. This is because the relative
movement of a texel against the texel at the same position in the previous and
following layer is limited to less than a texel. Given the fact that every texel is
always visible with an angle smaller than α, no parallax error larger than a texel

46

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

can occur. A result of this consideration is that the choice where to place the depth
border (i.e. the clipping plane) between two adjacent impostor layers is arbitrary.

However, to keep the introduced parallax errors as small as possible, parallax
movements should be distributed equally between adjacent layers. This means
that for the viewpoint were the maximum parallax angle occurs, it should be
equally distributed to the closer and more distant layer, for every “view direc-
tion” from that point. Figure 3.5 (a) shows a configuration where the border is
placed so that this is not achieved: the parallax angle that occurs for the closer
layer is much larger than the one for the distant layer. In contrast, Figure 3.5 (b)
shows a configuration where the border is placed so that this is achieved, indepen-
dently from the view direction. Note that it is not desired to equally distribute the
parallax angle for a particular texel position.

d

s

tnb

tf

f

a

(c)(b)(a)

Figure 3.5: (a): different parallax angle in two adjacent layers. (b): equal parallax an-
gle in two layers, independently from the view direction. (c): calculation scheme for
optimally placing the border.

We assume that the largest parallax angle occurs if the viewer is located some-
where on the view cell border closest to the impostor (as Figure 3.5 (c) shows),
because the impostor appears in maximum magnification for this configuration.
Given two impostor layers with distances tn and tf to the view cell, the distance d
from the near layer to the border between the layers is calculated using three pairs
of similar triangles (see Figure 3.5 (c)):

tf
a

=
tf − tn − d

f
,

tn + d + s

f
=

tn + s

b
,

d

b
=

tn + d

a
.

Solving the equation system for d (by eliminating a and b, which automatically

47

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

eliminates f) results in

d =
−t2n − tns +

√
tf tn(tf + s)(tn + s)

tn + tf + s
. (3.6)

Note that d only depends on tn, tf and s. This means that the parallax angle is
equally distributed between the layers for all view directions of any view point on
the view cell border, as is shown in Figure 3.5 (b).

The final task is the derivation of the depth range in front of the nearest and
behind the farthest impostor layer. We assume a plane at a given distance, which
is either the near border of the scene part to be represented for calculating the first
impostor layer, or the last impostor layer for calculating to which distance that
layer can represent the scene. The goal is to choose the depth range so that the
parallax angle never exceeds α when seen from the view cell. Therefore, the setup
for which the largest parallax angle occurs must be found. Figure 3.6 (left) shows

e

s

t

f

b

�
2

�

�

r

Figure 3.6: Left: points that are represented with an angle of α with respect to a layer
form a curve. Right: setup for calculating the maximum allowable depth range.

for every point on some plane a corresponding point which is represented with an
error angle of α when seen from a new viewpoint. All such “α-points” form a
curve, as the figure shows. If the depth range is set to the minimum distance of
all α-points to the plane (the red line in the figure), the parallax error will never
exceed α for the whole depth range.

We again assume that the maximum parallax angle occurs for a viewpoint on
the view cell border close to the impostor as Figure 3.6 (right) shows. The depth
range e is described in dependence of an angle φ, which can be interpreted as the
view direction from the new viewpoint. Given the plane at distance t to the view

48

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

cell and a viewpoint of r left to the reference viewpoint (see Figure 3.6 (right)),
for an arbitrary φ we get the depth range e by similar triangles:

e

f
=

e + t + s

b
, where

f = t tan
(
φ +

α

2

)
− t tan

(
φ − α

2

)
,

b = r + s tan
(
φ − α

2

)
.

This results in

e =
2tsin(α)(t + s)

r(cos(2φ) + cos(α)) + s(sin(2φ) − sin(α)) − 2t sin(α)
. (3.7)

The minimum value for e is obtained by differentiation with respect to φ:

e′(φ) =
4t sin(α)(t + s)(r sin(2φ) − s cos(2φ)

(r(cos(2φ) + cos(α)) + s(sin(2φ) − sin(α)) − 2t sin(α))2
,

and solving e′(φ) = 0. This results in

φmin =
1

2
arctan

(s

r

)
.

With the second derivative, it can be shown that this is a minimum for e, as Fig-
ure 3.6 (left) shows. Note that φmin only depends on the position of the new
viewpoint relative to the reference viewpoint, i.e., it is independent from the dis-
tance between the impostor and the view cell, and from the pixel angle α. In
order to obtain the minimum depth range emin, φmin is inserted in Equation 3.7,
resulting in

emin =
2t sin(α)(t + s)

r cos(α) − (2t + s) sin(α) +
√

r2 + s2
.

Note that emin is decreasing with increasing r. This means that r has to be set to
the maximum possible value in order to guarantee a parallax angle smaller than α
for every viewpoint in view cell. This maximum value is obtained in the corner of
the view cell, which is intuitive because this is the largest distance to the reference
viewpoint.

An interesting characteristic is that starting from a certain distance, the paral-
lax movements in the whole scene part farther away than this distance are smaller
than α, so that the whole scene part can be represented by a single layer, regard-
less of its extent. This is the case if f ≥ b (see Figure 3.6 (right)), because the two

49

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

lines that enclose f (starting in the reference viewpoint and in the new viewpoint)
do not meet each other.

All considerations up to this point work in a 2D plane. In contrast to texel
movements, parallax movements cannot be treated independently for the x and
y direction for the general 3D case. However, the viewpoint where the largest
parallax effect occurs is still the view cell corner near the impostor, but now in
3D space. The calculations presented above can still be done in 2D, but in a
plane which is defined by the reference viewpoint and the two diagonal view-cell
corners near the impostor. Consequently, the value for r must be changed to mean
the distance to a view cell corner in 3D space (see Figure 3.7). Using this setup,
the calculations remain as described above.

r

s

Figure 3.7: Parametrization for the 3D case for calculating the depth ranges concerning
parallax angles.

3.3.2 A Rasterization Method for Guaranteed Layer Connec-
tivity

Because every layer is recorded separately, scene parts hidden from the reference
viewpoint are included in the representation (in contrast to Schaufler [Scha98b]
who used only a single image). However, image cracks still appear. The prob-
lem is basically caused by the specification of polygon rasterization in current
graphics hardware: a pixel is only drawn during polygon rasterization if its center
is covered by the polygon. One effect of this definition is that surfaces viewed
from an acute angle may not be rendered at all if they fall between two adjacent
pixel centers. In this case, information is missing which can lead to large im-
age gaps. Furthermore, small gaps appear between adjacent layers representing a

50

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

single primitive (i.e., polygon) because of the following fact: the intersection of
the primitive with the clipping plane separating the two layers forms a clipping
edge. The definition of rasterization entails that each texel of the clipping edge is
rasterized either in one or in the other layer, as is shown in Figure 3.8, left. This
instantly leads to gaps between adjacent layers if the viewpoint is moved.

Figure 3.8: Left: the clipping edge of the polygon (drawn in red) is not represented in
both adjacent layers. Middle: after separately drawing the outline of the clipped polygon
(yellow texels), a common representation of the clipping edge is generated in both layers.
Right: holes at each clipping edge step are filled manually to guarantee an artifact free
representation.

The elimination of such image cracks is obtained in the following way: texels
are drawn even if they are covered only partly by a primitive, especially if the texel
center is not covered. This ensures that all scene parts are acquired (regardless
whether they cover a texel center or not) and that all clipping edges are present in
both involved layers.

The way to ensure this is to manually clip each polygon to the corresponding
near and far layer border (Sutherland-Hodgeman clipping can be used, for exam-
ple), and draw all polygon outlines explicitly, for example using the OpenGL edge
primitive (see Figure 3.8, middle). The outlines have to be drawn in a predefined
direction (e.g., from left to right) to ensure that identical texels are rasterized for
the clipping edges in every layer. In order to ensure that all line endpoints are
drawn as well, the polygon vertices are rasterized separately as points.

Although this removes most of the image cracks, sporadic ones might still
appear if the viewer moves in diagonal direction within the view cell. This is
caused by the rasterization of the clipping lines (an “eight-connected” line) as is
shown in Figure 3.8 (right). Such cases can be manually identified by considering
each 2x2 texel block in both layers: while the diagonal texels in one direction are

51

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

present in both layers (Figure 3.8 (right) shows the upper-left to lower-right case),
the texels in the orthogonal direction are only present either in one or in the other
layer. The gap can be closed by copying the texel color from the closer layer to
the more distant layer (thus forming a “four-connected” line).

Figure 3.9: Left: original object seen from the reference viewpoint. Middle: impos-
tor recorded using layers widely overlapping in depth. Note that image cracks are not
avoided. Right: the same impostor generated using the new method with all image cracks
eliminated.

The result is that for every object, all borders between adjacent layers are
drawn using identical texel positions. In combination with the one-texel layer
spacing (see Section 3.3.1) the representation shows no cracks or image gaps as
can be observed in Figure 3.9 (right). Note that no previous approach (see Sec-
tion 2.3.1) provides this desirable property. For instance, Schaufler [Scha98b]
proposed to let the depth ranges of adjacent layers overlap. However, this gives
no guarantee that image gaps do not occur, as Figure 3.9 (middle) shows. For this
example, even a very large depth overlap of half a layer does not remedy the prob-
lem. Another approach by Meyer and Neyret [Meye98] tries to solve the problem
in image space by estimating object contours in every layer and filling the inside
of each such contour. However, because the algorithm does not exploit informa-
tion about the original scene parts, it is unclear how well the result resembles the
original scene.

3.3.3 Discussion on the Number of Layers

The number of impostor layers is important for the efficiency of the layered im-
postor technique since it strongly correlates to the required impostor memory as
well as the geometric complexity of an impostor (see Section 3.7). Therefore, this
section describes the basic factors that influence this value.

The number of required impostor layers depends on two main factors:

52

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

• The parallax movements within the scene part, which depend on the size
of the view cell and the distance between the view cell and the represented
scene part. Because parallax movements are “mimicked” by the impos-
tor layers, the number of required layers increases proportionally with the
amount of parallax movements.

• The size of an impostor texel, defined by the output image resolution and
field of view. Because each layer is not allowed to move more than one
texel (see Section 3.3.1), the number of layers grows with decreasing texel
size.

In order to show the influence of parallax movements, the number of layers is
calculated for the model of a dragon (about 20 m high and consisting of 108,500
polygons) for varying distances between the model and a cubic view cell with
a sidelength of 10m. Figure 3.10 shows some views from a point outside the
view cell in order to show the number of layers. Diagram 3.11 (left) shows the

Figure 3.10: Example for layered impostors for different object distances to the view
cell. From left to right: 120, 60, 30, 15, 7, 1 layers generated for 42, 59, 96, 142, 209 and
563 m distance.

number of layers, obtained in each test for varying output resolutions (discussed
further below). It can be seen that the number of layers falls hyperbolically with
increasing distance between the model and the view cell. This was expected since
parallax movements increase analogously. In a second test, the view-cell size was
varied for three fixed distances. It can be observed that the number of layers grows
roughly linearly with the view-cell size for all distances. A result from these tests
is that the distance between the scene part and the view cell in combination with
the view-cell size has a major impact on the efficiency of the resulting impostor:
while for distant objects and/or small view-cell sizes only few layers are needed to
cover large scene portions, near objects and/or large view-cell sizes result in very
high number of layers. The distance has a greater impact than the view-cell size.

53

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

0

20

40

60

80

100

120

0 50 100 150 200 250
Distance

L
a
y
e
rs

1024 Pixels

512 Pixels

256 Pixels

0 5 10 15 20 25 30
View cell size

50m Distance

100m Distance

200m Distance

Figure 3.11: Number of layers required for the dragon model in dependence of the dis-
tance between the view cell and the model and for different output image resolutions (left),
as well as for some fixed distances but varying view-cell sizes (right).

In the first test described above (Figure 3.11, left), the output resolution was
varied between 256 and 1024 pixels. It can be seen that the number of layers
increases roughly linearly with the number of pixels. This can also be derived
from the Equations 3.2 to 3.4.

Note that all trends discussed here also hold for shaft-shaped view cells be-
cause of their similar parallax and texel movement characteristics.

3.4 Occlusion Culling Within the Impostor

In order to reduce the amount of texture memory required for an impostor, it is
desirable to eliminate those texels from the impostor that never become visible
because they are always occluded by texels of closer layers. A very fast and
effective occlusion culling algorithm is presented here in the spirit of the extended
projections method, introduced by Durand et al. [Dura00] (see Section 2.2.2).

The algorithm is based on the following consideration: the one-texel layer
spacing (see Section 3.3.1) ensures that every texel exposes no more than the
texel behind it when seen from within the view cell. A consequence is that every
opaque 3x3 texel block completely occludes the center texel of the same 3x3 texel
block in the following (more distant) layer.

Beginning with the layer closest to the view cell, the visibility information
is propagated through the whole impostor. For this, the following operation is
repeated for every pair of adjacent layers (see Figure 3.12, (a) shows the initial
configuration for the 2D case): mark texels in the more distant layer as occluded
if they are centered behind an opaque 3x3 texel block in the closer layer (see

54

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

(b) (c)(a)

Transparent texelOpaque texel Occluding texel Occluded texel

(d)

Figure 3.12: Occlusion culling algorithm for layered impostors. (a): initial configuration,
(b): occlusions in the second layer caused by the first layer. (c): occlusions in the third
layer caused by the first and second layer. (d): occluded texels are drawn in yellow.

Figures 3.12 (b) and (c)). Texels in the closer layer already marked as hidden in a
previous iteration must be interpreted as opaque in this iteration (see Figure 3.12
(c)). Occluded texels are “deleted” by setting them to be transparent. Figure 3.12
(d) shows all occluded texels for the example, and Figure 3.13 shows two results
obtained with this occlusion culling algorithm.

Figure 3.13: Examples for visibility culling within impostors. Culled texels are drawn in
yellow. Left: house example. Note that even small occlusions visible in the windows and
door frames are identified. Right: facade partly occluded by trees.

The occluded texels identified by the algorithm are covered by the umbra of
the content in previous layers [Wonk00]. Furthermore, connected occluders and
connected occluder umbrae are automatically fused during layer processing, as
can also be observed in Figure 3.12. These desirable features ensure that many
occluded parts in each layer are identified.

3.4.1 Improved Culling Addressing Penumbra Overlapping

The basic occlusion culling algorithm can be improved significantly at almost
no additional computational costs. The approach described in this section is

55

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

conceptually related to the visibility-culling approach presented by Wonka et
al. [Wonk00] (see Section 2.2.2) for the special case of overlapping penumbrae.
Figure 3.14 (left) shows an example where overlapping penumbrae provide oc-
clusion (red area). This type of occlusion is not detected by the basic occlusion-
culling algorithm described in Section 3.4.

View cell View cell

Figure 3.14: Left: example for occlusions caused by umbrae (yellow areas) and over-
lapping penumbrae (red area). Right: approximate occlusion (yellow areas) using the
intersection of several umbrae obtained from a view-cell decomposition.

Wonka et al. approximate the occlusion provided by penumbra overlapping by
decomposing the view cell and calculating the umbra separately for each part. The
intersection of all such umbrae provides a solution that contains an approximation
of the correct penumbra overlapping. The finer the view cell is partitioned, the
more accurate is the approximation. Figure 3.14 (right) shows an example for
only two view-cell parts, providing a considerably better solution.

This principle can also be applied to layered impostors using the boundary
view positions. Figure 3.15 shows the algorithm for the 2D case. When the viewer
moves from the reference viewpoint to the leftmost position, every opaque texel
exposes the texel behind it. On the other hand, if the left neighbor is also opaque,
the texel behind stays occluded by the neighbor. Using this fact, the occlusion
culling algorithm described in Section 3.4 can be applied to obtain the umbra for
the left view-cell part. The only difference is that texels are marked as occluded
if they are behind opaque texels with a left opaque neighbor, instead of a left and
a right opaque neighbor. This means that texels are marked as invisible if they
are lying in the umbra of the left view cell part (i.e. they are completely invisible
from the left view cell part), as is shown in Figure 3.15 (b). The texels lying
in the umbra of the right view-cell part are obtained similarly to the left case,
producing the result shown in Figure 3.15 (c). Finally, texels occluded for both
the left and right view-cell parts are occluded for the whole view cell (Figure 3.15
(d)). The result also contains occlusions caused by overlapping penumbrae where
the algorithm described in Section 3.4 fails (compare to 3.15 (a)).

The extension to the general 3D case is quite simple: instead of a left and

56

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

(a)

Transparent texel

Opaque texel Occluded texel

(b) (c) (d)

Left occluded texel

Right occluded texel

Figure 3.15: Improved occlusion culling accuracy with overlapping penumbrae. (a):
result of the algorithm described in Section 3.4. (b): umbrae for the left view-cell part.
(c): umbrae for the right view-cell part. (d): the intersection of the left and right umbrae
defines the invisible texels. Note the additional occluded texel compared to (a).

right view-cell part, the cell is decomposed into four parts, each bounded by the
reference viewpoint and a corner of the view cell. This results in a left-upper,
right-upper, left-lower and right-lower part. For example, for the left-upper part, a
texel is occluded if the closer layer contains an opaque texel at the same position
as well as on the next higher, left, and higher-left position. Texel occlusions for
the other parts are determined analogously. Finally, texels occluded in every part
are marked to be occluded for the whole view cell.

The algorithm described above considers the umbrae intersections of only two
(and for the 3D case four) view-cell parts. Extending the approach to more view-
cell parts may improve the result in some situations. However, since the algorithm
is based on the one-texel layer spacing, visibility information is only available for
the reference viewpoint and the corners of the view cell. While it is theoreti-
cally possible to calculate umbra occlusions for arbitrary view-cell parts, it is not
expected that the additional occlusion accuracy will justify the additional compu-
tational cost.

The occlusion-culling algorithms described above provide conservative results
in the sense that all visible texels are classified as visible, but some invisible texels
might no be found. However, because all types of occlusion are addressed to a
certain amount, the algorithm provides sufficiently accurate results with only very
little computational effort, as will also be shown in Section 3.7.3. The visibility
culling process is very fast because it is performed in image space with exploiting
the special layering scheme, in contrast to previous methods [Wimm01, Wils03]
that use a sampling process from the view cell. On the other hand, this means
that parts of the impostor that are occluded from scene parts not included in the
impostor cannot be identified using the new method. However, if this is desired,

57

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

other visibility algorithms like the extended projection approach [Dura00] can be
used to identify the invisible texels in the first layer. Afterwards, visibility culling
for the following layers can be done using the method described above.

3.5 Memory-Efficient Layer Encoding

Every impostor has to be combined with geometry when it is placed into the scene.
For layered impostors, this is done separately for each layer using quadrilaterals
(in short, quads), with the content of the impostor layer applied as a texture. A
straightforward approach would combine a single quad with every layer. Such a
method leads to large memory requirements, as will be shown further below.

Every layer contains many transparent texels that take up unnecessary space.
This can be exploited to significantly reduce the impostor memory requirements:
for every layer, a set of quads is generated, each tightly enclosing some group
of opaque texels, so that the whole set of quads contains all opaque texels in the
layer. The goal is to tightly enclose the content of each layer while at the same
time keeping the number of quads reasonably low for fast impostor display. While
it would be possible to limit the number of quads and then minimize the texture
memory, we focus on finding a good tradeoff between both demands.

In order to get a reasonable solution in a short time, a greedy box-growing
algorithm is applied. First, the impostor texture is transformed to a regular grid,
with each grid cell containing several texels. A grid cell containing at least one
opaque texel is marked as filled, otherwise it is empty. A smaller grid size gives
preference to fewer wasted texels, but also to a larger number of quads. Second, a
filled cell is chosen as a seed cell. This region is then grown at steps of one cell in
axis-parallel and diagonal directions, but is constrained to maintain a rectangular
shape. The side with the best ratio between filled and empty cells (called fill ratio)
is selected in every step. The growing process stops if either no side is adjacent
to any filled cell, or the fill ratio of the whole region falls below a user-defined
threshold. Smaller threshold values favor fewer wasted texels but also a larger
number of quads. A value of 0.8 has been found to work well in practice.

If the region cannot be grown further, a quad is created, and the respective area
in the impostor layer is applied as texture. The quad is then “deleted” from the
impostor layer by setting all covered grid cells to empty, and the respective area
in the impostor layer is set to transparent. Finally, a new seed cell is selected and
the algorithm is repeated as above until no filled cell is left.

Figure 3.16 shows some examples obtained with this approach for different
grid cell sizes for the dragon model (also see Section 3.3.3). Table 3.1 shows

58

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

statistics for the respective tests. The texture resolution of the impostor was

Figure 3.16: Different amounts of geometry for a layered impostor of the dragon model.
From left to right: 340, 114, 71, 39, 25, 11 quads. The respective parameters used for the
generation are given in Table 3.1.

Grid cell size (texels) 1 2 4 8 16 32 64 128 256 700
Number of quads 539 340 207 114 71 39 25 11 11 6
Geometry memory (kB) 43 27 17 9 6 3 2 1 1 1
Texture memory (kB) 414 423 447 490 555 719 996 1697 1833 2131
Overall memory (kB) 457 450 464 499 561 721 998 1698 1834 2132

Table 3.1: Statistics for layered impostors with different complex geometry for the dragon
model.

397x677 pixels, and 6 layers were generated. Encoding each layer using a single
quad would result in approximately 6.15 MB of texture memory. Note that in the
last test in Table 3.1, a single tightly enclosing quad was generated for every layer,
as was proposed by Schaufler [Scha98b]. This results in slightly more than 2 MB
texture memory. As was expected, with decreasing grid cell size the required
texture memory decreases too, but the number of quads increases. Note that a
very high number of quads might in turn increase the overall memory needed for
the impostor due to the memory required for the quad vertices, as is the case for
a grid cell size of one texel in Table 3.1. Also note that general statements about
the optimal relation between quad number and texture memory are not possible:
if the number of impostor quads is critical for the rendering acceleration, a small
number is desired at the cost of more necessary texture memory. Otherwise, a
high number of quads can be used for reduced impostor memory.

In theoretical research, similar problems have been studied in the context of
multi dimensional data partitioning [Muth99] and in computer graphics, for in-
stance in the context of accelerated volume rendering [Li03]. Another option
would be to use hierarchical split and merge algorithms [Horo76]. However,
practical tests [Preu04] have shown that such approaches are not well suited for

59

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

the application at hand because they are slower and generate more quads for the
same desired texture memory compared to the approach presented above. Better
results may be obtained using more involved algorithms [Beck91] mainly at the
expense of much longer preprocessing times.

3.6 Efficient Graphics-Hardware Treatment Using
Texture Atlases

The number of impostor polygons generated with the algorithm described in Sec-
tion 3.5 is usually quite large. Storing every texture separately is very inefficient
because of the general overhead involved in handling a large number of textures.
The main point is that texture switches, like most state changes, are a costly op-
eration on current graphics hardware. Furthermore, older graphics hardware only
supports textures with resolutions of powers of two. Enlarging every single texture
would be very memory inefficient.

These observations motivate the use of texture atlases which comprise many
small textures [Mail93, Cign98]. Decisions must taken as to the number and sizes
of the atlases, the atlas each texture should be placed in and the position within the
atlas. Of course, every atlas should be “well filled” to increase texture memory
as little as possible. A fast greedy algorithm is presented here that solves these
three problems in reasonable time. The algorithm is aimed at generating only few
atlases which at the same time achieve a good coverage with opaque texels and
can be sent directly to graphics hardware.

First, all textures are rotated so that the larger side is oriented vertically. Then
they are sorted into a list by decreasing height and—for equal heights—by de-
creasing width. The height of a new atlas is determined using the height of the
first texture in the list, enlarged to the next power of two. The width of the atlas
is calculated by the summed area of all textures in the list, divided by the atlas
height. This value is then also enlarged to the next power of two.

The problem of placing textures into the new atlas is equivalent to the 2D
rectangle packing problem, a special version of the classic NP-complete bin pack-
ing problem [Bake78]. In literature, many placement strategies for 2D rectangle
packing [Lodi99] have been proposed. However, the performance of the strategy
depends on the actual data set [Preu04]. The approach used here is similar to the
well known computer game “Tetris”: beginning with the first texture in the sorted
list, each texture is placed in the atlas at the lowest possible vertical position (if it
fits). After being placed, the texture is removed from the list.

60

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

When all textures are tested and possibly placed, the algorithm resumes with
generating the next atlas. This is repeated until no texture remains.

Figure 3.17 shows the texture memory overhead produced by the packing al-
gorithm for several larger impostor databases for the Vienna model and the UNC
Power Plant model. It can be observed that the overhead is reduced with increas-

0

10

20

30

40

0 100 200 300 400 500 600

Original memory (MB)

O
v

e
rh

e
a

d
(%

)

Figure 3.17: Memory overhead produced by the texture atlas packing algorithm.

ing size of the data set. This is because texture atlases with sizes of powers of two
were generated, which induces more relative waste of memory for smaller data
sets. However, in most cases the overhead is between 5 and 25 percent, which
should be acceptable for most applications.

Note also that for storing the atlases on harddisk, compression techniques such
as PNG or JPEG compression can be used to further reduce the amount of required
memory. Furthermore, textures can also be compressed automatically in modern
graphics hardware. However, for lossy compression methods it must be ensured
that the alpha channel is not changed, as this would result in undesirable artifacts.

3.7 Results

The algorithms to generate the layered impostor representation presented in this
chapter have been implemented in C++ using the OpenGL API. All statistics were
obtained on a PC with an Intel Pentium4 3.2 GHz processor, 1 GB of main mem-
ory and an NVIDIA GeForce Quadro FX 3000 graphics board.

The image quality, memory requirements and generation time are the most
interesting parameters and are discussed in the following sections. The render-
ing acceleration provided by layered impostors depends on the actual rendering
bottleneck (see Section 2.2) and is discussed in detail in Chapter 5.

61

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

3.7.1 Image Quality

One advantage of the layered impostor technique presented in this thesis is that it
guarantees that no image artifacts like image gaps caused by disocclusions occur.
Figure 3.18 shows an example for the dragon model. Note that small image gaps
become visible only outside the view cell (leftmost and rightmost image), while
there are no problems for viewpoints in the view cell (e.g., behind the claw of the
dragon). Furthermore, all parallax effects are always reproduced sufficiently with-

Figure 3.18: Within the view cell, no image gaps or cracks occur and parallax movements
are correctly represented. The leftmost an rightmost image show views with a viewpoint
slightly outside the view cell, where the guarantee does not hold anymore.

out having to rely on the input model structure. Previous impostor techniques (see
Section 2.3.1) try to achieve these desirable features with massive oversampling
of the input model or with displaying multiple impostors for an output image.
However, drawbacks of those methods are high memory requirements and long
preprocessing times, and/or a much less efficient impostor display while still not
guaranteeing the absence of image artifacts.

Since the impostor layers are recorded using OpenGL rendering, the recon-
struction quality is limited to the sampling provided by OpenGL. Also note that
all layers are recorded at the screen resolution, independent of their distance to
the view cell. This reduces temporal aliasing (i.e., flickering). While the impostor
quality can easily be improved, for instance by applying oversampling during the
layer recording process, a representation with higher quality than the rest of the
(normally rendered) scene would be noticeable.

The explicit drawing of polygon outlines for avoiding image gaps, as was
described in Section 3.3.2 results in a noticeably “bloated” representation for some
objects. Figure 3.19 shows an example of a tree: the branches in the impostor
(bottom image row) are more apparent than in the original rendered image (top

62

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

Figure 3.19: “Bloated” impostor representation for a tree: the top row shows the original
rendered tree, the bottom row the respective impostor representation.

image row). This can be avoided if the “fuzzy” structure of a scene part is known
(as is the case for trees and other ecological objects). Then drawing the outline
can be skipped, because small gaps will be masked by the fuzzy appearance of the
scene parts.

3.7.2 Memory Requirements

Memory requirements are discussed for some setups that are of practical interest.
Although no general formula can be given how memory changes for different
setups, general trends can be shown.

Figure 3.20 shows the memory requirements for the dragon model for a view
cell placed in different distances to the model. It can be observed that the memory
falls more than 1

d2 with increasing distance d, because the number of pixels on
screen covered by the object already behaves like 1

d2 with increasing distance, and
the number of impostor layers also decreases due to reduced parallax movements.

A second observation is that the required memory grows between 3 and 4

63

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300

Distance (m)

Im
p

o
s
to

r
m

e
m

o
ry

(k
B

)
256 Pixels

512 Pixels

1024 Pixels

Figure 3.20: Memory requirements for layered impostors for different output resolutions
in dependence of the distance between view cell and object.

times when doubling the output image resolution. On the one hand, the number of
pixels covered by the object grows quadratically with the output resolution, and
the number of necessary layers also increases due to stronger parallax movements.
On the other hand, the algorithm that generates the geometry for every layer (see
Section 3.1) provides tighter fits of the content of each layer for higher resolutions,
since the grid cell size it operates on is fixed.

As was stated before, it is desirable for the impostor technique to support large
view cells in order to reduce the overall impostor memory for a scene. A com-
parison between shaft-shaped view cells and rectangular view cells is presented
here: using the test setup described above, a rectangular view cell placed 80 m
away from the model was extruded, thus forming a shaft that encloses all rectan-
gular view cells placed farther away. For this shaft, an impostor was generated for
512x512 pixels output image resolution, resulting in 390 kB of impostor mem-
ory. On the other hand, the accumulated memory of all rectangular view cells
enclosed by the shaft is more than 536 kB, still providing a smaller view space
than one shaft. This shows the general advantage of using shaft-shaped view
cells, since they provide a good ratio between supported view space and memory
requirements.

Note that when using a simple planar impostor technique [Scha95b], for an
impostor that is valid for the shaft described above, 9 planar impostors (3 each in
vertical and horizonal direction) are necessary resulting in 1250.5 kB of required
memory. This shows how memory requirements can be greatly reduced with the
layering technique. Note that the advantage even grows if the apex angle of the
supported shaft is increased: while for the layered impostors, only the number of
needed layers increases, many additional planar impostors will have to be gener-

64

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

ated, thus significantly increasing memory.

3.7.3 Generation Time

The generation time of a layered impostor depends on three main factors:

• the time needed for rendering every layer,

• the time needed for reading back the rendered textures from graphics hard-
ware into main memory, and

• postprocessing the layer, including occlusion culling and impostor geome-
try generation.

The time needed to generate an impostor grows linearly with the number of layers,
because all operations have to be calculated per layer.

On our test machine, examples for the rendering time needed to render a layer
range from 2.36 ms for a single building, over 12.6 ms for the dragon model,
and up to 41 ms for the whole Vienna model and 164 ms for the UNC Power
Plant model. Note that these times include the additional operations needed for an
artifact free representation (see Section 3.3.2). Note also that our implementation
leaves space for further optimization. For instance, the primitives can be sorted
according to the layers they cover, and for each layer, only the contained primitives
could be sent to graphics hardware.

The time needed to read back the frame buffer and the time for the layer
processing step mainly depend on the size of the rendered impostor texture. The
time to read back the frame buffer varies for the test system between 0.1 ms for an
impostor covering 32x32 pixels on screen, 3.2 ms for 256x256 pixels and 50 ms
for a very large area of 1024x1024 pixels. The time needed for postprocessing
every layer takes between one third and the whole of the time needed for reading
back the frame buffer, independently of the actual model and texture size.

Given the fact that impostors are in practice used preferably for small distant
scene parts that are very complex, it can be said that the impostor generation time
mainly depends on the rendering of the layers, but not on the generation steps ap-
plied afterwards. Furthermore, the overall generation time can be called fairly low
compared to other methods. Especially higher quality impostors that provide com-
parable image quality and memory requirements like for instance textured depth
meshes (see Section 2.3.1) require substantial postprocessing time for generating
the impostor geometry.

65

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

3.8 Applications

The layered impostor technique presented in this thesis can be used for rendering
acceleration in several ways. Aside from the use for rectangular or shaft-shaped
view cells, layered impostors can also be used in architectural models as portal
impostors. Additional applications for the technique include layered environment
map impostors and view-independent impostors.

3.8.1 Layered Environment Map Impostors

In this application, the impostor layers are arranged in a concentric way around a
cubic view cell, forming “cubic” environment maps. This means that the impos-
tors are used to represent the far field (see Section 2.3.2). Figure 3.21 shows an
example for the Vienna model, where impostors were placed in four orthogonal
directions parallel to the ground plane. Note especially that most of the invis-
ible scene parts within the impostor have been automatically eliminated by the
occlusion culling algorithm.

Figure 3.21: Layered environment map impostor.

3.8.2 Layered View-Independent Impostors

The main advantage of view-independent impostors is that they cast and re-
ceive shadows, as is necessary in current computer games. Layered view-
independent impostors consist of multiple impostor representations for the same

66

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

object, so that one representation is used for each possible view direction (simi-
lar to Jakulin [Jaku00]). The layering technique reduces the number of required
representations compared to planar impostors [Alia99b]. Figure 3.22 shows an
example where the impostor is generated only from three orthogonal view direc-
tions. The distance from the first (nearest) layer to the second one is calculated
using the equations presented in Section 3.3.1 and all layers are uniformly spaced
based on this distance. This allows using the impostor also for the opposite view
direction it was generated for.

a b

c

(a) (b) (c)

Figure 3.22: View-independent layered impostor recorded from three orthogonal direc-
tions.

Although conceptually possible, the high number of layers required for each
view direction makes this approach less efficient compared to the billboard cloud
approach [Deco03]. For instance, the example in Figure 3.22 results in 214 im-
postor polygons and 90kB of impostor texture memory. This is quite a lot, given
the fact that the house covers only 30x30 pixels on the screen. The only advan-
tages over the billboard cloud technique are much shorter generation times and
the complete elimination of image artifacts. However, both of these problems
are expected to be overcome during further investigation of the billboard cloud
technique.

3.9 Discussion

In this chapter, a new layered impostor technique was presented. It combines the
following desirable features:

• Artifact-free representation: One main advantage compared to previous
approaches is that the new technique achieves the elimination of all the
artifacts usually associated with impostors, such as disocclusion artifacts.
This is achieved by a special layer placement in combination with a special

67

Chapter 3 Memory-Efficient Layered Impostors without Image Artifacts

layer recording method that ensures that every scene part is present in each
layer it covers.

• Low memory requirements: The layered impostor technique needs very
few memory because invisible scene parts are removed from the layers and
(even more importantly) transparent regions in every layer are excluded
from the final representation.

• Fast generation: The algorithms for excluding invisible scene parts and
generating the impostor geometry operate in image space, which is very
fast with current CPUs. Therefore, the whole impostor generation process
is mainly defined by the rendering of the scene part to be represented into
the layers.

• Fast display: The method naturally supports conventional graphics hard-
ware for fast impostor display. Since no complex online calculations are
necessary, optimal runtime efficiency is achieved. The use of texture at-
lases reduces the number of texture switches which further accelerates the
impostor display.

These features make the new technique very useful for applications such as com-
puter games where high-quality impostors were not often used before. On the
other hand, layered impostors for scene parts near the view cell are less efficient
due to the prohibitively high number of required layers. Chapter 4 will present a
method that overcomes this drawback.

68

Chapter 4

Textured Depth Meshes for Near
Scene Parts

4.1 Introduction

The layered impostor technique presented in Chapter 3 offers numerous desirable
features. On the other hand, care has to be taken about the number of required im-
postor layers because the preprocessing time and the memory requirements grow
with this value. This reduces the efficiency of the technique especially for nearby
objects, where it requires a very high number of impostor layers.

In order to overcome this drawback, this chapter extends the technique by
introducing a method for connecting the layers, thus forming a textured depth
mesh (TDM) [Alia99a, Sill97]. The goal is to preserve the desirable features
of the layered impostor technique, like the applicability for arbitrary geometry,
an artifact-free representation and fast rendering. Simultaneously, the required
texture memory and impostor complexity should be significantly reduced, so that
impostors for objects near the view cell can be generated and displayed efficiently.

4.2 Overview

For the TDM generation process, the scene part to be represented is layered in the
same way as was described in Chapter 3. For a better illustration, all texel layers
together are interpreted as a voxel grid. While for standard layered impostors,
every voxel layer is encoded separately as a set of quads, for TDMs, successive
voxel layers are connected and the resulting mesh simplified. A result is that the
complexity of the final representation no longer relies on the number of layers.

69

Chapter 4 Textured Depth Meshes for Near Scene Parts

Given a scene part and a view cell, as well as the output display resolution
and field of view, the algorithm for generating the TDMs consists of the following
steps (see Figure 4.1):

Figure 4.1: Overview of our method for constructing textured depth meshes (from left
to right): the original object (1880 polygons), the initial mesh constructed from the voxel
grid (61584 polygons), the simplified mesh (35 polygons), final textured mesh. Note that
all images are close-up views.

1. The layer spacing is calculated and the voxel grid is generated by rendering
the scene into layers using the steps described in Chapter 3. Afterwards,
the recorded grid is transformed so that all voxels are sized equally (see
Section 4.3).

2. An initial complex yet very regular mesh that covers the whole voxel grid
is created (see Section 4.4).

3. The complex mesh is simplified (see Section 4.5). A special error bound
guarantees that the shape of the simplified mesh does not change more than
a user-defined amount in image space.

4. The pictorial information (i.e., the textures) for the simplified mesh is ex-
tracted from the voxel grid (see Section 4.6).

4.3 Voxel Grid Generation

The voxel grid is generated exactly as described for the layered impostors in Chap-
ter 3, including the layer placement calculation. The difference for TDMs is that
every texel is interpreted as a voxel (defined by the texel boundaries and the depth
range of the layer), and the color of the texel defines the color of its voxel. Fig-
ure 4.2 (left) shows the arrangement of a voxel grid for a particular view cell.

70

Chapter 4 Textured Depth Meshes for Near Scene Parts

1

1

0

Figure 4.2: The voxel grid (left) is transformed into a normalized, uniform voxel grid
(right).

The voxel grid layers are non-uniformly spaced according to texel movements
and parallax error as was described in Section 3.3. For further treatment, the
voxel grid is transformed into a normalized, uniform voxel grid, i.e., a grid with
cubic voxels and a maximum total sidelength of 1 (see Figure 4.2 (right)). This is
obtained by defining the voxel position in the grid using the 2D texel coordinates
and the layer number.

The reason for this transformation is twofold: on the one hand, it allows
storing all voxels in a compact hash table-based memory structure for efficient
lookups. Furthermore, this organization is important for the simplification and
texture generation process, since it influences the error metric used during the
mesh-simplification step later on. More specifically, it causes the projected errors
for views within the view cell to be equivalent to the simple geometric distance
between vertices.

4.4 Initial Mesh Generation

The first step for creating the TDM representation is to produce an intermediate
mesh that covers all voxels in the voxel grid. The idea is to connect all neighboring
voxels using a single mesh. The advantage of having a connected mesh is that it
can be simplified so that the complexity of the final mesh is independent from the
number of layers. While the intermediate mesh can be highly complex, it is easy
to create and of regular structure, and therefore highly amenable to simplification
(see Section 4.5). Note that for disconnected voxel sets, multiple meshes have to
created. Here, an important challenge is to create not more meshes than strictly
needed.

The basic idea is to apply a meshing operator after rendering every voxel layer.

71

Chapter 4 Textured Depth Meshes for Near Scene Parts

This operator connects all adjacent voxels in the current layer and closes connec-
tions to the previous (less distant) one. The detection of these connections is
guided by knowledge about the one-texel layer spacing between adjacent layers
(see Section 3.3).

For the sake of clarity, the process is described first for a single voxel layer.
An obvious approach would be to simply connect the centers of adjacent voxels
as shown in Figure 4.3 (left). However, this leaves voxels with only one neighbor
unaccounted for. To overcome this problem, four vertices are used for every voxel,
thus allowing to connect all adjacent voxels (Figure 4.3 right).

?

Figure 4.3: Covering voxels with only one neighbor is not possible using a single vertex
(left). At least two connecting vertices are necessary (right).

This configuration creates more polygons, but allows covering all connected
voxels with a mesh. The illustrations in Figure 4.4 show the previous (closer) and
the current (more distant) layer as seen from the view cell. Transparent voxels are
shown as white, while gray ones are opaque. In order to generate a mesh that only
consists of polygons which are visible from the view cell, 3 rule sets together with
simple meshing operations (Figure 4.4 (a)-(c)) are applied for every voxel in the
grid.

The first rule set (Figure 4.4 (a)) establishes connections in the current layer if
any of the involved voxels in the previous layer is transparent. From left to right
and top to bottom, the current voxel is first connected to itself, then to the right,
to the bottom, and to all 3 neighboring voxels, if the voxels shown in gray are
opaque in the current layer, but at least one of them is transparent in the previous
layer.

With the second rule set (Figure 4.4 (b)), the current voxel is sealed off towards
each of the 4 sides if both the voxel itself and the corresponding voxel in the
previous layer are opaque. In addition, for a particular side, the voxel is only
sealed off if at least one of the voxels in the previous layer adjacent to this side is
transparent, as the figure shows.

72

Chapter 4 Textured Depth Meshes for Near Scene Parts

(a) (b) (c)

Figure 4.4: 12 initial mesh generation rules. (a): in the current layer, (b): for sealing off
each voxel towards each side. (c): for sealing off voxel pairs towards each side.

The third rule set connects 2x2 voxel blocks (2 in the current, 2 in the previ-
ous layer) of opaque voxels if any of the 2 facing voxels in the previous layer is
transparent, as shown in Figure 4.4 (c).

These rules account for all cases and form all connections that are valid and
needed in order to cover neighboring voxels with a mesh.

Note that the total number of polygons generated by this algorithm could be
reduced by a factor of 2 to 3 by adaptively introducing extra vertices only where
needed. However, this would also complicate the mesh-generation process and
should be considered only in memory-constrained situations. Also note that the
number of polygons generated is output sensitive due to the removal of invisible
parts of the scene, and therefore the mesh is not expected to grow beyond a size
that can easily be handled in main memory.

In order to record and maintain the mesh connectivity, when a new polygon is
created by one of the steps described above, it is tested whether the polygon can
be connected directly to any of the existing meshes. If only one candidate mesh
is found, the polygon is added and the algorithm proceeds. If it can be connected
to more than one mesh, however, all candidate meshes are merged using this new
polygon as a connection. If the polygon cannot be connected to any existing mesh,
it is used to start a new mesh.

The method described in this section does not produce more individual meshes
than strictly necessary due to occlusions and disjoint parts in the voxel grid. When
rendered, the set of resulting meshes covers all the voxels from the original rep-
resentation. Note that while at the borders, the resulting meshes may be slightly
smaller than the set of voxels they cover, this is actually correct because due to
rasterization, the voxels are usually slightly larger than the objects they represent.

73

Chapter 4 Textured Depth Meshes for Near Scene Parts

4.5 Mesh Simplification

The meshes produced by the algorithm presented in the previous section provide
a good starting point for the application of a mesh simplification algorithm. The
aim is to produce a set of meshes with significantly lower complexity, but which
still cover all of the voxels touched by the initial meshes. Although many of the
simplification approaches presented in recent years [E. P97] could be applied, the
specific structure of the problem suggests the development of a new method.

The approach presented here is conceptually related to simplification en-
velopes [Cohe96] by its use of a surrounding volume bounding the simplifica-
tion process. Individual simplifications are based on edge contractions (using the
QSlim simplification software developed by Michael Garland [Garl97]). The algo-
rithm proceeds by inserting all edges into a priority queue sorted by edge length,
and iteratively removing the shortest edge from the queue. This edge is checked
against the voxel grid (see below), and if it can be contracted, all edges affected
by the contraction are resorted or reinserted into the queue according to their new
length. If a contraction fails, the edge will only be reconsidered if it is reinserted
into the queue when a neighboring edge is contracted. The process continues
removing the shortest edge from the priority queue until the queue is empty.

Always choosing the shortest edge for contraction favors a uniform simplifi-
cation and prescribes a useful order even for finely tesselated coplanar regions.
Using other error metrics for ordering the priority queue would fail in such cases
and lead to slithery triangles because the simplification order would be more or
less random. Also note that an edge connecting two layers has the same length
as an edge between two pixel centers in the warped voxel grid the algorithm is
operating in (see Section 4.3). This is exactly what we are looking for, because
the length in the warped grid corresponds approximately to the perceived length
after projection to the screen. In this way, edges that appear to have the same
length on screen are treated equally, regardless of their length in world space.
This practically results in a view-dependent simplification [Lueb97].

A crucial part of the algorithm is the test whether an edge can be contracted.
This test basically checks whether the resulting mesh still covers all relevant vox-
els: at first, while creating the initial mesh, each polygon stores identifiers for all
voxels it covers (this is trivial to compute due to the mesh structure). Now, as-
suming a contraction between the vertices v1 and v2 should be performed so that
v1 remains, the necessary steps are:

1. Collect the voxels covered by all polygons that include v2 by simply accu-
mulating the voxels stored for every involved polygon.

74

Chapter 4 Textured Depth Meshes for Near Scene Parts

2. Contract v2 to v1 and check if the voxel set computed in the previous step
is also covered by the resulting polygons (using a polygon-box intersection
test). If not all voxels are covered, undo the contraction, and either exchange
v1 and v2 and repeat step 1, or, if v1 and v2 were just exchanged, exit. In the
latter case, the contraction failed.

The size of the box representing a voxel for testing against a polygon can
be used as a simple criterion to trade off rendering speed against accuracy:
increasing the size of a voxel results in more simplified but less accurate
meshes. Here the warped voxel grid calculated in Section 4.3 plays an im-
portant role again, as it provides a one-to-one correspondence of screen-
space pixel error to the factor used to increase voxels. In practice a factor
of about 1.5 to 2 has proven to result in dramatically simplified (see Sec-
tion 4.8) but still fairly accurate meshes.

3. If all relevant voxels are covered by the new polygons, store for each new
polygon the set of voxels that are covered by it. This information has already
been computed as a by-product of step 2.

See Figure 4.5 for an example in 3D space for a forbidden (a) and an allowed (b)
contraction.

?

(a) (b)

Figure 4.5: An example for a forbidden (a) and an allowed (b) contraction in 3D space.

While this test is adequate for the interior of the mesh, special treatment is
required in order to maintain the shape of the mesh boundary for avoiding image
cracks. Therefore, the mesh boundary must neither be shrunken nor enlarged.

Contracting a boundary vertex towards the interior of the mesh might be al-
lowed when the resulting mesh still covers all relevant voxels—however, this will
create a crack in the representation because the mesh has been shrunken. See
Figure 4.6 (middle) for an example. Therefore, contractions involving boundary
vertices are only allowed if the contraction is applied towards a boundary vertex
(Figure 4.6 (right)).

Considering mesh enlargement, contracting a boundary edge may incorrectly
cause empty voxels to be covered as is shown in Figure 4.7. This can be prevented

75

Chapter 4 Textured Depth Meshes for Near Scene Parts

Figure 4.6: Left: the initial configuration with the red edge to be contracted. Middle:
this contraction away from a boundary vertex is forbidden because it would create a gap,
although all (enlarged) voxels are still covered. Right: contracting towards the boundary
vertex produces a correct mesh.

v1

v2

!

Figure 4.7: A contraction is not allowed if an empty edge interval would result. The
dotted boxes indicate the enlarged voxels for intersection testing with the polygon.

by calculating the intersection intervals of the new boundary edge with all relevant
voxels (using an edge-cube intersection test) and test whether the union of these
intervals completely covers the edge. If a non-covered edge interval remains, the
contraction is rejected.

The result of the mesh simplification step are a much coarser meshes which
still cover all voxels that were covered by the initial meshes. The final step for
generating the TDM is to apply textures for the simplified meshes.

4.6 TDM Texture Generation

Color information is assigned to the polygons of the simplified representation via
texture maps. This can be done efficiently by sampling the voxel grid for each
polygon separately: first, generate a texture so that the texel size approximately
corresponds to the side length of a voxel, and the extents of the texture are slightly
larger than the polygon in order to ensure that all texels needed for rasterization
are present even when bilinear texture filtering is used. Second, this polygon
texture is sampled in the voxel grid by averaging for every texel center the color
of the n closest voxels, weighted according to their distance. For texels lying

76

Chapter 4 Textured Depth Meshes for Near Scene Parts

completely inside the polygon, it is sufficient to consider only the voxels stored
with the polygon in the mesh data structure. For texels at the border of or outside
the polygon, the whole voxel grid has to be searched. However, this last step
can be done efficiently using the hash table-based data structure for the voxel
grid. Applying oversampling (i.e., setting n > 1) results in smoother, but also
somewhat more blurry textures.

When all textures are generated, they can be stored using a texture atlas (see
Section 3.6) in order to minimize texture switching overhead during rendering and
to make efficient use of texture memory.

4.7 Placement of the TDM into the Scene

The final step in generating a TDM is to place it into the scene. This is done by
reprojecting the vertices of the simplified and texture-mapped mesh to their correct
positions. Since no new vertices were introduced during the simplification, for
each vertex its exact position within the voxel grid and therefore within the scene
is already known.

As previously noted by Darsa et al. [Dars97], perspective correction for the
textures of the TDM should be disabled during rasterization, since perspective is
already recorded in the texture.

4.8 Results

The algorithms for generating the TDM representation presented in this chapter
have been implemented in C++ using the OpenGL API. All statistics were ob-
tained on a PC with an Intel Pentium4 3.2 GHz processor, 1 GB of main memory
and an NVIDIA GeForce Quadro FX 3000 graphics board.

In order to discuss the main characteristics of the method, the model of a single
building was used and TDMs were generated for a large cubic view cell with
100 m sidelength, an output resolution of 512x512 pixels, a field of view of 45◦

and varying distances between the view cell and the model. Figure 4.8 shows how
the complexity of the resulting TDMs increases with decreasing distance between
the object and the view cell, as can also be seen in the respective statistics in
Table 4.1. This characteristic is similar to the layered impostor approach, because
visible parallax movements that have to be modelled with the mesh increase with
decreasing distance.

77

Chapter 4 Textured Depth Meshes for Near Scene Parts

Figure 4.8: TDMs for the building model for varying distances between the model and
the view cell. Note how the mesh approximates the geometry of doors and windows for
nearby view cells.

Dist. view cell to model (m) 90 110 140 180 250 500 1000

layers 110 81 56 34 19 5 1
of meshes 4 2 1 1 1 1 1
polygons in initial meshes 210,104 139,588 83,928 47,738 23,176 5,430 1,078
polygons for TDMs 418 203 65 35 17 8 3
Memory for TDMs (kB) 154.2 89.7 49.7 26.4 12.3 3.46 0.64
Mesh generation time (s) 8.6 5.5 2.22 1.2 0.54 0.14 0.03
Mesh simplification time (s) 74.3 51 19.1 6.15 2.62 0.52 0.07
Mesh resampling time (s) 6.25 5.5 3.2 0.56 0.05 0.012 0.006
Overall time (s) 89.2 62 24.5 7.9 3.2 0.67 0.101

polygons for layered. i. 1176 700 372 178 82 16 2
Memory for layered i. (kB) 329 198 107 57.4 25.5 4.5 0.67
Generation time for l.i. (s) 0.57 0.356 0.2 0.11 0.06 0.02 0.01

Table 4.1: Statistics for textured depth meshes and layered impostors for the house model
for varying distances between model and view cell.

Since one main motivation for the TDM is to decouple the impostor com-
plexity from the number of layers, Table 4.1 also shows a direct comparison to
results obtained with the layered impostor approach presented in Chapter 3. As
was expected, the TDM technique requires less memory and a smaller number of
polygons if many layers are generated (compare to Table 4.1): up to 250 m dis-
tance, it needs less than half of the memory. Given the fact that layered impostors
already constitute a memory-efficient technique, this difference is quite signifi-
cant. For larger distances (and thus a smaller number of layers), the advantage
of connecting the layers with a mesh becomes less important, so that the memory
requirements for the two techniques are almost equal.

The behavior of the number of required polygons is quite analogous: for small
distances (≤ 250 m), the mesh contains in many cases less than one third of the
polygons required for layered impostors. For close distances (≤ 90 m), layered
impostors need almost as many polygons as the original object (1880 polygons),
while the TDMs still provide a much lower complexity. With increasing distance,

78

Chapter 4 Textured Depth Meshes for Near Scene Parts

this advantage vanishes due to the same reasons as mentioned above. Also note
that although the number of polygons in the intermediate mesh may seem high,
this is mainly because of the number of pixels on screen and not because of the
complexity of the original scene. It is unlikely that polygon counts will grow
much beyond the values shown in Table 4.1.

On the downside, the generation time for a TDM is between 10 times and 150
times longer than for the layered impostor technique. The main time-consuming
steps are the generation of the complex mesh, the simplification step and the tex-
ture generation step. The implementation of the first step is still unoptimized, so
that this time could be significantly improved. The simplification step can also
be accelerated by applying a fast pre-simplification approach as was proposed by
Aliaga et al. [Alia99a]. However, because it is not expected that the generation
time will be anywhere as fast as for layered impostors, it seems that TDMs are best
suited for objects near the view cell. For those cases, the additional preprocessing
time is justified by the savings in memory.

In order to demonstrate the generality and the wide variety of possible usages
of TDMs, two additional test scenes with different characteristics are shown: first,
a model of the Aztec city of Tenochtitlan (which is freely available on www.
3dcafe.com) as a wide urban environment, and second, a single, relatively
small car model. The resulting model statistics are shown in Table 4.2.

Model Tenochtitlan Car
polygons original model 158944 1188
Model size (m) 450x450x50 4.7x1.8x1.5
Size of cubic view cell (m) 42 63
Distance view cell to model (m) 487 73
generated meshes 12 2
polygons in initial meshes 637462 83481
polygons for final TDMs 946 220
Generation time (s) 72.6 3.9

Table 4.2: Model statistics for textured depth meshes of two very different models.

The urban model includes large occluded scene parts, which are automatically
excluded by the algorithm (see Figure 4.9). On the other hand, the method guar-
antees that all visible scene parts are represented, so that no rubber-sheet effects or
image gaps appear. While degenerate meshes can occur under rare circumstances,
the output is usually of high quality: the mesh follows the shape of the objects to
be represented quite precisely, even when relaxing the parameter for mesh simpli-
fication, as can be seen for the car model in Figure 4.10. Note that a factor of 2
was used to enlarge the voxel size during simplification for both test scenes.

79

Chapter 4 Textured Depth Meshes for Near Scene Parts

Temporal aliasing (visible as flickering) is also greatly reduced in the TDM
representation due to the proper scene sampling. The effect of oversampling the
impostor textures can be observed in Figure 4.9, where the result looks smooth,
but also a bit blurred.

The rendering acceleration provided by TDMs mainly depends on the render-
ing bottlenecks of the target rendering system. Savings in rendering time stem not
only from the significant reduction in polygon count, but also from the simplicity
of the representation: no state changes are necessary when rendering TDMs, al-
lowing graphics hardware to be utilized to its fullest potential. As an impressive
example, a TDM for a part of the Vienna model covering 600x400 pixels on the
screen reduces the polygon count from 10.4 Million to only 81. The rendering
time decreased from 766 ms to only 0.2 ms. However, the actual rendering ac-
celeration depends on the original scene part, the final TDM and the rendering
system, so that general statements are not possible.

Figure 4.9: Top-left: original Tenochtitlan model. Bottom-left: the TDM representation.
Right: the impostor from a bird’s-eye view together with the corresponding mesh. Note
that no occluded scene parts are present in the TDM.

4.9 Discussion

In this chapter, a novel approach for generating textured depth meshes was in-
troduced. The geometric complexity of the representation is low, even for objects
with a relatively small distance to the view cell. The reason for this is that the com-
plexity is largely decoupled from the number of layers that where used to generate
the TDM. For example, a continuous surface that requires many layers in a lay-
ered impostor can be represented with a single polygon in a TDM. Compared to

80

Chapter 4 Textured Depth Meshes for Near Scene Parts

Figure 4.10: Left: original car model. Middle: the TDM representation. Right: the mesh
of the TDM.

layered impostors (see Chapter 3), this results in reduced impostor complexity and
lower memory costs, especially if the number of layers is high.

At the same time, the method retains most of the desirable features of the lay-
ered impostor technique. It guarantees a high output image quality by ensuring
that the differences between the impostor and the geometry it represents are practi-
cally imperceptible. Previous approaches (see Section 2.3.1) try to achieve this by
displaying multiple meshes in an output image that were generated from different
viewpoints [Dars98, Wils03]. While this makes the impostor display less effi-
cient, image artifacts are reduced but a high image quality is still not guaranteed
for every possible view point. In contrast, the new method shows no image gaps
or rubber-sheet effects while at the same time providing fast impostor display.

The meshes automatically adapt to the shape of the scene parts with respect to
parallax movements. This constitutes a view-dependent simplification targeted at
all views starting in the view cell. The metric for this simplification can be kept
very simple due to the transformation into a uniform voxel grid. Furthermore,
a single parameter is provided for controlling the tradeoff between mesh com-
plexity and accuracy, allowing to adapt the technique for the demand of different
applications.

Most invisible scene parts are automatically excluded regardless of scene
structure, resulting in a more compact representation compared to previous ap-
proaches (see Section 2.3.1). Wilson et al. [Wils03] achieve this by sampling
from multiple viewpoints and removing redundant information afterwards, which
needs substantial preprocess time.

To summarize, the TDM technique is suitable for effectively accelerating the
rendering of objects close to the view cell without noticeable image artifacts. The
main drawback is the longer preprocessing time compared to the layered impos-
tor technique. Depending on the application, this is counterbalanced by a more
efficient representation.

81

Chapter 5

Automatic Impostor Placement

5.1 Introduction

An impostor placement defines for every output view those scene parts which
should be displayed using impostors. This should be done in a way so that the
impostors provide sufficient rendering acceleration and maintain a certain output
image quality while at the same time keeping the required impostor memory as
low as possible. Several impostor placement algorithms have been presented in
the past (see Section 2.3.2). However, previous placement strategies do not pro-
vide satisfying results for a broad range of scenes, because the selected impostors
need immense amounts of memory even for many small scenes. This has pre-
vented impostors from being used for many applications. The most commonly
used alternative is a manual placement (e.g., in games), which is tedious and time
consuming.

In this chapter, we present a new automatic impostor placement algorithm
that guarantees a user-defined minimum frame rate and a minimum output image
quality for every possible view in a scene, while at the same time keeping the
memory requirements for all impostors as low as possible. This is achieved by
addressing the following main issues:

• Impostors are applied only for those views that cannot be rendered suffi-
ciently fast.

• In contrast to previous approaches, arbitrary combinations of viewing re-
gions and scene parts are considered for the placement, which is important
for a satisfying solution.

82

Chapter 5 Automatic Impostor Placement

• Additional acceleration techniques like visibility culling and geometric sim-
plification techniques are used in parallel to impostors, thus making best use
of all available techniques at the same time.

We will show that by addressing these issues, the memory required for the impos-
tors can be kept very low compared to previous approaches.

5.2 Preceding Considerations and Requirements

In order to design an algorithm that guarantees a minimum frame rate, the time it
takes to render a view in the scene must be quantified. Furthermore, the minimum
image quality for an impostor must be defined. These two concepts are described
in the following subsections. Afterwards, the main observations for a sensible
impostor placement are discussed.

5.2.1 Definition of the Rendering Time

In order to ensure that every view in a scene can be rendered sufficiently fast, the
rendering time must be known. Of course, it is impossible to render every view
because the number of views is unlimited. Consequently, it is necessary to have
an estimation for the time a view or a number of views need to render. Such an
estimation must be very general, so that it can be adapted to varying hardware
characteristics (see Section 2.2.1) and different scenes. This is provided by the
rendering time estimation presented by Wimmer and Wonka [Wimm03]. This
is a heuristic that predicts the duration of a certain rendering process taking into
account system tasks, CPU tasks, GPU tasks and idle CPU and GPU times. For
the impostor placement algorithm, the rendering time estimation will be used to
get an upper limit for the rendering time for a view in the scene. Furthermore, it
is also used to get the maximum time needed to render a particular scene part or
its impostor. The rendering time estimation for a scene is obtained by a sampling
process: many examples for the time needed to render different combinations
of viewpoints and scene parts are evaluated in order to derive a heuristic for the
rendering time. Details for this process are given in Section 5.8.1.

Note that previous approaches [Alia99c] only focus on bounding the num-
ber of primitives sent to the graphics pipeline for every output view, an approach
which is not useful for modern graphics hardware. For example, in current graph-
ics hardware, the number of draw calls is often more important than the number
of primitives.

83

Chapter 5 Automatic Impostor Placement

5.2.2 Definition of the Impostor Image Quality

In order to define a minimum output image quality for every output view, we in-
troduce the concept of an image quality criterion for an impostor. An impostor
is said to meet this image quality criterion if the following requirements are al-
ways fulfilled in the viewing region the impostor is defined to be valid (also see
Section 1.3):

• The impostor resolution has to meet at least the output image resolution in
order to avoid “blocky” artifacts.

• Parallax movements are reproduced with sufficient accuracy.

• No visible image gaps caused by disocclusions occur.

• The border between the impostor and the scene is not visible, which means,
artifacts like image cracks are avoided.

These criteria ensure that the impostor does not become apparent as a replacement,
and that no popping artifacts occur.

There exist methods for ensuring this criterion for most impostor techniques
like for instance for planar impostors, textured depth meshes and point clouds (see
Section 2.3.1). For instance, in the case of planar impostors, several impostors
have to be built for the view cell in order to fulfill the image quality criterion. This
leads to huge memory requirements. For layered impostors, instead, the number
of layers can be adapted to meet the criterion using only a single impostor (see
Section 3.3).

5.2.3 Observations for a Good Impostor Placement

Since the goal of the impostor placement is to guarantee a minimum frame rate,
impostors should only be used for those views that cannot be rendered fast enough.
Otherwise, impostor memory would obviously be wasted. Furthermore, in order
to reduce impostor memory requirements, it is advisable to apply additional ren-
dering acceleration techniques (if available) before using impostors. For instance,
for urban and interior scenes, visibility culling allows reducing the rendering time
for many output views significantly. Impostors are then used only were visibility
culling fails to provide sufficient acceleration. The following two observations
consider the selection of scene parts to be represented as impostors.

Many previous algorithms (see Section 2.3.2) address the fact that distant
scene parts are very well suited for impostor representation because complex

84

Chapter 5 Automatic Impostor Placement

geometry (which is favorable for rendering acceleration) covers only few pixels
on the screen (which favors low memory requirements for an impostor). A closely
related observation concerns multiple objects:

Observation 5.2.1 If multiple objects are adjacent in object space, a common
impostor for all objects is likely to require less memory than separate impostors
for each object.

This observation is especially true for distant objects that share many pixels on
the screen. A beneficial side-effect of using larger object clusters with increasing
distance is that this also reduces the number of rendering calls, and thus improves
rendering acceleration on current graphics cards.

The second observation addresses parallax movements (and therefore disoc-
clusions) which have to be represented by the impostor in order to meet the image
quality criterion:

Observation 5.2.2 If the appearance for a scene part hardly changes when seen
from within a given viewing region, a single impostor for the whole region is likely
to require less impostor memory than splitting the region into smaller view cells
and generating an impostor for each such cell.

This observation can typically be applied where parallax effects increase only
marginally when increasing the view cell size, which is mainly the case for dis-
tant scene parts. On the other hand, nearby objects often show numerous disocclu-
sions, which might lead to excessively high memory requirements and/or complex
impostor geometry. Note that many previous approaches (see Section 2.3.2) gen-
erate impostors for a fixed set of view cells, separately for each cell. Because
no distinction is made between nearby (apparently changing) and distant (hardly
changing) scene parts, many similar impostors are generated for distant scene
parts, which constitutes a waste of memory. In Section 5.8.2, we will show the
great impact of using this observation for a good impostor placement.

5.3 Formal Problem Definition

In this section, we introduce a number of necessary terms and notations and for-
mally describe the impostor placement problem.

The input model is assumed to consist of a set O of discrete objects o. The
space of all possible viewpoints and view directions is called view space V . An
element v ∈ V is called a view and consists of a 3D viewpoint v3D and a 2D view

85

Chapter 5 Automatic Impostor Placement

direction v2D (encoded as azimuth and elevation angles), so that V = V3D × V2D.
The field of view and image resolution is assumed to be fixed for all views.

Note that rotations around the view vector are ignored in V2D. However, a
simple way to incorporate rotations would be to increase the output resolution
and field of view so that rotated views are also included.

The rendering time tv is the time necessary to render a view v, and should
ultimately stay below the user-defined maximum time tmax.

The problem view space Vp ⊆ V is one of the fundamental concepts for our
approach. It encodes for which problem views vp ∈ Vp the rendering time exceeds
the desired maximum rendering time tmax (for a specific target hardware), i.e.,
where a “problem” occurs.

An impostor i can be created given three input parameters: a view cell V C ⊆
V3D, an object cluster OC ⊆ O, and an image quality criterion IQ.

Each impostor is associated with a set Vi ⊆ Vp of problem views within V C.
Note that the impostor is created for a 3D view cell V C but used for a 5D view
space (in short, i serves Vi). This distinction is made because an impostor might
increase the rendering time for some views in V C, e.g., when most of the objects
it represents are actually not visible for a particular view direction. Figure 5.1
illustrates this definition of an impostor.

i

Vp

VC vP

OC

Figure 5.1: An impostor i is generated for a 3D view cell and used for a 5D problem
view space subset.

An impostor placement for a view space V and an object set O is a set I of
impostors, each representing a set of objects OCi in the associated problem views
Vi. The impostor placement problem can be cast as an optimization problem for
finding an impostor placement I that

• satisfies the constraint that the rendering time tv for each view v ∈ V does
not exceed the user-defined maximum frame time tmax. Such a placement
is called valid:

∀v ∈ V : tv ≤ tmax (5.1)

The time tv is obtained assuming that the original objects are replaced by
the impostors. If constraint (5.1) is met for a problem view, we say it is
solved.

86

Chapter 5 Automatic Impostor Placement

• minimizes the memory required for all impostors. Such a placement is
called optimal: ∑

i∈I

mi → min (5.2)

mi is the memory needed for impostor i in this equation.

In order to solve the problem, an impostor placement algorithm has to decide on
the selection of object clusters for which impostors should be generated, and for
every impostor on the size and position of the view cells, as well as the prob-
lem views it should serve. Note that minimizing impostor memory typically also
reduces the preprocessing time needed to generate the impostors.

The problem in finding a good impostor placement lies mainly in the huge
number of valid impostor placements: even for a single impostor, the view cell
may have an arbitrary size and position in the non-discrete view space. This fact
makes a brute-force enumeration of all possible solutions to find the optimal one
infeasible. The goal is therefore to limit the search space while still providing
good placements. In the approach presented in this thesis, this process is guided by
the observations described in Section 5.2.3, which leads to a reasonably small but
well-chosen subset of all possible solutions, so that a good (even though usually
suboptimal) impostor placement can be found in reasonable time.

5.4 Algorithm Outline

The impostor placement algorithm consists of four main steps:

• Object set hierarchy generation: The object set is subdivided hierarchi-
cally, clustering close objects first. This will address Observation 5.2.1.
Possible clustering techniques include bounding box hierarchies, octrees
and kd-trees. The decision on the depth of the subdivision is a tradeoff:
a finer subdivision may result in a better impostor placement, but also in-
creases the preprocessing time.

• Problem view space approximation: In order to approximate the problem
view space Vp, the 3D positional view space V3D as well as the 2D view
direction space V2D are subdivided hierarchically up to a user-defined accu-
racy. The result is a set of conservative problem views (in short, CPVs) in
the sense that they include one or multiple problem views (see Section 5.5).

87

Chapter 5 Automatic Impostor Placement

• Impostor candidate generation: A set of view cells is generated for every
node of the object hierarchy, defining a set of impostor candidates (see Sec-
tion 5.6). This addresses Observations 5.2.1 and 5.2.2. The number of can-
didates is a tradeoff between the quality of the placement and preprocessing
time.

• Optimization: Finally, an optimization algorithm selects an impostor can-
didate subset so that constraint (5.1) is met and the optimization crite-
rion (5.2) is approximated (see Section 5.7).

In the runtime system, the current CPV (if applicable) is looked up, and all im-
postors associated with this CPV are rendered instead of the original scene parts.

5.5 Problem View Space Approximation

The problem view space Vp may have an arbitrary 5D shape. In order to find which
views cannot be rendered sufficiently fast, it is approximated using a hierarchical
subdivision scheme. The approximation will be conservative in the sense that
it will be a superset of Vp. The subdivision is first done along the axes of the
3D view space V3D. For each resulting node, the view direction space V2D is
subdivided. The result of this 2D subdivision is used as a termination criterion for
the 3D subdivision. This means that a 3D region is only subdivided further if its
associated 2D subdivision includes at least one problem view. This allows a fast
removal of areas where no problem views exist. Both subdivisions proceed to a
user-defined minimal size.

5.5.1 3D View Space

Possible subdivision techniques include octrees, BSP-trees or kD-trees. The min-
imum region size for the subdivision must be chosen with care: smaller regions
lead to better problem view space approximations, but the preprocessing time is
also increased. Note that if too many objects intersect a leaf cell (so that the ren-
dering time of those objects already exceeds tmax for some view), constraint (5.1)
cannot be met, i.e., no valid impostor placement exists. This problem can be over-
come in some cases by choosing a smaller minimum region size (see Section 5.9).

If the rendering system provides from-region visibility culling and/or geomet-
ric simplification, these techniques can be performed for each node during the 3D
view space subdivision. Only the visible objects at the correct level of detail are
then passed on to the 2D view direction subdivision.

88

Chapter 5 Automatic Impostor Placement

The availability of such additional acceleration methods reduces the problem
view space. Visibility culling for higher nodes in the hierarchy can be accelerated
by immediately classifying all objects inside the view cell as visible.

5.5.2 2D View Direction Space

Given a node from the 3D view space hierarchy together with the (visible and
simplified) part of the scene, the question is how to get the rendering times for all
possible views within that region. This can be answered by extending the concept
of enclosing frusta [Alia99c]. Figure 5.2 (left) illustrates this concept for a single
view direction for the 1D case. The enclosing frustum for a 3D region contains
all objects visible from viewpoints in that region with the same view direction. A
rendering time estimation [Wimm03] (see Section 5.2.1) applied to the enclosing
frustum is then a conservative estimation for the rendering time of every enclosed
view frustum.

enclosing
frustum

parallel

enclosed
view frustum

enclosed
view frustum

enclosed
view frustum

parallel

VDI

enclosing
frustum

Figure 5.2: Enclosing frustum for a single view direction (left) and for a VDI (right),
both for a 3D view region (light blue area).

This concept is extended to a range of view directions, which we call a view
direction interval (in short, VDI). The enclosing frustum of a VDI is chosen so that
it encloses all views with a view direction within its range (Figure 5.2 (right)).

The view direction space subdivision starts from a 360◦ VDI. Figure 5.3 illus-
trates the subdivision of a 90◦ VDI, resulting in two 45◦ VDIs for the 1D case.
The figure also shows the resulting enclosing frusta.

For the general 2D case, we start with an initial view direction subdivision
into six rectangular regions along every axis of the world coordinate system, thus
forming a cube. View directions are then separately subdivided for each side of
this cube (using a quadtree) in order to obtain a reasonably uniform subdivision.
This is shown in Figure 5.3 (right) for one cube side.

89

Chapter 5 Automatic Impostor Placement

90°
VDI

split

45°
VDI

45°
VDI

VDI

Figure 5.3: A 90◦ VDI (left) is subdivided in two 45◦ VDIs (middle). Right: 2D VDI
subdivision using a quadtree.

In every subdivision step, the rendering time of every view within a VDI is
again conservatively estimated by applying the rendering time estimation for its
enclosing frustum. If the resulting time tenc exceeds tmax, the VDI possibly con-
tains a problem view and is subdivided further. This is done recursively until either
tenc is lower or equal to tmax, or the user-defined minimum VDI size is reached.
In the latter case, the VDI is assumed to contain at least one problem view. If the
3D region has also reached its minimum size (see Section 5.5.1), the VDI together
with the 3D region is stored as a conservative problem view. This CPV represents
all views starting in the associated 3D region with a view direction within the VDI.

Because the 3D and the 2D view space subdivision always terminate at the
same level for problem views, the result of the problem view space approximation
is a set of equally-sized CPVs. Although this holds only approximately for the
leaf nodes of the 5D view space hierarchy because of small distortions introduced
in the view direction interval subdivision, these differences are not of practical
interest as will become clear later.

5.6 Impostor Candidate Generation

In order to “solve” all conservative problem views generated in the previous step,
impostor candidates have to be created so that the optimization algorithm can
make a good placement. Every candidate is specified by an object cluster OC ⊆ O
and a view cell V C ⊆ V3D, so that it serves each CPV with a 3D region enclosed
by V C.

90

Chapter 5 Automatic Impostor Placement

The main problem to be solved is the huge number of possible candidates.
Therefore, Observations 5.2.1 and 5.2.2 are used for a selective candidate gener-
ation:

• The nodes of the object hierarchy are used to define OCs for the candidates.
This allows the optimization process to address Observation 5.2.1, because
larger nodes can be selected with increasing distance to the view cell.

• For every OC, a set of view cells has to be found so that Observation 5.2.2
can be met by the optimization. This means that with increasing distance
between OC and V C, candidates with a larger view-cell size must be pro-
vided.

Many impostor approaches have used rectangular view cells [Alia99a, Wils01,
Dars97, Jesc02b]. For these techniques, the nodes of the 3D view space hierarchy
from the problem view space approximation (see Section 5.5.1) can be used di-
rectly so that every combination of a node of the object hierarchy and the 3D view
space hierarchy defines a candidate.

Another view-cell shape that is often used implicitly [Jaku00, Aube99,
Scha96b, Shad96] is a shaft (see Section 1.3). For each object hierarchy node,
a set of shafts in different directions, apex angles, and with different minimum
view distances is generated. The advantage of shafts compared to rectangular
view cells is that they perfectly address Observation 5.2.2 because the view-cell
extent grows with increasing distance to the object. In Section 5.8.2, we will show
that shafts provide better results compared to rectangular view cells. Note also that
view cells for view-independent impostors (e.g., billboard clouds [Deco03]) are
shafts with a 360◦ apex angle.

Candidates are not considered if they serve no CPV within their view cell,
or the combination of V C and OC allows no impostor generation (e.g., if OC
intersects V C). This greatly reduces the overall number of candidates, so that
only the most promising remain.

5.7 Impostor Placement Optimization

The optimization algorithm calculates an impostor placement from the set IC
of impostor candidates generated in Section 5.6. This is done by applying the
following steps:

• select a good subset I ⊆ IC to be generated and used as impostors,

91

Chapter 5 Automatic Impostor Placement

• associate with every CPV the set of impostors that serve it. This information
is used during runtime for selecting the impostors to display for a particular
view.

In order to find an optimal solution, all possible subsets of IC would have to be
tested. This is prohibitive even though IC is already of moderate size compared
to the original problem. Instead, we adopt a greedy approach: at every choice, the
candidate with the best ratio between the rendering acceleration it provides for all
served CPVs in relation to its memory cost is selected.

5.7.1 Rendering Acceleration

Figure 5.4 shows for a single viewpoint how the exact rendering acceleration
function of an impostor i maps to the approximated version we will present below.
The exact rendering acceleration ∆tiVp

of an impostor i is defined as the integral
of the rendering acceleration ∆tivp

for every served view vp:

∆tiVp
=

∫
vp∈Vp

∆tivp
dv. (5.3)

View direction

R
e
n

d
e
ri

n
g

ti
m

e

0 360°

Impostor iExact rendering
acceleration

ti

CPV

tmax

CPV

{

ti
vp

vp

Figure 5.4: The rendering time for a view point for every view direction and the respective
CPVs.

Since the exact rendering acceleration os impossible to calculate, we will
rather consider an approximate rendering acceleration ∆tiCPV of an impostor can-
didate i, defined for individual CPVs:

∆tiCPV = max(0, toCPV − max(tiCPV , tmax)), (5.4)

92

Chapter 5 Automatic Impostor Placement

where toCPV is the original rendering time of the CPV and tiCPV is the rendering
time of the CPV where impostor i is rendered instead of o. The two maximum-
terms in this definition reflect the fact that

• any reduction of the rendering time to less than tmax is useless, so candidates
with lower rendering acceleration, but also lower memory costs should be
preferred in this case, and

• a candidate that takes longer to render than the original geometry will never
be selected for p.

In practice, tiCPV can be approximated by toCPV − (to − ti), where ti and to are
the times needed to render the impostor and the original object. Both are obtained
with the rendering time estimation [Wimm03], while toCPV is taken as the render-
ing time estimation of its enclosing frustum. Note that ∆tiCPV varies for different
CPV due to different level-of-detail selections, size on the screen, visibility cul-
ling etc. Furthermore, ∆tiCPV is defined to be 0 for any CPV with a 3D region
that is not enclosed by the view cell of i.

Finally, the overall rendering acceleration ∆ti, which approximates the inte-
gral ∆tiVp

, can be calculated. Since all CPVs have the same size, ∆ti is defined by
the sum:

∆ti =
∑

CPV ∈CPV s

∆tiCPV (5.5)

This sum can be calculated efficiently by traversing the 3D problem view space
hierarchy and exploiting the fact that ∆tiCPV can only be non-zero if the view cell
for i encloses the 3D region of CPV.

5.7.2 Candidate Ranking

In order to select the “best” candidate in every greedy choice, each candidate i is
ranked according to its score si. This score corresponds to the ratio of the overall
rendering acceleration ∆ti obtained in all CPVs, and its required memory mi:

si =
∆ti
mi

(5.6)

Since the impostor for the candidate to be ranked has not actually been built yet,
neither its exact memory requirements mi nor its rendering time ti is known ex-
actly. Both have to be estimated based on the object cluster, the view cell, the CPV
and the underlying impostor technique (see Section 5.8.1). However, because this
estimation is only used for candidate ranking, the accuracy is not a crucial fac-
tor for the optimization. The final impostor rendering time is estimated using the
generated impostors (see Section 5.7.3).

93

Chapter 5 Automatic Impostor Placement

5.7.3 Greedy Choices

After all impostor candidates i have been ranked with a score si, the candidate
with the highest score is chosen as an impostor. Such a choice entails the following
steps:

• The impostor is generated. This allows a more accurate estimation of
∆tiCPV based on the actual impostor geometry.

• For every CPV served (i.e., for which ∆tiCPV is non-zero), add i to the set
of impostors to display. The impostor can now be treated as belonging to
the input scene, so that ∆tiCPV can be subtracted from the rendering time
tCPV for those CPVs.

• Since a new value tCPV is now available for all CPVs served by i, the
scores si have to be recalculated for all impostor candidates that serve the
affected CPV. This operation is accelerated using a lazy recalculation (see
Section 5.7.4).

The optimization algorithm proceeds by selecting the next candidate. This is re-
peated until no candidate is left.

5.7.4 Lazy Recalculation

Recalculating the scores si after every step of the greedy optimization might be
a very costly operation. Fortunately, no score si can increase for any remaining
candidate. This is because ∆tiCPV never increases for any CPV if an impostor
is added to a CPV. On the other hand, the rendering acceleration ∆tiCPV of an
impostor i for a particular CPV might decrease if the view is almost solved, or
even become 0 if a problem view is completely solved.

The fact that no candidate score can increase allows the use of a lazy recalcu-
lation scheme: after every greedy choice, the candidates with the highest scores
are recalculated and re-ranked according to their new score. This is repeated until
a candidate remains the best choice even after being re-ranked. Candidates with
a new score of 0 can be deleted, because all CPV they serve have already been
solved.

Lazy recalculation greatly reduces the number of operations needed for the
optimization algorithm. Furthermore, for any candidate, only its score, its view-
cell geometry and a link to its object hierarchy node have to be stored, as all other
required information can be extracted on demand in reasonable time.

94

Chapter 5 Automatic Impostor Placement

5.7.5 Overlapping Impostors

Some impostor candidates partially represent the same geometry for some com-
mon CPV. However, displaying multiple impostors for the same geometry in any
view is not desired, because image quality problems (z-fighting) might occur. For-
tunately, this problem can easily be avoided due to the object set hierarchy used
for candidate generation. The hierarchy implies that if two object clusters OC1

and OC2 overlap, either OC1 and OC2 are identical, or one encloses the other,
i.e., OC1 ⊆ OC2 or OC2 ⊆ OC1.

Assume an impostor i1 has already been created for OC1, and that a candidate
i2 representing OC2 in some CPV p is the current best candidate. If OC2 ⊆ OC1,
i2 will not be used for p because i1 is obviously the better choice. However, if
OC1 ⊆ OC2, i2 is used and i1 is removed from p. When calculating the rendering
acceleration of i2, ti1p needs to be deducted from tp instead of tOC1

p , because i1
is the current representation for OC1. Note that this consideration constitutes no
special case for the algorithm, if already created impostors are treated just as if
they are the objects they represent.

During the course of the greedy optimization, it is possible that an impostor is
removed from all CPVs it is associated with. For that case, the impostor can be
deleted and its memory regained.

5.8 Results

5.8.1 Test Setup

The test machine was a PC with an Intel Pentium 4 3.2 GHz and 1 GB memory.
The graphics board is an NVIDIA GeForce Quadro FX 3000 with 256 MB of
memory. The API was the OpenGL graphics API under the Windows XP operat-
ing system.

The automatic impostor placement algorithm was tested on the model of the
city of Vienna (see Section 1.6). The object set hierarchy for this model is a
bounding volume hierarchy with 9 levels. For all tests, we selected a view space
of 1500x1000 m, which covers the whole city. For the problem view space ap-
proximation, the 5D view space subdivision was based on a regular binary space
partition for the 3D view space and a view direction space subdivision as presented
in Section 5.5. The 3D part of the CPVs had a side length of 23m, and the view
direction space was subdivided to intervals of 11.25◦. Visibility culling was done
for the model using a conservative from-region visibility algorithm [Wonk00].

95

Chapter 5 Automatic Impostor Placement

For every node of the object hierarchy, a number of shaft-shaped view cells
form the impostor candidates. Shaft apex angles of 11.25◦, 22.5◦, 45◦ and 90◦

were used, and shaft directions in steps of 11.25◦. The minimum allowed view
distances for every shaft are from 1 to 210 times the object size, doubled in each
step. This setup has been found to provide a good tradeoff between a sufficiently
high number of candidates and reasonable preprocessing time.

We have chosen the layered impostor technique presented in Chapter 3. Im-
postors were generated for an output image resolution of 512x512 pixels and 45◦

field of view. Note that layered impostors always fulfill the image quality criterion
described in Chapter 3.

Parameter Estimation

This subsection describes the estimation of the rendering time of object clusters
and impostors as well as the estimation of impostor memory requirements. These
parameters are needed for the candidate ranking described in Section 5.7.2 and
for the greedy optimization described in Section 5.7.3.

The rendering time for an object cluster OC for a particular CPV is obtained
using a regression calculation. Therefore, a huge data set of examples of actually
measured rendering times is generated as is shown in Figure 5.5. First, any node of

Select OC

#render calls for OC

Select VP Render OC from VP

Exact rendering time

Multiple times Multiple times

Figure 5.5: Setup for estimating the rendering time of object clusters in the Vienna model.
Note that the information provided by every step is shown below every step.

the object hierarchy is stochastically selected to be an OC. For this node, several
viewpoints are selected and OC is rendered from each such viewpoint. This is
repeated for a huge number of object clusters and for every test set, the variables
that are expected to influence the rendering time as well as the measured time
needed to render OC are recorded. Afterwards they are used for a least-squares
regression calculation.

It turned out that the rendering bottleneck for this model on our test machine
was the number of rendering calls (a CPU bottleneck [Wimm03]) and not the
number of primitives. Note that because collapsing several textured objects is still
not efficiently possible using geometric levels of detail, impostors are actually the

96

Chapter 5 Automatic Impostor Placement

only way for accelerating the rendering process for this type of scene without loss
in image quality.

The second parameter that has to be estimated is the rendering time for im-
postors. This is done similarly to object clusters (see Figure 5.6): first, an object

Select OC Select VC

#impostor layers
Impostor texture res.

Generate I(OC,VC)

Exact impostor memory

Multiple times Multiple times

Render I from VP

Exact rendering time

Select VP in VC

Size of OC on screen

Figure 5.6: Setup for estimating the rendering time and the memory requirements for an
impostor for the Vienna model.

cluster OC is stochastically selected. A shaft-shaped view cell VC is generated
for OC by stochastically choosing the apex angle, the minimum allowed distance
and the direction of the shaft. Afterwards, an impostor is generated from OC and
V C. This impostor is rendered several times from within the view cell. This is
repeated for a huge number of setups, recording the parameters of every test as
well as the resulting rendering time. The resulting data is used for the regression
calculation.

For the impostors, it turned out that the rendering time depends on the size of
an impostor on screen (i.e., the number of pixels), so rendering an impostor can be
called fill-rate limited. The size of an impostor on screen is typically the same as
for the original object, so this value (which can easily be calculated) can be used
for the candidate ranking.

The last information needed for the optimization process is the memory re-
quirement of an impostor (see Section 5.7.2). The memory requirements for lay-
ered impostors are mainly defined by the sum of all impostor textures for every
quadrilateral (see Section 3.7.2). In order to obtain an exact value for this, the
impostor would have to be generated, which is too costly. However, it has been
found that the resolution of the texture used for recording every impostor layer
and the number of layers (both can be calculated in reasonable time) can be used
to obtain an estimation that is sufficiently correct for the candidate ranking. The
parameters for the heuristic are obtained using the same test setup as for the im-
postor rendering time estimation (shown in Figure 5.6).

97

Chapter 5 Automatic Impostor Placement

5.8.2 Test Results

In order to show how the parameters of the algorithm influence its behavior, we
first ran a “reference test” with the parameters described in the previous section
and a target frame time of 16 milliseconds. Afterwards we successively changed
various parameters. The respective results are discussed in the following sub-
sections. Table 5.1 shows the resulting number of CPVs, impostor candidates
and final impostors, and most importantly, the resulting impostor memory. The
corresponding preprocessing times for the individual steps of the algorithm are
summarized in Figure 5.7.

Test Parameter # CPV # Candidates # Impostors MB

1 Refer. test (16ms) 9078 314659 6650 14.1

2 tmax = 30ms 2270 154696 1504 1.01
3 tmax = 25ms 3562 204110 2502 2.3
4 tmax = 20ms 5846 260891 4357 5.7
5 tmax = 15ms 10172 327600 7425 18.4
6 tmax = 10ms 18880 393202 14270 103.1

7 256x256 Pixels 9078 426944 6107 3.6
8 1024x1024 Pixels 9078 214345 7548 70.2

9 V3D Approx: 46m 4509 310598 7749 30.6
10 V3D Approx: 11.5m 24685 301537 6,306 11.6

11 Less Candidates 9078 33864 6152 28.6
12 More Candidates 9078 1544822 7022 13

13 Rectangular VC 9078 812248 16530 18.9

14 Per rectang. VC 9078 537776 137145 60.4

15 Environment maps - - 1545 233.1

16 No visibility (50ms) 36629 1467184 46845 80.1

Table 5.1: Statistics for the tests with the Vienna model.

Influence of target frame time: For tests 2–6, the target frame time was var-
ied. As was expected, the more acceleration the impostors have to provide, the
more memory and preprocessing time is needed. The required memory grows
more than linearly with decreasing target frame time, since more and more closer
objects have to be represented as impostors. This was already discussed in Sec-
tion 3.7.2 and illustrates that impostors are most suitable for small and/or for dis-
tant objects.

Figure 5.8 shows the frame times for a sample walkthrough for these
tests. While the target rendering time was met in all tests, a general over-

98

Chapter 5 Automatic Impostor Placement

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Test number

P
re

p
ro

c
e
s
s

ti
m

e
(m

in
) Optimization+impostor generation

Impostor candidate generation

Problem view space approximation

Figure 5.7: Times needed for the main steps of the algorithm.

conservativeness can be observed. The reason for this is that in our implementa-
tion, if a candidate has been chosen as an impostor, it is assigned to every problem
view it accelerates, even if a problem view has already been solved. This induces
no additional memory, but higher acceleration factors for many views.

Influence of output resolution/image quality criterion: Tests 7 and 8 ana-
lyze how the output resolution affects the necessary amount of impostor memory
in comparison to the reference test. It can be seen that when doubling the output
resolution, the memory increases by a factor of about 4 to 5. This can be explained
by the fact that the number of impostor texels grows roughly quadratically with
increasing output resolution and a higher resolution also results in a higher num-
ber of impostor layers, as already described in Section 3.7.2. Note that changing
the output resolution is actually equivalent to changing the image quality criterion
IQ for the layered impostor technique.

Influence of problem view space approximation accuracy: Tests 9 and 10
analyze how the problem view space approximation (i.e., different CPV sizes in
V3D) influences the result. Doubling the CPV size also doubles the required im-
postor memory, setting it to half the size shows diminishing returns, especially
when taking into account the more than two-fold increase in preprocessing time.
This shows that the approximation accuracy should be chosen with care.

Influence of the number of candidates: The number of candidates is a trade-
off between a sufficiently large basis for a good optimization and reasonable pre-

99

Chapter 5 Automatic Impostor Placement

0

5

10

15

20

25

30

35

40

45

50

55

60

1 401 801 1201 1601 2001 2401
Frame

F
ra

m
e

ti
m

e
(m

s
)

Without impostors

30ms (1 MB)

25ms (2 MB)

20ms (6 MB)

15ms (18 MB)

10ms (103 MB)

Env. maps (233 MB)

Figure 5.8: Rendering times for different target frame times for a walkthrough.

processing times. In test 11, only one tenth of the candidates compared to the
reference test resulted in twice the amount of impostor memory. Test 12 shows
that a three times increase of the candidate number barely improved the result, but
increased the time for the candidate generation and optimization step.

Rectangular view cells: For test 13, nodes of the problem view space approx-
imation were directly used for the impostor candidate generation, as was described
in Section 5.6. Compared to the shaft-shaped view cells of the reference test, this
results in a memory increase of roughly one third, which illustrates the advantage
of shaft-shaped view cells for this type of scene. In cases were the view space is
fragmented to small viewing regions as is the case, for example, in architectural
models, rectangular view cells are expected to provide slightly better results.

Per-view cell placement: This test demonstrates the influence of Observa-
tion 5.2.2, i.e., the benefit of using large view cells for distant impostors. As for
test 13, we used rectangular view cells that were directly obtained from the 3D
view space hierarchy. In contrast to that test, only leaf nodes were allowed to
serve as view cells for a candidate. We tried several sizes for the view cells (i.e.,
different view space hierarchy levels) with a best result of 60 MB for the impos-

100

Chapter 5 Automatic Impostor Placement

0

100

200

300

400

500

600

1 401 801 1201 1601 2001 2401
Frame

F
ra

m
e

ti
m

e
(m

s
) Without impostors

50ms (80 MB)

Figure 5.9: Rendering times for a walkthrough without occlusion culling.

tors, which is more than a three-fold increase compared to test 13 and a more than
four-fold increase compared to test 1. Also note the much longer preprocessing
time for generating the impostors. These results show that Observation 5.2.2 is an
important factor for a good impostor placement.

Environment-map impostors: It is interesting to compare the results to a
straight-forward approach (test 15), where impostors represent the whole scene
from a certain distance (the so-called far field) for every view cell. Therefore, we
implemented the layered environment-map impostors described in Section 3.8.2
(also refer to [Jesc02b]) by dividing the view space into a regular grid of view
cells. For every cell, visibility culling was applied, and the impostors were
arranged as environment-map layers, representing the whole visible scene from
a certain distance. We tried several combinations of view-cell sizes and far-field
distances and ended up with a view-cell sidelength of 25m and a far field dis-
tance of 300m as a good tradeoff. This resulted in slightly more than 4.5 hours
of preprocessing time and 233MB memory for the impostors. Note that no frame
rate guarantee is given by using impostors in this way, but Figure 5.8 shows that a
frame time of 20ms is not exceeded during the walkthrough. In order to guarantee
such a frame time, the new placement algorithm only needs 5.7MB of impostor
memory, which is more than 40 times lower. This shows impressively that im-
postors should not be placed indiscriminately, but focussed on the scene parts that
provide the best rendering acceleration.

Impact of visibility: In test 16, we turned off occlusion culling in order to see
how impostor memory requirements increase for providing a frame rate of 50ms.
The preprocess needed 7.6 hours. Figure 5.9 shows the rendering times for the
same walkthrough as above. The results show that visibility culling is a significant
factor for our test scene, and impostors should be used in conjunction with other

101

Chapter 5 Automatic Impostor Placement

Figure 5.10: Two viewing regions at different positions in the UNC Power Plant model.

acceleration techniques in order to make best use of all available techniques.

5.8.3 Power Plant Results

To show how different view spaces influence the impostor placement result, we
applied the algorithm to the UNC Power Plant model (see Section 1.6). For the
object hierarchy, we created an 8-level deep octree of this model, where larger
triangles were stored in interior nodes and the remaining ones in the leaf nodes.

We targeted the placement algorithm to limit the number of primitives in every
output view to 100,000 polygons, similar to Aliaga [Alia99c]. A 40x40x2.5m
viewing region was calculated for two side-by-side positions in the model (see
Figure 5.10). The resulting impostor memory differs by almost a factor of 4 in
this particular case, namely 146MB to 501MB. The reason for this difference is
that in the red viewing region, many impostors are very near the view cell, causing
a much higher memory consumption than impostors that are farther away. So
the red viewing region requires more memory even though for the green viewing
region, more geometry has to be represented by impostors.

This clearly shows how the required impostor memory may vary significantly
for different view spaces, which makes it evident that comparisons between differ-
ent impostor placement algorithms are only possible when using exactly the same
parameters and view spaces for all tests, as we did in Section 5.8.2. This also
shows that it is not adequate to extrapolate the memory requirements obtained in
a small region to a whole model.

102

Chapter 5 Automatic Impostor Placement

5.9 Discussion

In this chapter we presented an automatic impostor placement algorithm that guar-
antees a specified maximum frame time and a minimum image quality for every
view within a scene. The approach integrates seamlessly with current real-time
rendering systems and is not tied to a particular impostor technique. It can be
used with a number of existing techniques (including billboard clouds [Deco03])
if they fulfill the image quality requirements mentioned in Section 5.2.2. It was
shown that the memory required for impostors can be kept to a tolerable level
even for large view spaces and scenes, when using impostors carefully and not
indiscriminately. Several aspects have been taken into account in this connection.

First, impostors are only used for views that actually need them. These views
are discovered using a rendering time estimation. This heuristic easily allows
adapting the rendering acceleration provided by impostors to the rendering bot-
tleneck of different target rendering systems. Note that previous approaches (for
example, Aliaga and Lastra [Alia99c]) only concentrated on reducing the number
of primitives, which is hardly related to the output frame rate on current graphics
hardware.

Second, taking arbitrary combinations between both objects and view space
regions for the impostor placement into account avoids generating many similar
impostors for adjacent view space regions. We have shown that this main new
insight significantly reduces the required impostor memory, while it was not ad-
dressed by any previous approach. The impostor placement optimization problem
can be seen as a multiple choice multiple knapsack problem with partly overlap-
ping items, each having a defined set of knapsacks it can be used for. While the
greedy optimization presented in this thesis is not guaranteed to find an optimal
solution, the impostor placements generated by the algorithm are very stable with
respect to their input parameters. The algorithm seems to be well adapted to the
problem because in typical cases, the items are small compared to the knapsack
capacities, which constitutes a good condition for a greedy strategy. We tried us-
ing an exact algorithm at the end of the optimization phase, which barely improved
the results.

Third, it was shown that taking visibility calculations into account before using
impostors greatly reduces the required impostor memory and makes best use of
all acceleration techniques at the same time. This is the reason why impostors
have been used, for instance, for indoor scenes in portals (see Section 2.3.2). If
no visibility culling is available for a scene, Jeschke et al. [Jesc02b] and Wilson et
al. [Wils03] presented impostor techniques that include visibility calculations in
the impostor generation process. This means that visibility is driven by impostor
generation, not the other way round. However, in these approaches, impostors are

103

Chapter 5 Automatic Impostor Placement

then again used separately for every view cell, which in turn leads to very high
memory requirements as was shown in Section 5.8.2.

Note that our experiments concentrate on mid-range scenes, where the whole
impostor database fits into graphics memory. This means that no restrictions on
user movement speed are necessary for texture prefetching tasks, which is impor-
tant for instance in computer games. However, the impostor placement algorithm
is not restricted to such cases. If the resulting impostor database does not fit into
graphics card memory, the application basically has two choices: either prefetch-
ing the impostor textures dynamically from harddisk, or lowering the image qual-
ity criterion IQ, e.g., by calculating impostors for a lower output resolution (see
Section 5.8.2 for the effectiveness of this approach). Also note that the result of
the placement algorithm might be used to generate the impostors on demand at
runtime.

A general restriction of any impostor-based approach is that a scene together
with the desired frame rate has to be suitable for impostor techniques. For in-
stance, small objects which require a large part of the rendering time budget can
easily overload nearby views. In this case, even a very fine view-space subdivi-
sion might not be sufficient to let impostors provide a desired frame rate. To state
it more generally, the combination of the model, the specified rendering budget
and the viewing region should allow for most of the nearby objects to be rendered
using geometry.

Another point is that impostors are hardly suitable for accelerating the ren-
dering of dynamic parts of a scene. While this problem cannot be easily over-
come in itself, the impostor placement algorithm can still be used to accelerate
the static parts of a scene. In order to guarantee a maximum frame time, the
available rendering budget has to be split between the static and dynamic parts.
The dynamic elements can then be treated with a predictive level-of-detail selec-
tion algorithm [Funk93], which makes sense since dynamic scene parts are often
amenable to classical geometric simplification techniques.

In terms of future work, it is desirable to adaptively choose the degree of prob-
lem view space subdivision and the number of candidates that are generated in
order to better adapt to different scene configurations. For instance, the problem
view space subdivision might stop if no visibility changes are expected anymore
and no better impostor candidates can be generated. This will reduce the number
of problem views and allow processing extremely large view spaces. This is in-
teresting because the impostor memory requirements do not necessarily increase
with a growing view space. Furthermore, it is conceivable to automatically choose
between different impostor techniques depending on the scene part to be repre-
sented and the viewing region to be served. Finally, in order to reduce the amount

104

Chapter 5 Automatic Impostor Placement

Figure 5.11: Impostor texture atlas for the Vienna model (left) and the UNC Power Plant
model (right).

of impostor memory, it is interesting to identify similar textures for impostors and
automatically instantiate them. Figure 5.11 shows texture atlases for the Vienna
and the UNC Power Plant model. The close-up insert for the Vienna model shows
numerous similar textures for trees and facades. An automatic instantiation of
such similar textures might significantly reduce the number of textures with only
marginally decreased image quality. This can be seen in the spirit of the work
of Jakulin [Jaku00], who used instantiated impostors for complex objects (trees).
Also note that in the texture atlas for the UNC Power Plant, similar textures are
rare, so that instantiating the textures would be less effective in this case.

105

Chapter 6

Conclusions and Future Work

Rendering highly complex models in real time is a problem of high interest which
still has not been solved until now. In order to reduce the complexity of a model
for accelerated rendering, many approaches have been proposed in recent years.
However, after even applying visibility culling, too complex geometry might re-
main, and geometric simplification techniques are not useful for arbitrary scenes.
In such cases, impostors constitute a promising, fast-to-render representation that
can replace arbitrary scene parts. However, while dynamic impostors put a high
burden on the rendering system at runtime, static impostors suffer from problems
like very high memory requirements, long preprocessing times and uncertain im-
age quality. This has prevented impostors from being widely used in current real-
time rendering applications. This thesis provides a number of algorithms and
techniques in order to overcome these drawbacks.

6.1 Summary of Impostor Techniques

It was found that one key for the efficient usage of impostors is a representation
that has low memory requirements and at the same time supports a large valid
viewing region. Furthermore, for a convincing impostor representation it is highly
desirable to avoid image gaps and rubber-sheet effects caused by disocclusions.
In this thesis, a new layering scheme for acquiring appearance information from
a scene part is presented. This scheme ensures that all visible scene parts are
included with adequate resolution. Furthermore, invisible scene parts can be ex-
cluded efficiently. The new layered impostor technique consolidates the following
desirable features:

106

Chapter 6 Conclusions and Future Work

• Generality: It can deal with arbitrary static models without the need for
any knowledge about the scene structure.

• Artifact-free representation: The special layer setup guarantees that the
differences between the impostor and the geometry it represents are imper-
ceptible. In particular, image gaps or rubber-sheet effects due to missing
information about hidden geometry are eliminated and aliasing effects due
to over- or under-sampling are avoided. Popping artifacts that occur when
switching between different representations are also practically impercepti-
ble.

• Low memory requirements: The memory requirements for the impostors
are kept quite low. This is partly the result of an efficient algorithm for
encoding each layer, as well as an image-based visibility algorithm provided
by the layering scheme.

• Fast generation: The impostor generation is computationally not costly.
This allows impostor generation for larger scenes in reasonable time, as
was illustrated in the thesis.

• Fast display: The method naturally supports conventional graphics hard-
ware for fast impostor display by simply rendering alpha-textured polygons.
Since no complex online calculations are necessary, optimal runtime effi-
ciency is achieved.

These features make it possible to efficiently generate artifact-free representations
for distant objects. On the other hand, layered impostors for near scene parts
are less efficient due to the high number of required layers, which increases the
required memory and the number of impostor polygons.

In order to overcome this drawback, we have presented a textured depth mesh
impostor technique, which decouples the geometric complexity of the represen-
tation from the number of layers that are used to generate the impostor. Because
of this fact, the technique is especially suited for representing nearby scene parts,
where a high number of layers would make layered impostors less efficient in
terms of memory requirements and geometric complexity. Compared to layered
impostors, this allows making view cells larger while providing the same or even
less complexity and memory cost. Furthermore, a single parameter is provided for
controlling the tradeoff between mesh complexity and accuracy during the simpli-
fication algorithm. Graphics hardware naturally allows for fast impostor display
in this technique. In addition, since it is also based on the layered scene recording
technique, it shares many desirable features with layered impostors, such as gen-
erality, absence of image gaps or rubber-sheet effects, and the efficient exclusion

107

Chapter 6 Conclusions and Future Work

of hidden scene parts. The main additional cost for this technique is a relatively
long preprocessing time. Depending on the application, this is counterbalanced
by the more efficient representation.

6.2 Summary for the Impostor Placement Algo-
rithm

A problem that usually leads to very high impostor memory requirements is the
fact that previous approaches do not select scene parts to be displayed as impostors
in an optimal way. This thesis presented an algorithm for automatically placing
impostors into a scene so as to guarantee a minimum image quality and frame
time for every view within the scene. The algorithm has the following desirable
features:

• The algorithm is general because it works for arbitrary static scenes with
many available impostor techniques.

• The placement is done “smart”, which means that impostors are only gener-
ated for views that actually need them. Furthermore, the use of a rendering
time estimation function allows adapting the acceleration potential to dif-
ferent bottlenecks in every rendering system.

• It addresses the fact that for distant objects, a common impostor for adja-
cent view cells is likely to require less memory than separate impostors for
every cell. This allows significantly reducing the memory needed for all
impostors.

• The simultaneous use of visibility culling and geometric simplification tech-
niques further reduces the required memory and allows making optimal use
of all of these techniques at the same time.

It was shown that in combination with the new layered impostor technique, it is
possible for a whole impostor database to completely fit into graphics hardware
memory, even for larger scenes. This is highly desirable when prefetching the im-
postors dynamically is not an option, as for instance in computer games. On the
other hand, a general constraint introduced with impostors is that the scene must
be amenable for impostor usage: if very complex objects overload any nearby
view, memory-intensive impostors would be necessary for these objects, thus re-
ducing the efficiency of this approach.

108

Chapter 6 Conclusions and Future Work

6.3 Future Work

This thesis concentrated on providing low memory requirements for impostors
while at the same time maintaining a high image quality. Another issue that has
to be addressed by impostors is scene dynamics: impostors should appear like
the original scene parts also if scene conditions change. Especially the desire for
more scene realism causes the demand for a more flexible use of impostors.

For instance, in current computer games, every scene part may cast shadows,
so it is desirable that an impostor can cast shadows as well. Until now, shad-
ows were only presented for the billboard cloud technique [Deco03], which natu-
rally supports the use of shadow mapping algorithms due to its view-independent
characteristic. However, solutions must be found to support this feature also for
view-dependent impostors.

Another point in this regard is the increasing use of programmable graphics
hardware for realistic scene appearances. The support of complex shading effects
like metal shading and environment map reflections is highly desirable for impos-
tors. Many papers propose the use of normal maps for online lighting calculations
(an example was presented for the billboard cloud technique [Deco03]). While
this approach allows the reproduction of dynamic lighting, a problem occurs if
various objects with different shading effects are represented by a single impos-
tor. In this case, all shading programs would have to be present in the shading
program for the impostor. The situation becomes even more difficult if the ap-
pearance of an object is defined by the vertex and pixel shader, as is the case for
for environment maps. Wimmer et al. [Wimm01] presented a general approach
that is based on a light field for representing view-dependent appearance changes,
mainly at the cost of long impostor generation times and high memory require-
ments. However, the inclusion of dynamic effects like for example a skyscraper
with moving clouds in the windows has not been solved until now. Changing
lights make the problem even more difficult, because the appearance does not
only depend on the view position but also on the (dynamic) configuration of the
lights in a scene. Meyer et al. [Meye01] presented an approach for rendering trees
over the day (with the changing sun illumination being a single dynamic light),
but no general solution has been found until now.

In summary, it seems that solving these problems is challenging, particularly
with regard to low memory requirements.

109

Chapter 6 Conclusions and Future Work

6.4 Conclusions

Impostors as image-based representations offer a convenient way to have the time
needed to render a scene part depend primarily on the number of pixels it covers
on screen rather than on the complexity of its geometric representation. Impostors
are particularly useful for efficiently displaying numerous textured objects, which
is still a problem for geometric simplification techniques, although these have
been studied for a much longer time.

In order to decrease the amount of memory, which is the main cost of im-
postors, this thesis presented two new impostor techniques that are also aimed at
eliminating image artifacts. Distant scene parts are especially suitable for an im-
postor representation, because for that case, complex geometry only covers few
pixels on screen, which provides high rendering acceleration with low memory
requirements. We presented a new impostor placement algorithm which gives a
guarantee for a minimum frame rate for every output view. It was shown that by
using impostors carefully and simultaneously applying additional rendering ac-
celeration techniques, the amount of memory can be kept very low compared to
previous approaches.

We believe that the algorithms and techniques presented in this thesis are ca-
pable of making impostors more useful for a broader range of applications in the
context of real-time rendering, where impostors were not used before due to unac-
ceptably high memory requirements and/or low image quality. The next challenge
is the development of techniques that increase the flexibility of impostors with
respect to the dynamic shading effects which programmable graphics hardware
offers.

110

Bibliography

[Adel91] Edward H. Adelson and James R. Bergen. The Plenoptic Function
and the Elements of Early Vision. Computational Models of Visual
Processing, 1991. Cited on page 14.

[Aire90] John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. To-
wards Image Realism with Interactive Update Rates in Complex Vir-
tual Building Environments. In Rich Riesenfeld and Carlo Sequin, ed-
itors, Computer Graphics (1990 Symposium on Interactive 3D Graph-
ics), volume 24, pages 41–50, March 1990. Cited on page 19.

[Alia96a] Daniel G Aliaga. Portal Textures: Texture Flipbooks for Architec-
tural Models. Technical Report TR96-049, Department of Computer
Science, University of North Carolina - Chapel Hill, 1996. Cited on
page 27.

[Alia96b] Daniel G. Aliaga. Visualization of complex models using dynamic
texture-based simplification. In Proceedings of the 7th conference on
Visualization ’96, pages 101–ff. IEEE Computer Society Press, 1996.
Cited on page 22.

[Alia97a] Daniel Aliaga, Jonathan Cohen, Hansong Zhang, Rui Bastos, Tom
Hudson, and Carl Erikson. Power Plant Walkthrough: An Integrated
System for Massive Model Rendering. Technical Report TR97-018,
Department of Computer Science, University of North Carolina -
Chapel Hill, August 28 1997. Tue, 7 Oct 1997 21:35:05 GMT. Cited
on page 33.

[Alia97b] Daniel G. Aliaga and Anselmo A. Lastra. Architectural Walkthroughs
Using Portal Textures. In Roni Yagel and Hans Hagen, editors, Pro-
ceedings of the conference on Visualization ’97, pages 355–362. IEEE,
October 1997. Cited on page 33.

111

Bibliography

[Alia98a] D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson, K. Hoff,
T.Hudson, W. Stuerzlinger, E. Baker, R. Bastos, M. Whitton,
F. Brooks, and D. Manocha. A Framework for the Real-Time Walk-
through of Massive Models. Technical Report TR98-013, Department
of Computer Science, University of North Carolina - Chapel Hill,
1998. Cited on page 33.

[Alia98b] D. G. Aliaga and A. A. Lastra. Smooth transitions in texture-based
simplification. Computers and Graphics, 22(1):71–81, February
1998. ISSN 0097-8493. Cited on pages 22 and 27.

[Alia99a] Daniel Aliaga, Jon Cohen, Andrew Wilson, Eric Baker, Hansong
Zhang, Carl Erikson, Keny Hoff, Tom Hudson, Wolfgang Stürzlinger,
Rui Bastos, Mary Whitton, Fred Brooks, and Dinesh Manoclia. MMR:
An Interactive Massive Model Rendering System Using Geometric
and Image-Based Acceleration. In Stephen N. Spencer, editor, 1999
Symposium on interactive 3D Graphics, pages 199–206. ACM SIG-
GRAPH, ACM Press, April 1999. ISBN 1-58113-082-1. Cited on
pages 29, 34, 69, 79, and 91.

[Alia99b] Daniel G. Aliaga. Automatically reducing and bounding geometric
complexity by using images. PhD thesis, University of North Carolina
at Chapel Hill, 1999. Cited on pages 32 and 67.

[Alia99c] Daniel G. Aliaga and Anselmo Lastra. Automatic Image Placement
to Provide a Guaranteed Frame Rate. In Alyn Rockwood, editor,
SIGGRAPH 99 Conference Proceedings, Annual Conference Series,
pages 307–316. ACM SIGGRAPH, Addison Wesley, August 1999.
Cited on pages 6, 7, 30, 34, 83, 89, 102, and 103.

[Andú00] Carlos Andújar, Carlos Saona-Vázquez, Isabel Navazo, and Pere
Brunet. Integrating Occlusion Culling and Levels of Detail through
Hardly-Visible Sets. Computer Graphics Forum, 19(3):499–506, Au-
gust 2000. ISSN 1067-7055. Cited on page 20.

[Aube99] Amaury Aubel, Ronan Boulic, and Daniel Thalmann. Lowering the
Cost of Virtual Human Rendering With Structured Animated Impos-
tors. In V. Skala, editor, WSCG’99 Conference Proceedings. Univ. of
West Bohemia Press, 1999. Cited on pages 5, 27, and 91.

[Aube00] Amaury Aubel, Ronan Boulic, and Daniel Thalmann. Real-time Dis-
play of Virtual Humans: Levels of Detail and Impostors. In IEEE

112

Bibliography

Transactions on Circuits and Systems for Video Technology, vol-
ume 10, pages 207–217, 2000. Cited on page 27.

[Bake78] B. S. Baker, E. G. Coffman, Jr., and R. L. Rivest. Orthogonal Packings
in Two Dimensions. In Proc. 16th Annual Allerton Conf. on Com-
munication, Control, and Computing, pages 626–635, 1978. Cited on
page 60.

[Beck91] Becker, Franciosa, Gschwind, Ohler, Thiemt, and Widmayer. An
Optimal Algorithm for Approximating a Set of Rectangles by Two
Minimum Area Rectangles. In CGMAA: Computational Geometry–
Methods, Algorithms and Applications, 1991. Cited on page 60.

[Bish94] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen J. Scher
Zagier. Frameless Rendering: Double Buffering Considered Harmful.
In Andrew Glassner, editor, SIGGRAPH 94 Conference Proceedings,
Annual Conference Series, pages 175–176. ACM SIGGRAPH, ACM
Press, July 1994. ISBN 0-89791-667-0. Cited on page 25.

[Bitt98] Jiri Bittner, Vlastimil Havran, and Pavel Slavı́k. Hierarchical Visibility
Culling with Occlusion Trees. In Franz-Erich Wolter and Nicholas M.
Patrikalakis, editors, Proceedings of the Conference on Computer
Graphics International 1998 (CGI-98), pages 207–219, Los Alami-
tos, California, June 22–26 1998. IEEE Computer Society. ISBN
0-8186-8445-3. Cited on page 19.

[Bitt02] J. Bittner. Hierarchical Techniques for Visibility Computations. PhD
thesis, Czech Technical University in Prague, 2002. Cited on page 20.

[Bitt04] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer. Coherent Hi-
erarchical Culling: Hardware Occlusion Queries Made Useful. In M.P.
Cani and M. Slater, editors, Rendering Techniques ’04, Eurographics
Vol 23:3 (2004), pages 615–624. Blackwell, 2004. Cited on page 19.

[Blin76] James F. Blinn and Martin E. Newell. Texture and Reflection in Com-
puter Generated Images. Communications of the ACM, 19(10):542–
547, October 1976. ISSN 0001-0782. Cited on page 13.

[Bots02] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient high
quality rendering of point sampled geometry. In Proceedings of the
13th Eurographics workshop on Rendering, pages 53–64. Eurograph-
ics Association, 2002. Cited on page 24.

113

Bibliography

[Catm74] Edwin E. Catmull. A Subdivision Algorithm for Computer Display of
Curved Surfaces. Ph.D. Thesis, University of Utah, December 1974.
Cited on page 23.

[Catm75] Edwin E. Catmull. Computer Display of Curved Surfaces. In Proceed-
ings of the IEEE Conference on Computer Graphics, Pattern Recogni-
tion, and Data Structure, pages 11–17, May 1975. Cited on page 16.

[Chai00] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung
Shum. Plenoptic Sampling. In Kurt Akeley, editor, SIGGRAPH 2000
Conference Proceedings, Annual Conference Series, pages 307–318.
ACM SIGGRAPH, Addison Wesley, 2000. Cited on page 15.

[Cham96] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David Salesin,
and John Snyder. Fast Rendering of Complex Environments Using a
Spatial Hierarchy. In Wayne A. Davis and Richard Bartels, editors,
Proceedings of Graphics Interface ’96, pages 132–141. Canadian In-
formation Processing Society, Canadian Human-Computer Commu-
nications Society, May 1996. ISBN 0-9695338-5-3. Cited on page 24.

[Chan99] Chun-Fa Chang, Gary Bishop, and Anselmo Lastra. LDI Tree: A Hi-
erarchical Representation for Image-Based Rendering. In Alyn Rock-
wood, editor, SIGGRAPH 99 Conference Proceedings, Annual Con-
ference Series, pages 291–298. ACM SIGGRAPH, Addison Wesley,
August 1999. Cited on page 15.

[Chen93] Shenchang Eric Chen and Lance Williams. View Interpolation for Im-
age Synthesis. In James T. Kajiya, editor, SIGGRAPH 93 Conference
Proceedings, Annual Conference Series, pages 279–288. ACM SIG-
GRAPH, Addison Wesley, August 1993. ISBN 0-201-51585-7. Cited
on page 14.

[Chen95] Shenchang Eric Chen. Quicktime VR - An Image-Based Approach to
Virtual Environment Navigation. In Robert Cook, editor, SIGGRAPH
95 Conference Proceedings, Annual Conference Series, pages 29–38.
ACM SIGGRAPH, Addison Wesley, August 1995. held in Los Ange-
les, California, 06-11 August 1995. Cited on page 14.

[Chen99] Baoquan Chen, J. Edward Swan II, Eddy Kuo, and Arie Kaufman.
LOD-Sprite Technique for Accelerated Terrain Rendering. In David
Ebert, Markus Gross, and Bernd Hamann, editors, Proceedings of the
10th IEEE Visualization 1999 Conference (VIS ’99), pages 291–298.
IEEE Computer Society, 1999. Cited on page 25.

114

Bibliography

[Cign98] P. Cignoni, C. Montani, R. Scopigno, and C. Rocchini. A general
method for preserving attribute values on simplified meshes. In Pro-
ceedings of the conference on Visualization ’98, pages 59–66. IEEE
Computer Society Press, 1998. Cited on page 60.

[Clar76] James H. Clark. Hierarchical Geometric Models for Visible Surface
Algorithms. Communications of the ACM, 19(10):547–554, October
1976. ISSN 0001-0782. Cited on pages 18 and 21.

[Coco02] Liviu Coconu and Hans-Christian Hege. Hardware-accelerated point-
based rendering of complex scenes. In Proceedings of the 13th Euro-
graphics workshop on Rendering, pages 43–52. Eurographics Associ-
ation, 2002. Cited on page 24.

[Cohe96] Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk,
Hans Weber, Pankaj Agarwal, Frederick Brooks, and William Wright.
Simplification envelopes. In Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques, pages 119–
128. ACM Press, 1996. Cited on pages 21 and 74.

[Cohe98a] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-
Preserving Simplification. In Michael Cohen, editor, SIGGRAPH 98
Conference Proceedings, Annual Conference Series, pages 115–122.
ACM SIGGRAPH, Addison Wesley, July 1998. ISBN 0-89791-999-8.
Cited on page 22.

[Cohe98b] Jonathan David Cohen. Appearance-preserving simplification of
polygonal models. PhD thesis, University of North Carolina at Chapel
Hill, 1998. Cited on page 22.

[Coor97] Satyan Coorg and Seth Teller. Real-Time Occlusion Culling for Mod-
els with Large Occluders. In Michael Cohen and David Zeltzer, edi-
tors, 1997 Symposium on Interactive 3D Graphics, pages 83–90. ACM
SIGGRAPH, April 1997. ISBN 0-89791-884-3. Cited on page 19.

[Dach03] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger.
Sequential point trees. ACM Transactions on Graphics, 22(3):657–
662, 2003. Cited on page 24.

[Dars96] L. Darsa and B. Costa. Multi-resolution representation and recon-
struction of adaptively sampled images. In SIBGRAPI’96 Proceed-
ings, pages 321–328, 1996. Cited on page 29.

115

Bibliography

[Dars97] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Navigating
Static Environments Using Image-Space Simplification and Morph-
ing. In Michael Cohen and David Zeltzer, editors, 1997 Symposium
on Interactive 3D Graphics, pages 25–34. ACM SIGGRAPH, ACM
Press, April 1997. ISBN 0-89791-884-3. Cited on pages 28, 29, 77,
and 91.

[Dars98] L. Darsa, B. Costa, and A. Varshney. Walkthroughs of complex envi-
ronments using image-based simplification. Computers and Graphics,
22(1):55–69, 1998. Cited on pages 29, 33, and 81.

[Deco99] Xavier Decoret, François Sillion, Gernot Schaufler, and Julie Dorsey.
Multi-layered impostors for accelerated rendering. Computer Graph-
ics Forum (Proc. Eurographics ’99), 18(3):61–73, September 1999.
ISSN 1067-7055. Cited on pages 6 and 29.

[Deco02] Xavier Decoret, Fredo Durand, François X. Sillion, and Julie Dorsey.
Billboard Clouds. Technical Report 4485, INRIA, Rhône-Alpes,
2002. Cited on page 31.

[Deco03] Xavier Decoret, Fredo Durand, François X. Sillion, and Julie Dorsey.
Billboard clouds for extreme model simplification. ACM Trans.
Graph., 22(3):689–696, 2003. Cited on pages 31, 32, 67, 91, 103,
and 109.

[Deus02] Oliver Deussen, Carsten Colditz, Marc Stamminger, and George Dret-
takis. Interactive Visualization of Complex Plant Ecosystems. In
Robert Moorhead, Markus Gross, and Kenneth I. Joy, editors, Pro-
ceedings of the 13th IEEE Visualization 2002 Conference (VIS-02),
pages 219–226, Piscataway, NJ, October 27– November 1 2002.
IEEE Computer Society. Cited on page 23.

[Disc98] Jean-Michel Dischler. Efficient Rendering Macro Geometric Surface
Structures With Bi-Directional Texture Functions. In George Dret-
takis and Nelson Max, editors, Rendering Techniques ’98, Eurograph-
ics, pages 169–180. Springer-Verlag Wien New York, 1998. Cited on
page 15.

[Dura99] Fredo Durand. 3D Visibility: Analytical Study and Applications. PhD
thesis, Universite Joseph Fourier, Grenoble, France, July 1999. Cited
on page 20.

[Dura00] Frédo Durand, George Drettakis, Joëlle Thollot, and Claude Puech.
Conservative Visibility Preprocessing Using Extended Projections. In

116

Bibliography

Kurt Akeley, editor, SIGGRAPH 2000 Conference Proceedings, An-
nual Conference Series, pages 239–248. ACM SIGGRAPH, Addison
Wesley, July 2000. Cited on pages 20, 54, and 58.

[E. P97] R. Scopigno E. Puppo. Simplification, LOD and Multiresolution -
Principles and Applications. In Eurographics’97 Tutorial Notes PS97
TN4, pages 31–42, 1997. Cited on pages 21 and 74.

[Ebbe98] P. Ebbesmeyer. Textured Virtual Walls - Achieving Interactive Frame
Rates During Walkthroughs of Complex Indoor Environments. In Pro-
ceedings of the Virtual Reality Annual International Symposium, page
220. IEEE Computer Society, 1998. Cited on page 27.

[Eck95] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael
Lounsbery, and Werner Stuetzle. Multiresolution Analysis of Arbi-
trary Meshes. In Robert Cook, editor, SIGGRAPH 95 Conference
Proceedings, Annual Conference Series, pages 173–182. ACM SIG-
GRAPH, Addison Wesley, August 1995. held in Los Angeles, Cali-
fornia, 06-11 August 1995. Cited on page 22.

[Funk93] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive Display Al-
gorithm for Interactive Frame Rates During Visualization of Com-
plex Virtual Environments. In James T. Kajiya, editor, SIGGRAPH
93 Conference Proceedings, Annual Conference Series, pages 247–
254. ACM SIGGRAPH, Addison Wesley, August 1993. ISBN 0-201-
51585-7. Cited on pages 21, 35, and 104.

[Garl97] Michael Garland and Paul S. Heckbert. Surface Simplification Us-
ing Quadric Error Metrics. In Turner Whitted, editor, SIGGRAPH 97
Conference Proceedings, Annual Conference Series, pages 209–216.
ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-
896-7. Cited on pages 21, 29, and 74.

[Gort96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.
Cohen. The Lumigraph. In Holly Rushmeier, editor, SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 43–54.
ACM SIGGRAPH, Addison Wesley, August 1996. held in New Or-
leans, Louisiana, 04-09 August 1996. Cited on page 15.

[Gree93] Ned Greene and Michael Kass. Hierarchical Z-Buffer Visibility. In
James T. Kajiya, editor, SIGGRAPH 93 Conference Proceedings, An-
nual Conference Series, pages 231–238. ACM SIGGRAPH, Addison
Wesley, August 1993. ISBN 0-201-51585-7. Cited on page 19.

117

Bibliography

[Gröl93] E. Gröller. Coherence in Computer Graphics. Ph.D. Thesis, Vienna
University of Technology, 1993. Cited on pages 17 and 24.

[Gros98] J. P. Grossman and William J. Dally. Point Sample Rendering. In
George Drettakis and Nelson Max, editors, Rendering Techniques ’98
(Proceedings of the Eurographics Workshop on Rendering 98), pages
181–192. Eurographics, Springer-Verlag Wien New York, June 1998.
Cited on page 23.

[Harr01] M. J. Harris and A. Lastra. Real-Time Cloud Rendering. In
A. Chalmers and T.-M. Rhyne, editors, EG 2001 Proceedings, volume
20(3) of Computer Graphics Forum, pages 76–84. Blackwell Publish-
ing, 2001. Cited on pages 5, 27, and 32.

[Hopp93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Mesh Optimization. In James T. Kajiya, editor, SIG-
GRAPH 93 Conference Proceedings, volume 27 of Annual Confer-
ence Series, pages 19–26. ACM SIGGRAPH, Addison Wesley, Au-
gust 1993. ISBN 0-201-51585-7. Cited on page 21.

[Hopp96] Hugues Hoppe. Progressive Meshes. In Holly Rushmeier, editor,
SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 99–108. ACM SIGGRAPH, Addison Wesley, August 1996.
held in New Orleans, Louisiana, 04-09 August 1996. Cited on page 22.

[Hopp97] Hugues Hoppe. View-Dependent Refinement of Progressive Meshes.
In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings,
Annual Conference Series, pages 189–198. ACM SIGGRAPH, Addi-
son Wesley, August 1997. ISBN 0-89791-896-7. Cited on page 22.

[Hopp98a] Hugues Hoppe. Smooth view-dependent level-of-detail control and its
application to terrain rendering. In Proceedings of the conference on
Visualization ’98, pages 35–42. IEEE Computer Society Press, 1998.
Cited on page 22.

[Hopp98b] Hugues Hoppe. Smooth View-Dependent Level-Of-Detail Control
and its Application to Terrain Rendering. In Proceedings IEEE Visu-
alization’98, pages 35–42. IEEE, 1998. Cited on page 22.

[Horo76] Steven L. Horowitz and Theodosios Pavlidis. Picture Segmentation
by a Tree Traversal Algorithm. J. ACM, 23(2):368–388, 1976. Cited
on page 59.

118

Bibliography

[Huds97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Ac-
celerated Occlusion Culling using Shadow Frusta. In Proceedings of
the 13th Annual ACM Symposium on Computational Geometry, pages
1–10. ACM Press, 4–6 June 1997. ISBN 0-89791-878-9. Cited on
page 19.

[Jaku00] A. Jakulin. Interactive Vegetation Rendering with Slicing and Blend-
ing. In A. de Sousa and J.C. Torres, editors, Proceedings of Eu-
rographics 2000 (Short Presentations). Eurographics, August 2000.
Cited on pages 5, 8, 27, 28, 32, 67, 91, and 105.

[Jesc02a] Stefan Jeschke and Michael Wimmer. Textured depth meshes for real-
time rendering of arbitrary scenes. In Proceedings of the 13th Euro-
graphics workshop on Rendering, pages 181–190. Eurographics As-
sociation, 2002. Cited on page 9.

[Jesc02b] Stefan Jeschke, Michael Wimmer, and Heidrun Schumann. Layered
Environment-Map Impostors for Arbitrary Scenes. In Proceedings
of the Graphics Interface 2002 (GI-02), pages 1–8, Mississauga, On-
tario, Canada, May 27–29 2002. Canadian Information Processing So-
ciety. Cited on pages 9, 91, 101, and 103.

[Kuma96] Subodh Kumar, Dinesh Manocha, William Garrett, and Ming Lin.
Hierarchical Back-Face Computation. In Xavier Pueyo and Peter
Schröder, editors, Eurographics Rendering Workshop 1996, pages
235–244, New York City, NY, June 1996. Eurographics, Springer
Wien. ISBN 3-211-82883-4. Cited on page 18.

[Lacr94] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation. In SIGGRAPH 94
Conference Proceedings, pages 451–458, 1994. Cited on page 38.

[Leng97] Jed Lengyel and John Snyder. Rendering with Coherent Layers. In
Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, An-
nual Conference Series, pages 233–242. ACM SIGGRAPH, Addison
Wesley, August 1997. ISBN 0-89791-896-7. Cited on page 25.

[Levo85] Marc Levoy and Turner Whitted. The Use of Points as a Display Prim-
itive. Technical Report TR 85-022, University of Carolina at Chapel
Hill, 1985. Cited on page 23.

[Levo96] Marc Levoy and Pat Hanrahan. Light Field Rendering. In Holly
Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual

119

Bibliography

Conference Series, pages 31–42. ACM SIGGRAPH, Addison Wesley,
August 1996. held in New Orleans, Louisiana, 04-09 August 1996.
Cited on page 15.

[Li03] Wei Li and Arie Kaufman. Texture Partitioning and Packing for Ac-
celerating Texture-Based Volume Rendering. In Graphics Interface,
pages 81–88. CIPS, Canadian Human-Computer Commnication Soci-
ety, A K Peters, June 2003. ISBN 1-56881-207-8, ISSN 0713-5424.
Cited on page 59.

[Lipp80] Andrew Lippman. Movie-maps: An application of the optical
videodisc to computer graphics. In Proceedings of the 7th annual
conference on Computer graphics and interactive techniques, pages
32–42. ACM Press, 1980. Cited on page 14.

[Lodi99] A. Lodi. Algorithms for Two-Dimensional Bin Packing and Assign-
ment Problems. Ph.D. Thesis, University of Bologna, January 1999.
Cited on page 60.

[Loun97] Michael Lounsbery, Tony D. DeRose, and Joe Warren. Multiresolu-
tion Analysis for Surfaces of Arbitrary Topological Type. ACM Trans-
actions on Graphics, 16(1):34–73, January 1997. ISSN 0730-0301.
Cited on page 22.

[Lueb95] David P. Luebke and Chris Georges. Portals and Mirrors: Simple,
Fast Evaluation of Potentially Visible Sets. In Pat Hanrahan and Jim
Winget, editors, 1995 Symposium on Interactive 3D Graphics, pages
105–106. ACM SIGGRAPH, ACM Press, April 1995. ISBN 0-89791-
736-7. Cited on page 20.

[Lueb97] David Luebke and Carl Erikson. View-Dependent Simplification
of Arbitrary Polygonal Environments. In Turner Whitted, editor,
SIGGRAPH 97 Conference Proceedings, Annual Conference Series,
pages 199–208. ACM SIGGRAPH, Addison Wesley, August 1997.
ISBN 0-89791-896-7. Cited on pages 21, 29, and 74.

[Maci95] Paulo W. C. Maciel and Peter Shirley. Visual Navigation of Large En-
vironments Using Textured Clusters. In Pat Hanrahan and Jim Winget,
editors, 1995 Symposium on Interactive 3D Graphics, pages 95–102.
ACM SIGGRAPH, ACM Press, April 1995. ISBN 0-89791-736-7.
Cited on pages 3, 26, 32, and 35.

[Mail93] Jérôme Maillot, Hussein Yahia, and Anne Verroust. Interactive texture
mapping. In Proceedings of the 20th annual conference on Computer

120

Bibliography

graphics and interactive techniques, pages 27–34. ACM Press, 1993.
Cited on page 60.

[Mark97] William R. Mark, Leonard McMillan, and Gary Bishop. Post-
Rendering 3D Warping. In Michael Cohen and David Zeltzer, edi-
tors, 1997 Symposium on Interactive 3D Graphics, pages 7–16. ACM
SIGGRAPH, ACM Press, April 1997. ISBN 0-89791-884-3. Cited on
pages 25, 26, and 30.

[Maso99] Ashton E. W. Mason. Predictive hierarchical level of detail optimiza-
tion. PhD thesis, University of Cape Town, 1999. Cited on page 22.

[Max95] N. Max and K. Ohsaki. Rendering trees from precomputed Z-buffer
views. In Rendering Techniques ’95, pages 45–54. Springer, june
1995. Cited on page 23.

[Max96] Nelson Max. Hierarchical Rendering of Trees from Precomputed
Multi-Layer Z-Buffers. In Xavier Pueyo and Peter Schröder, ed-
itors, Rendering Techniques ’96 (Proceedings of the Eurographics
Workshop on Rendering 96), pages 165–174. Eurographics, Springer-
Verlag Wien New York, June 1996. ISBN 3-211-82883-4. Cited on
page 14.

[McMi95] Leonard McMillan and Gary Bishop. Plenoptic Modeling: An Image-
Based Rendering System. In Robert Cook, editor, SIGGRAPH 95
Conference Proceedings, Annual Conference Series, pages 39–46.
ACM SIGGRAPH, Addison Wesley, August 1995. held in Los Ange-
les, California, 06-11 August 1995. Cited on page 14.

[McMi97] Leonard McMillan. An Image-based Approach to Three-Dimensional
Computer Graphics. Ph.D. Thesis, University of North Carolina at
Chapel Hill, 1997. also available as UNC Technical Report TR97-
013. Cited on page 30.

[Mese03] J. Meseth, G. Müller, M. Sattler, and R. Klein. BTF Rendering for
Virtual Environments. In Virtual Concepts 2003, pages 356–363, No-
vember 2003. Cited on page 16.

[Meye98] Alexandre Meyer and Fabrice Neyret. Interactive Volumetric Textures.
In George Drettakis and Nelson Max, editors, Rendering Techniques
’98 (Proceedings of the Eurographics Workshop on Rendering 98),
pages 157–168. Eurographics, Springer-Verlag Wien New York, June
1998. Cited on pages 38 and 52.

121

Bibliography

[Meye01] Alexandre Meyer, Fabrice Neyret, and Pierre Poulin. Interactive Ren-
dering of Trees with Shading and Shadows. In Proceedings of the
12th Eurographics Workshop on Rendering Techniques, pages 183–
196. Springer-Verlag, 2001. Cited on pages 16 and 109.

[Möll02] Tomas Möller and Eric Haines. Real-Time Rendering. A. K. Peters
Limited, 2002. 2nd edition, ISBN 1568811829. Cited on page 22.

[Muth99] S. Muthukrishnan, Viswanath Poosala, and Suel Suel. On Rectangular
Partitions in Two Dimensions: Algorithms, Complexity, and Applica-
tions. In Catriel Beeri and Peter Buneman, editors, Proc. 7th Int. Conf.
Data Theory, ICDT, number 1540 in Lecture Notes in Computer Sci-
ence, LNCS, pages 236–256. Springer-Verlag, 10–12 January 1999.
Cited on page 59.

[Nico77] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and
T. Limperis. Geometric Considerations and Nomenclature for Re-
flectance. Monograph 161, National Bureau of Standards (US), Octo-
ber 1977. Cited on page 15.

[Nire02] S. Nirenstein, E. Blake, and J. Gain. Exact from-region visibility cul-
ling. In Proceedings of the 13th Eurographics workshop on Ren-
dering, pages 191–202. Eurographics Association, 2002. Cited on
page 20.

[Pfis00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus
Gross. Surfels: Surface Elements as Rendering Primitives. In Kurt
Akeley, editor, SIGGRAPH 2000 Conference Proceedings, Annual
Conference Series, pages 335–342. ACM SIGGRAPH, Addison Wes-
ley, 2000. Cited on page 23.

[Pope98] Voicu S. Popescu, Anselmo Lastra, Daniel G. Aliaga, and Manuel M.
de Oliveira Neto. Efficient Warping for Architectural Walkthroughs
using Layered Depth Images. In David Ebert, Hans Hagen, and Holly
Rushmeier, editors, Proceedings of the conference on Visualization
’98, pages 211–216. IEEE, IEEE Computer Society Press, 1998. Cited
on pages 30 and 33.

[Pope00] Voicu Popescu, John Eyles, Anselmo Lastra, Joshua Steinhurst, Nick
England, and Lars Nyland. The WarpEngine: An Architecture for
the Post-Polygonal Age. In Kurt Akeley, editor, SIGGRAPH 2000
Conference Proceedings, Annual Conference Series, pages 433–442.
ACM SIGGRAPH, Addison Wesley, July 2000. Cited on page 15.

122

Bibliography

[Preu04] Gerke Preussner. Effiziente speicherung von impostern fr das echtzeit-
rendering komplexer 3D-Szenen. Diploma thesis, Fachbereich Infor-
matik, University of Rostock, January 2004. Cited on pages 59 and 60.

[Raff98a] M. M. Rafferty, D. G. Aliaga, and A. A. Lastra. 3D Image Warping
in Architectural Walkthroughs. In Proceedings of the Virtual Reality
Annual International Symposium, page 228. IEEE Computer Society,
1998. Cited on pages 30 and 33.

[Raff98b] Matthew M. Rafferty, Daniel G. Aliaga, Voicu Popescu, and
Anselmo A. Lastra. Images for Accelerating Architectural Walk-
throughs. IEEE Comput. Graph. Appl., 18(6):38–45, 1998. Cited on
pages 8 and 33.

[Reev83] W. T. Reeves. Particle Systems a Technique for Modeling a Class of
Fuzzy Objects. ACM Transactions on Graphics, 2(2):91–108, 1983.
Cited on page 23.

[Reev85] William T. Reeves and Ricki Blau. Approximate and probabilistic
algorithms for shading and rendering structured particle systems. In
Proceedings of the 12th annual conference on Computer graphics and
interactive techniques, pages 313–322. ACM Press, 1985. Cited on
page 23.

[Rega94] Matthew Regan and Ronald Pose. Priority Rendering with a Virtual
Reality Address Recalculation Pipeline. In Andrew Glassner, edi-
tor, Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29,
1994), Computer Graphics Proceedings, Annual Conference Series,
pages 155–162. ACM SIGGRAPH, ACM Press, July 1994. ISBN
0-89791-667-0. Cited on pages 24 and 38.

[Rusi00] Szymon Rusinkiewicz and Marc Levoy. QSplat: A Multiresolution
Point Rendering System for Large Meshes. In Kurt Akeley, editor,
SIGGRAPH 2000 Conference Proceedings, Annual Conference Se-
ries, pages 343–352. ACM SIGGRAPH, Addison Wesley, July 2000.
Cited on page 24.

[Scha95a] G. Schaufler and W. Stuerzlinger. Generating multiple levels of de-
tail from polygonal geometry models. In Selected papers of the
Eurographics workshops on Virtual environments ’95, pages 33–41.
Springer-Verlag, 1995. Cited on page 21.

123

Bibliography

[Scha95b] Gernot Schaufler. Dynamically Generated Impostors. In Dieter W.
Fellner, editor, GI Workshop on Modeling, Virtual Worlds,, pages 129–
135, November 1995. Cited on pages 26, 27, 32, 34, 43, and 64.

[Scha96a] Gernot Schaufler. Exploiting Frame to Frame Coherence in a Virtual
Reality System. In Proceedings of the 1996 Virtual Reality Annual In-
ternational Symposium (VRAIS 96), page 95. IEEE Computer Society,
1996. Cited on page 35.

[Scha96b] Gernot Schaufler and Wolfgang Stürzlinger. A Three-Dimensional
Image Cache for Virtual Reality. Computer Graphics Forum (Proc.
Eurographics ’96), 15(3):227–235, September 1996. ISSN 0167-
7055. Cited on pages 5, 34, and 91.

[Scha97] Gernot Schaufler. Nailboards: A Rendering Primitive for Image
Caching in Dynamic Scenes. In Julie Dorsey and Philipp Slusallek,
editors, Rendering Techniques ’97 (Proceedings of the Eurographics
Workshop on Rendering 97), pages 151–162. Eurographics, Springer-
Verlag Wien New York, June 1997. ISBN 3-211-83001-4. Cited on
page 27.

[Scha98a] Gernot Schaufler. Image-based object representation by layered im-
postors. In Proceedings of the ACM symposium on Virtual reality
software and technology, pages 99–104. ACM Press, 1998. Cited on
page 28.

[Scha98b] Gernot Schaufler. Per-Object Image Warping with Layered Impostors.
In George Drettakis and Nelson Max, editors, Rendering Techniques
’98 (Proceedings of the Eurographics Workshop on Rendering 98),
pages 145–156. Springer-Verlag Wien New York, June 1998. Cited on
pages 28, 32, 38, 46, 50, 52, and 59.

[Scha00] Gernot Schaufler, Julie Dorsey, Xavier Decoret, and François X. Sil-
lion. Conservative volumetric visibility with occluder fusion. In Pro-
ceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 229–238. ACM Press/Addison-Wesley
Publishing Co., 2000. Cited on page 20.

[Sequ01] Carlo H. Sequin and Maryann Simmons. Portal Tapestries. The Penn-
sylvania State University CiteSeer Archives, April 12 2001. Cited on
page 33.

124

Bibliography

[Shad96] Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and
John Snyder. Hierarchical Image Caching for Accelerated Walk-
throughs of Complex Environments. In Holly Rushmeier, editor,
SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 75–82. ACM SIGGRAPH, Addison Wesley, August 1996. held
in New Orleans, Louisiana, 04-09 August 1996. Cited on pages 5, 27,
34, and 91.

[Shad98] Jonathan W. Shade, Steven J. Gortler, Li-wei He, and Richard Szeliski.
Layered Depth Images. In Michael Cohen, editor, SIGGRAPH 98
Conference Proceedings, Annual Conference Series, pages 231–242.
ACM SIGGRAPH, Addison Wesley, July 1998. ISBN 0-89791-999-8.
Cited on pages 14 and 30.

[Sill97] François Sillion, G. Drettakis, and B. Bodelet. Efficient Impostor Ma-
nipulationfor Real-Time Visualization of Urban Scenery. Computer
Graphics Forum (Proc. Eurographics ’97), 16(3):207–218, August
1997. ISSN 1067-7055. Cited on pages 8, 28, 29, 33, 34, and 69.

[Simm00] Maryann Simmons and Carlo H. Séquin. Tapestry: A Dynamic Mesh-
based Display Representation for Interactive Rendering. In Bernard
Péroche and Holly Rushmeier, editors, Rendering Techniques 2000
(Proceedings of the Eurographics Workshop on Rendering 2000),
pages 329–340. Eurographics, Springer-Verlag Wien New York, June
2000. ISBN 3-211-83535-0. Cited on page 25.

[Stam01] Marc Stamminger and George Drettakis. Interactive Sampling and
Rendering for Complex and Procedural Geometry. In Proceedings
of the 12th Eurographics Workshop on Rendering Techniques, pages
151–162. Springer-Verlag, 2001. Cited on page 24.

[Suth74] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A
Characterization of Ten Hidden-Surface Algorithms. ACM Computing
Surveys, 6(1):1–55, March 1974. Cited on page 18.

[Suyk03] F. Suykens, K. vom Berge, A. Lagae, and P. Dutré. Interactive Render-
ing with Bidirectional Texture Functions. In P. Brunet and D. Fellner,
editors, Proceedings of the 24th Annual Conference of the European
Association for Computer Graphics (EG-03), volume 22, 3 of Com-
puter Graphics forum, pages 463–472, Oxford, UK, September 1–6
2003. Blackwell Publishing Ltd. Cited on page 16.

125

Bibliography

[Tell91] Seth J. Teller and Carlo H. Séquin. Visibility Preprocessing for In-
teractive Walkthroughs. In Thomas W. Sederberg, editor, Computer
Graphics (SIGGRAPH 91 Proceedings), volume 25, pages 61–69.
ACM SIGGRAPH, ACM Press, July 1991. Cited on page 19.

[Torb96] Jay Torborg and Jim Kajiya. Talisman: Commodity Real-time 3D
Graphics for the PC. In Holly Rushmeier, editor, SIGGRAPH 96
Conference Proceedings, Annual Conference Series, pages 353–364.
ACM SIGGRAPH, Addison Wesley, August 1996. Cited on page 25.

[Wand01] Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer
auf der Heide, and Wolfgang Strasser. The randomized z-buffer al-
gorithm: interactive rendering of highly complex scenes. In Proceed-
ings of the 28th annual conference on Computer graphics and interac-
tive techniques, pages 361–370. ACM Press, 2001. Cited on pages 24
and 36.

[Wand02] Michael Wand and Wolfgang Straßer. Multi-Resolution Rendering of
Complex Animated Scenes. Computer Graphics Forum, 21(3):483–
491, September 2002. Cited on page 24.

[Webe95] Jason Weber and Joseph Penn. Creation and rendering of realistic
trees. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 119–128. ACM Press,
1995. Cited on page 23.

[Wils00] Andrew Wilson, Ming C. Lin, Boon-Lock Yeo, Minerva Yeung, and
Dinesh Manocha. A video-based rendering acceleration algorithm for
interactive walkthroughs. In Proceedings of the eighth ACM inter-
national conference on Multimedia, pages 75–83. ACM Press, 2000.
Cited on pages 28 and 33.

[Wils01] Andrew Wilson, Ketan Mayer-Patel, and Dinesh Manocha. Spatially-
encoded far-field representations for interactive walkthroughs. In Pro-
ceedings of the ninth ACM international conference on Multimedia,
pages 348–357. ACM Press, 2001. Cited on pages 28, 34, and 91.

[Wils03] Andrew Wilson and Dinesh Manocha. Simplifying complex environ-
ments using incremental textured depth meshes. In Jessica Hodgins
and John C. Hart, editors, Proceedings of ACM SIGGRAPH 2003, vol-
ume 22(3) of ACM Transactions on Graphics, pages 678–688, 2003.
Cited on pages 7, 29, 34, 57, 81, and 103.

126

Bibliography

[Wimm99] Michael Wimmer, Markus Giegl, and Dieter Schmalstieg. Fast walk-
throughs with image caches and ray casting. Computers and Graphics,
23(6):831–838, December 1999. Cited on page 25.

[Wimm01] Michael Wimmer, Peter Wonka, and François Sillion. Point-Based
Impostors for Real-Time Visualization. In Karl Myszkowski and
Steven J. Gortler, editors, Rendering Techniques 2001 (Proceedings
of the Eurographics Workshop on Rendering 2001), pages 163–176.
Eurographics, Springer-Verlag Wien New York, June 2001. ISBN 3-
211-83709-4. Cited on pages 30, 57, and 109.

[Wimm03] Michael Wimmer and Peter Wonka. Rendering time estimation for
real-time rendering. In Proceedings of the 14th Eurographics work-
shop on Rendering, pages 118–129. Eurographics Association, 2003.
Cited on pages 18, 83, 89, 93, and 96.

[Wolb94] George Wolberg. Digital Image Warping. IEEE Computer Society
Press, 1994. Cited on pages 14 and 30.

[Wong97] Tien-Tsin Wong, Pheng-Ann Heng, Siu-Hang Or, and Wai-Yin Ng.
Image-based Rendering with Controllable Illumination. In Proceed-
ings of the Eurographics Workshop on Rendering Techniques ’97,
pages 13–22. Springer-Verlag, 1997. Cited on page 15.

[Wonk99] Peter Wonka and Dieter Schmalstieg. Occluder Shadows for Fast
Walkthroughs of Urban Environments. Computer Graphics Forum
(Proc. Eurographics ’99), 18(3):51–60, September 1999. ISSN 1067-
7055. Cited on page 20.

[Wonk00] Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibil-
ity Preprocessing with Occluder Fusion for Urban Walkthroughs. In
Proceedings of the Eurographics Workshop on Rendering Techniques
2000, pages 71–82. Springer-Verlag, 2000. Cited on pages 11, 20, 55,
56, and 95.

[Wonk01] Peter Wonka, Michael Wimmer, and François Sillion. Instant
Visibility. Computer Graphics Forum (Proc. Eurographics 2001),
20(3):411–421, September 2001. Cited on page 20.

[Wonk02] P. Wonka. Occlusion Culling for Real-time Rendering Of Urban Envi-
ronments. PhD thesis, Vienna University of Technology, 2002. Cited
on page 20.

127

Bibliography

[Wood00] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom
Duchamp, David H. Salesin, and Werner Stuetzle. Surface Light
Fields for 3D Photography. In Kurt Akeley, editor, SIGGRAPH 2000
Conference Proceedings, Annual Conference Series, pages 287–296.
ACM SIGGRAPH, Addison Wesley, 2000. Cited on page 15.

[Xia96] Julie C. Xia and Amitabh Varshney. Dynamic View-Dependent Sim-
plification for Polygonal Models. In Roni Yagel and Gregory M. Niel-
son, editors, IEEE Visualization ’96, pages 335–344. IEEE, October
1996. ISBN 0-7803-3673-9. Cited on page 22.

[Zhan97] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Kenneth E.
Hoff III. Visibility Culling Using Hierarchical Occlusion Maps. In
Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, An-
nual Conference Series, pages 77–88. ACM SIGGRAPH, Addison
Wesley, August 1997. ISBN 0-89791-896-7. Cited on page 19.

[Zwic01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus
Gross. Surface splatting. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, pages 371–
378. ACM Press, 2001. Cited on page 24.

128

Selbstständigkeitserklärung

Ich erkläre, daß ich die eingereichte Dissertation selbstständig und ohne fremde
Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht
benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe.

Rostock, Dezember 2004

Stefan Jeschke

129

Curriculum vitae

Personal information

Name: Dipl.-Inf. Stefan Jeschke

Date of birth: May 7, 1977 in Rostock, Germany

Marital status: Single

Nationality: German

Address: Dorfstrasse 2, 18347 Dändorf, Germany

Email: jeschke@informatik.uni-rostock.de

Languages: German, English

Education

1983–1987: Elementary School (Grundschule) in Dierhagen.

1987–1991: Secondary School (Polytechnische Oberschule) in Wustrow.

1991–1995: Secondary School (Gymnasium) in Damgarten.

June 1995: Graduation (Matura).

1995–2001: Studies of computer science at the University of Rostock, Ger-
many, with special emphasis on Computer Graphics.

September 2001: Graduation to “Diplom-Informatiker” at the University of Ros-
tock.

Since April 2002: Doctoral program at the University of Rostock, DFG-
Graduiertenkolleg 466:“Verarbeitung, Verwaltung und Darstel-
lung wissenschaftlicher Daten - technische Grundlagen und
gesellschaftliche Implikationen”.

130

Bibliography

Jobs

Nov. 1998–Mar. 1999: Working for Philips Medical Systems in Hamburg.

May 1999–May 2000: Working for the University of Rostock, Computer Graphics De-
partment.

Okt. 2001–Mar. 2002: Research assistant at the Institute of Computer Graphics and Al-
gorithms, Vienna University of Technology.

131

Theses

1. Although the performance of common computer graphics hardware has dra-
matically increased in recent years, the demand for more scene realism for
common scenes is growing even faster. Therefore, the rendering acceler-
ation for three-dimensional scenes is a research area of big interest. The
generation of a fluent animation with more than 60 frames per second is a
special challenge. Possible applications are ship-, driving-, and flight simu-
lators, virtual reality and computer games.

2. The only way for accelerating the rendering process is a reduction of the
scene complexity for every output image. Especially the complexity of dis-
tant scene parts can be significantly reduced because of their high complex-
ity but only low contribution to the output image.

3. Impostors are image-based entities used as an alternative representation of
scene parts. Especially the appearance of distant scene parts hardly changes
for a bounded viewing region, which makes the use of image-based repre-
sentations suitable. Because the complexity of impostors is largely indepen-
dent from the complexity of the represented scene part, they provide a very
fast display of arbitrary complex geometry.

4. Impostors are the only way for accelerating the rendering process if visibil-
ity culling provides insufficient acceleration and geometric simplification
techniques are not applicable.

5. The use of impostors must be transparent for the observer. This means, the
difference in the output image between an impostor and the original ren-
dered object must be very small, so that a convincing illusion of the original
object is provided for the bounded viewing region. This has not been suffi-
ciently addressed in previous approaches.

6. Impostors are generated either in a preprocess or at runtime, parallel to the
rendering process. Problems for impostors generated in a preprocess are

132

Bibliography

very long preprocess durations and immense memory costs for the resulting
impostors, even for small scenes. One reason for this is that previous impos-
tor techniques need much memory and represent a scene part only from a
small viewing region. This results in numerous memory intensive impostors
needed for a whole scene.

7. We present a new impostor generation method, which allows guaranteeing
a minimum image quality for a particular viewing region. Simultaneously,
invisible scene parts can be efficiently excluded from the representation in
order to obtain a more compact representation.

8. Based on this new method, two new impostor techniques were developed.
One method allows the fast generation and efficient display of distant scene
parts. The other technique focusses on a compact representation of scene
parts near the viewing region. Both provide a minimum image quality for
a relatively large viewing region and very low memory requirements com-
pared to previous approaches.

9. Another reason for high memory requirements is the inefficient use of im-
postors in many previous approaches. Especially one aspect has been ig-
nored during the selection of scene parts together with the according view-
ing regions: impostors for distant scene parts can be shared for multiple
adjacent viewing regions because their appearance hardly changes.

10. We developed a new impostor placement algorithm that addresses espe-
cially the issue above. It provides a significant reduction of the required im-
postor memory. The algorithm is very general, which allows efficiently us-
ing impostors for arbitrary scenes and using arbitrary impostor techniques.
Furthermore, impostor use can be aimed at different bottlenecks of a target
rendering system.

11. The new impostor placement algorithm allows guaranteeing a minimum
frame rate for every view within a scene. Together with the new efficient
impostor techniques, this simultaneously provides a minimum output im-
age quality as well as low memory requirements for the impostors.

12. The parallel use of visibility culling and geometric simplification techniques
further reduces the required impostor memory. This offers to make the best
use of all available techniques in a single framework.

13. If all impostors do not fit into graphics memory, they have to be dynami-
cally fetched from harddisk during model display. This is not desirable for

133

Bibliography

numerous interactive applications. The new algorithms and techniques re-
duce the impostor memory so that all impostors completely fit into graphics
memory, even for mid-range scenes.

14. The guaranteed minimum image quality and low memory requirements pro-
vided by the new algorithms and techniques account for the usability of
impostors for many new applications.

134

