
D I P L O M A R B E I T

An Advanced Data Structure for Large

Medical Datasets

ausgeführt am

Institut für Computergraphik und Algorithmen

der Technischen Universität Wien

unter Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Dipl.-Inform. Dr.techn. Sören Grimm

Prof. Dr. Kenneth I. Joy

durch

Alexander Hartmann

Dreihäusergasse 12a

2345 Brunn/Geb.

10. Mai 2005

Datum Unterschrift

Alexander Hartmann

An Advanced Data Structure for

Large Medical Datasets
Master’s Thesis

supervised by

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Dipl.-Inform. Dr.techn. Sören Grimm

Prof. Dr. Kenneth I. Joy

Institute of Computergraphics and Algorithms

Vienna University of Technology

i

Abstract

The size of volumetric data acquired from computed tomography scanning

devices is steadily increasing, which often makes it impractical to store the

whole data in physical memory. Therefore, efficient data structures are re-

quired. In this thesis several data structures are examined in respect to

application for computed tomography-angiography. In particular, memory

consumption and performance of visualization are addressed. Additionally,

a data structure based on adaptive meshes is implemented. This data struc-

ture can leverage resources where they are needed. In order to generate the

adaptive meshes, two different algorithms are explained and compared to

each other. The most common visualization techniques for angiography are

described.

Kurzfassung

Die Größe der Volumensdatensätze in der Computertomographie nimmt ste-

tig zu, weshalb diese oft nicht mehr komplett im physischen Speicher gehalten

werden können. Deshalb ist es notwendig, effiziente Datenstrukturen zu ver-

wenden. In dieser Arbeit werden diverse Datenstrukturen auf die Eignung

bezüglich Computertomographie-Angiographie Datensätzen untersucht. Im

Besonderen wird auf Speicherplatzverbrauch sowie das Leistungsverhalten

der Visualisierung eingegangen. Zusätzlich wird eine Datenstruktur, die auf

adaptiven Gittern basiert, implementiert. Diese Datenstruktur ermöglicht

einen wirksamen Einsatz der Ressourcen. Dabei werden zwei unterschiedliche

Algorithmen zur Erzeugung der adaptiven Gitter beschrieben und miteinan-

der verglichen. Die gebräuchlichsten Visualisierungsverfahren der Angiogra-

phie werden erklärt.

Contents

1 Introduction 1

2 Data processing 4

2.1 Data Acquisition . 4

2.2 CT-Data . 6

2.3 Segmentation . 6

2.4 Visualization of Volume Data 7

2.4.1 Object/image based 7

2.4.2 Reconstruction Filters 8

2.4.3 Gradient Calculation 10

2.4.4 Shading . 11

2.4.5 Slicing . 14

2.4.6 Direct Volume Rendering 14

2.4.7 Curved Planar Reformation 21

2.4.8 Indirect Volume Rendering 23

2.5 Summary . 23

3 Data structures 25

3.1 Mesh . 26

3.2 Octree . 27

3.3 Adaptive Mesh Refinement . 30

3.4 Point Clouds . 32

3.5 KD-Tree . 33

3.6 O-Buffer . 35

3.7 Conclusion . 36

ii

CONTENTS iii

4 Adaptive Meshes for Large Datasets 37

4.1 Adaptive Mesh . 38

4.2 Preprocessing for Mesh Generation 39

4.2.1 Marking Data . 39

4.2.2 Calculation of Volume Density 41

4.3 Mesh Generation . 43

4.3.1 Growing Algorithm . 44

4.3.2 Signature Algorithm 45

4.3.3 Merging Meshes . 50

4.3.4 KD-Tree . 51

4.4 Visualization . 51

4.4.1 Finding the Current Mesh 52

4.4.2 Resampling . 52

5 Implementation 55

5.1 Class Overview . 55

5.2 Class Description . 57

5.2.1 Renderer . 57

5.2.2 CPRRenderer . 57

5.2.3 MIPRenderer . 58

5.2.4 DVRRenderer . 58

5.2.5 Volume . 58

5.2.6 SimpleVolume . 58

5.2.7 AMRVolume . 59

5.2.8 Mesh . 59

5.2.9 KDTree . 59

5.2.10 OctreeVolume . 60

5.2.11 OctreeNode . 60

5.2.12 VolumeMask . 60

5.2.13 CenterLine . 62

6 Results 63

6.1 Dataset . 63

CONTENTS iv

6.2 Mesh Density . 63

6.2.1 Mesh Density with Growing Algorithm 64

6.2.2 Mesh Density with Signature Algorithm 65

6.2.3 Algorithm Comparison 66

6.3 Image Quality . 66

6.4 Data Structure Comparison 69

6.5 Performance . 70

7 Summary 76

7.1 Introduction . 76

7.2 Data Structures . 77

7.3 Adaptive Meshes . 78

7.3.1 Marking Data . 80

7.3.2 Calculation of Volume Density 82

7.3.3 Mesh Generation . 83

7.3.4 Visualization . 89

7.4 Results . 91

7.4.1 Dataset . 91

7.4.2 Mesh Density . 91

7.4.3 Image Quality . 93

7.4.4 Data Structure Comparison 93

Chapter 1

Introduction

God heals and the Doctor

takes the fee.

Benjamin Franklin

The handling of very large datasets is a very important topic in volume

visualization. Especially in medical image processing Computed Tomography

(CT) scanning devices can create huge datasets. A CT scanner is a device

which generates a series of two-dimensional X-ray images which show the

internals of an object. These X-ray images are generated using an X-ray

source that rotates around the object. Several scans are progressively taken

while the object is passed through the scanning device. New technology

multi-slice CT scanners produce even higher resolution and more slices than

conventional scanners.

Arterial diseases are a major health problem in the industrial countries,

therefore a lot of research is focused on new screening techniques. One

method is catheter angiography, where a catheter is placed into the per-

sons body in order to inject a contrast agent close to the area of interest.

This contrast agent highlights the vessels when X-rays are taken. Another

less invasive method is Computed Tomography Angiography (CTA), here the

contrast agent is injected into a vein rather than an artery. Then a CT scan

is taken in order to visualize the blood flow in arterial vessels throughout the

1

CHAPTER 1. INTRODUCTION 2

body.

Angiography is a medical imaging technique that uses X-rays to visualize

blood filled structures, such as arteries, veins, and heart chambers. Because

blood has the same radiodensity as the surrounding tissues, a radiocontrast

agent (which absorbs X-rays) is injected to highlight vessels, enabling an-

giography. Angiography is commonly performed to identify vessel narrowing

and calcifications.

To investigate the arteries a sequence of 300 - 1500 (depending on the re-

gion of interest) CT images are necessary. The acquisition of these CT images

usually takes 30 to 60 seconds. Due to the large amount of slices, 2D exam-

ination is a rather tedious and time consuming task. Therefore, radiologists

typically use the following two visualization techniques: Maximum Intensity

Projection (see Chapter 2.4.6) and Curved Planar Reformation (see Chap-

ter 2.4.7). With these visualization methods the investigation of the arteries

usually only takes a few minutes.

The large amount of data, needed for CTA, presents a challenge for cur-

rent PC hardware. Therefore, it is very important to design memory efficient

data structures in order to handle these large datasets. These data struc-

tures should allow to leverage resources where they are really needed. For

example, in case of CTA only the aorta is of main interest. The surrounding

information is only needed as context information or not needed at all. This

part of the data, therefore, needs to be stored in a lower resolution or not

at all. Such a data structure, which allows to efficiently leverage resources,

enables that the data can easily be kept in main memory. Thus, efficient

processing of the data is possible.

We based our data structure on an adaptive mesh refinement approach.

This allows to store important parts of the data with high resolution and

less important data with lower resolution. Thereby large datasets can be

completely kept in the physical main memory.

In Chapter 2 the data processing pipeline is described. Starting with the

data acquisition, then a description of the CT data itself, explaining the seg-

mentation process and finally showing the different visualization possibilities.

Chapter 3 shows the most common data structures and how they apply

CHAPTER 1. INTRODUCTION 3

to volumetric data where only certain areas of the dataset are needed. The

memory consumption, the visualization, and the resampling problem are

discussed.

Chapter 4 introduces our algorithm to create adaptive meshes from a

CTA dataset based on the centerline of a vessel. These meshes are created

in different resolutions according to an importance classification of the data.

We developed two different algorithms to generate the meshes which are

described and compared. Resampling is described with respect to the used

visualization techniques.

In Chapter 5 an overview of the implementation with all classes is shown.

The classes are briefly introduced and the most important methods are de-

scribed in more detail.

Chapter 6 presents the results of the implemented algorithm with a CTA

dataset and analyzes the two different mesh generation algorithms, as well

as the image quality of the images rendered with our data structure.

Chapter 7 contains a summary of the thesis with its focal point to the

adaptive meshes in comparison to the common data structures. Chapter 8

is an acknowledgement of all people who helped me get this work done.

Chapter 2

Data processing

It is a capital mistake to

theorize before one has data.

Doyle, Sir Arthur Conan

2.1 Data Acquisition

The data is acquired with a Computed Tomography (CT) scanner. CT em-

ploys filtered back-projection to reconstruct a volumetric dataset from the

measured X-ray projection.

Figure 2.1: Multi-slice CT scanner: X-ray tube rotation to simultaneously
acquire several slices [1].

4

CHAPTER 2. DATA PROCESSING 5

According to the number of detector element rows available, helical CT

scanners are distinguished into: single section (single slice, single detector

row), dual section (dual slice, dual detector row) or multi-section (multi-

slice, multi-detector, multi-row). Multi-slice CT scanners (see Figure 2.1)

can produce very high resolution scans.

Multislice CT [27] refers to the ability of a CT scanner to acquire more

than one slice simultaneously. The detector system of a Multislice CT is

composed of more than a single row of detector elements. The advantages of

Multi-slice CT scanners are characterized by

• Resolution: improved spatial resolution along the z-axis

• Volume: increased length that can be scanned for a given set of scan

parameters

• Speed: reduced time for scanning a body region

• Power: improved usage of X-ray tube power

Dual slice CT scanners could only be improved in one area (Resolution,

Volume, Speed or Power), while scanners with 16 and more slices are virtually

unlimited. This allows a lot of new application fields, such as CTA.

An alternative method to spiral or helical scanning is the step and shoot

technique. Here, a complete slice of the object is acquired while the object

has to be stationary. Afterwards the object is moved in the axial direction

to acquire the next slice. This process is repeated until the whole object is

scanned. This is a very time consuming task. The step and shoot technique

is also vulnerable to misregistration among slices, because separate breath-

holds of a person can lead to different images.

In helical scanning the data is acquired much more quickly because there

are no breaks during the recording phase. This leads to a better quality

of the volume because the images are recorded in a more consistent state.

Helical scanning is of significant benefit for CTA.

Current state of the art CT scanners produce slices with a resolution

of 1024 by 1024 and usually generate 300 to 1500 slices (depending on the

CHAPTER 2. DATA PROCESSING 6

region of interest). Since each data element needs 2 bytes (see Chapter 2.2)

one slice needs 2 MB of memory. Thus, a dataset of 1500 slices produces a

total of 3 GB memory requirement.

2.2 CT-Data

A complete CT dataset consists of a series of 2D images, which are referred to

as slices. Each slice usually has a resolution of 1024 squared and is recorded

in the z (or transversal) direction. Each sampling element (pixel) of the slice

is the measured density of the tissue and is stored in Hounsfield Units (HU,

see Table 2.1), which is a generalized scale for CT data. The HU range

from -1000 to 3095, thus 12 bits are needed for every pixel. Because data in

memory has to be byte-aligned, each pixel-value is stored in 2 bytes. A data

element inside the dataset is referred to as a voxel (volume element).

Tissue HU-Range
Air -1000

Water 0
Fat 70 - 120

Soft tissue 15 - 80
Bone > 1000

Table 2.1: Houndsfield-Units for different tissue types

The CT data has low noise, high spatial resolution and consistent values

(stored as Hounsfield Units).

2.3 Segmentation

Segmentation is the process of isolating objects of interest from the rest of

the scene [8], but sometimes it is also defined as the process of partitioning

an image into non-intersecting regions such that each region is homogeneous

and the union of no two adjacent regions is homogeneous [32].

Segmentation techniques can be distinguished into image- or knowledge-

based and automatic or interactive. The image-based algorithms analyze the

CHAPTER 2. DATA PROCESSING 7

image properties such as discontinuity (i.e., boundary detection, edge link-

ing) and similarity (i.e., thresholding, region-growing), while the knowledge-

based algorithms use either algorithmic information encoding like homogene-

ity, density range or distance (e.g., from the skull surface) or rule based

systems (specified conditions). Automatic systems are processing numerous

datasets with specific tasks (e.g., extract brain from MRI data). They need

special parameter settings and often a visual verification is necessary. In-

teractive or semi-interactive systems are based on an operator’s knowledge

and experience, provide high precision but are laborious. 2D (slice) and 3D

approaches exist.

In order to keep only necessary regions of the dataset, the important

regions must first be detected by a segmentation process. This can be a

difficult task sometimes (depending on the object to detect) because of non-

uniform mapping, inhomogeneities, spurious artifacts and noise. Thus for

some objects special algorithms and/or user interaction are necessary [40].

For detection of the centerline of a blood vessel several specialized algo-

rithms exist [21]. These algorithms have different characteristics concerning

reliability, speed and accuracy. A global optimization method for a reliable

vessel-tracking was introduced by A. Kanitsar [19].

2.4 Visualization of Volume Data

2.4.1 Object/image based

Recently, two classes of volume rendering techniques have been receiving

much research attention. Projection techniques [11, 42, 43] are object-order

algorithms, thereby a voxel (volume element) is processed at a time. Each

voxel is projected onto the image plane and scan converted to determine

its contribution to each pixel that the projection covers. These techniques

require a depth order of the voxels in the volume and render them from front-

to-back or back-to-front. Ray-casting techniques [25, 36, 42] are image-order

algorithms, determining the entire volume’s contribution to a given pixel

before processing the next pixel in the image plane. A volume’s contribution

CHAPTER 2. DATA PROCESSING 8

to a pixel is determined by casting a ray through the volume space according

to a given view direction. As a ray traverses the volume, it is sampled at

regularly spaced intervals. At each sample position the underlying 3D density

function is reconstructed and mapped to a color and opacity. These colors

and opacities are then composited along the ray to determine the final color

for the ray and therefore the pixel.

2.4.2 Reconstruction Filters

To render an image of a volumetric dataset it is necessary to reconstruct the

underlying 3D density function from the given samples. This reconstruction

is achieved by convolving the samples with a reconstruction filter.

Sampling and Reconstruction

A point sample is represented as a scaled Dirac impulse function. Thus

sampling a signal is equivalent to multiplying it by a grid of impulses, one at

each sample point (see Figure 2.2).

The Fourier transformation of a two-dimensional impulse grid with fre-

quency fx in x and fy in y is itself a grid of impulses with period fx in x and

fy in y. The Fourier transform is invertible and transforms a function from

the spatial domain to the frequency domain and vice versa. The convolution

theorem says that the Fourier transform of a product of two functions is the

convolution of their individual Fourier transforms, and vice versa:

ĝh = ĝ ∗ ĥ; ̂g ∗ h = ĝĥ (2.1)

To sample a continuous function f(x) into a discrete function d(x) at a

uniform spacing s the function needs to be multiplied with a comb function

combs(x), where s is the spacing of the comb impulses:

d(x) = f(x)combs(x) (2.2)

This is equal to a convolution of the Fourier transform of the initial func-

tion f(x) with a comb function comb1/s:

CHAPTER 2. DATA PROCESSING 9

d̂(u) = f̂(u) ∗ comb1/s(u) (2.3)

where f̂(u) is the Fourier transform of f(x). d̂(u) is the function f̂(u)

duplicated with a spacing of 1/s. If the Fourier transform of the original

function f(x) is band-limited to the value range [−1/2s, 1/2s] the duplicated

copies of f̂(u) in d̂(u) do not overlap. Thus, the original function can be

completely reconstructed by taking one copy and create its inverse Fourier

transform. If f̂(u) has frequencies outside of this range then the original

function cannot be recovered completely because information is lost due to

the overlapping functions.

To avoid the effect of overlapping functions, called aliasing, the highest

frequency component of f(x) must be less than half the inverse of the sam-

pling rate 1/s. This is achieved if each signal is sampled with at least twice

its highest frequency. This frequency is called the Nyquist frequency.

In order to reconstruct a perfect sampled signal, one copy of f̂(u) needs

to get extracted from d̂(u). This can be done with multiplication in the

frequency domain of d̂(u) with a rect function which is 1 inside [−1/2s, 1/2s]

and 0 everywhere else. This corresponds to a convolution in the spatial

domain of d(x) with a sinc function (the inverse transform of a rect function).

The sinc function is the perfect reconstruction filter but cannot be im-

plemented because it has infinite extent. This makes it mandatory to use an

imperfect reconstruction filter and thus leads to reconstruction artifacts.

Various reconstruction filters have been examined by Marschner and Lobb

[28]. They classified the artifacts resulting from imperfect reconstruction into

three main categories: smoothing, postaliasing and overshoot. Since recon-

struction is necessarily imperfect, choosing a filter must involve tradeoffs

between these three artifacts. For interactive performance a trilinear recon-

struction filter (see Section 3.1) is recommended. The best results can be

achieved with windowed sinc filters, but those filters are much more expen-

sive than trilinear filters.

CHAPTER 2. DATA PROCESSING 10

Figure 2.2: Two-dimensional sampling in the space domain (top) and the
frequency domain (bottom) [28].

2.4.3 Gradient Calculation

To approximate the surface normals, which are necessary for shading and

classification, the computation of a gradient is required. Given a continuous

function f(x, y, z), the gradient ∇f is defined as the partial derivative of the

function with respect to all three coordinate directions:

∇f(x, y, z) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
(2.4)

The ideal gradient reconstruction filter is the derivative of the sinc filter,

called cosc, which has infinite extent and therefore cannot be used in prac-

tise. Thus the continuous gradient has to be approximated using discrete

gradient filters. One component of the gradient vector can be computed by

convolution of the samples with the filter kernel. Most filters are derived from

two-dimensional edge detection algorithms used in image processing. They

are straight forward 3D extensions of those operators, such as the Prewitt or

Laplacian operators.

The Sobel operator [39] is one of the most widely used gradient filters

for volume rendering. Equation 2.5 shows an example for a Sobel gradient

for the X component. Gx is the convolution kernel for the X component

CHAPTER 2. DATA PROCESSING 11

of the gradient vector. The convolution kernels for Gy and Gz can easily

be computed by rotation and alignment with the positive Y and Z axes,

respectively. An analysis of several gradient filters for volume rendering has

been published by Goss [14] and Bentum [3].

Gx =




−2 0 2

−3 0 3

−2 0 2







−3 0 3

−6 0 6

−3 0 3







−2 0 2

−3 0 3

−2 0 2


 (2.5)

Due to computational costs many ray-casting algorithms use a central

difference or intermediate difference gradient, which are computed by local

differences between sample values in all three dimensions [17]. The central

difference gradient at voxel position (x, y, z) can be calculated as:

∇f(x, y, z) =




∇fx

∇fy

∇fz


 ≈

1

2




f(x + 1, y, z)− f(x− 1, y, z)

f(x, y + 1, z)− f(x, y − 1, z)

f(x, y, z + 1)− f(x, y, z − 1)


 (2.6)

Usually the factor 1
2

can be omitted, since the gradient vector is normal-

ized before shading operations. For the intermediate difference gradient the

equation is:

∇f(x, y, z) =




∇fx

∇fy

∇fz


 ≈




f(x + 1, y, z)− f(x, y, z)

f(x, y + 1, z)− f(x, y, z)

f(x, y, z + 1)− f(x, y, z)


 (2.7)

2.4.4 Shading

Local illumination models use the basic vectors shown in Figure 2.3. Local

illumination models take only direct reflections into account. This is not

realistic but reduces the computation time. The equation to compute the

reflected intensity at each sample is:

I = Ia +
∑

l

Ilkd(N · Ll) + Ilks(V ·Rl)
s (2.8)

CHAPTER 2. DATA PROCESSING 12

The equation uses the following parameters:

I is the reflected intensity of the sample from the light source towards the

viewer.

Ia is the reflected intensity due to ambient light. This intensity simulates

indirect light reflections which would otherwise be unaccounted for by

the illumination model.

Il is the intensity emitted by light source l.

kd is the diffuse reflection coefficient for the surface material.

ks is the specular reflection coefficient for the surface material.

s is the specular exponent for the surface material. A higher value results in

smaller and sharper highlights, while a lower value leads to large and

soft highlights.

N is the normalized surface normal at the sample location.

Ll is the normalized vector from a point in space to light source l. For a

directional light this vector is the same for every position in the scene.

V is the normalized vector from the sample location towards the viewer.

Rl is the normalized reflected light vector of light source l.

The term N · L which is the cosine of θ (see Figure 2.3) accounts for the

diffuse reflection of the surface. The term V · Rl which is the cosine of φ

accounts for the specular reflection of the surface. A smaller angle θ leads

to a higher contribution of the diffuse term, and a smaller angle φ leads to a

higher contribution of the specular term, respectively.

The shaded color cout at a sample is calculated by multiplying the input

color cin (e.g., color obtained from a transfer function) with the reflected

intensity I of the sample. The light color is assumed to be white and can

thus be neglected.

CHAPTER 2. DATA PROCESSING 13

Figure 2.3: Vectors for Local Illumination Models. V is the vector towards
the viewport and L is the vector towards the light source. N is the surface
normal and H the halfway vector between L and V. R is the reflected light
vector L.

cout = cinI (2.9)

The evaluation of Equation 2.8 corresponds to the Phong Illumination

model [33]. J. Blinn proposed an alternative formulation of the Phong model

[7] which avoids the expensive computation of the reflection vector R. The

model uses the halfway vector H = L+V
|L+V | between the viewing vector V and

the surface normal N (see Figure 2.3). It replaces V ·R (which corresponds

to cos φ) of Equation 2.8 with the dot product N ·H (which corresponds to

cos α). This approximation is accurate if the light sources and the viewpoint

are assumed to be at infinity.

The expensive calculation of the exponentiation of the specular term can

be avoided by Schlick’s approximation [37] which is generally much faster to

compute and shows similar visual results:

xn ≈ x

n− nx + x
(2.10)

CHAPTER 2. DATA PROCESSING 14

For ks = 0 the illumination model reduces to pure diffuse or Lambertian

reflection [12]. Higher-order shading models, which include the physical ef-

fects of light material-interaction [10] such as subsurface scattering [15], are

computationally too expensive to be considered for volume rendering.

2.4.5 Slicing

Slicing resamples the volume data on a plane perpendicular to one of the

three major axes (x, y and z). This is a very simple visualization technique

and allows the user to view any desired slice (plane) by changing the position

of the plane within the dataset. Almost any system which deals with CT

datasets offers this visualization method.

To highlight different properties within the dataset a method called win-

dowing can be used. It defines an interval which maps each data value to a

gray scale value. Data values below the lower boundary are mapped to black

and values above the upper boundary are mapped to white. The values in

between are interpolated accordingly.

It is standard in clinical practice to perform 2D examinations. However,

due to the increasing size of the datasets it becomes more and more imprac-

tical as it is a very tedious and time consuming task. Objects are spread

over several slices and the particular viewing direction for an acquired image

sequence may not be optimal with respect to the real-world 3D anatomical

structures. This makes it even harder to investigate the dataset with this

method.

2.4.6 Direct Volume Rendering

Direct Volume Rendering (DVR) is a technique for directly displaying a sam-

pled 3D scalar field without using an intermediate representation. The basic

steps of Direct Volume Rendering consist of mapping the scalar values of each

sample in the 3D dataset to optical properties such as color and opacity, pro-

jecting the samples onto an image plane, and then blending the projected

samples. Some common methods for image composition are Maximum In-

tensity Projection, Alpha Compositing and Non-Photorealistic Volume Ren-

CHAPTER 2. DATA PROCESSING 15

dering. Image composition can be used independently with any rendering

technique like Splatting or Ray-casting. Rendering speed and image quality

of four different direct volume rendering techniques have been evaluated by

M. Meißner et al [29].

Ray-casting

Image Plane

Rays

Figure 2.4: Raycasting: Rays are shot from the image plane into object-
space. The rays are sampled at an equi-spaced distance (red circles).

Ray-casting is an image-order technique where rays from each pixel of

the viewing plane are cast through the volumetric space and the final color

and opacity are accumulated along each ray [34]. The volume is rendered

CHAPTER 2. DATA PROCESSING 16

without extracting any surfaces. The formula for Ray-casting is

Ii,j =
L/∆t∑

k=0

f(Pi,j + k ·∆t · ri,j) ·∆t (2.11)

The volumetric function f(x, y, z) is sampled at equi-spaced distances ∆t

along the ray ri,j starting at Pi,j. The samples are accumulated and the

resulting intensity Ii,j is written to the image at location (i, j) (see Figure

2.4).

Maximum Intensity Projection

Maximum Intensity Projection (MIP) generates a high intensity image from

a volumetric dataset by traversing each ray of the image plane and displaying

the highest occurring value along a ray. Hereby high intensity regions can be

occluded by regions with higher intensity. For medical datasets, for example,

bones usually occlude all other parts of the CT-dataset (see Table 2.1).

The MIP compositing can be written as:

Ii,j = max
0<=k<=l/∆t

(f(Pi,j + k ·∆t · ri,j)) (2.12)

The volumetric function f(x, y, z) is sampled at equi-spaced distances ∆t

along the ray ri,j starting at Pi,j. The highest intensity Ii,j along each ray is

written to the image at location (i, j).

Maximum Intensity Projection is a very popular way to visualize volu-

metric data. This technique is fairly forgiving when it comes to noisy data

because only the highest value along each ray contributes to the final im-

age. MIP produces images that provide an intuitive understanding of the

underlying data. One problem is that spatial information is lost.

Figure 2.5 shows a Maximum Intensity Projection of the lower part of a

human body. Here the aorta is occluded by bones due to higher intensity of

the bones. To visualize blood vessels with MIP the dataset has either to be

segmented so that all bones are removed or a contrast enhancing agent has

to be injected before the CT-Scan is performed. Thereby, the blood vessels

obtain higher intensity values.

CHAPTER 2. DATA PROCESSING 17

Figure 2.5: Volume dataset rendered with a Maximum Intensity Projection.

Alpha Compositing

par With Alpha compositing the final image is generated by integrating the

density values along each ray of the image plane. The density values along

a ray are mapped to color and opacity [25]. The final color and opacity

for each pixel of the image plane can either be calculated in front-to-back

(Equation 2.13) or back-to-front (Equation 2.14) order. The advantage of the

front-to-back approach is that as soon as αi ≥ 1−ε the ray can be terminated

(early ray termination) and thereby the processing is accelerated.

The formula for Front-to-back Compositing is:

Ci = Ci−1 + (1− αi−1) · α(xi) · c(xi) (2.13)

with

αi = αi−1 + (1− αi−1) · α(xi)

CHAPTER 2. DATA PROCESSING 18

The formula for Back-to-front Compositing is:

Ci = Ci−1 · (1− α(xi)) + α(xi) · c(xi) (2.14)

Ci and αi are the current accumulated color and alpha values along the

ray. c(xi) and α(xi) are the color and alpha values of the sample xi (see

Figure 2.6 for a dataset rendered with alpha compositing and shading).

Figure 2.6: Volume dataset rendered with ray-casting using alpha composit-
ing and shading.

CHAPTER 2. DATA PROCESSING 19

Figure 2.7: Splatting: Samples are projected from object-space to the image
plane.

Splatting

Splatting differs from ray casting in the projection method (see Figure 2.7).

Splatting is an object-order approach and projects voxels on the 2D viewing

plane [43, 24]. It approximates this projection by a so-called Gaussian splat,

which depends on the opacity and on the color of the voxel (other splat types,

like linear splats can also be used). A projection is made for every voxel. The

resulting splats are composited on top of each other in back-to-front order,

which guarantees correct visibility, or in front-to-back order, which is faster,

because the process can be stopped when pixels are fully opaque.

CHAPTER 2. DATA PROCESSING 20

Image Plane

Rays

Slices

Shear

Project

Warp

Projected Image

Warped Image

Base Plane

Figure 2.8: Parallel projection using shear-warp factorization of the viewing
transformation. Parts of this image are from [30].

Shear-Warp Factorization

Shear-warp Factorization [23, 31] is considered to be the fastest software-

based rendering approach. The algorithm is based on a shear-warp factor-

ization of the viewing transformation. As can be seen in Figure 2.8, the

voxels are sheared so that the viewing rays are orthogonal to the base plane.

This avoids expensive address computations of the resampling positions in-

side the volume. The rendered image of this sheared volume is a distorted

image which needs to get transformed by a 2D warp to result in the final

undistorted image.

A problem of the shear-warp approach is that current algorithms use only

a 2D reconstruction filter which may cause image artifacts. Furthermore, the

sample rate is dependent on the viewing direction and a pre-classification is

needed. Solutions for some of these problems exist [41], but the high image

quality of some other methods like ray-casting still cannot be achieved.

CHAPTER 2. DATA PROCESSING 21

2.4.7 Curved Planar Reformation

Figure 2.9: Different CPR types: (a) Projected CPR, (b) Stretched CPR,
(c) Straightened CPR [20]

Curved Planar Reformation (CPR) is a very important visualization tech-

nique for tubular structures in medical imaging that generates longitudinal

cross-sections to show the structures and their surrounding tissue in a curved

plane [20]. To investigate specific objects with a CPR the centerline of those

objects has to be extracted first (see Section 2.3). The advantage of this

method is that the object of interest can be viewed in its entireness and

without any occlusions. Radiologists can then easily detect vascular abnor-

malities (i.e., calcifications, stenoses, occlusions and aneurysms).

An image rendered with a CPR can be seen in Figure 2.10. It shows the

aorta of a human body in its entirety without any occlusion at a longitudinal

cross-section. If the viewing direction of the cross-section is rotated then any

disease can be recognized immediately since the whole aorta is visible.

The three common types of how the projection of the plane is performed

are (see Figure 2.9): projected CPR, stretched CPR and straightened CPR.

The projected CPR provides a good overview, allows fast inspection and

is easy to handle. It resamples the data line-wise along so called generating

lines and projects it to the corresponding pixel of the image plane. The pro-

jected CPR offers a good spatial perception but does not maintain isometry.

Furthermore, occlusions are possible and geometric artifacts can occur.

The stretched CPR resamples each generating line from the dataset and

CHAPTER 2. DATA PROCESSING 22

Figure 2.10: Volume dataset rendered with a Curved Planar Reformation

unrolls the plane onto the image. The height of the image depends on the

vessel length and the curvature of the vessel in the image. The advantages

of this projection method are: length-preservation, reduction of geometric

artifacts and no possible occlusions. The disadvantage is sensitivity to high

curvature within the vessel.

The straightened CPR resamples each generating line from the cross-

section of the vessel. The height of the image only depends on the vessel

length. The straightened CPR has the advantages of length-preservation

and no possible occlusions. The disadvantages are no spatial relationship in

the image and undesired artifacts of rotating coordinate frames.

CHAPTER 2. DATA PROCESSING 23

2.4.8 Indirect Volume Rendering

Unlike Direct Volume Rendering, Indirect Volume Rendering generates an

intermediate representation of the volume data in a pre-processing step. It

assumes that the volume contains surfaces. The output of this reconstruction

step are polygons (i.e., triangles) which can be rendered by conventional

surface rendering algorithms [25]. Even though surface rendering algorithms

are widely supported they do not enable the user to see inside structures

or render ’fuzzy’ objects. Additionally, surfaces are incorrectly depicted as

having no thickness. As a consequence, important data is often incorrectly

shown or hidden from the user. These problems often lead to erroneous

conclusions and lost productivity.

The most common technique for surface reconstruction is the Marching

Cubes algorithm [26]. The algorithm creates triangle models of constant den-

sity surfaces from 3D data. It uses a divide-and-conquer approach to generate

inter-slice connectivity, and creates a case table that defines triangle topol-

ogy. The 3D medical data is processed in scan-line order and triangle vertices

are calculated using linear interpolation. The gradients of the original data

are normalized and used as a basis for shading the models. The detail in im-

ages produced from the generated surface models is the result of maintaining

the inter-slice connectivity, surface data, and gradient information present in

the original 3D data. Other common methods for surface reconstruction are

Contour Tracking [22], Opaque Cubes [16], Marching Tetrahedra [38] and

Dividing Cubes [9].

2.5 Summary

For medical data diagnosis a wide range of very useful visualization tech-

niques exist. Curved Planar Reformation is a very powerful rendering al-

gorithm for CTA. It shows tubular structures in its entirety without any

occlusion. Direct Volume Rendering Algorithms render volumes without ex-

tracting any surfaces. Maximum Intensity Projection generates a high inten-

sity image, while Alpha Compositing integrates the density values along each

CHAPTER 2. DATA PROCESSING 24

ray of the final image. Indirect Volume Rendering needs to extract surfaces

from the volume data first. This can sometimes lead to erroneous conclusions

during investigations because surfaces have no thickness.

Chapter 3

Data structures

640K ought to be enough for

anybody.

Bill Gates

This section gives an overview of the most common data structures that

are used for volumetric data. The data structures are analyzed with respect

to medical datasets where often certain regions (e.g., blood vessel, colon) are

of interest. To define which regions are of interest a segmentation process

needs to be performed at first (see Section 2.3). These kind of datasets can

be very large (see Section 2.1) and often can not be stored entirely in mem-

ory. It would be advantageous to represent the non-important regions of the

dataset with lower resolution or accuracy while maintaining the important

information. A loss (or unintended decrease of resolution) of important data

can have serious consequences because it could lead to a misdiagnosis of the

medical dataset by a radiologist.

The data structures are also investigated regarding an applicable resam-

pling technique and its performance. This is very important since it should

be possible to perform the visualization in an adequate time with accurate

results.

25

CHAPTER 3. DATA STRUCTURES 26

3.1 Mesh

A Mesh is the easiest and most straightforward data structure to store vol-

umetric data. For a rectilinear grid, the position of each sample is given

implicitly by its position within the data structure.

Memory Usage

The position of the voxels needs not be stored explicitly, therefore only 2

bytes (for the CT-data) per voxel are necessary. This seems very efficient

but the big disadvantage of a grid is that even unimportant data is explicitly

stored with full resolution. Usually a dataset with the dimensions x× y × z

needs a total of 2 · x · y · z bytes. The only way to reduce memory space

for a grid is to define the bounding box enclosing the regions of interest and

store only the grid of the bounding box. This can work well for fully covered

box-shaped regions, but usually it results in storing a lot of non-important

samples. For example, if the object of interest is very thin but goes diagonally

through the volume, the bounding box would be the size of the whole volume.

Resampling and Performance

The resampling in a rectilinear grid is very fast and easy to implement.

Usually trilinear interpolation is used for reconstruction. The resampled

value at a given position is a trilinear interpolation of the eight closest voxels

(see Figure 3.1).

Each position fxyz with x, y and z either zero or one denotes the sample

value of one corner of the voxel (see Figure 3.1). The value at position (x,y,z)

within the cube is denoted by fxyz and is given by

fxyz = f000 · (1− x) · (1− y) · (1− z) +

f100 · x · (1− y) · (1− z) +

f010 · (1− x) · y · (1− z) +

f001 · (1− x) · (1− y) · z +

f101 · x · (1− y) · z +

f011 · (1− x) · y · z +

CHAPTER 3. DATA STRUCTURES 27

f110 · x · y · (1− z) +

f111 · x · y · z

f(0,0,0) f(1,0,0)

f(0,1,0) f(1,1,0)

f(1,1,1)

f(0,0,1)

f(0,1,1)

f(1,0,1)

f(x,y,z)

Figure 3.1: Trilinear interpolation: A value inside the cell is resampled by a
weighted sum of all eight voxels.

3.2 Octree

An octree is a hierarchical tree structure, where each node corresponds to a

region of three-dimensional space. Using this kind of hierarchical space par-

titioning, spatial coherence can be exploited to reduce storage requirements

for three-dimensional objects.

The octree encoding procedure for a three-dimensional space is an exten-

sion of an encoding scheme for the two-dimensional space, called quadtree en-

coding. Quadtrees are generated by successively subdividing a two-dimensional

region into quadrants until a desired depth is reached. For octrees the three-

dimensional space is recursively subdivided into octants, thereby each node

contains eight child nodes.

Figure 3.2 shows an example of a quadtree. Each quadtree node which

is not homogenous (in our case homogenous means that a node has either

CHAPTER 3. DATA STRUCTURES 28

Quadtree Root

Child Node

Figure 3.2: Quadtree: Example of a quadtree subdivision.

no samples at all or is completely filled with samples) gets subdivided. The

quadtree root node is subdivided into four quadrants. The two upper child

nodes and the lower right child node (white quadrants) are homogenous and

thus do not need to get subdivided any further. The lower left child node

is subdivided again. Its upper and lower left child nodes are empty and its

lower right node is completely filled (yellow quadrants) and need no further

subdivision. Only its upper right node gets subdivided into four new child

nodes (turquoise quadrants).

Memory Usage

An Octree can now be generated in a way that a node is only subdivided

if an octant contains a region of interest that needs finer resolution than

the current octant. To avoid having too many octree nodes the level of

subdivision should be limited. A dataset with the dimension of 2n × 2n × 2n

can have a maximum number of n levels. If the octree node boundaries

are aligned on the voxels many nodes produce an overhead because lots of

voxels are stored twice (or more times at the corners). This can be seen in the

CHAPTER 3. DATA STRUCTURES 29

quadtree example in Figure 3.3 where green samples are stored twice because

they occur on a boundary between two nodes. The red sample is even stored

3 times, in the upper right and the two lower child nodes. Each node also

produces an overhead for the pointers to the octants, thus it’s desirable to

reduce the number of nodes.

Empty Child Node

Figure 3.3: Samples at the boundary between two filled quadtree nodes are
stored multiple times.

The actual memory usage of a dataset depends on the objects of inter-

est and how they are aligned. An octree node is always divided into eight

equally sized cubes, so especially important objects around the center of the

octree root node could produce bad results. Each octant would cover only a

small region of the important objects and thus many octree nodes would be

required.

Resampling and Performance

Neighboring nodes of the octree share the voxels on their common faces, thus

each node stores the voxels on the boundary on its own (see green and red

samples in Figure 3.3). This produces some overhead but makes resampling

much easier and faster. Every leaf of the octree stores a conventional mesh

(see Section 3.1) of the corresponding samples. Thus, the resampling inside

a leaf can be handled like on a normal mesh since each leaf contains all

necessary voxels.

CHAPTER 3. DATA STRUCTURES 30

The performance is very good since a normal trilinear interpolation can

be performed and lots of unimportant regions are not considered because

they are not stored in any node. Further it is very efficient to find the node

of the current resampled position since the octree is always split into eight

equally sized elements.

3.3 Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) generates a hierarchical structure of meshes

where each level of the structure corresponds to a specific resolution of the

underlying data. AMR was introduced to computational physics by Berger

and Oliger [5]. A modified version of their algorithm was published by Berger

and Colella [4]. AMR has become very popular and is used in a variety of

applications.

An AMR consists of a hierarchical structure of axis-aligned rectilinear

grids. Each grid consists of cells which are defined by its cell width. The cell

width corresponds to the resolution of the grid (a higher cell width results

in a lower resolution and vice versa) and has to be constant in every axial

direction.

Each grid can contain an arbitrary number of children grids as long as

they do not overlap. A children grid has a finer resolution than its parent

grid, thus it is referred to as a fine grid. The parent grid is called coarse grid

because it has a coarser resolution than its children. The refinement ratio

defines how many cells of a fine grid fit into a cell of a coarse grid. The root

node of the AMR structure is the coarsest grid of the hierarchy. Each grid

must be aligned at the boundaries of its parent grid cells.

Figure 3.4 shows an AMR hierarchy. The thick lines mark the boundaries

of a grid while the thin lines show the cell boundaries. The turquoise grid is

the root node and has a cell width of four. It contains two fine grids (red and

orange box) with a cell width of two. The left grid (red box) again contains

another fine grid with a cell width of one, which is the finest resolution.

The refinement ratio is four for all grids because a coarse grid cell is always

represented by four fine grid cells.

CHAPTER 3. DATA STRUCTURES 31

1

22

4L

L

L

L

Figure 3.4: AMR hierarchy: The root level L4 has a cell width of 4 and
contains two fine grids of the level L2, and one of those two grids contains
one fine grid with the finest resolution L1.

(a) (b)

Figure 3.5: AMR data formats: (a) cell-centered (b) grid-aligned

The grids can either use a cell-centered data format where the values are

associated with the centers of cells, or a grid-aligned data format which stores

the values at the grid points (see Figure 3.5).

CHAPTER 3. DATA STRUCTURES 32

Memory Usage

A grid of an AMR has the same memory requirements for the sample points as

a mesh. Each grid also has to store the boundaries of the grid and the pointers

to the finer grids and optional a pointer to the coarser grid. The benefit of an

AMR is that the grids can be created according to the underlying data. Grids

will only be created were they are needed and thus non-important regions

need not to be stored. Adaptive Meshes also offer the possibility to store

data in a reduced resolution. The storage space of AMR mainly depends on

how the grids are generated and if they are well aligned to the important

regions. A grid-aligned format with neighboring grids sharing samples at

their common faces is preferred. Adaptive Meshes are very efficient since the

sample positions are stored implicitly and the overhead for a mesh is very

low.

Resampling and Performance

Resampling inside a grid (with a grid-aligned format) is performed the same

way as in a mesh and thus is very efficient. The only difference to a mesh is

that the finest grid of the current position has to be found which can be a

time consuming process. Starting at the root grid the current point needs to

be tested against the boundaries of all finer grids. If it is inside a finer grid

the same procedure has to be repeated recursively.

3.4 Point Clouds

Point clouds consist of a set of unstructured sample points. Each sample

point is stored individually and is encoded as position and sample value.

This section shows some problems that arise with all structures that have to

deal with sample points without a mesh structure in some way.

Memory Usage

The spatial resolution of CT-Data is usually higher than 256 for every axis so

2 bytes are needed for the x, y and z position. This makes 6 bytes for every

CHAPTER 3. DATA STRUCTURES 33

sample along with the 2 bytes for the data itself. Thus the original volume

has to be reduced to at least 1/4 to gain any memory space reduction.

Resampling and Performance

Resampling of point clouds without an indexing structure is nearly impos-

sible because all samples would need to be examined and thus makes it

impracticable.

Even with a given indexing structure the resampling of sample points is

an issue. There is no best way for resampling and the used method mainly

depends on the field of application and performance demands. For example,

a point could be resampled with the closest sample point, the n nearest

sample points weighted equally, with a reconstruction kernel, or with an

interpolation of precalculated density values over equally spaced regions.

3.5 KD-Tree

A kd-tree is a data structure for storing a set of points from a k-dimensional

space [2, 13]. A kd-tree is a binary tree. Each sample is represented as a

node element in the kd-tree. The contents of each node is depicted in Table

3.1.

field name field type description
sample-pos position x,y and z coordinates of

sample position
sample-val value data value of sample

split integer the splitting dimension
left kd-tree a kd-tree for the points to the

left of the splitting plane
right kd-tree a kd-tree for the points to the

right of the splitting plane

Table 3.1: Kd-tree node values

The sample-pos field represents the position and the sample-val field rep-

resents the actual value of the sample. Each kd-tree node has a splitting

CHAPTER 3. DATA STRUCTURES 34

plane which passes through sample-pos and is perpendicular to the direction

stored in the split field. The splitting plane divides all points into a left and

a right subspace. The left kd-tree contains only points which are to the left

of the splitting plane, and the right kd-tree stores only those points to the

right. If a node has no children, then no splitting plane is needed.

Figure 3.6: Kd-tree: Example of a two-dimensional kd-tree

An example of a two-dimensional kd-tree can be seen in Figure 3.6. Each

line represents a splitting plane that divides the points into a left and right

subtree. A node is subdivided until its left and right subtree contains no more

than one point. The green sample represents the root node of the kd-tree.

Memory Usage

The kd-tree needs even more memory than point clouds because every node

in the kd-tree has some overhead for the values shown in Table 3.1.

Resampling and Performance

The problem of resampling is the same as described in Section 3.4. The

performance is usually quite good but mainly depends on the distribution of

CHAPTER 3. DATA STRUCTURES 35

the samples in the tree. To find the nearest neighbor of a position at least

O(logN) inspections are necessary and could go up to a maximum of N (each

node will be visited at most once).

3.6 O-Buffer

The O-Buffer [35] is a framework for sample based graphics where the samples

are not restricted to a regular grid. The position of a sample in the O-buffer

is recorded as an offset to the nearest grid point of a regular base grid.

The O-buffer can be classified into three categories:

• Uniform O-buffer: The number of offset samples stored in every grid

cell of the O-buffer is the same

• Nonuniform O-buffer: the number of offset samples stored in every grid

cell of the O-buffer is not the same

• Adaptive O-buffer: the regular grid is adaptive

Memory Usage

The size of the O-buffer depends on the regions-of-interest in the dataset and

on the type of O-buffer that is used. For medical datasets where only a small

part of the dataset is important (e.g., blood vessels) an adaptive O-buffer

should be used. This allows to refine the cells of the regular grid where it is

needed. The memory space for the offset of the samples can be reduced by

storing the offset to the nearest grid point. Additionally to the offsets of the

samples the information of the overlying adaptive grid has to be stored. If

an O-buffer representation needs less memory than a regular Octree mainly

depends on how many samples have to be stored in each cell. If 2 bytes

for the sample offsets are used (this results in 32 offsets for each axis), the

O-buffer should not store more than half of the samples per cell to require

less memory than an octree cell.

CHAPTER 3. DATA STRUCTURES 36

Resampling and Performance

Since the O-buffer is a framework for sample points it faces the same is-

sues as point clouds. The hierarchical structure makes it easier to handle

samples with spatial coherence but it still does not solve the problem which

reconstruction kernel should be used. This could lead to some undesired

resampling artifacts.

3.7 Conclusion

To store large medical datasets where only certain objects (regions) are of

interest, a more sophisticated data structure is required. Since the dataset

does not fit into physical memory entirely it is necessary that the data struc-

ture can cut off most parts of the non-important regions. This is usually not

possible with a basic data structure such as a mesh. Point-based structures

(e.g., kd-tree) are a good choice for very sparse data but need too much

overhead for bigger objects. Because the position has to be stored for every

sample, bigger objects can be stored much more efficiently with other data

structures.

Octrees work very well because they can skip non-important regions and

offer a great visualization performance. Nevertheless their memory perfor-

mance mainly depends on the spatial properties of the objects (i.e., how they

are aligned to the octant boundaries).

Adaptive meshes are a good option since they can adapt their mesh

boundaries to the underlying data. They also offer the possibility to store

regions in a reduced resolution to give a good overview of the dataset without

requiring too much memory.

Chapter 4

Adaptive Meshes for Large

Datasets

Any sufficiently advanced

technology is indistinguishable

from magic.

Arthur Clarke

This chapter describes our Adaptive Mesh Refinement (AMR) implemen-

tation which can be used for large medical datasets. It allows to store the

data in a resolution according to their importance. The primary objective

of the data structure is to reduce memory consumption. It is described how

the Adaptive Meshes are implemented and how the meshes are generated so

that they represent the underlying data with appropriate accuracy. Finally

the visualization process is shown using our data structure based on Adaptive

Meshes.

Our AMR data structure operates on a CTA dataset. The dataset con-

tains the segmentation information for the aorta. The aorta is characterized

by a centerline and a radius for the control points of the centerline. The

radius defines the thickness of the aorta at a given point. The algorithms

in the following sections can be applied to any dataset where an object of

interest is described by a centerline.

37

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 38

4.1 Adaptive Mesh

The general AMR has been introduced in Section 3.3. For simplicity reasons

the following descriptions are only for two dimensions. Nevertheless they

can be easily extended to 3D. We implemented the AMR in a way that

the resolution of each mesh has to be a power of two. A resolution of n

means that only every nth sample in each axial direction is stored. The

refinement ratio of a refined grid is always set to eight. Although the general

AMR restricts finer grids to be aligned to the boundaries of grid cells of the

parent level, our implementation also allows finer grids to start or end at the

center of a parent grid cell for greater flexibility. The Adaptive Meshes are

stored in a grid-aligned format, thus neighboring grids share data values at

their common faces. The coarsest grid stores every point according to its

resolution. Finer grids only store points that are not already stored in any

coarser grid. As can be seen in Figure 4.1, the outer grid is the coarsest

grid of the AMR structure with a cell width of two and stores all samples

according to its resolution (green points). The inner grid (orange box) has a

cell width of one but stores only samples which are not already stored in the

outer grid (red points). This offers the possibility to store multiple resolution

levels without generating any overhead for the data.

The sample points of each grid are stored in a one-dimensional array. Each

grid is defined by the two points pmin (origin of the grid), pmax (endpoint of

the grid) and the refinement level reflevel. reflevel defines the cell width

for all axial directions. plevel is the refinement level of the parent mesh

(plevel = reflevel · 2). The relative position prel inside a grid of an absolute

point pabs is calculated as

prel = (pabs − pmin)/reflevel (4.1)

For the coarsest grid level the address of the relative position in the data

array is simply given as

addr = prel,y · ((pmax,x − pmin,x)/reflevel) + prel,x (4.2)

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 39

Figure 4.1: AMR implementation: green points are stored in the outer
(coarser) mesh, red points are stored in the inner (finer) mesh

For a refined grid the address of a position in the one-dimensional array

is

addr = b((prel,y + 1)/2)c · s1 + b(prel,y/2)c · s2 + bprel,x/(pmax,x − pmin,x) · ssyc
(4.3)

where s1 is the number of points of every other slice starting at the first

slice, s2 is the number of points of every other slice starting at the second

slice and the index sy in ssy is calculated as sy = prel,y mod 2 + 1. The

computations of s1 and s2 are shown in Table 4.1 and Table 4.2 respectively.

4.2 Preprocessing for Mesh Generation

4.2.1 Marking Data

We introduce three different types of importance: high importance, medium

importance and low importance. Areas marked with high importance need

to be stored in a grid with a cell width of one which corresponds to the

highest possible resolution. Areas marked with medium importance need to

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 40

case s1
pmin,x mod plevel = 0 ∧ bpmax,x − pmin,x/plevelc
pmin,y mod plevel = 0

pmin,x mod plevel 6= 0 ∧ b(pmax,x − pmin,x + 1)/plevelc
pmin,y mod plevel = 0

pmin,x mod plevel = 0 ∧ (pmax,x − pmin,x)/reflevel + 1
pmin,y mod plevel 6= 0

pmin,x mod plevel 6= 0 ∧ (pmax,x − pmin,x)/reflevel + 1
pmin,y mod plevel 6= 0

Table 4.1: First slice size for different grid alignments

case s2
pmin,x mod plevel = 0 ∧ (pmax,x − pmin,x)/reflevel + 1
pmin,y mod plevel = 0

pmin,x mod plevel 6= 0 ∧ (pmax,x − pmin,x)/reflevel + 1
pmin,y mod plevel = 0

pmin,x mod plevel = 0 ∧ bpmax,x − pmin,x/plevelc
pmin,y mod plevel 6= 0

pmin,x mod plevel 6= 0 ∧ b(pmax,x − pmin,x + 1)/plevelc
pmin,y mod plevel 6= 0

Table 4.2: Second slice size for different grid alignments

be stored in a grid with a cell width of at least two. Finally, areas marked

with low importance need to be stored in a grid with a least a cell width of

four.

First of all the data has to be categorized so that each sample point

has a specific importance. According to the importance an appropriate grid

resolution is chosen. All points that are close to the centerline (path of the

object of interest) are very important which means that these points must

be stored in full resolution in the Adaptive Meshes. The points which are

farther away but still within a certain range to the centerline have medium

importance, therefore these points are stored at least in half resolution (every

second point in each axis has to be stored).

Figure 4.2 illustrates how the samples are categorized. Thick points are

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 41

marked as very important because they are close to the centerline (red dashed

line). Thin points are marked with medium importance because they are

farther away but still within a certain range to the centerline. All remaining

points are not marked at all. Alternatively they could be marked with low

importance to keep them in the lowest available resolution.

Figure 4.2: Marked data: importance of samples is set according to distance
to the centerline (red). Thick points will be stored in full resolution, thin
points will be stored in half resolution or higher.

Furthermore each sample point is assigned the major axis alignment of

the tangent at the corresponding point on the centerline. The major axis

alignment is the component of the tangent vector with the highest magni-

tude. The major axis alignment is needed for the Growing Algorithm (see

Section 4.3.1).

4.2.2 Calculation of Volume Density

In this section we explain how the volume density d is calculated. The volume

density defines the percentage of important points in a volume. It is needed

for the algorithms in Section 4.3.1 and Section 4.3.2 to determine if a volume

can be expanded further and requires further subdivision respectively. For

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 42

easier understanding the following explanations are made for areas instead

of volumes. Furthermore, the volume density refers to a specific importance

level. The important points are all points which have the specified impor-

tance or higher. For example, if the importance level is medium importance

then all points with medium or high importance are called important points.

In order to quickly determine the number of important points for any

given area a summed area table is build. We refer to an entry of the summed

area table as D(x, y). The summed area table contains the number of im-

portant points from (0, 0) to any point (x, y) of the whole area.

D(x,y) =
i≤x∑

i=0

j≤y∑

j=0

I(i, j) (4.4)

where I(x,y) returns 1 if the point at the position (x,y) is important and

0 otherwise.

The summed area table is calculated with dynamic programming with

the following formula:

D(x,y) = I(x, y) + D(x−1,y) + D(x,y−1) −D(x−1,y−1) (4.5)

The number of important points for the boundaries with x = 0 or y = 0

have to be calculated separately before.

The number of important points for any area from pmin to pmax, where the

entry of the summed area table for each corner is given by Di (see Figure 4.3),

can be calculated as

D = D3 −D2 −D1 + D0 (4.6)

The density d of an area is the ratio between the number of important

points and the size of the area:

d = D/((pmax,x − pmin,x) · (pmax,y − pmin,y)) (4.7)

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 43

D2

D3

D0

D1

(0, 0)
X

Y

Figure 4.3: Summed area table: Table contains number of important points
for all areas from origin to any point.

4.3 Mesh Generation

We present two different algorithms for clustering cells into axis-aligned re-

gions. The algorithms try to create meshes that have a density d over a

certain density threshold value. This guarantees that the whole AMR stores

at least a certain amount of important samples in every mesh. The higher the

density threshold is set, the more meshes will be generated. Thus a higher

density threshold usually results in less memory consumption as long as the

meshes do not become too small and produce too much overhead (for the

mesh information and the sample points which are shared along the common

faces of two neighboring meshes). The summed volume table is build for

both algorithms for fast computation of the volume density of any volume.

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 44

4.3.1 Growing Algorithm

The Growing Algorithm (see Table 4.3) starts at the coarsest refinement

level. A bounding box of all points with an importance (low, medium, or

high) is calculated and passed to the initial call of FindBoxesEXP as boxin.

The algorithm creates grids so that all important points (points with an

importance according to the current refinement level or higher) are covered,

and stores them in boxesout. As long as there is an important point inside

boxin which is not covered by a box of boxesout yet (Line 1), this point (Line 2)

is used for the initial position of a new box boxnew (Line 3). This new box gets

expanded (Line 4) and the expanded box is added to boxesout (Line 5). The

points inside this box are cleared so that they will not be stored by further

meshes and thus overlapping grids are avoided (Line 6). The boundaries of

the box will be marked separately to signal these points as marked but also

to allow other meshes to include these points. The procedure is repeated

recursively with the next finer refinement level for every refined mesh of

boxesout (if the mesh has a refinement level of 2 or lower).

FindBoxesEXP(box boxin, boxlist boxesout)
1. While not all important points inside boxin are covered by boxesout

2. fpoint = Find point inside boxin which is not already stored
3. Set boxnew to cell of fpoint
4. Call ExpandVolume(boxin, boxnew)
5. Add boxnew to boxesout

6. Clear points inside boxnew

7. End While

ExpandVolume(box boxin, box boxnew)
8. boxbest = Expand Area of boxnew

9. Repeat
10. boxnew = boxbest

11. boxbest = Expand Volume boxbest by one slice
12 boxbest = Expand Area of boxbest

13. Until density d of boxbest < density-threshold

Table 4.3: Simplified version of our implementation of the Growing Algo-
rithm.

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 45

To expand a volume, the area of the initial cell is first expanded in the

plane perpendicular to the major axis alignment (see Section 4.2.1), and

stored in boxbest (Line 8). An area can only be expanded as long as it is

inside boxin and does not contain cleared points (this avoids overlapping

grids). The box gets expanded by one slice along the major axis alignment,

in the direction where the new box has the highest volume density (Line 11).

Afterwards, the area of the newly acquired slice is expanded again to include

all adjacent important points in this slice (Line 12). These steps are repeated

until the volume density of the expanded box is below a density threshold

(Line 13).

The volume expansion can also be seen in the 2D example of Figure 4.4.

In (a) an important point is found (point inside blue rectangle) and the

red arrow shows its major axis alignment. In (b) the box (blue rectangle)

is expanded so that all points in the row perpendicular to the major axis

alignment are covered. In (c) the box is expanded one step along the major

axis alignment. In the next step (d) the box is expanded so that all points of

the newly acquired slice are covered. The same procedure is repeated from

(e) to (h). The volume expansion is stopped after (h) because the volume

density for the next bigger volume would be below a certain volume density

threshold. A 3D example of the same procedure is shown in Figure 4.5.

The blue point is the important point which is not covered. The area is

expanded in the plane perpendicular to the major axis alignment (rectangle

around blue point). All further steps are indicated by the dotted lines for

the expanded volume.

4.3.2 Signature Algorithm

The Signature Algorithm was proposed by Berger and Rigoutsos [6] and

is adopting signature-based methods used in computer vision and pattern

recognition. It has become the standard approach to generate cells for an

AMR because it is very efficient and fast. In Table 4.4 we provide a simplified

version of our implementation of the algorithm.

First a few terms which are used in this section are described briefly. cut-

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 46

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Basic steps of volume expansion: The blue box shows the current
expanded volume. The red arrow indicates the major axis alignment of the
centerline. (a) first an important point that is not covered by a box is selected.
In (b), (d), (f), (h) the box is expanded perpendicular to the major axis
alignment so that all important points of the current slice are covered. In
(c), (e), (g) the box is expanded one step along the major axis alignment.
The volume expansion is stopped after (h) because the density is below a
threshold.

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 47

Figure 4.5: Volume expansion in 3D: First an important point is found at
the blue circle. Then the area is expanded in the plane perpendicular to the
axis alignment of the point, indicated by the arrow, to cover all important
points in that plane. Finally the volume is expanded (along dotted lines) as
long as the volume is over a certain density threshold.

point is used to store a point which defines the position of a cutting plane.

The tag histogram contains the number of important points on all slices

perpendicular to the points on every axis. For example, the entry for slice

number i parallel to the yz plane is given by

Syz(i) =
m∑

y=1

n∑

z=1

I(i, y, z) (4.8)

where m is the size of the box in y-direction and n is the size of the box

in z-direction. Further the Laplacian second derivative

∆yz(i) = −2 · Syz(i) + Syz(i− 1) + Syz(i + 1) (4.9)

is calculated for every entry in the histogram.

An inflection point occurs at a sign change of two neighboring ∆ entries.

The biggest inflection point is the inflection point with the highest absolute

difference between the two neighboring ∆ entries.

Figure 4.6 shows an example for the tag histogram. The
∑

entry contains

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 48

the number of important points for every slice (in this 2D example a slice

is either a row or column). The ∆ entry contains the Laplacian second

derivative. Each sign change of two neighboring entries of ∆ indicate an

inflection point. The biggest inflection point occurs between the 4th and the

5th column (the absolute difference between the two neighboring ∆ entries is

8) and is taken as the splitting index (blue line).

2

2

4

4

3

2

5

6

-2

2

-2

-1

0

4

-2

-7

4 5 6 6 2 2 2 1

-3 0 -1 -4 4 0 -1 0

∆ Σ

Σ

∆

Figure 4.6: Histogram values: The Sum
∑

and the discrete Laplacian ∆ are
calculated for every slice. An inflection point occurs at a sign change in ∆.
The biggest inflection point is taken as a splitting index (blue line).

The algorithm (see Table 4.4) starts at the coarsest refinement level and

creates meshes so that all important points are covered. A bounding box

of the whole volume is passed to the initial call of FindBoxesBR as boxin.

The procedure generates a list of non-overlapping boxes (boxesout) where each

of the boxes has a density which is bigger than a certain density-threshold

(Line 2) and all important points are covered by the boxes. First the bound-

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 49

FindBoxesBR(box boxin, boxlist boxesout)
1. Set boxnew = bounding box of boxin

2. If density d of boxnew < density-threshold
3. Calculate tag histogram for each dimension in boxnew

4. If ∃ zero histogram value in boxnew

5. Set cutpoint to assoc. zero value cell index
6. Else
7. Set cutpoint to assoc. inflection cell index
8. End If
9. Split boxnewinto boxleft, boxright at cutpoint
10. Call FindBoxesBR(boxleft, boxesout)
11. Call FindBoxesBR(boxright, boxesout)
12. Else add boxnew to boxesout

Table 4.4: Simplified version of our implementation of the Berger-Rigoutsos
Algorithm.

ing box of boxin is calculated and stored in boxnew (Line 1). If this bounding

box has a density over a certain density-threshold it will be added to the

output list boxesout (Line 12). If the density of the box is not high enough a

tag histogram will be computed (Line 3).

If the tag histogram contains an entry with a zero value (Line 4) the cut-

point will be set to the index of this entry (Line 5). If more than one zero

value entry exists the cutpoint will be set to the entry with the highest min-

imum distance to the bounding box. If no such entry is found the cutpoint

will be set to the biggest inflection point in the histogram (Line 7). After-

wards the current bounding box boxnew will be split at the cutpoint into two

boxes (Line 9). The function FindBoxesBR will be called for each of these

two new boxes (Lines 10 and 11).

Once all boxes are generated the algorithm will be repeated for every

box of the list boxesout with the next finer refinement level (if the current

refinement level is greater than one).

Figure 4.7 shows one step of the algorithm. In (a) the initial box boxin

is shown. In (b) the bounding box of the initial box is set (Line 1). Because

the density value of this box is below a certain density threshold the box has

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 50

to be split. The histogram contains one zero value entry inside the bounding

box so the cutpoint is set to this index (Line 5). In (c) the box is split into

two new boxes at the cutpoint (Line 9).

(a) (b) (c)

Figure 4.7: One step of the Signature Algorithm: (a) the blue box marks the
initial box. (b) the bounding box is set. (c) the box is split at an empty slice
into 2 new boxes.

4.3.3 Merging Meshes

After all meshes of one refinement level have been created both algorithms

try to merge small meshes. This is to reduce the overhead of the meshes itself

and of the sample points which are shared on common faces of neighboring

meshes.

First all boxes are sorted depending on their volume size. Then the

algorithm starts at the first (smallest) box and tries to merge it with any of

the following boxes. Two boxes can be merged if they do not overlap with

any other boxes of the same refinement level and if the volume density of the

new volume is above a certain density threshold. The density threshold for

merging two boxes should only be a little bit lower than the density threshold

for the mesh creation. If the threshold is too low the combined meshes will

have a low density and thus store many unimportant points. If the threshold

is higher than the creation density threshold then no or very few meshes will

be merged.

After the first box has been processed with all other boxes the same

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 51

procedure will be applied to the next box. The algorithm stops when all

boxes have been processed.

4.3.4 KD-Tree

Each mesh contains pointers to all refined meshes and one pointer to its

parent mesh if it exists. If a mesh contains many refined meshes a kd-tree

(see Section 3.5) structure is build. Each node (see Table 4.5) contains a

splitting plane which divides the meshes into a left and right subtree. Since

the grids do not overlap it is always possible to find a splitting plane between

two grids. A mesh which is cut by the splitting plane is inserted in both

subtrees. The splitting plane is inserted where the minimum of the number

of meshes which are completely to the left and to the right is the highest.

This guarantees a well-balanced tree and allows to find a refined mesh in

O(logn) where n is the number of refined meshes.

field name field type description
split-value integer the splitting value

split integer the splitting dimension
left kd-tree a kd-tree representing those grids to the

left of the splitting plane
right kd-tree a kd-tree representing those grids to the

right of the splitting plane
mesh mesh a pointer to the mesh of this leaf-node

Table 4.5: Kd-tree node values for AMR

4.4 Visualization

The Adaptive Meshes can be visualized with many volume visualization tech-

niques, such as CPR and DVR. All visualization techniques need to recon-

struct a value at an arbitrary position. Therefore the meshes which contain

the eight surrounding voxels of the current position have to be identified

because each mesh only stores the points which are not stored already in

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 52

a coarser mesh. Afterwards these eight voxels have to be interpolated to

reconstruct the value at the current position.

4.4.1 Finding the Current Mesh

To resample a point it is necessary to find the finest grid which is available

for this position. The pseudocode of this algorithm is shown in Table 4.6.

First a coarse grid which contains the point has to be found. If the current

grid of the last resampled position exists (Line 1) then the coarse grid will

be searched starting at the last grid. As long as the point is not inside the

last grid, the last grid is set to its parent grid (Line 2-4). If the grid of the

last resampled position does not exist than the coarsest grid is used as the

coarse grid (Line 6).

Starting at the coarse grid we search for the finest available grid inside

this coarse grid (Line 8). If a grid has a kd-tree of its children (Line 11) then

this tree is searched for a finer grid (Line 12). If a grid has no kd-tree then all

children are tested sequentially (Line 17-21). If a child grid which contains

the given point was found (Line 13 and 18 respectively) the function is called

recursively to search for a finer grid (Line 14 and 19 respectively) inside this

child grid. If no child grid contains the given point then the current mesh is

returned (Line 23).

4.4.2 Resampling

To get the value at a certain position (xcur, ycur, zcur) the eight closest voxels

have to be found. Starting at the finest available mesh with the refinement

level reflevel, the positions of the eight closest voxels are:

p0 = (xleft, yleft, zleft)

p1 = (xright, yleft, zleft)

p2 = (xleft, yright, zleft)

p3 = (xright, yright, zleft)

p4 = (xleft, yleft, zright)

p5 = (xright, yleft, zright)

p6 = (xleft, yright, zright)

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 53

GetCurrentMesh(point p)
1. If ∃ Meshlast

2. While point not inside Meshlast

3. Meshlast = parent of Meshlast

4. End While
5. Else
6. Meshlast = Meshcoarsest

7. End If
8. Meshlast = Call GetMesh(p) of Meshlast

10. Return Meshlast

GetMesh(point p)
11. If ∃ kd-tree
12. Set Mesh = Mesh of kd-tree leaf-node for point p
13. If p is inside Mesh
14. Return Call GetMesh(p) of Mesh
15. End If
16. Else
17. For all children
18. If p is inside of current child
19. Return Call GetMesh(p) of current child
20. End If
21. End For
22. End If
23. Return current mesh

Table 4.6: Simplified version of our algorithm for finding the finest available
mesh for a given position.

p7 = (xright, yright, zright)

where the left and right coordinates can be calculated as follows:

xleft = bxcur/reflevelc · reflevel

xright = xleft + reflevel

yleft = bycur/reflevelc · reflevel

yright = yleft + reflevel

zleft = bzcur/reflevelc · reflevel

CHAPTER 4. ADAPTIVE MESHES FOR LARGE DATASETS 54

zright = zleft + reflevel

A voxel (x, y, z) is stored in a mesh if the current mesh is the coarsest

mesh or if x mod plevel 6= 0 ∨ y mod plevel 6= 0 ∨ z mod plevel 6= 0

where plevel is the refinement level of the parent mesh. Starting at the finest

available mesh for the resampled position (see Section 4.4.1) all eight voxels

are tested if they are stored in this mesh. The value of the voxels which

are contained in this mesh are retrieved. As long as some voxel values are

missing this procedure is repeated recursively for the parent mesh.

The value at the position (xcur, ycur, zcur) can now be calculated as a

trilinear interpolation of the eight closest voxels.

Chapter 5

Implementation

Creativity without

implementation is

irresponsibility.

Ted Leavitt

We implemented our prototype in C++. Abstract classes for the main

objects were used which makes it easy to switch between different renderers

and volume data structures. Microsoft Visual C++ 6.0 was used as the

Integrated Development Environment (IDE). All graphical operations which

are needed for the rendering process are performed with OpenGL 1.2. The

non-commerical version 3.2.1 of Qt was used for the graphical user interface.

5.1 Class Overview

Figure 5.1 shows an overview of the most important classes, their relations

and their most important member functions. Only the function parameters

that are needed for the description of the functions are shown. Table 5.1

contains a description of the symbols used in the class overview.

55

CHAPTER 5. IMPLEMENTATION 56

Renderer

+ void Run()

+ void RenderImage()

void CastRay()

CPRRenderer MIPRenderer DVRRenderer

void CastRay() # void CastRay()# void CastRay()

+ void RenderImage()

Volume

SimpleVolume AMRVolume OctreeVolume

+ void GetSample(point Point3D)

+ void GetSampleWithGradient(

 point: Point3D, vecGradient: Vector3D)

- m_pMainMesh: Mesh * - m_pOctree: Octree *

Mesh OctreeNode

VolumeMask

- m_uRefinementLevel: int

- m_boundingBox: Box

- m_pParent: Mesh *

- m_vChildren: vector<Mesh>

+ void CreateChildren(

 volMask: VolumeMask)

- m_bLeaf: bool

- m_uLevel: int

- m_box: Box

- m_pChildren: vector<Mesh *>

+ void CreateOctree(

 volMask: VolumeMask)

KDTree

- m_pLeftTree: KDTree *

- m_pRightTree: KDTRee *

+ void CreateTree(

 vMeshes: vector<Mesh>)

+ void GetMesh(point: Point3D)

+ void MarkPoints()

+ void RateVolume(volume: Box,

 uLevel: int)

+ float GetVolumeDensity(volume: Box)

+ bool GetDensePoint(volume: Box)

+ void ExpandArea(volume: Box,

 uOrientation: int)

+ void ExpandVolume(volume: Box,

 uOrientation: int)

+ bool HasClearedPoint(volume: Box)

+ void ClearDensity(volume: Box)

+ void CreateHistogram(volume: Box,

 uLevel: int)

+ void GetInflectionPoint()

CenterLine

+ GetTangentAt(int uSlice)

Figure 5.1: Class overview showing the most important classes.

CHAPTER 5. IMPLEMENTATION 57

symbols description
+ public member
protected member
- private member

Italic virtual function

Table 5.1: Description of different symbols in class overview

5.2 Class Description

This section describes the classes shown in Figure 5.1 and its most important

methods.

5.2.1 Renderer

Renderer is an abstract class to render all available volumes. This class is

derived by any Direct Volume Renderer to generate images of the volumes.

Run

Run starts the rendering process for every available volume. In our appli-

cation it renders the image from the original volume and the data structure

based on Adaptive Mesh Refinement. When both images are rendered a

difference image is computed.

RenderImage

RenderImage performs ray-casting to generate a DVR image by calling the

virtual method CastRay for every single ray. The output image depends

on the current viewport parameters such as position, zoom and re-sample

distance.

5.2.2 CPRRenderer

The CPRRenderer class implements a Curved Planar Reformation renderer.

It overrides the method RenderImage because no ray-casting is needed.

CHAPTER 5. IMPLEMENTATION 58

5.2.3 MIPRenderer

MIPRenderer is a renderer implementation which overrides the method CastRay

to generate an DVR image with Maximum Intensity Projection.

5.2.4 DVRRenderer

DVRRenderer is a renderer implementation which overrides the method

CastRay to generate an DVR image with alpha compositing. It takes a

transfer function into account and evaluates the rendering equation using

the gradients of the sample points. The gradients of the Adaptive Mesh Re-

finement are precalculated. Thus, the resampling is very fast because the

gradient can be calculated with trilinear interpolation of the eight nearest

gradients. The gradients for rendering the whole volume have to be calcu-

lated on-the-fly because storing precalculated gradients for the whole volume

requires too much memory.

5.2.5 Volume

Volume is an abstract class that provides access to the volume data. The

data can be accessed by the following member functions which have to be

overridden by a specific volume implementation:

GetSample

GetSample returns the CT-data value at the given position.

GetSampleWithGradient

GetSampleWithGradient returns the CT-data value and the gradient value

at the given position.

5.2.6 SimpleVolume

SimpleVolume is a volume implementation which stores the whole volume in

a linear array in x-y-z order.

CHAPTER 5. IMPLEMENTATION 59

5.2.7 AMRVolume

AMRVolume stores only the important regions of the volume in an Adaptive

Mesh Refinement as described in Chapter 4. The member m pMainMesh is

a pointer to a Mesh with the coarsest resolution. It is the bounding box

of all important points and contains the pointers to the finer meshes. The

gradients are precalculated for every sample point. It is possible to also store

precomputed gradients with the data values as the AMR representation is

usually very small.

5.2.8 Mesh

Mesh represents one grid of the Adaptive Mesh Refinement. It stores the

actual data values with its gradients, the bounding box of the corresponding

region, the refinement level, and pointers to its parent and children meshes.

CreateChildren

CreateChildren creates the AMR with either the signature or growing algo-

rithm.

5.2.9 KDTree

KDTree is a kd-tree data structure to store a list of meshes in an efficient way.

Each kd-tree element contains a splitting plane and two pointers m pLeftTree

and m pRightTree to its left and right trees. If a kd-tree element is a leaf

node it contains a pointer to a mesh.

CreateTree

CreateTree creates the kd-tree data structure for the given meshes. It creates

a balanced tree.

CHAPTER 5. IMPLEMENTATION 60

GetMesh

GetMesh finds the Mesh which stores the given point. If no such point exists

no Mesh is returned.

5.2.10 OctreeVolume

OctreeVolume is a basic octree implementation of the volume. The octree

is subdivided until an octree element is homogenous (this means the octree

element is either empty or completely filled with important points) or the

octree element is below a certain size. This is to avoid too small octree

elements and reduce the overhead produced by each octree element.

5.2.11 OctreeNode

OctreeNode represents one octree element of the octree data structure. It

stores the corresponding bounding box, the current subdivision level, a flag

if this element contains data and pointers to its children elements. Only a

leaf element of the octree volume contains data points while the intermediate

elements only contain pointers to its children.

CreateOctree

CreateOctree creates the octree data structure so that all important points

are covered by an octree element.

5.2.12 VolumeMask

VolumeMask is a helper class used to generate the meshes for the signature

and growing algorithm.

MarkPoints

MarkPoints marks all points of the volume according to the distance to the

centerline. Furthermore, the major axis alignment, which is the maximum

component of the tangent of the centerline, is set for all important points.

CHAPTER 5. IMPLEMENTATION 61

RateVolume

RateVolume calculates the number of important points with an importance

higher than the given importance. Each point contains the number of im-

portant points from the origin to the point as described in Section 4.2.2.

GetVolumeDensity

GetVolumeDensity returns the ratio between the number of important points

and the size of the given volume. This ratio is used for both mesh generation

algorithms.

GetDensePoint

GetDensePoint finds an important point that is not covered by a mesh yet

and stores it in the parameter point. If no such point exits the method returns

false, otherwise it returns true.

ExpandArea

ExpandArea expands the given volume in the plane perpendicular to the

major axis alignment so that all adjacent important points in that plane are

covered by the volume.

ExpandVolume

ExpandVolume expands the given volume along the major axis alignment

step by step until the volume density falls below a certain threshold. The

volume can only be expanded if it does not overlap with any existing box. For

each newly added slice the volume is expanded with the method ExpandArea.

HasClearedPoint

HasClearedPoint returns true if the given volume has a point that is already

stored in an existing mesh. This method is used to avoid storing points in

multiple meshes because meshes are not allowed to overlap.

CHAPTER 5. IMPLEMENTATION 62

ClearDensity

ClearDensity marks all point of the given volume as cleared so that they

are not stored in any other meshes. Points at the border of the volume are

marked differently since neighbor meshes can share points at their common

faces.

CreateHistogram

CreateHistogram creates a histogram which contains the sum and discrete

Laplacian derivative for every slice of the given volume. This method is used

for the signature algorithm.

GetInflectionPoint

GetInflectionPoint returns the inflection point (see Section 4.3.2) of the pre-

vious calculated histogram.

5.2.13 CenterLine

CenterLine maintains the storage of a cubic B-spline by storing the control

points. It contains a control point with the radius of the aorta for every slice

of the volume.

GetTangentAt

GetTangentAt returns the tangent of the b-spline for the given z-position

of the volume. This is needed for marking the data when the major axis

alignment of the samples is set.

Chapter 6

Results

You always succeed in

producing a result.

Anthony Robbins

6.1 Dataset

For testing purposes we used a CTA dataset with a resolution of 512x512x264.

The coarsest mesh of our AMR data structure has a refinement level of four.

Therefore we extended the dataset to the size of 513x513x265 so that the

coarsest mesh can be aligned to the volume boundary. Since every sample

value needs two bytes the total size of the volume is 139.5 MB.

Furthermore, the centerline of the aorta was given as a center point and

the corresponding radius for each slice.

6.2 Mesh Density

We examined different density threshold values to find the best settings for

creation of the adaptive mesh structure with respect to the memory consump-

tion. Usually a higher volume density (i.e., higher percentage of important

points inside a mesh) results in less memory consumption and more meshes.

63

CHAPTER 6. RESULTS 64

More meshes are generated because the meshes are smaller to achieve the

desired volume density. This also means more total overhead since every

mesh has to store internal information (bounding box, pointers to children,

etc.) and neighboring meshes share the points at their common faces. Thus

it is desirable to keep the total number of meshes small.

The points inside the radius to the centerline are marked with high im-

portance (they need to be stored in full resolution) and the points inside two

times the radius to the centerline are marked with medium importance (they

need to be stored at least in half resolution). As a result, the theoretical

minimum size of the volume which only includes the marked data points is

246 KB. This is because every point with high importance needs 2 bytes (for

the CT data) and every point with medium importance needs 1/4 byte on

average (because only every second point is stored in each axial direction).

Especially higher volume density thresholds result in many small meshes

which generate a lot of overhead. We tried to reduce the number of small

meshes by combining the smallest grids as described in Section 4.3.3.

6.2.1 Mesh Density with Growing Algorithm

Figure 6.1 shows the memory consumption of the adaptive meshes for differ-

ent density thresholds with the Growing Algorithm (Section 4.3.1). The lines

in this Figure show the volume size for different volume density settings. For

the red line no mesh combination was used. For the green line the meshes

were combined with the same volume density threshold which was used for

the creation of the meshes. For the blue line the meshes were combined with

a volume density threshold that is 10 % lower than the volume density for

the mesh creation (for example, if a volume density threshold of 50 % is used,

the meshes were combined with a volume density threshold of 40 %). For a

volume density higher than 60% the mesh overhead gets bigger and bigger

and thus prevents any further reduction of the memory requirements. It can

also be seen that merging small meshes does not lead to the desired memory

reduction. Only for a high density the combined meshes sometimes result in

little less memory usage although this difference is hardly existent.

CHAPTER 6. RESULTS 65

20 30 40 50 60 70 80

400000

500000

600000

700000

800000

900000

000000

100000

200000

300000

400000

500000 no mesh combina-
tion

combine density =
creation density

combine density =
creation density -
0.1

density

400 KB

600 KB

800 KB

1000 KB

1200 KB

1400 KB

V
o
lu

m
e

S
iz

e
in

 b
y
te

s

Volume Density in %

20 30 40 50 60 70 80

Figure 6.1: Volume size with different density settings for the Growing Algo-
rithm.

The best result was achieved with 60% volume density and no mesh com-

bination. The memory size of this AMR structure is only 432 KB. 35.6 KB

of the 432 KB are used for the data structure itself (pointers and bounding

box), leaving 396.4 KB memory space for the samples.

6.2.2 Mesh Density with Signature Algorithm

In Figure 6.2 the memory consumption of the adaptive meshes for different

density thresholds with the Signature Algorithm (Section 4.3.2) has been

analyzed. Unlike with the Growing Algorithm, merging small meshes can

reduce the memory usage for a volume density with 60 % and higher. This is

because the Signature Algorithm produces much more meshes (see Figure 6.3)

and thus much more overhead as a consequence which can be reduced by

merging meshes.

The best result was achieved with 50% volume density and no mesh com-

bination. For this AMR structure 570 KB are needed. For a higher volume

density the overhead of the huge number of grids gets too big to allow any

further memory reduction.

CHAPTER 6. RESULTS 66

20 30 40 50 60 70 80

400000

500000

600000

700000

800000

900000

000000

100000

200000

300000

400000

500000 no mesh combina-
tion

combine density =
creation density

combine density =
creation density -
0.1

combine density =
creation density -
0.2

density

400 KB

600 KB

800 KB

1000 KB

1200 KB

1400 KB

V
o
lu

m
e

S
iz

e
in

 b
y
te

s

Volume Density in %

20 30 40 50 60 70 80

Figure 6.2: Volume size with different density settings for the Signature
Algorithm.

6.2.3 Algorithm Comparison

The Signature Algorithm generates much more meshes than the Growing

Algorithm (see Figure 6.3 and 6.4). The Growing Algorithm takes advantage

of the knowledge of the underlying data while the Signature Algorithm is

a general approach for AMR and needs more meshes to achieve the same

volume density.

As can be seen in Figure 6.5 the Growing Algorithm even stores more

points in full resolution which were marked for half resolution than the Sig-

nature Algorithm. So the Growing Algorithm can store more points while

keeping the total volume size smaller because it generates fewer meshes.

6.3 Image Quality

We compared the image quality of a CPR image rendered from the AMR data

structure to the same image rendered from the whole volume (i.e., all sample

values). The difference images in Figure 6.6 - Figure 6.9 show the difference

of these two images. A white pixel means that this pixel is completely equal

in both images. As a pixel in the difference image gets darker the difference

CHAPTER 6. RESULTS 67

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

200

400

600

800

1000

1200

1400

1600

Growing Al-
gorithm

Signature Al-
gorithm

400

800

1600

1200

T
o

ta
l

n
u

m
b

er
 o

f
m

es
h

es

0

Volume Density in %

20 30 40 50 60 70 80

Figure 6.3: Total number of meshes for Growing Algorithm and Signature
Algorithm.

between the rendered images grows. We used different settings for marking

the data points. The points are marked depending on their distance to the

centerline (see Section 4.2.1).

In Figure 6.6 the adaptive meshes store all points inside the radius to the

centerline in full resolution and all points inside two times the radius to the

centerline at least in half resolution. The remaining points will be stored at

least in a low resolution (every 4th point in each axis). As can be seen a lower

resolution leads to more artifacts. Obviously points inside meshes with full

resolution are resampled without artifacts. Figure 6.8 and Figure 6.9 do not

store any points in low resolution.

The strong artifacts on the upper and right side of the difference images

are due to the fact that the volume is enlarged for the AMR structure. Points

sampled at these borders are interpolated in the adaptive Meshes while the

same points are outside of the original volume. This effect is not crucial since

it only occurs at the boundaries of the volume.

Furthermore, strong artifacts occur at the boundaries of certain objects

which have a different data value range than its neighborhood. Since samples

are missing, the interpolation is visible due to the rapid change of the data

CHAPTER 6. RESULTS 68

Figure 6.4: AMR structure for different density settings with Growing Algo-
rithm and Signature Algorithm.

CHAPTER 6. RESULTS 69

0.2 0.3 0.4 0.5 0.6 0.7 0.8

00000

00000

00000

00000

00000

00000 Growing Al-
gorithm

Signature Al-
gorithm

200000

300000

500000

400000

n
u

m
b

er
 o

f
sa

m
p

le
s

100000

600000

Volume Density in %

20 30 40 50 60 70 80

Figure 6.5: Total number of points stored in high resolution although they
were marked with medium importance.

values. Except those objects very few artifacts are visible. Regions which are

stored in full resolution have no artifacts as can be seen in Figure 6.9 where

all points close to the centerline are stored in full resolution.

6.4 Data Structure Comparison

The total size of our dataset is 139.5 MB. For comparison with other data

structures the points have been marked as described in Section 6.2. The

easiest way to reduce the volume size is to use one bounding box to include

all important samples which results in a total size of 16 MB.

We also implemented an Octree data structure where each node is sub-

divided if it is not homogeneous (a node is homogeneous if it only contains

important samples or is empty). As in the adaptive meshes, neighboring

nodes share sample points at their common faces. This produces overhead

and makes it necessary to stop the subdivision of an octree node at a certain

subdivision level. The smallest size of this data structure was 1.5 MB with

a maximum of eight levels.

With our AMR implementation the size could be reduced to 432 KB

CHAPTER 6. RESULTS 70

which is only about 0.3 % of the original volume size (see Table 6.1 for a

comparison of the data structures).

data structure memory space
Mesh (total volume) 139.5 MB

Mesh (bounding box of aorta) 16 MB
Octree 1.5 MB
AMR 432 KB

Table 6.1: Memory consumption of CTA-dataset for several data structures.

Kähler et al [18] have also implemented an AMR which uses a Signature

Algorithm to generate the meshes. They optimized their data structure for

speed while our data structure is optimized for memory size. They store

the samples in textures which results in a loss of memory usage because

the texture size has to be a power of 2 in modern graphic cards. Sample

points are only stored in leaf nodes of the AMR hierarchy while our data

structure allows storage of samples in intermediate nodes. We can store

areas in different resolutions without producing any overhead for the data

because each grid only stores samples which are not already contained in

coarser grids.

6.5 Performance

With the Growing Algorithm the creation time of the AMR data structure

is almost constant for any volume density. With the Signature Algorithm

the creation time increases with a higher volume density threshold (or more

meshes respectively). This is due to the fact that the tag histogram (see

Section 4.3.2) is calculated for every mesh. Table 6.2 shows the creation

times on a Pentium 4 1800MHz with 512MB of RAM.

The rendering time for CPR, MIP, or DVR with the AMR data struc-

ture mainly depends on the size of the data structure. The more samples

are stored the more points have to be resampled which is the most costly

operation of the visualization process. See Table 6.3 for the specific render-

CHAPTER 6. RESULTS 71

volume density Growing Algorithm Signature Algorithm
10 % 1.7 sec 6.6 sec
20 % 1.5 sec 6.9 sec
30 % 1.3 sec 7.1 sec
40 % 1.3 sec 7.5 sec
50 % 1.3 sec 8.2 sec
60 % 1.3 sec 9.9 sec
70 % 1.3 sec 12.2 sec
80 % 1.3 sec 13.4 sec

Table 6.2: Creation time of the AMR data structure with the Growing Al-
gorithm and the Signature Algorithm on a Pentium 4 1800MHz with 512MB
of RAM.

ing times of a MIP on a Pentium 4 1800MHz with 512MB of RAM. The

rendering time for the MIP with the whole volume takes 13 seconds.

volume density Growing Algorithm Signature Algorithm
10 % 8.8 sec 6.0 sec
20 % 7.2 sec 4.5 sec
30 % 3.6 sec 3.5 sec
40 % 2.9 sec 3.1 sec
50 % 2.7 sec 2.7 sec
60 % 2.6 sec 2.7 sec
70 % 2.7 sec 2.5 sec
80 % 2.6 sec 2.5 sec

Table 6.3: Rendering time of a MIP with AMR data structure with the
Growing Algorithm and the Signature Algorithm on a Pentium 4 1800MHz
with 512MB of RAM.

CHAPTER 6. RESULTS 72

Figure 6.6: Points inside the radius to the centerline are stored in full reso-
lution, points inside two times the radius to the centerline are stored at least
in half resolution. Remaining points are stored at least in low resolution.

CHAPTER 6. RESULTS 73

Figure 6.7: Points inside two times the radius to the centerline are stored
in full resolution, points inside four times the radius to the centerline are
stored at least in half resolution. Remaining points are stored at least in low
resolution.

CHAPTER 6. RESULTS 74

Figure 6.8: Points inside the radius to the centerline are stored in full resolu-
tion, points inside four times the radius to the centerline are stored at least
in half resolution.

CHAPTER 6. RESULTS 75

Figure 6.9: Points inside four times the radius to the centerline are stored in
full resolution.

Chapter 7

Summary

Anyone who has never made

a mistake has never tried

anything new.

Albert Einstein

7.1 Introduction

The handling of very large datasets is a very important topic in volume

visualization. Especially in medical image processing Computed Tomography

(CT) scanning devices can create huge datasets. A CT scanner is a device

which generates a series of two-dimensional X-ray images which show the

internals of an object. These X-ray images are generated using an X-ray

source that rotates around the object. Several scans are progressively taken

while the object is passed through the scanning device. New technology

multi-slice CT scanners produce even higher resolution and more slices than

conventional scanners.

Angiography is a medical imaging technique that uses X-rays to visualize

blood filled structures, such as arteries, veins, and heart chambers. Because

blood has the same radiodensity as the surrounding tissues, a radiocontrast

agent (which absorbs X-rays) is injected to highlight vessels, enabling an-

76

CHAPTER 7. SUMMARY 77

giography. Angiography is commonly performed to identify vessel narrowing

and calcifications.

To investigate the arteries a sequence of 300 - 1500 (depending on the

region of interest) CT images are necessary. The acquisition of these CT

images usually takes 30 to 60 seconds. Due to the large amount of slices,

2D examination is a rather tedious and time consuming task. Therefore, ra-

diologists usually use the following two visualization techniques: Maximum

Intensity Projection and Curved Planar Reformation. With these visual-

ization methods the investigation of the arteries usually only takes a few

minutes.

The large amount of data, needed for CTA, presents a challenge for cur-

rent PC hardware. Therefore, it is very important to design memory efficient

data structures in order to handle these large datasets. These data struc-

tures should allow to leverage resources where they are really needed. For

example, in case of CTA only the aorta is of main interest. The surrounding

information is only needed as context information or not needed at all. This

part of the data, therefore, needs to be stored in a lower resolution or not

at all. Such a data structure, which allows to efficiently leverage resources,

enables that the data can easily be kept in main memory. Thus, efficient

processing of the data is possible.

7.2 Data Structures

A simple data structure like a Mesh is not sufficient since it cannot skip non-

important regions. Point based structures such as a kd-tree are only useful

if the important data is very sparse. Otherwise the storage of the position

for every sample takes too much space.

An Octree is a good choice because the data can be accessed very fast and

octree nodes can be created only where they are needed. Its disadvantage

is that the memory consumption mainly depends on the spatial distribution

of the objects of interest. An Adaptive Mesh is a Mesh which can adapt its

boundaries and store the data in a coarser resolution.

We implemented an Adaptive Mesh Refinement (AMR) which is able to

CHAPTER 7. SUMMARY 78

store only the objects of interest of the dataset and to keep additional data

available in a coarser resolution. This enables the possibility of storing huge

datasets by creating meshes only where they are needed, thus discarding

non-important samples.

7.3 Adaptive Meshes

Our AMR data structure operates on a CTA dataset. The dataset contains

the segmentation information for the aorta. The aorta is characterized by a

centerline and a radius for the control points of the centerline. The radius

defines the thickness of the aorta at a given point. The algorithms in the

following sections can be applied to any dataset where an object of interest

is described by a centerline.

For simplicity reasons the following descriptions are only for two dimen-

sions. Nevertheless they can be easily extended to 3D. We implemented the

AMR in a way that the resolution of each mesh has to be a power of two.

A resolution of n means that only every nth sample in each axial direction

is stored. Our Adaptive Meshes are stored in a grid-aligned format, thus

neighboring grids share data values at their common faces. The coarsest grid

stores every point according to its resolution. Finer grids only store points

that are not already stored in any coarser grid. As can be seen in Figure 7.1,

the outer grid is the coarsest grid of the AMR structure with a cell width

of two and stores all samples according to its resolution (green points). The

inner grid (orange box) has a cell width of one but stores only samples which

are not already stored in the outer grid (red points). This offers the possi-

bility to store multiple resolution levels without generating any overhead for

the data.

The sample points of each grid are stored in a one-dimensional array. Each

grid is defined by the two points pmin (origin of the grid), pmax (endpoint of

the grid) and the refinement level reflevel. reflevel defines the cell width

for all axial directions. plevel is the refinement level of the parent mesh

(plevel = reflevel · 2). The relative position prel inside a grid of an absolute

point pabs is calculated as

CHAPTER 7. SUMMARY 79

Figure 7.1: AMR implementation: green points are stored in the outer
(coarser) mesh, red points are stored in the inner (finer) mesh

prel = (pabs − pmin)/reflevel (7.1)

For the coarsest grid level the address of the relative position in the data

array is simply given as

addr = prel,y · ((pmax,x − pmin,x)/reflevel) + prel,x (7.2)

For a refined grid the address of a position in the one-dimensional array

is

addr = b((prel,y + 1)/2)c · s1 + b(prel,y/2)c · s2 + bprel,x/(pmax,x − pmin,x) · ssyc
(7.3)

where s1 is the number of points of every other slice starting at the first

slice, s2 is the number of points of every other slice starting at the second

slice and the index sy in ssy is calculated as sy = prel,y mod 2 + 1. The

computations of s1 and s2 are shown in Table 7.1 and Table 7.2 respectively.

CHAPTER 7. SUMMARY 80

case s1
pmin,x mod plevel = 0 ∧ bpmax,x − pmin,x/plevelc
pmin,y mod plevel = 0

pmin,x mod plevel 6= 0 ∧ b(pmax,x − pmin,x + 1)/plevelc
pmin,y mod plevel = 0

pmin,x mod plevel = 0 ∧ (pmax,x − pmin,x)/reflevel + 1
pmin,y mod plevel 6= 0

pmin,x mod plevel 6= 0 ∧ (pmax,x − pmin,x)/reflevel + 1
pmin,y mod plevel 6= 0

Table 7.1: First slice size for different grid alignments

case s2
pmin,x mod plevel = 0 ∧ (pmax,x − pmin,x)/reflevel + 1
pmin,y mod plevel = 0

pmin,x mod plevel 6= 0 ∧ (pmax,x − pmin,x)/reflevel + 1
pmin,y mod plevel = 0

pmin,x mod plevel = 0 ∧ bpmax,x − pmin,x/plevelc
pmin,y mod plevel 6= 0

pmin,x mod plevel 6= 0 ∧ b(pmax,x − pmin,x + 1)/plevelc
pmin,y mod plevel 6= 0

Table 7.2: Second slice size for different grid alignments

7.3.1 Marking Data

We introduce three different types of importance: high importance, medium

importance and low importance. Areas marked with high importance need

to be stored in a grid with a cell width of one which corresponds to the

highest possible resolution. Areas marked with medium importance need to

be stored in a grid with a cell width of at least two. Finally, areas marked

with low importance need to be stored in a grid with a least a cell width of

four.

First of all the data has to be categorized so that each sample point

has a specific importance. According to the importance an appropriate grid

resolution is chosen. All points that are close to the centerline (path of the

object of interest) are very important which means that these points must

CHAPTER 7. SUMMARY 81

be stored in full resolution in the Adaptive Meshes. The points which are

farther away but still within a certain range to the centerline have medium

importance, therefore these points are stored at least in half resolution (every

second point in each axis has to be stored).

Figure 7.2 illustrates how the samples are categorized. Thick points are

marked as very important because they are close to the centerline (red dashed

line). Thin points are marked with medium importance because they are

farther away but still within a certain range to the centerline. All remaining

points are not marked at all. Alternatively they could be marked with low

importance to keep them in the lowest available resolution.

Figure 7.2: Marked data: importance of samples is set according to distance
to the centerline (red). Thick points will be stored in full resolution, thin
points will be stored in half resolution or higher.

Furthermore each sample point is assigned the major axis alignment of

the tangent at the corresponding point on the centerline. The major axis

alignment is the component of the tangent vector with the highest magni-

tude. The major axis alignment is needed for the Growing Algorithm (see

Section 7.3.3).

CHAPTER 7. SUMMARY 82

7.3.2 Calculation of Volume Density

In this section we explain how the volume density d is calculated. The vol-

ume density defines the percentage of important points in a volume. It is

needed for the Growing Algorithm and the Signature Algorithm to deter-

mine if a volume requires further subdivision and can be expanded further

respectively. For easier understanding the following explanations are made

for areas instead of volumes. Furthermore, the volume density refers to a

specific importance level. The important points are all points which have

the specified importance or higher. For example, if the importance level is

medium importance then all points with medium or high importance are

called important points.

In order to quickly determine the number of important points for any

given area a summed area table is build. We refer to an entry of the summed

area table as D(x, y). The summed area table contains the number of im-

portant points from (0, 0) to any point (x, y) of the whole area.

D(x,y) =
i≤x∑

i=0

j≤y∑

j=0

I(i, j) (7.4)

where I(x,y) returns 1 if the point at the position (x,y) is important and

0 otherwise.

The summed area table is calculated with dynamic programming with

the following formula:

D(x,y) = I(x, y) + D(x−1,y) + D(x,y−1) −D(x−1,y−1) (7.5)

The number of important points for the boundaries with x = 0 or y = 0

have to be calculated separately before.

The number of important points for any area from pmin to pmax, where the

entry of the summed area table for each corner is given by Di (see Figure 7.3),

can be calculated as

D = D3 −D2 −D1 + D0 (7.6)

CHAPTER 7. SUMMARY 83

D2

D3

D0

D1

(0, 0)
X

Y

Figure 7.3: Summed area table: Table contains number of important points
for all areas from origin to any point.

The density d of an area is the ratio between the number of important

points and the size of the area:

d = D/((pmax,x − pmin,x) · (pmax,y − pmin,y)) (7.7)

7.3.3 Mesh Generation

We present two different algorithms for clustering cells into axis-aligned re-

gions. The algorithms try to create meshes that have a density d over a

certain density threshold value. This guarantees that the whole AMR stores

at least a certain amount of important samples in every mesh. The higher the

density threshold is set, the more meshes will be generated. Thus a higher

density threshold usually results in less memory consumption as long as the

meshes do not get too small and produce too much overhead (for the mesh

information and the sample points which are shared along the common faces

of two neighboring meshes). The summed volume table is build for both

CHAPTER 7. SUMMARY 84

algorithms for fast computation of the volume density of any volume.

Growing Algorithm

The Growing Algorithm (see Table 7.3) starts at the coarsest refinement

level. A bounding box of all points with an importance (low, medium, or

high) is calculated and passed to the initial call of FindBoxesEXP as boxin.

The algorithm creates grids so that all important points (points with an

importance according to the current refinement level or higher) are covered,

and stores them in boxesout. As long as there is an important point inside

boxin which is not covered by a box of boxesout yet (Line 1), this point (Line 2)

is used for the initial position of a new box boxnew (Line 3). This new box gets

expanded (Line 4) and the expanded box is added to boxesout (Line 5). The

points inside this box are cleared so that they will not be stored by further

meshes and thus overlapping grids are avoided (Line 6). The boundaries of

the box will be marked separately to signal these points as marked but also

to allow other meshes to include these points. The procedure is repeated

recursively with the next finer refinement level for every refined mesh of

boxesout (if the mesh has a refinement level of 2 or lower).

To expand a volume, the area of the initial cell is first expanded in the

plane perpendicular to the major axis alignment (see Section 4.2.1), and

stored in boxbest (Line 8). An area can only be expanded as long as it is

inside boxin and does not contain cleared points (this avoids overlapping

grids). The box gets expanded by one slice along the major axis alignment,

in the direction where the new box has the highest volume density (Line 11).

Afterwards, the area of the newly acquired slice is expanded again to include

all adjacent important points in this slice (Line 12). These steps are repeated

until the volume density of the expanded box is below a density threshold

(Line 13). The volume expansion can also be seen in the 2D example of

Figure 7.4.

CHAPTER 7. SUMMARY 85

FindBoxesEXP(box boxin, boxlist boxesout)
1. While not all important points inside boxin are covered by boxesout

2. fpoint = Find point inside boxin which is not already stored
3. Set boxnew to cell of fpoint
4. Call ExpandVolume(boxin, boxnew)
5. Add boxnew to boxesout

6. Clear points inside boxnew

7. End While

ExpandVolume(box boxin, box boxnew)
8. boxbest = Expand Area of boxnew

9. Repeat
10. boxnew = boxbest

11. boxbest = Expand Volume boxbest by one slice
12 boxbest = Expand Area of boxbest

13. Until density d of boxbest < density-threshold

Table 7.3: Simplified version of our implementation of the Growing Algo-
rithm.

Signature Algorithm

The Signature Algorithm was proposed by Berger and Rigoutsos [6] and

is adopting signature-based methods used in computer vision and pattern

recognition. It has become the standard approach to generate cells for an

AMR because it is very efficient and fast. In Table 7.4 we provide a simplified

version of our implementation of the algorithm.

First a few terms which are used in this section are described briefly. cut-

point is used to store a point which defines the position of a cutting plane.

The tag histogram contains the number of important points on all slices

perpendicular to the points on every axis. For example, the entry for slice

number i parallel to the yz plane is given by

Syz(i) =
m∑

y=1

n∑

z=1

I(i, y, z) (7.8)

where m is the size of the box in y-direction and n is the size of the box

CHAPTER 7. SUMMARY 86

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.4: Basic steps of volume expansion: The blue box shows the current
expanded volume. The red arrow indicates the major axis alignment of the
centerline. (a) first an important point that is not covered by a box is selected.
In (b), (d), (f), (h) the box is expanded perpendicular to the major axis
alignment so that all important points of the current slice are covered. In
(c), (e), (g) the box is expanded one step along the major axis alignment.
The volume expansion is stopped after (h) because the density is below a
threshold.

CHAPTER 7. SUMMARY 87

in z-direction. Further the Laplacian second derivative

∆yz(i) = −2 · Syz(i) + Syz(i− 1) + Syz(i + 1) (7.9)

is calculated for every entry in the histogram.

An inflection point occurs at a sign change of two neighboring ∆ entries.

The biggest inflection point is the inflection point with the highest absolute

difference between the two neighboring ∆ entries.

Figure 7.5 shows an example for the tag histogram. The
∑

entry contains

the number of important points for every slice (in this 2D example a slice

is either a row or column). The ∆ entry contains the Laplacian second

derivative. Each sign change of two neighboring entries of ∆ indicate an

inflection point. The biggest inflection point occurs between the 4th and the

5th column (the absolute difference between the two neighboring ∆ entries is

8) and is taken as the splitting index (blue line).

FindBoxesBR(box boxin, boxlist boxesout)
1. Set boxnew = bounding box of boxin

2. If density d of boxnew < density-threshold
3. Calculate tag histogram for each dimension in boxnew

4. If ∃ zero histogram value in boxnew

5. Set cutpoint to assoc. zero value cell index
6. Else
7. Set cutpoint to assoc. inflection cell index
8. End If
9. Split boxnewinto boxleft, boxright at cutpoint
10. Call FindBoxesBR(boxleft, boxesout)
11. Call FindBoxesBR(boxright, boxesout)
12. Else add boxnew to boxesout

Table 7.4: Simplified version of our implementation of the Berger-Rigoutsos
Algorithm.

The algorithm (see Table 7.4) starts at the coarsest refinement level and

creates meshes so that all important points are covered. A bounding box

of the whole volume is passed to the initial call of FindBoxesBR as boxin.

The procedure generates a list of non-overlapping boxes (boxesout) where each

CHAPTER 7. SUMMARY 88

2

2

4

4

3

2

5

6

-2

2

-2

-1

0

4

-2

-7

4 5 6 6 2 2 2 1

-3 0 -1 -4 4 0 -1 0

∆ Σ

Σ

∆

Figure 7.5: Histogram values: The Sum
∑

and the discrete Laplacian ∆ are
calculated for every slice. An inflection point occurs at a sign change in ∆.
The biggest inflection point is taken as a splitting index (blue line).

of the boxes has a density which is bigger than a certain density-threshold

(Line 2) and all important points are covered by the boxes. First the bound-

ing box of boxin is calculated and stored in boxnew (Line 1). If this bounding

box has a density over a certain density-threshold it will be added to the

output list boxesout (Line 12). If the density of the box is not high enough a

tag histogram will be computed (Line 3).

If the tag histogram contains an entry with a zero value (Line 4) the cut-

point will be set to the index of this entry (Line 5). If more than one zero

value entry exists the cutpoint will be set to the entry with the highest min-

imum distance to the bounding box. If no such entry is found the cutpoint

will be set to the biggest inflection point in the histogram (Line 7). After-

wards the current bounding box boxnew will be split at the cutpoint into two

CHAPTER 7. SUMMARY 89

boxes (Line 9). The function FindBoxesBR will be called for each of these

two new boxes (Lines 10 and 11). One step of the algorithm can be seen in

Figure 7.6.

Once all boxes are generated the algorithm will be repeated for every

box of the list boxesout with the next finer refinement level (if the current

refinement level is greater than one).

(a) (b) (c)

Figure 7.6: One step of the Signature Algorithm: (a) the blue box marks the
initial box. (b) the bounding box is set. (c) the box is split at an empty slice
into 2 new boxes.

7.3.4 Visualization

The Adaptive Meshes can be visualized with many volume visualization tech-

niques, such as CPR and DVR. All visualization techniques need to recon-

struct a value at an arbitrary position. Therefore the meshes which contain

the eight surrounding voxels of the current position have to be identified

because each mesh only stores the points which are not stored already in

a coarser mesh. Afterwards those eight voxels have to be interpolated to

reconstruct the value at the current position.

Resampling

To get the value at a certain position (xcur, ycur, zcur) the eight closest voxels

have to be found. First, the finest available mesh which contains this position

has to be identified. Starting at this mesh, which has the refinement level

CHAPTER 7. SUMMARY 90

reflevel, the positions of the eight closest voxels are:

p0 = (xleft, yleft, zleft)

p1 = (xright, yleft, zleft)

p2 = (xleft, yright, zleft)

p3 = (xright, yright, zleft)

p4 = (xleft, yleft, zright)

p5 = (xright, yleft, zright)

p6 = (xleft, yright, zright)

p7 = (xright, yright, zright)

where the left and right coordinates can be calculated as follows:

xleft = bxcur/reflevelc · reflevel

xright = xleft + reflevel

yleft = bycur/reflevelc · reflevel

yright = yleft + reflevel

zleft = bzcur/reflevelc · reflevel

zright = zleft + reflevel

A voxel (x, y, z) is stored in a mesh if the current mesh is the coarsest

mesh or if x mod plevel 6= 0 ∨ y mod plevel 6= 0 ∨ z mod plevel 6= 0

where plevel is the refinement level of the parent mesh. Starting at the finest

available mesh for the resampled position all eight voxels are tested if they

are stored in this mesh. The value of the voxels which are contained in this

mesh are retrieved. As long as some voxel values are missing this procedure

is repeated recursively for the parent mesh.

The value at the position (xcur, ycur, zcur) can now be calculated as a

trilinear interpolation of the eight closest voxels.

CHAPTER 7. SUMMARY 91

7.4 Results

7.4.1 Dataset

For testing purposes we used a CTA dataset with a resolution of 512x512x264.

The coarsest mesh of our AMR data structure has a refinement level of four.

Therefore we extended the dataset to the size of 513x513x265 so that the

coarsest mesh can be aligned to the volume boundary. Since every sample

value needs two bytes the total size of the volume is 139.5 MB.

7.4.2 Mesh Density

We examined different density threshold values to find the best settings for

creation of the adaptive mesh structure in respect to the memory consump-

tion. More meshes are generated because the meshes are smaller to achieve

the desired volume density. This also means more total overhead since every

mesh has to store internal information (bounding box, pointers to children,

etc.) and neighboring meshes share the points at their common faces. Thus

it is desirable to keep the total number of meshes small.

The points inside the radius to the centerline are marked with high im-

portance (they need to be stored in full resolution) and the points inside two

times the radius to the centerline are marked with medium importance (they

need to be stored at least in half resolution).

Algorithm Comparison

With the Growing Algorithm the best result was achieved with 60% volume

density. The memory size of this AMR structure is only 432 KB. With the

Signature Algorithm the memory size could only be reduced to 570 KB with

a volume density of 50% (see Figure 7.7).

Figure 7.8 shows that the Signature Algorithm generates much more

meshes than the Growing Algorithm. The Growing Algorithm takes advan-

tage of the knowledge of the underlying data while the Signature Algorithm

is a general approach for AMR and needs more meshes to achieve the same

mesh density.

CHAPTER 7. SUMMARY 92

0.2 0.3 0.4 0.5 0.6 0.7 0.8

400000

500000

600000

700000

800000

900000

1000000

Growing Al-
gorithm

Signature Al-
gorithm

400 KB

600 KB

800 KB

1000 KB

900 KB

700 KB

V
o

lu
m

e
S

iz
e

in
 b

y
te

s

500 KB

Volume Density in %

20 30 40 50 60 70 80

Figure 7.7: Volume size with different density settings.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

200

400

600

800

1000

1200

1400

1600

Growing Al-
gorithm

Signature Al-
gorithm

400

800

1600

1200

T
o

ta
l

n
u

m
b

er
 o

f
m

es
h

es

0

Volume Density in %

20 30 40 50 60 70 80

Figure 7.8: Total number of meshes for Growing Algorithm and Signature
Algorithm.

On a Pentium 4 1800MHz with 512MB of RAM the creation time of

the AMR data structure with a volume density of 60 % is 1.3 sec with the

Growing Algorithm and 9.9 sec with the Signature Algorithm. The rendering

CHAPTER 7. SUMMARY 93

time for a MIP with the AMR data structure with 60 % volume density is

2.7 sec. For the whole volume the rendering time for a MIP is 13 seconds.

7.4.3 Image Quality

We compared the image quality of a CPR image rendered from the AMR

data structure to the same image rendered from the whole volume (i.e., all

sample values). The difference image in Figure 7.9 shows the difference of

these two images. A white pixel means that this pixel is completely equal

in both images. As a pixel in the difference image gets darker the difference

between the rendered images grows. We used different settings for marking

the data points. The points are marked dependent on their distance to the

centerline (see Section 7.3.1).

In Figure 7.9 the adaptive meshes store all points inside the radius to the

centerline in full resolution and all points inside two times the radius to the

centerline at least in half resolution. The remaining points will be stored at

least in a low resolution (every 4th point in each axis). As can be seen a lower

resolution leads to more artifacts. Obviously points inside meshes with full

resolution are resampled without artifacts.

The strong artifacts on the upper and right side of the difference images

are due to the fact that the volume is enlarged for the AMR structure. Points

sampled at these borders are interpolated in the adaptive Meshes while the

same points are outside of the original volume. This effect is not crucial since

it only occurs at the boundaries of the volume.

Further strong artifacts occur at the boundaries of certain objects which

have a different data value range than its neighborhood. Since samples are

missing, the interpolation is visible due to the rapid change of the data values.

Except those objects very few artifacts are visible.

7.4.4 Data Structure Comparison

The total size of our dataset is 139.5 MB. For comparison with other data

structures the points have been marked as described in Section 7.4.2. The

CHAPTER 7. SUMMARY 94

easiest way to reduce the volume size is to use one bounding box to include

all important samples which results in a total size of 16 MB.

We also implemented an Octree data structure where each node is sub-

divided if it is not homogeneous (a node is homogeneous if it only contains

important samples or is empty). As in the adaptive meshes, neighboring

nodes share sample points at their common faces. This produces overhead

and makes it necessary to stop the subdivision of an octree node at a certain

subdivision level. The smallest size of this data structure was 1.5 MB with

a maximum of eight levels.

With our AMR implementation the size could be reduced to 432 KB

which is only about 0.3 % of the original volume size (see Table 7.5 for a

comparison of the data structures).

data structure memory space
Mesh (total volume) 139.5 MB

Mesh (bounding box of aorta) 16 MB
Octree 1.5 MB
AMR 432 KB

Table 7.5: Memory consumption of CTA-dataset for several data structures.

Kähler et al [18] have also implemented an AMR which uses a Signature

Algorithm to generate the meshes. They optimized their data structure for

speed while our data structure is optimized for memory size. They store

the samples in textures which results in a loss of memory usage because

the texture size has to be a power of 2 in modern graphic cards. Sample

points are only stored in leaf nodes of the AMR hierarchy while our data

structure allows storage of samples in intermediate nodes. We can store

areas in different resolutions without producing any overhead for the data

because each grid only stores samples which are not already contained in

coarser grids.

CHAPTER 7. SUMMARY 95

Figure 7.9: Points inside the radius to the centerline are stored in full reso-
lution, points inside two times the radius to the centerline are stored at least
in half resolution. Remaining points are stored at least in low resolution.

Acknowledgements

hAS aNYONE sEEN MY

cAPSLOCK kEY?.

Spike Donner

This thesis was written at UC Davis, CA and was only possible due to

the encouragement of the master, Prof. Eduard Gröller, and his relations to

the outstanding IDAV visualization group in Davis. Many thanks to Prof.

Ken I. Joy for supervising me while I was in Davis, giving me the possibility

to participate in many meetings and seminars and making a cubicle available

for me. I sincerely thank my supervisor Sören Grimm for his encouragement

and support while writing this thesis and giving me regularly feedback. Many

thanks to Chris Co for his tremendous support and helping me with almost

any problem I encountered.

I’m also very grateful for the financial support of my parents as well as

the scholarships from the NÖ Landesakademie and TU-Wien.

96

Bibliography

[1] http://www.rx-groeninge.be/wat is nieuw.htm.

[2] J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM,

23(4):214–229, 1980.

[3] M. Bentum. Interactive Visualization of Volume Data. PhD thesis,

University of Twente, 1995.

[4] M. Berger and P. Colella. Local adaptive mesh refinement for shock

hydrodynamics. 82:64–84, May 1989. Lawrence Livermore Laboratory

Report No. UCRL-97196.

[5] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial

differential equations. 53:484–512, March 1984.

[6] M. Berger and I. Rigoutsos. An algorithm for point clustering and grid

generation. IEEE Trans. Sys. Man. & Cyber., 21(5):1278–1286, Septem-

ber/October 1992. NYU Technical Report 501, April, 1990.

[7] J. F. Blinn. Models of light reflection for computer synthesized pic-

tures. In SIGGRAPH ’77: Proceedings of the 4th annual conference

on Computer graphics and interactive techniques, pages 192–198, New

York, NY, USA, 1977. ACM Press.

[8] K. R. Castleman. Digital Image Processing. Prentice Hall, Englewood

Cliffs, NJ, USA, 1996.

97

BIBLIOGRAPHY 98

[9] H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Crawford, and B. C.

Teeter. Two algorithms for the reconstruction of surfaces from tomo-

grams. Medical Physics, 15(3):320–327, 1988.

[10] R. L. Cook and K. E. Torrance. A reflectance model for computer

graphics. In SIGGRAPH ’81: Proceedings of the 8th annual conference

on Computer graphics and interactive techniques, pages 307–316, New

York, NY, USA, 1981. ACM Press.

[11] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In

SIGGRAPH ’88: Proceedings of the 15th annual conference on Com-

puter graphics and interactive techniques, pages 65–74. ACM Press,

1988.

[12] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer

graphics (2nd ed. in C): principles and practice. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1996.

[13] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for

finding best matches in logarithmic expected time. ACM Transactions

on Mathematical Software, 3(3):209–226, September 1977.

[14] M. E. Goss. An adjustable gradient filter for volume visualization image

enhancement. In Proceedings of Graphics Interface ’94, pages 67–74,

Banff, Alberta, Canada, 1994.

[15] P. Hanrahan and W. Krueger. Reflection from layered surfaces due to

subsurface scattering. In Proc. of SIGGRAPH-93: Computer Graphics,

pages 165–174, Anaheim, CA, 1993.

[16] G. T. Herman and H. K. Liu. Three-dimensional display of human

organs from computed tomograms. Computer Graphics and Image Pro-

cessing, 9(1):1–21, January 1979.

[17] K. H. Höhne and R. Bernstein. Shading 3d-images from CT using gray-

level gradients. IEEE Transactions on Medical Imaging, 5(1):45–47,

March 1986.

BIBLIOGRAPHY 99

[18] R. Kähler, M. Simon, and H.-C. Hege. Interactive volume rendering

of large data sets using adaptive mesh refinement hierarchies. IEEE

Transactions on Visualization and Computer Graphics, 9(3):341–351,

2003.

[19] A. Kanitsar. Advanced visualization techniques for vessel investigation.

Master’s thesis, University of Technology Vienna, Institute of Comput-

ergraphics and Algorithm, March 2001.

[20] A. Kanitsar, D. Fleischmann, R. Wegenkittl, P. Felkel, and Meister E.

Gröller. CPR - Curved Planar Reformation. In IEEE Visualization

2002, pages 37–44, October 2002.

[21] A. Kanitsar, D. Fleischmann, R. Wegenkittl, D. Sandner, P. Felkel, and

E. Gröller. Computed tomography angiography: a case study of periph-

eral vessel investigation. In VIS ’01: Proceedings of the conference on

Visualization ’01, pages 477–480. IEEE Computer Society, 2001.

[22] E. Keppel. Approximation complex surfaces by triangulation of contour

lines. IBM Journal of Research and Development, 19(1):2–11, 1975.

[23] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp

factorization of the viewing transformation. In SIGGRAPH ’94: Pro-

ceedings of the 21st annual conference on Computer graphics and inter-

active techniques, pages 451–458. ACM Press, 1994.

[24] D. Laur and P. Hanrahan. Hierarchical splatting: a progressive refine-

ment algorithm for volume rendering. In SIGGRAPH ’91: Proceedings

of the 18th annual conference on Computer graphics and interactive tech-

niques, pages 285–288. ACM Press, 1991.

[25] M. Levoy. Display of surfaces from volume data. IEEE Comput. Graph.

Appl., 8(3):29–37, 1988.

[26] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d

surface construction algorithm. In SIGGRAPH ’87: Proceedings of the

BIBLIOGRAPHY 100

14th annual conference on Computer graphics and interactive techniques,

pages 163–169. ACM Press, 1987.

[27] M. Galanski M. Prokop. Spiral and Multislice Computed Tomography of

the Body. Stuttgart - New York: Thieme Verlag, 2003.

[28] S. R. Marschner and R. Lobb. An evaluation of reconstruction filters

for volume rendering. In IEEE Visualization, pages 100–107, 1994.

[29] M. Meißner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A Practical

Evaluation of Four Popular Volume Rendering Algorithms. In Proc. of

ACM Symposium on Volume Visualization, 2000.

[30] L. Mroz. Real-Time Volume Visualization on Low-End Hardware. PhD

thesis, Institute of Computer Graphics and Algorithms, Vienna Univer-

sity of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria,

2001.

[31] L. Mroz and H. Hauser. Rtvr: a flexible java library for interactive

volume rendering. In VIS ’01: Proceedings of the conference on Visual-

ization ’01, pages 279–286. IEEE Computer Society, 2001.

[32] N.R. Pal and S.K. Pal. A review on image segmentation techniques.

Pattern Recognition, 26(9):1277–1294, 1993.

[33] B. T. Phong. Illumination for computer generated pictures. Commun.

ACM, 18(6):311–317, 1975.

[34] T. Porter and T. Duff. Compositing digital images. 18(3):253–259, July

1984.

[35] H. Qu and A. E. Kaufman. O-buffer: A framework for sample-based

graphics. IEEE Trans. Vis. Comput. Graph., 10(4):410–421, 2004.

[36] P. Sabella. A rendering algorithm for visualizing 3d scalar fields. SIG-

GRAPH ’88: Proceedings of the 15th annual conference on Computer

graphics and interactive techniques, 22(4):51–58, 1988.

BIBLIOGRAPHY 101

[37] C. Schlick. A fast alternative to phong’s specular shading model. In

Graphics gems IV, pages 385–387. Academic Press, 1994.

[38] P. Shirley and A. A. Tuchman. Polygonal approximation to direct scalar

volume rendering. In Proceedings San Diego Workshop on Volume Vi-

sualization, Computer Graphics, volume 24, pages 63–70, 1990.

[39] I. Sobel. An isotropic 3x3x3 volume gradient operator. Unpublished

manuscript, May 1995.

[40] M. Sramek. Interactive segmentation of tissues for medical imaging.

Czech Pattern Recognition Workshop ’93, pages 164–171, 1993.

[41] J. Sweeney and K. Mueller. Shear-warp deluxe: the shear-warp algo-

rithm revisited. In VISSYM ’02: Proceedings of the symposium on Data

Visualisation 2002, pages 95–ff, Aire-la-Ville, Switzerland, Switzerland,

2002. Eurographics Association.

[42] C. Upson and M. Keeler. V-buffer: Visible volume rendering. In SIG-

GRAPH ’88: Proceedings of the 15th annual conference on Computer

graphics and interactive techniques, pages 59–64. ACM Press, 1988.

[43] L. Westover. Footprint evaluation for volume rendering. In SIGGRAPH

’90: Proceedings of the 17th annual conference on Computer graphics

and interactive techniques, pages 367–376. ACM Press, 1990.

List of Figures

2.1 Multi-slice CT scanner: X-ray tube rotation to simultaneously

acquire several slices [1]. 4

2.2 Two-dimensional sampling in the space domain (top) and the

frequency domain (bottom) [28]. 10

2.3 Vectors for Local Illumination Models. V is the vector towards

the viewport and L is the vector towards the light source. N

is the surface normal and H the halfway vector between L and

V. R is the reflected light vector L. 13

2.4 Raycasting: Rays are shot from the image plane into object-

space. The rays are sampled at an equi-spaced distance (red

circles). 15

2.5 Volume dataset rendered with a Maximum Intensity Projection. 17

2.6 Volume dataset rendered with ray-casting using alpha com-

positing and shading. 18

2.7 Splatting: Samples are projected from object-space to the im-

age plane. 19

2.8 Parallel projection using shear-warp factorization of the view-

ing transformation. Parts of this image are from [30]. 20

2.9 Different CPR types: (a) Projected CPR, (b) Stretched CPR,

(c) Straightened CPR [20] . 21

2.10 Volume dataset rendered with a Curved Planar Reformation . 22

3.1 Trilinear interpolation: A value inside the cell is resampled by

a weighted sum of all eight voxels. 27

3.2 Quadtree: Example of a quadtree subdivision. 28

102

LIST OF FIGURES 103

3.3 Samples at the boundary between two filled quadtree nodes

are stored multiple times. 29

3.4 AMR hierarchy: The root level L4 has a cell width of 4 and

contains two fine grids of the level L2, and one of those two

grids contains one fine grid with the finest resolution L1. . . . 31

3.5 AMR data formats: (a) cell-centered (b) grid-aligned 31

3.6 Kd-tree: Example of a two-dimensional kd-tree 34

4.1 AMR implementation: green points are stored in the outer

(coarser) mesh, red points are stored in the inner (finer) mesh 39

4.2 Marked data: importance of samples is set according to dis-

tance to the centerline (red). Thick points will be stored in

full resolution, thin points will be stored in half resolution or

higher. 41

4.3 Summed area table: Table contains number of important points

for all areas from origin to any point. 43

4.4 Basic steps of volume expansion: The blue box shows the

current expanded volume. The red arrow indicates the major

axis alignment of the centerline. (a) first an important point

that is not covered by a box is selected. In (b), (d), (f), (h) the

box is expanded perpendicular to the major axis alignment so

that all important points of the current slice are covered. In

(c), (e), (g) the box is expanded one step along the major axis

alignment. The volume expansion is stopped after (h) because

the density is below a threshold. 46

4.5 Volume expansion in 3D: First an important point is found

at the blue circle. Then the area is expanded in the plane

perpendicular to the axis alignment of the point, indicated by

the arrow, to cover all important points in that plane. Finally

the volume is expanded (along dotted lines) as long as the

volume is over a certain density threshold. 47

LIST OF FIGURES 104

4.6 Histogram values: The Sum
∑

and the discrete Laplacian ∆

are calculated for every slice. An inflection point occurs at a

sign change in ∆. The biggest inflection point is taken as a

splitting index (blue line). 48

4.7 One step of the Signature Algorithm: (a) the blue box marks

the initial box. (b) the bounding box is set. (c) the box is

split at an empty slice into 2 new boxes. 50

5.1 Class overview showing the most important classes. 56

6.1 Volume size with different density settings for the Growing

Algorithm. 65

6.2 Volume size with different density settings for the Signature

Algorithm. 66

6.3 Total number of meshes for Growing Algorithm and Signature

Algorithm. 67

6.4 AMR structure for different density settings with Growing Al-

gorithm and Signature Algorithm. 68

6.5 Total number of points stored in high resolution although they

were marked with medium importance. 69

6.6 Points inside the radius to the centerline are stored in full

resolution, points inside two times the radius to the centerline

are stored at least in half resolution. Remaining points are

stored at least in low resolution. 72

6.7 Points inside two times the radius to the centerline are stored

in full resolution, points inside four times the radius to the

centerline are stored at least in half resolution. Remaining

points are stored at least in low resolution. 73

6.8 Points inside the radius to the centerline are stored in full

resolution, points inside four times the radius to the centerline

are stored at least in half resolution. 74

6.9 Points inside four times the radius to the centerline are stored

in full resolution. 75

LIST OF FIGURES 105

7.1 AMR implementation: green points are stored in the outer

(coarser) mesh, red points are stored in the inner (finer) mesh 79

7.2 Marked data: importance of samples is set according to dis-

tance to the centerline (red). Thick points will be stored in

full resolution, thin points will be stored in half resolution or

higher. 81

7.3 Summed area table: Table contains number of important points

for all areas from origin to any point. 83

7.4 Basic steps of volume expansion: The blue box shows the

current expanded volume. The red arrow indicates the major

axis alignment of the centerline. (a) first an important point

that is not covered by a box is selected. In (b), (d), (f), (h) the

box is expanded perpendicular to the major axis alignment so

that all important points of the current slice are covered. In

(c), (e), (g) the box is expanded one step along the major axis

alignment. The volume expansion is stopped after (h) because

the density is below a threshold. 86

7.5 Histogram values: The Sum
∑

and the discrete Laplacian ∆

are calculated for every slice. An inflection point occurs at a

sign change in ∆. The biggest inflection point is taken as a

splitting index (blue line). 88

7.6 One step of the Signature Algorithm: (a) the blue box marks

the initial box. (b) the bounding box is set. (c) the box is

split at an empty slice into 2 new boxes. 89

7.7 Volume size with different density settings. 92

7.8 Total number of meshes for Growing Algorithm and Signature

Algorithm. 92

7.9 Points inside the radius to the centerline are stored in full

resolution, points inside two times the radius to the centerline

are stored at least in half resolution. Remaining points are

stored at least in low resolution. 95

List of Tables

2.1 Houndsfield-Units for different tissue types 6

3.1 Kd-tree node values . 33

4.1 First slice size for different grid alignments 40

4.2 Second slice size for different grid alignments 40

4.3 Simplified version of our implementation of the Growing Al-

gorithm. 44

4.4 Simplified version of our implementation of the Berger-Rigoutsos

Algorithm. 49

4.5 Kd-tree node values for AMR 51

4.6 Simplified version of our algorithm for finding the finest avail-

able mesh for a given position. 53

5.1 Description of different symbols in class overview 57

6.1 Memory consumption of CTA-dataset for several data struc-

tures. 70

6.2 Creation time of the AMR data structure with the Growing Al-

gorithm and the Signature Algorithm on a Pentium 4 1800MHz

with 512MB of RAM. 71

6.3 Rendering time of a MIP with AMR data structure with the

Growing Algorithm and the Signature Algorithm on a Pen-

tium 4 1800MHz with 512MB of RAM. 71

7.1 First slice size for different grid alignments 80

106

LIST OF TABLES 107

7.2 Second slice size for different grid alignments 80

7.3 Simplified version of our implementation of the Growing Al-

gorithm. 85

7.4 Simplified version of our implementation of the Berger-Rigoutsos

Algorithm. 87

7.5 Memory consumption of CTA-dataset for several data struc-

tures. 94

