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Abstract

In this paper I am describing a computer aided detection (CAD) method, which is able to detect lung
nodules in medical data sets. The data sets are obtained by a high resolution computer tomography.

The goal of the nodule detection is to gain an early nodule detection which increases the probability of
survival. Introduced method is able to detect nodules of variable size and variable shape. It is also

rotation-invariant. The detection algorithm is based on the Hessian matrix. This matrix consists of the
second-order partial derivatives. The eigenvalues of this matrix are used to determine the probability of
a nodule-like shape. This method is well adapted to detect nodules of a size larger than 4 mm diameter.
Tests with synthetic nodule data sets and some real data sets provided a high probability of true nodule

detection with a very low number of false positives per data set.

1 Introduction

Lung cancer is the leading cause of cancer deaths
in the first world. In the European Union (EU)
occur 295.000 new cases of lung cancer every year.
270.000 people die on the consequences of lung can-
cer in the same period. The overall 5-year survival
rate is 11% in the EU. This high death rate results
from the difficulty to detect lung cancer in an early
stage.
There are many different ways for lung cancer detec-
tion, but usually by the time nodules are detected,
it is too late. The nodules are either too large or
too advanced to be effectively cured.
A widely-used technique for lung nodule detection
is the analysis of the thoracic computer tomography
(CT) data. The computer tomography takes axial
images along the thorax. These images are viewed
by radiologists. A nodule is spherical, so it slowly
appears and disappears over a sequence of axial im-

ages. This is the way how a radiologist can detect
a nodule.
A conventional computer tomography takes around
30 to 50 images over the lung. Newer high resolu-
tion computer tomography takes around 300 to 600
images. With a high resolution image of the lung
much smaller nodules can be detected. With this
method nodules down to a diameter of 3 mm can
be found in the lung area. A detection of nodules in
such early stage raises the probability of surviving
rapidly.
The problem with large volume data sets is that
they are impractical to review in current radiology
practice. So Computer Aided Detection (CAD) is
needed to simplify and speed up the detection pro-
cess.
In the ideal case a CAD system should detect all
nodules in a data set. So the detection process of
the radiologist can be replaced by the CAD system.
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Unfortunately the nodule detection is a challenging
task in medical imaging. There are many aggravat-
ing circumstances which make the detection com-
plex.
The main problem is the varying form of the nod-
ules. They are approximately spherical, but depen-
dent on their position the form can differ drasti-
cally. For example nodules on the lung wall look like
cut spheres, others can be more elliptical. Another
problem is the density distribution of the nodules.
Through the data acquisition with a computer to-
mography the density in the middle of a nodule is
higher than the density in the border area.
These problems and many others are the reason why
a CAD system will hardly detect all nodules (true
positives) without classifying other healthy parts
(false positive). So the goal of a CAD system should
be to detect all true positives with a low number of
false positives. The detected areas can then be ob-
served by a radiologist, who finally classifies them
as true or false positives. So the CAD system in
combination with a radiologist can be an efficient
and fast method for the nodule detection.
In the following an algorithm is shown, which meets
requirements of a good nodule detection system.

2 Related Work

In the last few years a number of papers about
lung nodule detection have been published. Nodule
detection is a challenging task in medical imaging,
but it may help a lot of people, when nodules can
be detected earlier.
For the detection there are three fundamental dif-
ferently approaches. One approach is used on slice
images to detect the nodules. For this approach
the nodules are detected through two-dimensional
feature detection. Another approach examines each
lung lobe separately. With the knowledge about
differences between nodules in different lung lobes,
the detection can be improve. The third attempt
tries to find nodules using there three-dimensional
feature detection.

The first approach is used by Mota [1]. He
employed a conventional template matching to
detect the nodules on the two-dimensional slice
images. After initial detection, he extracted seven
feature values and used them to eliminate false-
positive findings. A more complex method was
developed by Yongbum et al. [11]. This method
consists of two template matching approaches,

based on simple models that simulate real nodules.
A template matching technique based on a genetic
algorithm template matching for detecting nodules
within the lung area. The other template matching
technique was designed for nodule detection on
lung wall.
There are also approaches which combine two-
and three-dimensional feature detection. For
example Xu et al. [10] first process each CT slice
separately to extract two-dimensional contours of
the nodule which can then be stacked together to
get the whole 3D shape. Gurcan et al. [3] designed
rule-based classifiers to distinguish nodules and
normal structure using 2D and 3D features. After
the rule-based classification, linear discriminant
analysis have been used to reduce the number of
false positive objects.
Knowledge based methods use the knowledge
about the lung. Hongshun et al. [8] use a lung
model, which contains anatomical knowledge about
lung in the form of semantic networks, to guide the
interpretation process.
The presented methods are used for nodule detec-
tion in normal resolution computer tomography
(CT). A newer computer tomography generation
can produce data with a higher resolution. In
Wiemker et al. [9] the options for nodule detection
with this high resolution computer tomography are
described.
Approaches for high resolution CT data mostly use
only 3D feature detection to detect nodules. Paik
et al. [5] uses a surface normal overlap method.
The relation between the normals of a nodule
candidate and the normals of a reference model
classifies the feature as healthy lung tissue or lung
nodule. A method of Lu et al. [4] base on a concept
of machine learning. A rotation-invariant feature is
proposed to extract the volume intensity distribu-
tion along the radial directions of the 3D volume
sample. The volume intensity is utilized and the
3D characteristics of the volume are incorporated
to extract features of more discriminating power.

In some papers the Hessian matrix is used to
extract some features of the data. Sato et al. [6] use
it for enhancement of curvilinear structures such
as vessels in three-dimensional medical images. For
the enhancement a combination of the 3D Hessian
matrix is used. In the paper of Frangi et al. [2] the
Hessian matrix is also used to enhance vessel-like
structures. A vesselness measure is obtained on
the basis of all eigenvalues of the Hessian matrix.
Sato et al. [7] design a 3D transfer function with
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the eigenvalues of the Hessian matrix. The transfer
function is used to highlight line, sheet or blob-like
structures.

Proposed approach also uses the eigenvalues of
the Hessian matrix. In the next chapter a detailed
description of the algorithm is given.

3 Multiscale Nodule Detec-
tion

For the detection an algorithm is needed, which en-
ables a size- and rotation-invariant detection. This
helps to detect nodules with different diameter and
arbitrary orientation. The algorithm should also be
invariant from the density of a nodule. The density
at the middle point of a nodule is between -500 and
300 Hounsfield Unit (HU).
The nodule size, which will be detected, is going to
vary from 4 to 20 mm diameter. The described algo-
rithm focuses mainly on the detection of small nod-
ules (4 - 10 mm), as it is important to detect nod-
ules in an early growth stage. For larger nodules the
technique focuses radiologist’s attention and makes
the diagnosis process faster.
The algorithm should be able to detect nodules
without a perfect spherical shape. For example lung
nodules on the lung wall look like cut spheres. This
and other nodules have to be detected as well.
It is also important to reduce the number of false
positives, because a too large number of false pos-
itives is impractical for the further observation
through a radiologist. False positives for example
show up at bifurcations of vessels. These and other
false positives on healthy lung tissue should be clas-
sified as true negatives by the algorithm.
In general the algorithm should be able to detect
all nodules with a low number of false positives. In
the next sections an algorithm is introduced, which
achieves this goal. In the following a description of
the synthetic nodule generation is given. Then the
calculation of the Hessian matrix is described. Fi-
nally a discussion on the use of the Hessian matrix
for the nodule detection concludes the report.

3.1 Generation of synthetic nodules

Without a profound knowledge about nodule loca-
tions in real data sets, it was impossible to test the
algorithm. So first it was necessary to generate syn-
thetic nodule data sets for an efficient testing of the
detection algorithm.

The synthetic nodules should simulate real nodules
in shape and density distribution. Real nodules are
blob-like. They can be a little elliptical and can also
be cut spheres, when they are on the lung wall. For
this reason the generation of the synthetic lung nod-
ules must be able to generate nodules with these dif-
ferent shapes. For testing different data sets, nod-
ules with different shapes were produced.
Real nodules have a stable density over the whole
area. Through the physical properties of the com-
puter tomography, the density of a nodule in a pro-
duced data set decreases from the middle point to
the border of the nodule area. The function of this
decrement can be simulated by the Gaussian func-
tion.

g(x, y, z) = m ∗ e
−(x2+y2+z2)

r (1)

The equation describe the density distribution of
a nodule g in dependency of the distance to the
middle point. The variable m express the maximum
density of the nodule in the middle point. r is the
radius of the nodule. For points, which are farther
away from the middle point than distance r, the
density is set to 0. The variables x, y and z are the
distances to the middle point in the three cardinal
headings.
This equation was used to produce the synthetic
nodules for testing. The maximum density m was
chosen between -700 and 200 HU.

3.2 Calculation of the Hessian ma-
trix

The Hessian matrix is a square matrix of second
partial derivates of a scalar-valued function. In
the case of nodule detection the function is three-
dimensional.

F = F [x, y, z] (2)

This function expresses the density distribution
of the CT data over the three-dimensional space.
A second partial derivation of F is for example given
through:

∂

∂y

[
∂

∂x
F [x, y, z]

]
= Fxy (3)

With this notation the Hessian matrix has the
following conformation:

H =

 Fxx

Fyx

Fzx

Fxy

Fyy

Fzy

Fxz

Fyz

Fzz

 (4)
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The Hessian matrix is symmetric, because the
second partial derivation Fzx is the same as Fzx.
This also apply for the function Fxy and Fyz. This
property simplifies the calculation of the Hessian
matrix, since not every value of the matrix must
be calculated separately.

The introduced calculation of the Hessian matrix
is essential for a continuous function F , however the
function of the density distribution in the data set
is represented by a discrete set of samples. For this
case the data is convolved with a Gaussian smooth-
ing kernel. The function for the kernel is expressed
through:

G =
1√

2π ∗ σf

∗ e
−(x2+y2+z2)

2σf (5)

The standard deviation of the Gaussian function
σf controls the smoothing effect. For the nodule
detection this value should be fitted to the nodule
density distribution. A good choice for this case is:

σf =

√
Ksize − 1

6
(6)

The Ksize expresses the kernel size of the convo-
lution kernel. The σf was found through experi-
ments. Several tests with this σf lead to the best
results.
The connection between the convolution and the
second-order partial derivatives is given through:

∂

∂y

[
∂

∂x
[F ∗G]

]
= F ∗Gxy (7)

F is the discrete density distribution function
and G is the Gaussian smoothing function from
Equation 5. This means that the second partial
derivation must only be applied on the Gaussian
function. For the calculation of the derivatives a
pre-calculation of kernels for the second-order par-
tial derivatives of the Gaussian function is used.
To get the values of the Hessian matrix, the dis-
crete function F is convoluted with the appropiate
second-order partial derivative kernel of the Gaus-
sian smoothing function. For example the value
of Fxx can be calculated through the convolution
F ∗Gxx.
The graphs in Figure 1 show the second-order par-
tial derivative kernels for the two-dimensional case.

As described before the Hessian matrix is sym-
metric, so only 6 different kernels are needed to get
the whole Hessian matrix. Needed filter kernels are
Gxx, Gyy, Gzz, Gxy, Gxz and Gyz.

(a) (b)

(c)

Figure 1: This image shows the 2D convolution ker-
nel for Gxx (a), Gxy (b) and Gyy (c).

In the following a description of the nodule detec-
tion with the Hessian matrix is given.

3.3 Nodule detection with Hessian
matrix

The eigenvalues of the Hessian matrix are the im-
portant values for the nodule detection. The values
of the three eigenvalues provide information about
the shape of the considered area in the data set.
The eigenvalues can be calculated through the equa-
tion:

det(H − E ∗ λ) = 0 (8)

In this equation H is the Hessian matrix, E is
the identity matrix and λ is the eigenvalue. The
equation leads to a polynomial of third degree.
To find the root of λ a root-finding algorithm is
needed. The Newton’s method is a good procedure
to find an approximation of the roots. In the three-
dimensional case there exist exactly three values for
λ, which resolve the equation.
The three solutions of λ (λ1, λ2 and λ3) give in-
formation about the shape of the considered area.
If the shape is blob-like then all three values are
smaller than 0 and they have approximately the
same value. For the further calculations and clas-
sification it is reasonable to normalize the eigenval-
ues. This could be gain if every eigenvalue is divided
through the density value of the discrete function F
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in the middle point of the convolution. After this
standardisation the absolute value of the eigenval-
ues is independent of the density and size of the
nodule and leads, for a blob-like shape, to values of
approximately −1 for all three eigenvalues.
With this knowledge a pre-selection of the eigen-
values can be made. If one eigenvalue is too small
(smaller than −1.3) or too high (higher than −0.5)
then no nodule is located at this position with a
very high probability. This pre-selection speeds up
the algorithm with no measured loss of accuracy.
For the automated detection a classifier is needed,
which express the blobness of the shape in the con-
sidered area. This classifier is given through the
equation:

C = −1 ∗ λ3 ∗ (
λ2

λ1
)2γ ∗ (

λ3

λ1
)γ ∗ (

λ3

λ2
)γ (9)

The γ value control the selectivity of the classi-
fier. A value of 6 is a good choice for this variable.
For a perfect nodule the value of C should be 1. If
a nodule does not have a perfect blob-like shape,
then the value is smaller. The boundary value for
the classifier to detect the considered area as a nod-
ule is approximately 10−5.
For finding the right diameter of a nodule, the algo-
rithm starts at every voxel with the smallest kernel
for the convolution. Then the kernel is incremen-
tally extended. For every kernel size the eigenvalues
are calculated. For the best fitting kernel size the
classifier has the highest value. This means that
the detection can be stopped if the value of the
classifier begins to decrease. The diameter of the
detected nodule is equal to the kernel size with the
highest classifier value.

4 Results

For testing purposes a lot of data sets with nodules
were generated. The data sets had the size of
100× 100× 100 voxels. The number of nodules was
varying for the different data sets. One data set
consisted of approximately 5 to 50 nodules. The
size of the nodules was varying between 4 and 15
mm in diameter.
To create a realistic test situation, nodules with
different shapes were produced. For the testing
three different shapes of nodules were used. The
three different shapes were perfect blob-like nod-
ules, elliptical nodules and cut nodules. For the
creation of one test data set one of these three

shape types were used.
The last variable parameter for the creation of the
test data sets was the voxel spacing. It was varying
between 0.35 × 0.35 × 1 to 1.5 × 1.5 × 1. With
a smaller spacing like 0.35 × 0.35 × 1 a nodule is
spread over more voxels.
The tests were made on a standard PC with an
Intel Pentium 3 processor (1.6 GHz frequency)
and 512 MB RAM. For a spacing of 1 × 1 × 1 or
higher the detection only took some seconds. For
a spacing of 0.35 × 0.35 × 1 larger kernels for the
convolution are needed, so the detection was a
little bit slower. It then took around 25 seconds.
As a result of the tests nodules with perfect blob-
like shape have always been detected. Elliptical
nodules were detected, if their shape was not too
elliptical. If they were too elliptical, than the shape
was more similar to a vessel structure than to a
nodule. The cut nodules were detected with a cut
quote up to 35%. For a small voxel spacing cut
nodules with a cut quote of up to 50% have been
detected as well.

The algorithm was also tested on a real data set.
The size of the data set was 512 × 512 × 140. The
detection part has been made on a PC with a Pen-
tium 4 processor (3.2 GHz frequency) and 1024 MB
RAM. The detection process took around 10 min-
utes.
The result of the nodule detection, on this data set,
was 6 detected nodules. Two of the detected nod-
ules seem to be real nodules. The other four are
probably false positives.
The Figure 2 shows a three-dimensional view of the
lung with the detected nodule candidates.

5 Discussion

For a perfect adaptation of the algorithm, a large
number of real data sets with pre-detected nodules
is needed. The pre-detection should be done by an
experienced radiologist. With only a small number
of real data sets with no pre-classified nodules, it
is hard to say something about the effectiveness of
the method.
It was impossible to get a large number of data sets
from a high resolution CT. This is because of radi-
ologists do not work with this high resolution data
sets. They detect the nodules on two-dimensional
slide images with a large slab.
A problem of the algorithm is the low speed, be-
cause the convolution with different kernels for ev-
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Figure 2: Detected nodules (red spheres) in CT data
set.

ery considered point is very time intensive. There
are many possibilties to speed up the algorithm.
The goal should be to discard none nodule-like
points before the detection algorithm is started.
With an appropriate filter the number of points on
which the detection is passed can be significantly
reduced.
The overall conclusion is that the method can be a
very helpful assistance for a radiologist in practical
use. But before the appropriation in practice more
tests with real data sets must be made.
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