
DIPLOMARBEIT
A ChainMail Algorithm for Direct Volume Deformation in

Virtual Endoscopy Applications

ausgef�uhrt am Institut f�ur Computergraphik und AlgorithmenTechnische Universit�at Wienin Kooperation mit demVRVis, Zentrum f�ur Virtual Reality und Visualisierung

unter Anleitung vonAo.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gr�ollerin Kooperation mitDipl.-Ing. Andr�e NeubauerDipl.-Math. Dr.techn. Katja B�uhler

von
Christopher Dr�ager
Matr. Nr.: 9725493

A - 1130 Wien, Trazerberggasse 6 / 1 / d / 3

Wien, im Mai 2005

Christopher Dr�ager
A ChainMail Algorithm for Direct Volume Deformation inVirtual Endoscopy Applications(Diploma Thesis)

mailto:e9725493@stud3.tuwien.ac.at

Abstract
Endoscopy is an integral part of medical practice although the procedure is often unpleasantfor the patient. Virtual endoscopy is a diagnosis tool which visualizes 3D image data sets toshow a virtual view of the patient similar to the images generated by a traditional endoscopy. Avirtual endoscopy system called STEPS was developed at the VRVis to simulate transsphenoidalendonasal pituitary adenoma surgery. This thesis describes a deformation engine extending theSTEPS application to enhance the realism. The two main contributions are the development ofthe Divod ChainMail algorithm, an algorithm for direct volume deformation based on the Chain-Mail and Enhanced ChainMail algorithms, and the integration of the engine into the existingSTEPS. We use a Constrained Particle System to directly model and manipulate the volumedata instead of modeling objects extracted from the volume data. We further proposes a simpleinterface to ease integration and enforce reusability of the software components. This thesisdescribes our Divod ChainMail algorithm, the interface and integration details, and providestiming results. Finally, it o�ers a discussion of the presented methods pointing out possibleimprovements and further work.

Kurzfassung
Endoskopie ist ein intergaler Bestandteil medizinischer Verfahren, obwohl diese Methode oftunangenehm f�ur den Patienten ist. Virtuelle Endoskopie ist ein Diagnosewerkzeug, das drei-dimensionale Datens�atze visualisiert und so virtuelle Bilder des Patienten generiert, die denBildern der traditionellen Endoskopie sehr �ahnlich sind. Ein virtuelles Endoskopie Systemnamens STEPS wurde am VRVis entwickelt und dient zur Simulation von endonasalen, en-doskopischen Operationen zur Beseitigung von Hypophysentumoren. Diese Arbeit beschreibteine Deformations Engine welche die bestehende STEPS Applikation erweitert und so den Re-alismus der Simulation erh�oht. Die zwei wichtigsten Beitr�age dieser Arbeit sind der DivodChain Mail Algorithmus, ein Algorithmus zur direkten Deformation des Volumens, welcherauf dem ChainMail und dem Enhanced ChainMail Algorithmus basiert, sowie die Integrationder Engine in das existierende System. Wir verwenden ein Partikel System um das Volumen,anstatt aus dem Volumen extrahierte Objekte, zu modellieren und so die Deformation direktauf dem Volumen durchzuf�uhren. Weiters stellen wir ein einfaches Interface vor, das die Inte-gration vereinfacht, sowie die Wiederverwendung einzelener Softwarekomponenten unterst�utzt.Diese Arbeit beschreibt unseren Divod ChainMail Algorithmus, das Interface, sowie die Detailsder Integration und die Resultate der Zeitmessungen. Abschliessend werden m�ogliche Opti-mierungen der vorgeschlagenen Algorithmen und Ideen, beziehungsweise Anforderungen, f�ureine weiterf�uhrende Arbeit pr�asentiert.

Contents

1 Introduction 9
2 Related Work 132.1 Volume Deformation Algorithms . 152.2 Particle Systems . 162.2.1 Constrained Dynamics . 162.2.2 Collision and Contact . 172.2.3 Modeling . 172.3 Mass Spring Model . 172.4 Finite Element Method . 192.5 Radial Basis Functions . 202.6 Free Form Deformation . 212.7 3D ChainMail . 222.8 Comparison and Classi�cation by Data Structure 262.9 Conclusion . 26
3 The Divod ChainMail algorithm 293.1 Overview . 293.2 Original Algorithm [Gibson '97] . 303.3 Enhanced ChainMail [Schill et al. '98] . 353.4 Problems . 373.4.1 Visualization . 373.4.2 Large Amount of Data . 373.4.3 Interaction . 383.4.4 Data Structure { Z{Scale . 393.4.5 Physical Plausibility . 393.4.6 Relaxation . 403.4.7 Conclusion . 403.5 Solutions . 413.5.1 Mapping . 413.5.2 Memory Management . 453.5.3 Interaction { Multi Move . 463.5.4 Z{Scale Adjustment of Region Constraints 513.5.5 Global Constraints . 53

5

3.6 Algorithm Outline . 543.6.1 Component Overview . 543.6.2 Deformation . 553.6.3 Mapping Algorithm . 653.6.4 Memory Management . 703.6.5 Connecting two Cubicles . 733.7 Conclusion . 76
4 Implementation 794.1 Implementation Overview . 794.2 Related Software . 794.3 Software Design . 794.4 Interface . 804.4.1 DeformVoxel . 804.4.2 DeformMovement . 814.4.3 DeformChunk . 814.4.4 DeformMemoryManager . 824.4.5 DeformObject . 834.4.6 DeformMapper . 844.5 Data Structure . 844.5.1 ChainMailVoxel . 844.5.2 Chain Region . 854.5.3 ChainMailCubicle . 864.5.4 ChainMailDeformObject . 864.6 Con�guration . 874.7 Integration . 874.8 Conclusion . 89
5 Results 935.1 Overview . 935.2 Visual Results . 93
6 Analysis 1056.1 Timing Tests . 1056.2 Discussion . 1066.3 Further Work . 107
7 Summary 1097.1 Introduction . 1097.2 Related Work . 1107.3 Divod ChainMail algorithm . 1127.4 Implementation . 1187.5 Results . 1197.6 Conclusion . 119

8 Acknowledgements 121

Chapter 1

Introduction

Motivation
In recent years, minimally invasive procedures became an integral part of medicalpractice [Bartz '03]. Nowadays, they are applied in many areas including surgery,neurosurgery, gastroenterology and radiology.
The main advantage of minimally invasive procedures is that they have a less harmfule�ect on patients than conventional methods. The endoscope, a tool typically used inminimally invasive procedures, has a very small diameter. This makes it possible tooperate in very fragile regions of the human body such as the brain. The applicationof endoscopy can generally be divided into two classes:
� Diagnosis, done to examine the patient for medical conditions, e.g. tumors, anddoes not a�ect the patient.
� Surgery, conducted to cure the patient from illness, obviously a�ecting thepatient.

The drawbacks of minimally invasive procedures include high costs in comparison toradiological diagnosis. However, they are in general cheaper than traditional surgery.Endoscopic examinations are unpleasant for the patient, the endoscope cannot reachall regions of the human body such as thin blood vessels and there is also the risk ofinfection and other complications.
Virtual Endoscopy
Virtual endoscopy addresses these drawbacks. In virtual endoscopy the region ofinterest is visualized as a virtual reality. The data for the visualization is typicallyacquired through Computer Tomography or Magnetic Resonance Tomography. Inthis virtual environment there are no physical limitations due to the diameter of theendoscope because the lens of the virtual endoscope is a point without expansion.Hence, all regions of interest and very small structures can be examined if the sample

9

rate of the data is su�ciently precise. This makes virtual endoscopy a feasible toolfor diagnosis. Virtual endoscopy is cheaper and less unpleasant for patients than theconventional endoscopy.
Unfortunately, virtual endoscopy introduces new problems. The visualization of thedata is not an exact representation of the human body which may lead to wrongdiagnoses. Physical properties of the organs have to be modeled with computationalexpensive simulation engines which threatens interactivity. Hence, there is a tradeo�between speed and realism in every virtual endoscopy system. The mechanisms forinteraction should be the same for the virtual and the real endoscopy. This calls fordirect user interaction and manipulation of the data such as cutting and deforming.These requirements present new problems to the simulation software. The forcefeedback of these actions can be simulated with haptic devices. Finally, the radiationexposure during a Computer Tomography session is a risk to the patient too.
Fields of Application
Although virtual endoscopy has limitations and drawbacks it is already applied inmany medical areas including the following:
� DiagnosisVirtual endoscopy serves as a diagnosis tool. It is used to identify e.g. colonpolyps and tumors [Laghi et al. '99]. In this application there is a methodintroduced called Colon Flattening [Bartrol�� et al. '01] to enhance the resultsand to aid the user.
� PlanningThe planning of a di�cult and complex surgery is another �eld of application.The medical doctor is able to examine the region of interest form di�erentperspectives without the patient needing to be physically present all the time.
� SimulationSimilar to planning a medical doctor can simulate an intervention several timesbefore performing the surgery.
� TeachingStudents can study and practice medical procedures in the virtual reality.
� Intra{operative SupportVirtual endoscopy can also provide intra{operative assistance in the form of nav-igation assistance or by displaying additional information. Virtual endoscopyalso provides di�erent perspectives and can show the position of vital bloodvessels and nerves which the surgeon could not see without it.

All of these �elds demand a certain degree of realism but tradeo�s are possible. Someapplications, diagnosis for example, do rely heavily on the accuracy of the simulationbut not so much on physical realism such as the simulation of deformations. Other

applications such as teaching and simulation bene�t more from a physical realisticlook{and{feel environment than from accuracy. The focus of this work is the lattercase.
STEPS
This work deals with a certain type of endoscopy called transsphenoidal endonasalpituitary surgery. Its purpose is to remove pituitary adenomas. In this procedurean endoscope and surgical tools are inserted into the head through the nose andmaneuvered to the sphenoid sinus. Then the sellar oor is opened so that the surgeoncan reach the pituitary gland and remove the tumor.
This work builds on work previously conducted at VRVis. A. Neubauer et al. imple-mented a transsphenoidal surgery simulation system called STEPS. They use a �rsthit based rendering technique to visualize the volume data. Polygonal surface ren-dering is not exible enough for the given problem. The topology of the object maychange rapidly and each topology change would require a computational expensivesurface extraction step for a polygonal surface rendering based approach. The workalso includes collision detection and force feedback.
Requirements
To enhance the realism even further, an extension of the algorithm to support thesimulation of deformation is desired. Hence, the main focus of this work is to intro-duce a deformation engine, based on a new algorithm that is fast enough to allowinteractive frame rates and produces plausible deformations, to the existing STEPSsystem.
Approach
We propose in this work, a direct volume deformation algorithm called Divod Chain-Mail based on the ChainMail algorithm [Gibson '97] and the Enhanced ChainMailalgorithm [Schill et al. '98]. Our algorithm directly models the volume data andcalculates the deformation without an expensive surface extraction step. The de-veloped algorithm does not produce physically accurate results, but takes physicalcomponents such as material properties (i.e. sti�ness) into account.
Further, we present an interface for the integration of the our developed deforma-tion engine into the STEPS application. The interface is designed to allow easyintegration and code reusability.
Outlook
The next chapter presents an overview of methods used for soft tissue deformationand their application in medical simulation software with a focus on virtual en-

doscopy. The third chapter describes our Divod ChainMail algorithm outlining theimprovements made to the original ChainMail algorithms, and discusses the weak-nesses of the original approaches in regard to our requirements. The details of theimplementation and the integration into the STEPS system are described in thefourth chapter. The results as well as a discussion of the strength and weaknesses ofthis work are presented in the �fth and sixth chapter including a description of thefurther work needed.

Chapter 2

Related Work

This work presents a method for deformation of volume data acquired through CT1
which is visualized with iso surfaces. It is part of an endoscopic surgery planningand simulation system. First, this chapter provides a short overview of the relatedsystem followed by an outline of various deformation modeling techniques.
Related Software
This work is an extension of the existing STEPS system [Neubauer et al. '04]. TheSTEPS (Simulation of Transsphenoidal Endonasal Pituitary Surgery) system is in-tended to aid the planning of an endonasal surgery and to simulate such a procedureso that students can learn by example. This type of minimally invasive procedure isused for the removal of various kinds of pituitary tumors. It consists of four views.The virtual view and three section views which show di�erent cutting planes throughthe data (please see �gure 2.1).
Motivation
In order to enhance the realism of the simulation a mechanism for simulating the de-formation of soft tissue is desired. Currently, if the user pushes the virtual endoscopeagainst the tissue the movement of the endoscope is blocked in order to keep the eyepoint of the endoscope outside of the tissue. The real life behavior of the tissue isdi�erent. In real life the tissue would deform according to its material properties andthe forces applied. For example a surgeon is able to push interfering tissue aside.Overall, deformation and movement of the virtual tissue gives a much more realisticfeeling of the simulated environment. Bringing movement to the virtual reality isalso a �rst step of injecting life to it.1Computer Tomography

13

Figure 2.1: This is a screenshot from the STEPS application. The top left image shows thethree dimensional view. The other three images are the cutting plane views also called sectionviews. On the left side the user interactively adjust parameters such as the barrel distortion,color and fog.

Requirements
The algorithm for calculating the deformations has to produce interactive frame ratesand must be integrated into existing software. The most important existing softwarecomponent is the ray caster [Neubauer '01]. It directly renders the iso surface onbasis of volume data. The shape of the rendered surface depends on a threshold.This threshold de�nes which iso values are interpreted as tissue and which iso valuesare interpreted as air. The data is acquired by CT images and the threshold canbe adjusted interactively. This allows the user to properly �t the threshold to thedata so that reasonable structures are rendered. This is a useful tool for users butit presents a massive limitation for the deformation approach. It is not feasibleto calculate a mesh for the iso surface, since the iso surface can change rapidlyand hence, the mesh would need to be recalculated. This would lead either to lowperformance or to the loss of the interactive threshold adjustment feature. Hence,an algorithm has to be chosen that does not rely on the use of meshes. Our proposedDivod ChainMail algorithm directly manipulates the volume data and thus does notuse meshes.

Another limitation is presented by the large data which cannot be kept entirely inthe memory. Hence, it would be necessary to swap the currently needed parts ofthe data; a time consuming process. Therefore, global deformation is not possibleat interactive frame rates. This means, that the algorithm has to calculate thedeformation locally.
Outlook
Allowing real time deformations in the STEPS system is the main focus of this work.The next sections provide an overview of existing deformation algorithms and theirapplication in virtual reality environments, emphasizing on those used for surgerysimulation and soft tissue modeling.
The conclusion discusses the pros and cons of the various presented algorithms. Italso argues why the ChainMail algorithm 2.7 was chosen as approach for our work,the Divod ChainMail algorithm, is based on.
2.1 Volume Deformation Algorithms
Much research has been done in the �eld of deformable modeling for various �eldsof application such as animation of cloth, animation of muscles, simulation of caraccidents, computer games, virtual reality or surgery simulation.
The di�erent approaches can be divided into geometrically-based and physically-based. Geometrically-based methods change the shape of an object indirectly bymoving control points or adjusting parameters of the function which de�nes thesurface. The advantage of these methods is their high performance. The drawbacksare:
� they do not model physical properties of material
� they do not use physical laws to calculate the new shape
� since the deformation is calculated indirectly it is di�cult to provide directmanipulation of an object and intuitive interaction

In contrast to geometrically-based methods the physically-based methods incorporatephysical properties of the modeled material and deform the object directly whicho�ers intuitive and direct user interaction. This comes with high computationalcosts which makes it hard to achieve interactivity.
Deformations can also be divided in plastic [O'Brien et al. '02],[Terzopoulos, Fleischer '88] and elastic deformations. An elastic deformationassumes that the object attempts to keep the original shape. Hence, the objecttries to stay in its original shape against the applied forces. If the applied forcesare removed from the object a perfectly elastic object will restore its original shape.In contrast, plastic deformations permanently change the shape of an object. If

the applied forces are removed the object keeps the deformed shape. Most physicaldeformations have a plastic and an elastic component. A system that models thisbehavior is described in [Teschner et al. '04].
2.2 Particle Systems
Particle systems are a particularly good method for modeling objects that changeover time by owing, billowing or expanding such as clouds, water, smoke, �re, etc.[Hearn, Baker '97]. In a particle system an object is modeled through a set of parti-cles. Each particle may hold a set of properties such as lifetime, shape, transparencyand color. For example, water is modeled through a large number of drops. A.Witkin gives a basic introduction to particle system dynamics in [Witkin '01b].
Particle systems are a wide spread method to model the dynamics of body uidssuch as blood. U. K�uhnapfel et al. use a particle system based method in thesoftware package called KISMET of their surgery simulation system to model bloodto enhance the realism of the entire simulation [K�uhnapfel et al. '00].
However, particle systems are not only used to simulate uids. M. Nakao et al. usea particle system combined with adaptive tetrahedral subdivision to model accurateand real-time soft tissue cutting and deformation in a framework for advanced surgerysimulation [Nakao et al. '03].
Particle systems are also applied in the modeling of cloth. For example, B. Eberhardtet al. use particle systems to model the draping of textile [Eberhardt et al. '00].They present a exible method which allows modeling of very sti� materials. Theirapproach treats nonlinear forces correctly which is especially important to produceaccurate results in the context of high sti�ness. Due to the high exibility the systemcan be suited to di�erent applications such as virtual reality and high accuracysimulation.
2.2.1 Constrained Dynamics
In a physical model particles and their movements are governed by a set of con-straints. For example two particles may only be a certain distance apart or a particlemust move along a speci�c move path.
The problem that arises from these constraints is to make the particles obey the con-straints as well as the applied forces such as Newton's law of gravity. This may resultin a very complex system. The computational e�ort to meet all constraints with re-spect to the applied forces within such a system may become very time consumingand the calculation itself numerically unstable.
For a deeper understanding of these problems and basic concepts to counter themplease refer to [Witkin '01a].

Some of the outside forces applied to an object may occur through the collision withanother object. A short overview over this topic is presented in the next section.
2.2.2 Collision and Contact
Collision and contact is a vital part to simulate interaction between objects and userinteraction within a virtual reality. In the real world colliding objects usually do notinterpenetrate each other but they deform or change their move path in responseto the collision. Hence, the �rst step to model deformations accurately is to detectcollisions and contacts between objects. The second step is to check if the detectedcollision results in an invalid state of the system. If so, the objects have to bedeformed according to their material properties so that the sanity of the system isrestored.
S. Bara� [Bara� '01] gives an introduction to the topic as part of the SIGGRAPH2001 course notes.
2.2.3 Modeling
Particle systems in general can be used for soft tissue modeling. However, their main�eld of application is the modeling of uid or gasiform objects. Constrained ParticleSystems are better suited for soft tissue modeling. An algorithm based on particlesystems with constraint dynamics namely the ChainMail algorithm is outlined insection 2.7.
2.3 Mass Spring Model
A very wide spread physically-base approach is the Mass Spring Model. An objectis de�ned through a set of mass points which are connected by dampened springs. Ifa deformation occurs it is propagated through the object by the dampened springsin respect to the forces applied and the characteristics of the springs. The methodis easy to implement and provides fast computation.
The deformation is calculated through solving di�erential equations. This family ofequations, especially the so called initial value problem class, is very important forphysically based modeling. A profound introduction to the topic can be found in[Witkin, Bara� '01].
A way to exploit the advantage of the Mass Spring Model is to model di�erentlayers of material with di�erent layers of Mass Spring Models as presented by D.Terzopoulos and K. Waters. They use three Mass Spring layers for facial animation.The three layers are associated with three anatomical layers of facial tissue (dermis,subcutaneous fatty tissue, and muscle)[Terzopoulos, Waters '90].
Another example for the potential of Mass Spring Models is found in a paper doneby U. K�uhnapfel et al. who use the Mass Spring technique for endoscopic surgery

training simulation. Their paper presents a surgical training system called "Karl-sruhe Endoscopic Surgery Trainer"[K�uhnapfel et al. '00]. The software for the sys-tem called KISMET uses a Mass Spring Model to simulate the elastodynamics ofthe simulated objects.
A method for real time muscle deformations based on the Mass Spring Model ispresented by L. P. Nedel et al.. Their main goal is to produce fast and plausibleresults. Hence, they did not strive for a perfect simulation. They introduce a newtype of springs called angular springs to control the muscle volume during simulation[Nedel, Thalmann '98]. They also provide two di�erent levels of muscle representa-tion:
� muscle shapes: A surfaces based model �tted to the boundaries of the medicalimage data.� action lines: Represent the force a muscle produces at the connected bone.

The works described above had to cope with the drawbacks of the Mass SpringModel. The drawbacks include unrealistic behavior for large deformations and �nd-ing appropriate values for the spring constants to produce realistic behavior. This isespecially troublesome for rigid objects such as bone, a problem referred to as sti�-ness. Modeling sti� objects results in a huge loss of performance. Many calculationshave to be done in a short period because only small steps can be taken.
An approach similar to the Mass Spring Model is presented by M. Teschner et al.[Teschner et al. '04]. This approach is based on tetrahedral meshes and derives threedistinct forces based on potential energies at the mass points. These three forces aremodeled to:
� preserve distances between mass points� preserve the surface area of the object� preserve the volume of tetrahedra

The properties of the material are governed by weighted sti�ness coe�cients. Eachmaterial property consist of three coe�cients { one for each potential energy. Thethree di�erent forces are calculated through the derivation of the corresponding po-tential energy function.
The big advantage of this approach is that it models both plastic and elastic deforma-tions. This is done by splitting the calculation in two components, a plastic and anelastic component, where only the elastic component contributes to the deformationenergy of the object.
The computational e�ort of this approach is comparable with the e�ort of a MassSpring algorithm. Hence, it produces interactive frame rates for environments withseveral thousand deforming primitives. One of the keys for this performance is theVerlet [Verlet '67] algorithm for numerical integration. It only needs one force com-putation per integration step which is the most expensive operation in this approach.Figures 2.2 and 2.3 show the results of this work.

Figure 2.2: Deformation of a falling cube [Teschner et al. '04]

Figure 2.3: Sequence of a plastically deformed cube. [Teschner et al. '04]

Due to the versatility and e�ectiveness of this approach it quali�es for a wide rangeof applications. The authors currently work on integrating their approach in surgerysimulation such as hysteroscopy simulation and simulation of stent placement.
Mass Spring Models are among the most commonly used techniques for soft tissuemodeling. Even though they su�er from some minor drawbacks their speed combinedwith the capability to model physical attributes of material make them a good choicefor soft tissue simulation.
Another commonly used approach called Finite Element Method is presented in thenext section.
2.4 Finite Element Method
The Finite Element Method is a very wide spread approach to volume deformation inall �elds of application. It is a physically-based method which is capable of producingvery realistic results.
In the linear elastic model the Finite Element Method assumes small deformationsteps which is true for sti� objects such as metal. For soft tissues this assumption doesnot hold since large deformation steps are possible. However, the major drawback

of the Finite Element Method (FEM) is its high computational cost which does notallow interactive frame rates the nowadays hardware performance. In general, usingfewer nodes increases the computational speed but decreases the accuracy of theresults. A di�erent approach is presented by Q. Zhu who applies FEM to simulatethe macroscopic dynamics of muscle [Zhu '98] emphasizing on a multi resolutionhierarchy on the grid to accelerate the computational speed. F. Ganovelli et al.address another drawback of the Finite Element Method:
"However, the use of FEM requires a preprocessing phase strongly depend-ing on the topology of the object, hence preventing the possibility to cutthe object." [Ganovelli et al. '00]

Nienhuys and A. F. van der Strappen also address the problem of cutting usingconjugate gradients [Nienhuys, Strappen '96]. In [Bro-Nielsen, Cotin '01] M. Bro{Nielsen and S. Cotin introduce three ways to speed up FEM with their algorithm(see �gure 2.4). They exploit the sparse structure of the force vector, explicitly invertthe system matrix and use condensation which compresses the system matrix andresults in a system with the complexity of a surface model but the behavior of avolumetric model.
The Finite Element Method is often used because it is capable of modeling complexphysical properties of di�erent materials and therefore, able to produce realisticresults. These come at a very high performance cost. Hence, this method is governedby the tradeo� between performance and realism even more than others. In contrastto physically-based methods the next sections presents Radial Basis Functions, ageometrically-based technique.
2.5 Radial Basis Functions
Radial basis functions are a geometrically-based method used for volume deforma-tion. They are applied in many �elds such as 2D and 3D computer animation,medical applications as well as reconstruction of 3D scattered data. Basically theapproach uses radial functions as an interpolation function between a set of con-trol points. The class of radial functions has the characteristic that their responseincreases/decreases monotonically with the distance from a center point.
N. Kojekine et al. divide radial basis functions into three classes. The �rst one,called "native methods" [Savchenko, Schmitt '01] is used for small data sets and isrestricted to small problems. Its high computational cost makes it unfeasible for real-time animation. The second class of radial basis functions allows modeling of largedata sets since it consists of fast methods. The third class are the so called CSRBFs(Compactly Supported Radial Basis Functions) described in [Wendland '95].
N. Kojekine et al. improve CSRBF to models for surface deformations by optimizingthe algorithms for speed as well as memory consumption [Kojekine et al. '02]. Asample animation is presented in �gure 2.5.

An approach using radial basis functions for medical imaging is presented in[Carr et al. '97] by J. C. Carr et al.. They use Radial Basis Functions (RBFs) to vi-sualize human skull from depth maps obtained by X-ray or CT data even over defectareas. They speed up the algorithm by making assumptions about the geometricconstraints of the nodes of interpolation.
P. Reuter et al. use point based CSRBF approach. The surface is modeled through aset of surface points which are rendered directly without the need for the creation of apolygonal mesh [Reuter et al. '03]. Their approach also allows direct user interactionthrough manipulating the surface points.
Another geometrically based approach, the so called Free Form Deformation, is pre-sented in the next section.
2.6 Free Form Deformation
Free Form Deformation (FFD) was �rst introduced by T. Sederberg and S. Parry[Sederberg, Parry '86] and is a fast tool for representing and modeling exible ob-jects. It is originally a graphically-base method but recent work focuses on theintegration of physically based techniques, for example [Hirota et al. '99].
G. Hirota et al. describe a physically-based extension for Free Form Deformation.The governing physical law of their approach is the conservation of mass. In otherwords, the algorithm they developed is volume preserving. This allows more intuitivemodeling and enables designers to easily keep the desired proportionality of objectswith respect to their volume in a complex design with multiple objects.
Since Free Form Deformation is a graphically-based technique the shape of an objectis de�ned by control points. Intuitive deformation through direct interaction withthe model is not possible. P. Borell and D. Bechmann [Borell, Bechmann '91] andW. S. Hsu et al. [Hsu et al. '92] address his problem. They both present models fordirect interaction and manipulation of the model which makes the user interface moreintuitive. Both methods calculate the necessary adjustment of the control points fora given set of input points by means of least-square formulation.
Free Form Deformations are also applied in surgery simulation. C. Basdogan et al.use a FFD approach to model local deformations for laparoscopic surgery simulation.The authors decided to use FFD because of its high speed which enables them tocreate interactive frame rates [Basdogan et al. '98].
Another example for surgery simulation based on FFD is presented by G. Sela et al..They introduce an algorithm for real-time incision simulation for meshed surfacesand volumetric models which supports polynomial as well as spline based models. Anew type of FFDs called DFFDs which support discontinuities is used to calculatethe immediate geometry change due to cuts and the real-time response of the localtissue due to tension and internal forces [Sela et al. '04].

Free Form Deformations present an e�cient way for deformation. With the intro-duction of physically-based concepts and direct object manipulation FFDs are wellsuited for surgery simulation. The next section presents another technique, called3D ChainMail, which is geometrically-based with extensions to model physical prop-erties of an object.
2.7 3D ChainMail
A promising approach to soft tissue deformation called 3D ChainMail is presentedby S. F. F. Gibson [Gibson '97]. The method was originally created for the de-formation of volumetric objects as needed in surgical simulation for example. Itis geometrically-based but it is capable of simulating material properties to someextent. The algorithm is extended to model the di�erences between types of tis-sue and their interaction in [Schill et al. '98]. The underlying data structure can becompared to a chain mail in the 2D case extended by a third dimension in the 3Dcase. It is the key to the entire algorithm. (compare �gure 2.6). The basic ideaof the algorithm works as follows. The elements of an object are linked togetherlike elements of a chain mail. If one element is moved there is a chance that it willalso make its neighbor elements move since they are connected like a chain. If themoved element stays within the boundaries of the neighbors, the neighbors do nothave to be moved. If the moved element violates the boundaries of its neighbors, theneighbors have to be moved to satisfy the boundary constraints again. If a neighboris moved, then its its neighbors are moved too if necessary. Like this, the movementof one element is locally propagated through the object. A sample deformation of atwo dimensional object is shown in �gure 2.7.
The 3D ChainMail algorithm consists of two steps to calculate the deformation thatoccurs when an element is moved. The �rst step calculates the movement of theneighbor elements of the moved element. If any neighbor element has been moved,the movement of their neighbors is calculated too and so forth. In the second step,a relaxation step, the object is relaxed by locally adjusting the elements until theobject reaches a valid state of minimum energy.
The main advantage of the 3D ChainMail algorithm is its performance. S. F. F.Gibson has shown that each element has to be processed at most once. This allowsthe algorithm to work on a large data set and still produce interactive responsetimes. A topology change can easily be done by linking or unlinking elements hence,it supports actions like cutting for example an important feature required for surgerysimulation.
However, the proposed algorithm has some major drawbacks. First of all, it isrestricted to the use of rectilinear grids and second it only works on homogeneousdata. Two papers have been published which introduce methods to overcome theserestrictions.

The restriction to rectilinear grids is addressed by Y. Li and K. Brodlie [Y. Li '03]who introduce a Gerneralised ChainMail algorithm. This approach allows any num-ber of neighbors for an element and does not make assumptions about the topologyof the neighbors. The original 3D ChainMail assumed at most six neighbors andmade assumptions about their respective position. The six designed positions areleft, right, top, bottom, front, back. The restriction of rectilinear grids is overcomeby using relative rather than absolute values for the boundary constraints.
"Note the signi�cant di�erence from the original ChainMail algorithm, inthat the softness and shearing parameters are expressed relative to thelength of the original link between A and B, rather than as absolute dis-tance values." [Y. Li '03]

M. A. Schill et al. introduce an algorithm to enable the modeling of inhomogeneousdata [Schill et al. '98]. The basic idea is to change the chain boundaries of theelements. The movement is governed by the shape of the boundary assigned to achain mail element. Di�erent types of tissue are modeled with di�erent shapes ofchain regions. The problem that occurs with the introduction of inhomogeneouschain regions is that it can not be proven that each element only has to be processedonce. Hence, the speed advantage of this algorithm is lost. M. A. Schill et al. solvedthis problem by the use of sorted lists during the neighbor movement calculation.This increases the computational cost but the algorithm is still able to produceinteractive frame rates.
The 3D ChainMail algorithm is a very fast and capable method for soft tissue mod-eling. It can be compared to the Mass Spring Model and allows cutting withoutfurther improvements. The next section classi�es the di�erent approaches by theirunderlying data structure.

Figure 2.4: Simulation of a deformation using Finite Elements and Condensation[Bro-Nielsen, Cotin '01]

Figure 2.5: CSRBF Sample Deformation [Kojekine et al. '02]

Figure 2.6: 2D ChainMail structure [Gibson '97]

Figure 2.7: 2D ChainMail deformation example [Gibson '97]

2.8 Comparison and Classi�cation by Data Structure
To outline the main di�erence between these deformation modeling approaches andour approach we introduce a third classi�cation of the algorithms based on the datastructure they use for modeling the object.
Generally, three underlying types of data structures can be identi�ed:
� Meshes: The object is modeled through a surface or volumetric mesh. Typically,the nodes of the mesh represent mass points and store additional informationsuch as color. Commonly used surface meshes are triangular meshes. Tetrahe-dral meshes are their volumetric dimensional counterpart.See: [Teschner et al. '04], [Bro-Nielsen, Cotin '01], [Terzopoulos, Waters '90]� Control Points: The shape of the object is indirectly de�ned by a set of controlpoints. An interpolation function is applied to render the surface dependingon the interpolation parameters, the position and the properties of the controlpoints.See: [Sederberg, Parry '86], [Kojekine et al. '02]� Particles: An object is modeled by a large amount of small particles. Therelationship and movement and movement of the particles is usually governedby a set of constraints.See: [K�uhnapfel et al. '00], [Reuter et al. '03], [Eberhardt et al. '00]

All algorithms described in this chapter use these data structures to model the shapeof an object. However, the key concept in our approach is to directly model the vol-ume data without extracting object and topology information. Despite, we proposean algorithm to directly model and manipulate volume data.
In contrast to the presented approaches, our approach directly models the volumedata on the base of a Constrained Particle System. It exploits the structure of thevolume data set. A volume data set consists of density values which are arranged ina rectilinear grid. We use a particle system can to model these density values. Inour approach each particle represents one density value. Additionally, neighborhoodand movement constraints are introduced to govern the particles' movement.
2.9 Conclusion
This chapter presented a vast variety of methods and algorithms for soft tissue de-formation, both physically and geometrically based. Each of these methods has itsadvantages and disadvantages, since every solution is tailored to a speci�c problem.
Requirements
There are two key requirements for this work which inuence the choice of the algo-rithm applied. The �rst and most important feature is interactivity. The algorithm

has to allow interactive frame rates and direct user interaction. The second restric-tion arises from the work of A. Neubauer [Neubauer et al. '04]. His algorithm allowsthe user to interactively change the threshold to adjust the rendered iso surface.This feature must be preserved which makes every mesh based approach unfeasibledue to the high computational cost of the mesh generation. Instead we propose analgorithm that directly models the volume data.
Mesh{Based Approaches
The two criteria described above instantly rule out Mesh based approaches as wellas highly realistic physically based approaches. These algorithms come with a highcomputational cost. The use of meshes is not exible enough because the topologyof the object may change very quickly.
Geometrically{Based Approaches
Although there are direct user interaction extensions to the geometrical algorithmsthey do not satisfy the requirements either. These algorithms, such as the Free FormDeformation and the Radial Basis Functions, are based on control points. Hence,the control points need to be generated from the iso surface. This presents a problembecause the control points need to be updated during each threshold change. Sucha control point update requires a surface extraction step. Additionally, although themain focus of this work is not physical correctness the algorithm should be physicallyplausible to a certain degree.
Particle Systems
Although a particle system where the particles are connected through dampenedsprings is possible, the vast majority of the wide spread Mass Spring Model usesmeshes as data structure which makes it unfeasible for this work.
Finally, constrained particle systems meet the two criteria. The do not involve meshesand they are fast enough for interactivity. A model of Constrained Particle Systemsdescribed in this chapter is the ChainMail algorithm. This algorithm satis�es therequirements for direct user interaction, speed and exibility. It was originally de-signed to model deformation of volumetric objects. However, we use it to directlymodel and deform volume data instead.
The Divod ChainMail algorithm including the necessary adjustments to the Chain-Mail algorithm is presented in the next chapter.

Chapter 3

The Divod ChainMail algorithm

3.1 Overview
Basically, the Direct Volume Deformation ChainMail algorithm (Divod ChainMail al-gorithm) for local direct volume deformation consists of the three parts deformation,mapping and memory management. The �rst part calculates the deformation of theChainMail object. The second part is responsible for mapping the original volumedata to the ChainMail object and mapping the deformed ChainMail object back tothe volume data. The third part handles the loading of the necessary portions of theChainMail object into memory.
The calculation of the deformation is based on the 3D ChainMail algorithm �rstintroduced by S. F. F. Gibson [Gibson '97] and its enhancement to inhomogeneousdata presented by M. A. Schill [Schill et al. '98]. The two algorithms are describedin section 3.2 and 3.3. The Generalised ChainMail algorithm [Y. Li '03] was notused for our approach since the modeled voxels lie in a rectilinear grid. Therefore,an extension to a non rectilinear grid as proposed by the Generalised ChainMailalgorithm is not necessary.
The shortcomings of these approaches in respect to A. Neubauer's work are laid outin section 3.4 followed by a presentation of our solutions to these problems in section3.5.
Pseudo{code listings of our algorithm are presented in the next section. A detaileddescription of the Divod ChainMail algorithm and the adjustments made is given insection 3.6.
The mapping algorithm described in 3.6.3 uses barycentric coordinates to calculatethe new voxel values of the volume. A voxel is a single volume element whichrepresents the density information at the given volume position.
The memory management outlined in section 3.6.4 exploits the fact that the de-formation propagates locally and outwards through the object. The entire volumeis subdivided into a macro grid of cubes which are loaded on demand to minimizememory usage.

29

Finally, section 3.7 rounds o� the chapter with a conclusion and an outlook to furtherwork.
3.2 Original Algorithm [Gibson '97]
The 3D ChainMail algorithm was originally designed as a fast algorithm for de-forming volumetric objects. It is also capable of modeling a wide range of materialproperties and anisotropic materials. These are materials which have di�erent prop-erties along di�erent axes. The approach is based on techniques used in volumegraphics, physically-based graphics and soft tissue modeling with Finite ElementMethods.
Data Structure
The data structure of the algorithm called ChainMail object consists of elementswhich represent the volume data. Each element may hold various properties such ascolor and transparency. In our case the elements only store density values. Addition-ally, each element holds information about the deformation and elasticity parameters.These parameters are the same for every element of a ChainMail object in the originalChainMail algorithm. An element also stores its left, right, top, bottom, front andback neighbors and its last position. This is necessary to quickly revert a movementthat resulted in an invalid object state. The algorithm also allows cutting of theobject by simply unlinking elements.
The processing step of the ChainMail algorithm requires the use of six unorderedcandidate lists which are further outlined in the description of the algorithm. Amoved elements list is used to track the moved elements.
Deformation Parameters
Two neighboring elements are related to each other by their deformation parameterscalled chain region constraints. In the 2D case an element must lie within a relativehorizontal distance between mindx and maxdx from its left and right neighbor andwithin the relative vertical distance between mindy and maxdy from its top and bot-tom neighbor. These distance constraints govern the stretch and contraction of theobject. Additionally, the element must lie within the relative horizontal distance be-tween �sheardx from its top and bottom neighbors and the relative vertical distancebetween �sheardy from its left and right neighbors. These constraints govern theshearing of the object. In the homogeneous case all deformation constraints have tobe equal for all elements of a ChainMail object. Please refer to �gure 3.1 for a 2Dand �gure 3.2 for a 3D example. Figure 3.3 shows how chain regions work togetherto de�ne the valid regions.

Figure 3.1: In this �gure, the valid region for the element is de�ned by its left and bottomneighbor. The left neighbor's constraints are shown in red, the bottom neighbor's constraintsare shown in blue.

Figure 3.2: This �gure shows a sample chain region for the right neighbor. In this case the threedimensional the chain region is de�ned by a cube with side lengths 2 � sheardy, 2 � sheardz andmaxdx �mindx.

Figure 3.3: This �gure shows the chain regions for two elements. Note that all horizontal regionshave the same shape and size, as well as all vertical chain regions have the same shape and size.The valid region for a neighbor is the intersection between the corresponding horizontal andvertical chain regions.
In the 3D case the additional parameters mindz, maxdz and sheardz are introducedto govern the movement along the third axis.
Algorithm
Each neighbor element has to satisfy the chain region constraints otherwise theChainMail object is not in a valid state and the violating elements are moved untilthey satisfy the region constraints.
The behavior of the elements in the one dimensional case is like the behavior of achain. An example where the object's elements model the elements of a chain isgiven in �gure 3.4.
Extending this analogy to the second dimension the elements behave as chain el-ements of a chain mail. A single element may be moved a certain path withoutinterfering with the neighbors, but if it is moved too far the neighbor chain mailelements are dragged and moved too.
Hence, if one ChainMail element is moved because of a collision or interaction and

Figure 3.4: A sample deformation of a one dimensional chain. The initial movement of the rightmost element forces the left neighbors to be dragged in order to satisfy the region constraints.Note, that the drag necessary in the third step is smaller than in the second step. In the fourthstep no drag is necessary and the deformation terminates.

the deformation constraints are violated this also moves the violating neighbor ele-ments. The initially moved element is the so called sponsor of the neighbor element'smovement. If the neighbor element is moved it becomes a potential sponsor for itsneighbor elements too. They also have to be moved if they do not satisfy the con-straints after the violating element was moved and so forth. Through this mechanismthe deformation is propagated locally through the ChainMail object. With each ad-justment the overall violation decreases until it is below the constraint limit.
Candidate Lists
The checking and tracking of the potentially violating chain elements is done usingunordered candidate lists. If an element is moved all its neighbors are assigned tothe respective candidate list. There are six lists for a three dimensional object: right,left, front, back, top and bottom. The element is also added to the moved elementslist and stores its last position.
The candidate lists are processed one by one until no candidates remain or the system

enters an invalid state, e.g. collision with another object. In the latter case all movedelements are set to their last position and the deformation is retried using a smallerstep size for the initial movement. The order of processing of the list is right, left,top, bottom, front, back.
The processing of the right candidate lists begins with checking the violation con-
straints between the �rst element with the coordinates

0
B@

x
y
z

1
CA in the list and its

sponsoring element
0
B@

xleftyleftzleft

1
CA which is the left neighbor. In case of a constraint vio-

lation the candidate element is moved a minimum distance to satisfy the constraintusing the following formulas:
if(x� xleft < mindx); x = xleft +mindx

else if(x� xleft > maxdx); x = xleft +maxdx
to calculate the stretch and contraction and:

if(y � yleft < �sheardy); y = yleft � sheardy
else if(y � yleft > sheardy); y = yleft + sheardy

if(z � zleft < �sheardz); z = zleft � sheardz
else if(z � zleft > sheardz); z = zleft + sheardz

to calculate the shear.
In case the element was moved, its right, top, bottom, front and back neighbors areadded to the respective candidate lists. Afterwards, the candidate is removed fromthe list and the next candidate of the list is processed until no candidates remain.The processing of the other lists is similar except that for the left candidate list thesponsoring element is the right neighbor for the top list it is the bottom neighborand so forth. For the top and bottom lists the right and left neighbors do not haveto be added to the respective lists. If a candidate of the top candidate list is movedits top, front and back neighbors are added for example. For the front and backlist only the non sponsoring neighbor has to be added to the other lists. If a backcandidate is moved only its back neighbor is added to the candidate list for example.
Performance
S. F. F. Gibson identi�es three reasons for the speed of the algorithm:

1. each element in the object is considered at most once for each defor-mation

2. each element is compared to only one neighbor (its sponsoring neigh-bor) to determine if and how it must be moved3. the deformation is propagated outwards from the selected point andthe propagation is terminated as soon as possible
While 1 and 3 follow directly from the way the candidate lists are processed point 2results from the following theorem

"In the 3D ChainMail algorithm, each element can be compared to a singleneighbor when the object has constant deformation limits throughout itsvolume." [Gibson '97]
The proof of this theorem can be found in [Gibson '97] on page 5.
The ChainMail Algorithm can also model elastic relaxation of an object. It is donesimilar to the deformation but instead of deformation parameters relaxation param-eters are de�ned to check if an element meets the relaxation constraints with itsneighbors.
The methods for visualization of the object include the following:
� point cloud: visualizing all elements of the object
� surface points: showing only the surface elements
� surface mesh: showing a mesh extracted from the surface elements

S. F. F. Gibson presented a fast algorithm capable of modeling rigid, deformable,elastic and plastic objects with hundreds of thousands of elements through simplecalculations on a large number of elements.
3.3 Enhanced ChainMail [Schill et al. '98]
Problem of Original ChainMail Algorithm
Although, the original ChainMail algorithm does support anisotropic data it doesnot allow inhomogeneous data. This means that all chain regions within a ChainMailobject have to be equal. This is a huge drawback because the modeled objects oftenconsist of di�erent material with di�erent properties. A human head for exampleconsists of softer tissue such as skin or muscle which deforms easily while it alsoconsists of harder tissue such as bone which does not deform. Hence, it is desirableto de�ne chain regions with di�erent shapes for di�erent types of tissue within asingle ChainMail object.
The problem that occurs when doing this is that the theorem the speed of theChainMail algorithm is based on demands constant deformation limits throughoutthe ChainMail object. Hence, if this requirement is not satis�ed there are two possibleoutcomes. First, the elements have to be compared more than just once to satisfy

the deformation constraints which results in a heavy increase of computation time.Or second, the elements are only processed once and thus inconsistencies, such asholes, within the ChainMail object are created.
Sound Wave Approach
M. A. Schill et al. [Schill et al. '98] present an interesting approach to this problem.They interpret the ChainMail algorithm as the travel of sound through the object.
In their interpretation of the algorithm, information related to the deformation is thekey concept. The initial move creates the initial information about the deformation.This information is then propagated through the object by comparing two neighbors.Upon adjusting neighbors to meet the deformation constraints the amount of infor-mation is decreased. Hence, the information is propagated through the object until itis fully consumed. This propagation of information is equated with the propagationof sound in the Enhanced ChainMail algorithm.
The authors studied how sound is propagated through an inhomogeneous objectand applied this knowledge to the ChainMail algorithm: a sound wave travels fasterthrough sti�er material. Hence, the deformation information should travel fasterthrough sti�er material too. Sti�ness is determined by the material properties be-tween two neighbors in the Enhanced ChainMail algorithm and inuences the orderin which elements are processed. The order of processing de�nes where and how fastthe information is propagated. This observation is used to make the speed of thedeformation information propagation dependent on the material properties.
Enhanced Algorithm
Instead of six unordered candidate lists which are processed in term on a �rst moved�rst served basis they only use one ordered list. The criterion for ordering theelements in the list is the degree of constraint violation. The bigger the violationthe earlier the element is processed to make sure that the information is propagatedappropriately. Hence, the element with the biggest violation is always processed �rst.For two horizontal neighbor elements with the positions v1 and v2 the constraintviolation is calculated as follows:

amount of constraint violation = distance(v1; v2)�maxdx
The use of an ordered list increases the computational cost for inserting an elementdepending on the implementation of the list used by O(n) to O(ld(n)) which is stillfast enough to produce interactive frame rates because all other bene�ts such as the"each element processed at once most" rule are still intact.

3.4 Problems
The Enhanced ChainMail algorithm is a capable application for soft tissue deforma-tion. It can model volumetric data from objects with anisotropic and inhomogeneousmaterial properties. However, this work can not be applied "as is" to the currentproblem of extending the STEPS system by adding support for deformations. Theproblems are described in this section.
3.4.1 Visualization
Most of the problems are rooted in the fact, that the STEPS system directly visualizesthe volume using a ray casting algorithm [Neubauer '01] which has to be reused.The ray caster can not be used to directly render the ChainMail object. First ofall, the ray caster assumes that all voxels lie in a rectilinear three dimensional gridwith constant distances between them along each axis for performance reasons. If aChainMail object is deformed, the elements usually do not satisfy this assumption.
Another requirement is the fact that the volume data has to show the deformationtoo. In the STEPS application a user has four views. One view shows the threedimensional virtual reality and the other three views show a cutting plane of themultiplanar reconstruction the so called section views. These section views have toreect the deformation too.
Hence, it is necessary to map the ChainMail object to the volume. First of all, thisis because the ray caster visualizes the volume. Hence, if the volume is deformedthe ray caster can be applied without further changes and shows the deformation inthe virtual view. The same applies for the section views which directly render thevolume data too.
3.4.2 Large Amount of Data
The second problem arises from the huge size of the data. A typical computertomography data set contains 512� 512� 64 voxels. This means that the completeChainMail object would consist of over 16 million elements.
Estimated Memory Usage
An estimate for the memory used shows the problem. An initialized element requires224 bytes and a moved element requires 256 bytes because the memory to save thelast position is required. These values were acquired using a Java VM 1.4.2 on aWindows XP platform. Java is used because STEPS is programmed in Java.
In Java there is no requirement for a sizeof() method such as in C and the mem-ory an object requires may vary for di�erent implementations of the Java VirtualMachine. The only methods available are Runtime.totalMemory() which returns the

total memory available to the Virtual Machine Runtime.freeMemory() which returnsthe free memory left in the Java Virtual machine and �nally Runtime.maxMemory()which returns the maximum memory the Java Virtual machine will attempt to use.
Determining the Size of an Element
Therefore, the size of the ChainMail element data structure was determined by cre-ating a large number of elements and examining the memory usage before and afterthe elements were created. To minimize the inuence of overhead and objects thatwere not collected by the garbage collector 150000 objects were created. The currentmemory usage is given as:

usage = totalMemory � freeMemory
The variable before stores the memory usage before the elements are created and
after stores the memory usage afterwards. Hence, the size for a single element isgiven as size = (after � before)=150000.
Overall Memory Requirement Estimation
A typical volume contains 512 � 512 � 64 = 224 elements hence the memory usedto model the entire volume with a single ChainMail object is 224 � 256 = 232 bytes(approximately 4 GB). The resources available are not su�cient for this amount ofmemory required.
Not being able to load the entire ChainMail object into memory is a general problem.Because the ChainMail algorithm calculates local deformations it is su�cient to onlyload the necessary parts. Therefore, it is necessary to implement a memory man-agement in the current application which allow to hold only those parts in memorywhich are required for the calculation.
3.4.3 Interaction
Interaction with the object is another problem. In the original algorithm, the userselects an element and moves it to start the deformation. In our application theuser can penetrate the object's surface with the endoscope at any point. He doesnot have any knowledge about where the ChainMail elements are. Hence, it is veryunlikely that the user will precisely hit a single ChainMail element to initiate thedeformation as it is required by the ChainMail algorithm.
The endoscope is rather likely to penetrate between the ChainMail elements. There-fore, it is necessary to introduce a new type of initiating the deformation.
The second reason why a di�erent way for interaction is required arises from the factthat the endoscope has a certain diameter. This means that the intersection occursin a circular area and not in a single point. To correctly model this case multipleelements must be moved to initiate the deformation.

3.4.4 Data Structure { Z{Scale
The so called z{scale of the volume data presents another challenge because it causesa distortion of the image along the z{axis. The z{scale is a measure for the distancebetween two voxels along the z{axis. This distance is constant for a single data setbut varies between di�erent data sets. The e�ect of the distortion of the deformationis proportional to the z{scale. An example image that shows the e�ect for a z{scaleof 2:2 is shown is �gure 3.5.

Figure 3.5: This picture was taken from a volume with a z-scale of 2:2. The shown deformationappears approximately twice as big along the z{axis than along the x{axis.
To ease this e�ect the shape of the chain regions and the calculation of the movementand dragging of the ChainMail elements are adjusted in regard of the z{scale.
3.4.5 Physical Plausibility
Additionally, to the shape of the deformation the global behavior should also bephysically plausible. It should not be possible to move bone tissue or to deform thetissue by an unnaturally large amount. The shape of the deformation is governed bythe chain region constraints. However, the original algorithm does not o�er a wayto model global constraints.

3.4.6 Relaxation
After the deformation step the original ChainMail algorithm allows a relaxation ofthe object. However, it does not describe the relaxation algorithm nor does it de�necircumstances or requirements for such a relaxation algorithm. The authors do pointout that the calculation of the relaxation is a very time consuming process and shouldbe calculated in a separate thread. This thread shall work during the idle time of theprocessor because the performance of the deformation calculation would otherwisebe a�ected. Although, a relaxation of the tissue would make the simulation moreplausible and enhance the experience of the user this work does not implement arelaxation for the following reason.
High Computational Cost
The bene�t of the quality improvement for the visual e�ect gained by a relaxationdoes not justify risking interactivity. The relaxation itself is a very time consumingprocess. However, each relaxation step would also require the mapping of the relaxedobject to the volume because it is done in a separate thread. Hence, the e�ort of theentire application would approximately double. Another thing to consider is that,after the relaxation the eye-point of the endoscope must still be outside of the tissue.Therefore, the relaxation algorithm would have to calculate iso values in the vicinityof the eye point to check if the calculated relaxation meets this requirement. Thischeck would require the use of the ray caster because the iso surface is dependenton the threshold value set and can only be performed at the end of the calculations.Finally, an endoscope leaves an imprint on the deformed tissue. Hence, the relaxationmust not fully relax the object but leave an amount of deformation intact. For thesereasons, implementing the relaxation is a very complex task which is out of scopefor the present work.
3.4.7 Conclusion
Possible solutions and the solutions chosen to be implemented to the problems de-scribed in this section,
� visualization: the required visualization method using a ray caster is currentlynot supported and the three section views have to reect the changes made bythe deformation.
� large amount of data: need for memory management.
� interaction: endoscope does not directly interact with ChainMail elements butinteracts with the rendered surface.
� z{scale: causes a distortion e�ect because the distance between the voxels alongthe z{axis is di�erent than their distance along the other two axes.
� physical plausibility: need for global constraints.

� relaxation: the computational cost are too high to implement relaxation in ouralgorithm.
as well as a discussion regarding the pros and cons of the di�erent approaches arepresented in the next section 3.5.
3.5 Solutions
3.5.1 Mapping
Why Mapping is Necessary
One way to avoid mapping the object to the volume as described in the latter sectionwould be to implement a new ray caster that works on non rectilinear grids. But forperformance reasons and memory requirements this approach is unfeasible and thecurrent �rst hit based ray caster of the STEPS system has to be used. Additionally,the section views need to be updated to reect the changes which requires mappingthe object to the volume. Hence, the original volume data needs to be updated.
Volume Based Mapping
We propose an algorithm to map the deformed ChainMail object directly to thevolume data instead of mapping an object or a surface extracted from the ChainMailobject. It would be very time consuming to extract object or surface information formthe ChainMail object because the object's elements represent the voxel values of thevolume and not the real object. Hence, the loaded elements cannot be interpretedas a point cloud of the object and the boundaries of the object cannot be consideredto represent the surface.
The volume data used for this speci�c application supports voxel values between�1000 and 3095. These values are also known as Houns�eld Units (HU). Thecorresponding Houns�eld Scale assigns Houns�eld Units to di�erent body tissues[O.Ennemoser et al. '86]. This interval is internally mapped to the interval 0�4095.
Reusability of STEPS Components
The mapping also addresses the section view problem because it updates the volumedata. Another bene�t is that the currently implemented ray caster can be usedwithout further changes and the possibility for interactive threshold changes remainsintact. The ray caster has no knowledge of the mapping process because it directlyvisualizes the volume data.
The mapping algorithm consists of two parts. The �rst part handles the mappingfrom the volume to the object and the second part is responsible for mapping theobject to the volume.

Mapping the Volume to the Object
The volume data is stored in a rectilinear grid where the volume voxels are locatedat the intersection points of the grid lines. In the ChainMail object each element rep-resents a voxel of the volume. Additionally, the mapper only maps to not deformedobjects and the coordinates of the ChainMail elements and the volume data voxelsare the same for not deformed objects. Hence, it is su�cient to copy the voxel valuefrom the volume to the newly created ChainMail element with the same coordinates.
Mapping the Object to the Volume
Mapping a deformed object back to the volume presents a bigger challenge. Thequality of the visual e�ect of the deformation depends heavily on the performance ofthe mapping algorithm. Another thing to consider is the requirement for interactiv-ity. Thus, the mapping algorithm needs to be fast enough to meet this requirement.
First of all it is necessary to identify which voxels of the volume may have changeddue to the deformation and need to be recalculated. Which volume voxels are a�ectedis dependent on the algorithm used for the mapping.
First Approach { ROI based Mapping
The �rst approach we implemented to update the volume data was to de�ne a regionof inuence around the volume voxel positions. The region of inuence has the shapeof a square or a cube in 2D and 3D respectively with a side length of 1. Please see�gure 3.6 for a sample 2D region of inuence.
The middle of such a region of inuence is the corresponding volume voxel position.For example the region of interest for the voxel at (3/3) is given as (2.5/2.5), (3.5/2.5),(2.5/3.5) and (3.5/3.5). All elements inside this region of interest are taken intoaccount for the recalculation while elements outside of this region are discarded.
Because the calculation of the new voxel value is dependent on the distance and thevalue of the surrounding ChainMail elements each moved element may have changedthe value of a volume voxel. These a�ected volume voxels need to be recalculated.A�ected voxels are those voxels that are part of the volume grid element that enclosesthe last position or the current position of a moved element.
A volume grid element in the 2D case consist of 4 voxels that form a square of size1 (for example (2/2), (2/3), (3/2) and (3/3)). Please see �gure 3.7 for a sample 2Dgrid element.
In the 3D a grid element is de�ned as 8 volume voxels building a cube with avolume size of 1. It is necessary to recalculate the voxels for both positions becausethe movement away from the old position causes a change in the old neighborhoodwhereas the movement to the new position also causes change. For example, in the2D case if an element is moved from (2.3/3.2) to (2.4/3.7) the enclosing grid element

Figure 3.6: A sample region of inuence in 2D. The region is a square with the same size asa a grid element. The center of the region is the position of the corresponding volume voxeldepicted by the red dot.

for current and last position is the same. Hence, the volume voxels at (2/3), (2/4),(3/3) and (3/4) need to be updated. If the element was moved to (2.4/4.1) then thevoxels at (3/5) and (2/5) also need to be recalculated.
The calculation of the new volume values for the a�ected voxels starts with collectingall object elements that lie inside the region of interest. For each element in the col-lection the contributing element value is calculated. This is done by �rst calculatingthe distance of the current element position vcurr to the volume voxel position volposalong each axis.

d = jvolpos � vcurrj
The contributing element value contrib is then given as

contrib = elementvalue � (1� dx) � (1� dy) � (1� dz)
This ensures that object elements which lie exactly on a volume voxel position con-tribute the complete value because the distance vector is the zero vector. Addi-tionally, the value contributed decreases with the distance of a voxel. Finally, for ncontributing elements the respective contributed values are summed up to calculatethe new volume voxel value.

valuenew = nX
i=1 contribi

This approach is fast but inexible and likely to create artefacts. As an examplethat leads to an artefact imagine a chain region which allows a maximum distance

Figure 3.7: The green region shows a single grid element in the 2D case.

along the x{axis of 1:2. The object is not deformed hence, all object elements havethe same coordinates as the volume voxels. If an element at position pos is initiallymoved by the move vector (0:6; 0; 0) its neighbor will be moved by (0:4; 0; 0) to satisfythe chain region constraint along the x{axis. This leads to a hole at the position posbecause there are no contributing elements left in the region of inuence. This caseis depicted in �gure 3.8.
The new voxel value results as 0 which is not correct. Additionally, the resultingvalues may exceed the valid interval de�ned by the Houns�eld Scale.
Tri{linear Interpolation based Mapping
Tri{linear interpolation assumes that the eight enclosing elements for a position forma parallelepiped. A parallelepiped consists of six pairwise congruent and parallel sur-faces. Unfortunately, this assumption does not hold for deformed objects. Therefore,we could not use tri{linear interpolation to calculate the new density values.
Hence, we developed another method for mapping the ChainMail object to the volumeusing barycentric coordinates.
Barycentric Coordinates based Mapping
Because of the problems with the region of inuence based approach we introduceda new way for calculating the voxel values using barycentric coordinates. The basicow of the algorithm is to �nd the eight elements which form a cube that enclosesthe volume position to be updated. This cube is then split to tetrahedrons. Then thebarycentric coordinates for the volume voxel position in the enclosing tetrahedronare calculated and used to generate the new density value for the voxel.

Figure 3.8: After the element is moved and its neighbor is dragged, the region of inuenceremains empty.
Because we use barycentric coordinates the newly calculated values stay within thevalid interval and artefacts are avoided.
The details of this approach are presented as part of the entire algorithm in section3.6.3.
Deformation Near Volume Boundaries
The mapping is also capable of extending the ChainMail object over the boundariesof the volume data set to support deformations near the volume boundaries.
3.5.2 Memory Management
Idea
The desired memory management is supported by our approach because the deforma-tion is locally propagated through the object. Therefore, it is possible to start withloading the part of the volume into memory which holds the elements involved forthe initial movement and then as the deformation propagates load the missing partson demand. The existing object is extended by the loaded parts through connectingthem to it. Also for subsequent deformations the missing parts of the volume at theboundaries of the ChainMail object are loaded and connected. Upon the initiationof a new deformation outside the currently loaded ChainMail object a new object iscreated and the old object is removed from memory.

Drawbacks of Clearing the Old Object
This approach o�ers one major drawback because it is possible to elude themovementconstraint described in section 3.5.5. The purpose of this constraint is to avoidunnaturally large deformations. When the object is cleared, the deformation staysintact but the information about the movement of the elements is lost. Hence, ifthe user starts a new deformation at the already deformed tissue a new ChainMailobject is created where the movement information of the volume is out of sync withthe movement information of the object. This allows the user to deform the volumeignoring the movement constraint.
Possible Solutions to the Drawbacks
Several strategies can be applied to avoid this. The �rst one is not to clear ChainMailobjects. The problem that occurs from this approach is that at some point two ormore ChainMail objects need to be merged. To avoid merging, the object can alsobe extended step by step until the new point is loaded but this leads to huge objectsand requires a lot of computation time. Another way to avoid this would be tostore the movement information before clearing the object. This can be equated todumping the object which is also very time consuming. The problem of merginghowever cannot be avoided by this approach because the dumped objects may alsooverlap.
A completely di�erent approach would be to revert the deformation when clearing anobject. This means destroying the movement information in the volume too. Hence,the movement information in the volume and a newly created ChainMail object arein sync. However, the deformation has a plastic component. The endoscope leavesan imprint in the deformed tissue. Hence, a complete reversion of the volume wouldnot be physically plausible. For performance reasons none of these approaches wereapplied in the current implementation.
3.5.3 Interaction { Multi Move
The interaction between the endoscope and the surface is vital for the realism of thesystem. Because the endoscope penetrates at a random surface position and doesnot interact directly with the ChainMail elements a certain ChainMail element needsto be selected to initiate the movement. At �rst, the nearest element was selectedfor the movement but his procedure does not produce physical plausible results.
Idea
To model the endoscope's diameter and maximize the probability that the eye pointlies outside of the tissue after the deformation the eight elements which enclose thecalculated intersection point are initially moved. The part of the iso surface enclosed

Figure 3.9: The eye point of the endoscope lies inside the tissue

Figure 3.10: The enclosing elements are moved

by the eight elements is approximately moved the same way as the elements. It isnot moved exactly the same way because the shape of the iso surface also dependson the neighbors of the eight moved elements. However, using this procedure theendoscope is likely to lie outside the tissue after the deformation (see �gures 3.9 and3.10).
The direction of the endoscope de�nes the direction of the movement. The length ofthe movement is given by the distance between the eye{point of the endoscope andthe intersection point. It is scaled by a con�gurable scale factor to adjust the depthand size of the deformations.
First Approach { Moving each Voxel Separately
However, in the original ChainMail algorithm a deformation is initiated by moving asingle element. In contrast, our work proposes to initiate the deformation by movingeight elements at once.

Hence, a �rst approach to the multimove problem would be to initiate eight deforma-tions, one for each element. This approach requires a lot of computation time becauseeight separate deformations need to be calculated for each collision. Additionally,it is very likely that the �rst moved element causes its neighbors to be dragged bya certain length lengthdrag. Therefore, the length of the original movement vec-tor lengthmovement must be adjusted. If it is be applied to the seven subsequentlymoved elements without adjustment their movement would be incorrect given as:
lengthmovement + lengthdrag.
Moving All Initial Elements at Once
Instead, it is easier to move all eight elements at once and add the neighbors ofeach initially moved element which are not initially moved elements themselves tothe candidate list. Because all initial elements are moved the same distance anddirection they do not have to be added to the candidate list since their relativeposition does not change and hence there chain region constraints are not violated.
Processing Elements Multiple Times
From here, the algorithm has to be adjusted to avoid that an elements gets processedmore than once. If the ChainMail algorithm is applied "as is" then the elementswould get processed multiple times because there are eight elements that start themovement. For example assume the two elements vtop and vbottom where vtop is thetop neighbor of vbottom are moved to initiate the deformation. Following the 2Dalgorithm their neighbors are added to the candidate lists. Examining the situationfor the right neighbors where rbottom is the right neighbor of vbottom and rtop isthe right neighbor of vtop already shows the problem. rbottom and rtop were bothadded to the candidates list after the initial movement. If rtop gets processed andis moved to satisfy the constraints its top, right and bottom neighbors are added tothe candidates list. But since rbottom which is the bottom neighbor of rtop is alreadyentered in the candidates list it gets processed more than once. Then, if rbottom alsoneeds to be moved rtop will be reentered in the list of candidates. Please see �gure3.11.
Hence, the speed bene�t of the ChainMail algorithm is lost.
Adjusting the Add to Candidate List Rule
To avoid the multiple processing of elements the way the neighbors are added to thecandidates list is changed. For the given example the problem occurs if rtop adds
rbottom to the candidates list and vice versa. If this is avoided the problem does notoccur in the given example. However, this has to assured for all right neighbors. Theright neighbor of rtop may not add its bottom neighbor and so forth.

Figure 3.11: This �gure shows the case where the elements rtop and rbottom get added to thecandidate list twice. They are added by the initial element and they add each other to the listtoo if dragged.

This is done by assigning three ignore direction ags, one for each direction, to eachelement. This ag stores the direction in which no neighbors may be added. Theinformation is initially created by the initially moved elements. The directions toignore are equal to the directions in which the other initially moved neighbors lie.To propagate the ignore directions through the object during the dragging step thesponsor passes its ignore direction ags to its candidates. If a candidate becomes asponsor, then it also passes the ags to its candidates and so forth.
Please refer to �gure 3.12.
Possible Inconsistencies
This procedure equals cutting the object (in the example the object was cut in thealong the horizontal axis) and calculating the deformation in the two parts indepen-dently. This presents another problem because in the inhomogeneous case the chainregion constraints may be violated along the cut. In the given example rbottom and
rtop are never checked against each other. In the homogeneous case all chain regionsare equal since the initially moved elements are all moved the same way the draggedelements are dragged the same distance too and therefore satisfy the constraints.This observation does not apply to the inhomogeneous case because the distancethe dragged elements are moved varies depending on the shape of the chain region.Hence, a violation of the chain region constraints may occur. For example, if thedirection of the deformation is straight left and the material on the top side of thecut is softer than the material on the bottom side of the cut the elements on the

Figure 3.12: This �gure shows the e�ect of the adjustment to the add candidate rule. The objectis cut along the horizontal axis depicted by the line an no neighbors along this line are added tothe candidate list. The deformation propagates separately through the two parts of the object.The green elements are the initially moved elements which do not add their initially movedneighbors either. The arrows show the directions in which neighbors are added to the candidatelist.
bottom side may be moved further than the elements on the top side. This may leadto a shear constraint violation of the elements along the cut line (see �gure 3.13).
However, the shape of the chain regions that are used in this application do notdi�er by a huge amount. Thus, it is unlikely that a chain region constraint violationoccurs. Most importantly, no visual artefacts were produced from the constraintviolation problem.
Misplaced Deformation
Another problem with this approach is that the center of the deformation does notappear to be the point of impact.
This e�ect occurs if the point of impact is near a voxel or near a side of the initiallymoved cube. The center of the moved cube appears as the center of the movement.Hence, if the point of impact is far away the impression of a misplaced deformationis created. Please see �gure 3.14 for a 2D example.

Figure 3.13: The elements along the top row are dragged further than the elements along thebottom row. This results in a shear constraint violation marked by the red region.

Proposed Solution to the Misplacement E�ect
To soothe this e�ect, it was proposed to move each of the eight cube elements individ-ually depending on their distance from the point of impact. At �rst this seems to bea promising approach. However, the problems of moving the elements appropriatelyin accordance with the chain mail constraints becomes a complex task. It requiresto check all constraints for all eight elements in regard to the point of impact. Theproblem becomes more complex for already deformed elements. Additionally, due tothe chain region constraints, movement of the individual elements may not di�er by agreat amount. For example, a chain region o�set of 0:2 allows a maximum di�erenceof 0:2 between the movement of each element for an initialized object which is notenough to counter the misplacement e�ect.
Finally, the e�ect shows very well on even surfaces but not on uneven surfaces as theyare modeled in the STEPS application. Hence, the approach of moving the elementsdepending on their relative position to the point of impact was disregarded.
3.5.4 Z{Scale Adjustment of Region Constraints
Motivation
A distortion is caused by the fact that the voxel distance along the z{axis is di�erentthan along the other two axes. This ratio is called z{scale and di�ers for variousvolume data sets. All movements propagated along the z{axis appear scaled bythe z{scale factor. This distorts the visualization of the deformation which looksstretched along the z{axis (see �gure 3.5).

Figure 3.14: The endoscope penetrates near a surface of the enclosing cube. However, thedeformation looks exactly as �gure 3.10 giving the impression that the deformation is misplaced.

Ratio of Information Propagated
The problem occurs because the ratio of information propagated along the z{axisand the other two axes is zscale : 1 because the voxels are lying further apart alongthe z{scale. If information is passed to a neighbor along the x-axis the distance theinformation travels equates one distance unit whereas the distance the informationtravels equates z{scale times distant unit along the z{axis.
Idea
To solve the problem we used the analogy of a sound wave traveling through thematerial introduced by M. A. Schill et al..
In the case of the z{scale the information propagated along the z{axis is exaggeratedby the z{scale factor. Hence, the amount of information propagated along the z{axis has to be divided by the z{scale. There are two channels through which theinformation is passed along the z{axis. The �rst channel we called direct channelpropagates the movement information handled by the min and max constraintsof the chain region. The second channel we called shear channel propagates themovement information derived from the shear constraints. In this case it is theshear along the x{axis and along the y{axis.
Adjusting the Propagation along the Direct Channel
Hence, to soothe the e�ect two adjustments are applied. In the �rst adjustment wescale the move vector along the z{axis by 1=zscale. The valid ratio of informationpropagated along the direct channel of the z{axis and the other two axes is restored.

Adjusting the Propagation along the Shear Channel
To ease the e�ect along the shear channel we implemented a second adjustmenta�ecting the chain regions. The deformation information is also propagated alongin the z{axis through the shear constraints if the sponsoring element is a neighboralong the z{axis and the shear constraints along the x{axis or y{axis are violated.This results in a drag of a neighbor along the z{axis and thus, to a propagation ofthe information along the z{axis. Similar to the direct channel the information hasto be divided by the z{scale factor. We do this by extending the shear constraintsfor the x shear and the y shear regions in z-direction. Our shears used for checkingthe shear constraints along the z{axis are hence:

zshearx = zscale � shearx
and

zsheary = zscale � sheary
By adapting the shears in this manner neighbors are dragged later and a smallerdistance along the z{axis. This means that the information is consumed faster bythe factor z{scale along the z{axis. Therefore, the ratio of information propagatedalong the shear channels is restored.
Adapting the shear constraints of the chain regions and the z component of the initialmove vector to the z{scale restores the original ratio of the information propagatedalong di�erent axes and soothes the visual distorting e�ect of the z{scale factor.
3.5.5 Global Constraints
To ensure physically plausible results we introduce two global constraints.
Movement Constraint
The movement constraint avoids an unnaturally big deformation of the tissue. In thereal world the movement of the tissue is restricted. It is not possible to replace partsof tissue by a large distance. This constraint is modeled by restricting the allowedmaximum distance an element may move from its original position. A violation oc-curs if the length of the initial movement is bigger than the movement constraintor a subsequent deformation causes an element to be moved a bigger distance thanallowed. Our approach makes the size of the movement constraint mcelement for asingle element e dependent on the density value of the element edensity and the con�g-urable global movement constraint mcglobal. Bigger density values are interpreted assti�er material with a more rigid movement constraint. We calculated the movementconstraint mc follows:

mcelement = (1� (edensity=4096)2) �mcglobal

Bone Constraint
The bone constraint is introduced in the form of a bone threshold. Because bonetissue does not deform it is necessary to identify bone elements and stop the defor-mation process if such a bone element is about to be moved. If an element is triedto be moved which has a value that is bigger than the bone threshold the constraintis violated. The Houns�eld Scale associates values around 100HU with spongy bonetissue and the hard bone is associated with values around 1000HU .
Violation Handling
If one of these constraints is violated the calculation of the deformation is stalledand the movement is reverted. Then the deformation is retried with a smaller initialstep size.
A detailed description of our adapted version of the ChainMail algorithm supportingmultimove and z{scale as well as the mapping and memory management algorithmsare presented in the next section.
3.6 Algorithm Outline
3.6.1 Component Overview
As described earlier the Divod ChainMail algorithm consists of three components:
� Deformation: calculating the deformation
� Mapping: mapping the ChainMail object from and to the volume
� Memory Management: managing the memory loading required parts and re-leasing unnecessary parts

The mapping and the memory management are tightly coupled together. Whenevera portion of the volume needs to be added to the ChainMail object both componentsare involved. First, a new piece of the ChainMail object is created to hold the requiredpart of the volume. In the second step the mapper maps the volume to the newlycreated piece. Finally, it is integrated into the existing object. The request for sucha load operation is issued by the component calculating the deformation. It is issuedif the calculation requires an element that is currently not loaded (for example if anelement that is not loaded needs to be moved).
Hence, the interaction of the three components looks as follows (see �gure 3.15).
A detailed description of the individual components is presented in the sections 3.6.2,3.6.3 and 3.6.4.

Figure 3.15: Interaction of the individual components

3.6.2 Deformation
Basic Flow
The next pseudo code listing presented in �gure 3.16 shows the basic ow of thedeformation algorithm.

adjustToZScale(movement.vector);

// check if the object encloses the collision
if (positionIsLoaded(movement.position)) {
// if not, then the object is cleared and a new deformation is started
clearObject();
// load the part of the volume that encloses the position
MemoryManager.loadChunk(movement.position);

}

// find the eight enclosing elments to initiate the
// deformation with, it might be necessary to load
// chunks if not all eight enclosing elements are loaded
initialElements = findEnclosingElements(movement.position);

// move the eight elements and add their neighbors to the candidate list
multimove(initialElements);

// process all candidates in the candidate list
// if necessary missing neighbors are loaded by the
// MemoryManager and connected to the object.
processCandidateList();

Figure 3.16: Flow of Deformation Algorithm.

lastPos = STEPS.lastEyePoint;
virtualPos = STEPS.currentEyePoint;
step = virtualPos - lastPos;
step.scale(stepsize);
lastVirtualPos = virtualPos;
while(isInsideTissue(virtualPos)) {
lastVirtualPos = virtualPos;
virtualPos.sub(step);

}
intersection = 0.5 * (vitualPos + lastVirtualPos);
force = STEPS.currentEyePoint - intersection;
object.performDeformation(intersection, force);

Figure 3.17: Algorithm for calculation of deformation information.
Collision Detection
The request for the deformation is issued from the STEPS system. It detects thecollision of the endoscope with the iso surface and passes the necessary deformationinformation consisting of the collision's position and the force vector to the object.
Calculating the Intersection Point
STEPS stores the current and last position of the eye point. The direction of theforce applied to the tissue is given from the old position of the eye point to thecurrent position of the eye point.
At �rst the intersection point is assumed at the eye point of the endoscope which liesinside the tissue. This point is then repeatedly moved towards the last position ofthe eye point by a small step size until it lies outside of the tissue. Finally, the middleof the last two calculated points, one lies inside the tissue the other one outside ofthe tissue, becomes the starting point of the deformation. Please see �gure 3.17 fora pseudo code listing.

Scaling the Force Vector
The deformation algorithm starts with scaling the z{component of the force vectorby the z{scale. This is done to reestablish the valid ration of information propagatedalong the z{axis and the other two axis as described in 3.5.4.
Cases at the Beginning
For the given position of collision three cases may occur:
1. The object does contain cubicles and the enclosing elements for the given posi-tion are loaded: The calculation can proceed.
2. The object does not hold any cubicles : A request to load the cubicle thatholds the desired position is issued to the memory manager. After loading thecubicle �nding the enclosing cube is successfully retried and the calculation canproceed.
3. The object contains cubicles but the enclosing eight elements can not be found inthe currently loaded elements: It is assumed that a new deformation is initiatedand the memory is released by clearing the object. Now when retrying to �ndthe enclosing elements the procedure is the same as in case 2.

Finding the Nearest Element
Now, the eight enclosing elements, we also call enclosing cube, for the given positionare acquired. Finding the enclosing eight elements begins with �nding the elementwhich lies nearest to the requested position. Finding the nearest element is doneby getting the top corner element of the cubicle which originally holds the requestedposition. Then, the distance of this element to the point is compared to the distancesof its neighbor elements. If a neighbor is closer the process is repeated with theneighbor that is closest to the position and so forth. The iteration ends when noneighbor element is closer to the requested point. Please see �gure 3.18 for a pseudocode listing.
During the search for the nearest element it might be necessary to load missingcubicles. This occurs if a neighbor has to be checked that is currently not loaded.

DeformVoxel findNearest(Position) {
voxel = cubicle.getVoxels().getTopCornerVoxel();
try {
// calculate the distance
act_dist = voxel.getDistance(position); // distance of actual element from
do {
// get the neighbor that is nearer
newVoxel = voxel.getNearer(position);

// calculate the distance of the nearer element
new_dist = newVoxel.getDistance(position); // distance of currently processed neighbor
if (act_dist > new_dist) {
// the neighbor element is nearer. it is set
// to the actual element and the process is repeated
act_dist = new_dist;
voxel = newVoxel;

}
} while (act_dist <= new_dist);

} catch (PositionNotLoadedException pnle) {
// the voxel.getNearer() method may throw a
// PositionNotLoadedException in case a neighbor that could be
// nearer is not loaded. In this case the missing cubicle is
// loaded and the process retried.
throw new PositionNotLoadedException(pnle.getMissingPosition());

}
return voxel;

}

Figure 3.18: Pseudo code listing of the �nd nearest element algorithm.

Figure 3.19: All neighbors of the encircled element are further away from the grid elementmarked with X than the encircled element. Hence, the search for the nearest element will �nishwithout �nding the blue element which is the correct nearest element.

Figure 3.20: The nearest element must be part of the four enclosing elements for the gridposition marked with a square. It is not possible to determine which neighbors are the enclosingneighbors from the relative position of the element to the grid position.Picture A: the other two enclosing neighbors are bottom and left.Picture B: the other two enclosing neighbors are top and left.Picture C: the other two enclosing neighbors are top and right.Only the case where the bottom and right neighbor are part of the enclose can be ruled out inthis case.
This algorithm works very well for non deformed objects but is awed when workingon a deformed object. Consider the case that all neighbors of an element are furtheraway from a given point but that the next neighbor of the neighbors is the nearestelement. This case is depicted in �gure 3.19. In this case the algorithm stops butdoes not �nd the nearest element to the given position. If this happens all elementsof the current object are checked to �nd the nearest element.
The nearest element to a position is calculated to exploit the fact that such an elementmust be part of the enclosing cube because the neighborhood of the elements remainsintact during a deformation. That means the left neighbor of an element always stayson the left side of this element and so on. Please refer to �gure 3.20 for an examplein 2d.

boolean checkEnclose(List cube,Point3d position) {

foreach (tetrahedron = cube.splitToTetrahedrons()) {

barCoor =
calculateBarycentricCoordinates(tetrahedron, position);

if (allComponentsBetweenZeroAndOne(barCoor)) {
return true;
}

}
return false;
}

Figure 3.21: Pseudo code for checking if a point is enclosed by eight elements.
Finding the Enclosing Cube
To �nd the other seven elements, the eight cubes that can be formed with the nearestelement as a corner element are generated. Each of these cubes is checked if itcontains the position. Unfortunately, the relative position of the desired cube cannotbe identi�ed from comparing the nearest element to the requested position. If anelement lies on the right, top side of the position the enclosing square (in the 2D case)can either include the top, right neighbor or the right bottom neighbor or the top,left neighbor. The only two neighbors that cannot be part of the enclosing square atthe same time are the bottom and left neighbor. Hence, all possible cubes have to bechecked. The check is done by splitting the cube to tetrahedrons and examining theresulting barycentric coordinates of the given point depending on the tetrahedrons.A detailed description of this procedure is given in section 3.6.3. If all componentsof the barycentric coordinate vector are between 0 and 1 inclusive the position liesinside the tetrahedron. A pseudo code listing is presented in �gure 3.21.

void moveInitialCube(List elements) {

// iterate through all elements
foreach (v = cubeVoxels.next()) {
getCubicle(v).addMovedVoxel(v); // add to moved element list

v.move(path); // move the element

// add all not initially moved neighors to the candidate list
// directions are left, right, top, bottom, front, back
foreach (direction dir = directions.next()) {
neighbor = v.getNeighborAt(dir);

// find the element that was not moved
if (neighbor.isInitiallyMoved()) {
dir = -dir;
neighbor = v.getNeighborAt(dir);

}

// set the ignore direction, neighbors in this
// direction will not be added to the candidate list
v.setIgnoreDeformationDirection(-dir);
// Add to neighbor candidate list
deformCandidates.addCandidateToList(v, neighborVoxel);

}
}

}

Figure 3.22: Listing of initial movement.
Moving the Initial Elements
After the eight enclosing elements for the position were found they are all marked asinitially moved elements and moved by the deformation vector passed to the objectfrom the STEPS system.
As laid out in section 3.5.3 it is necessary to avoid the multiple adding of the neighborsto the candidates list. Hence, each element holds an ignore deformation directionag which tells the element which directions must not be added to the candidate list.Each sponsoring element passes this information on to the candidates is sponsors andso forth. The directions to ignore are �rst created for the initially moved elementswhich are the �rst sponsoring elements. For example, for the top, left, front of theinitially moved cube the three ignoring directions are right back and bottom. Hence,only the neighbors at the top, left and front are added to the list of candidates.Please see �gure 3.22.
Processing the Candidate List
After the initial elements were moved, the processing of the candidates list begins.The �rst candidate in the list, which is the candidate with the biggest constraint vio-lation is processed. In the current implementation, the list saves entries of candidatesponsor pairs.

// calculating the necessary adjustment for the min and max
// constraints of the left and right neighbors
if (Math.abs(candPos.x - sponPos.x) < minDx) {
path.x = sponPos.x - candPos.x;
if (candidate.getNeighborhood(sponsor) == left) {
path.x += minDx; } else { path.x -= minDx;

}
} else if (Math.abs(candPos.x - sponPos.x) > maxDx) {
path.x = sponPos.x - candPos.x;
if (candidate.getNeighborhood(sponsor) == left) {
path.x += maxDx; } else { path.x -= maxDx;

}
}

// calculating the necessary adjustment for the
// shear constraints along the y-axis
// of the left and tight neighbor
if (candPos.y - sponPos.y < -shearDy) {
path.y = sponPos.y - shearDy - candPos.y;

} else if (candPos.y - sponPos.y > shearDy) {
path.y = sponPos.y + shearDy - candPos.y;

}
// shear along z axis analogue

/* adjustment for z-scale */
// only the shears are adjusted
if (candPos.y - sponPos.y < -shearDy*zScale /* <-- adjustment */) {
path.y = sponPos.y - shearDy*zScale - candPos.y;

} else if (candPos.y - sponPos.y > -shearDy*zScale /* <-- adjustment */) {
path.y = sponPos.y + shearDy*zScale - candPos.y;

}
// shear along x axis analogue

Figure 3.23: Listing of the chain region constraint check.
Depending on the neighborhood the candidates position is checked against the chainregion constraints of the sponsor (refer to �gure 3.23). If the candidate is a horizontal(along x{axis) or vertical (along the y{axis) neighbor, the chain regions are appliedwithout changes and the path to meet the chain region constraints is calculated. Ifthe element is a neighbor along the z{axis then the chain region constraints needto be adjusted if the z{scale adjustment ag was set in the con�guration. This isnecessary because the visual e�ect of the deformation would be distorted along thez{scale. Please refer to section 3.4.4 for a description of the problem. To avoid thez{scale e�ect the shear along the x{axis and the y{axis is multiplied by the z{scale.This keeps the deformation from expanding faster along the z{axis than along theother axis.

/* sample adding a candidate along the x--axis */
// sponsor is on the left side
if (sponsoredBy == left) {

// add right, neighbor
addCandidateToList(

sponsor.getRight(), right,
sponsor.getViolationInDirection(right));

// add either top or bottom neighbor,
// the other neighbor will be added by another sponsor
int direction = -sponsor.getIgnoreDeformationDirectionY();
addCandidateToList(sponsor.getNeighborAt(direction),

direction,
sponsor.getViolationInDirection(direction));

// add either front or back neighbor
// the other neighbor will be added by another sponsor
direction = -sponsor.getIgnoreDeformationDirectionZ();
addCandidateToList(sponsor.getNeighborAt(direction),

direction,
sponsor.getViolationInDirection(direction)); sponsor.getViolationInDirection(direction));

/* sample adding a candidate along the y--axis */
if (sponsoredBy == top) {

// left and right neighbors do not need to be added

// add bottom, neighbor
addCandidateToList(

sponsor.getBottom(), bottom,
sponsor.getViolationInDirection(bottom));

// add either front or back neighbor
// the other neighbor will be added by another sponsor
direction = -sponsor.getIgnoreDeformationDirectionZ();
addCandidateToList(sponsor.getNeighborAt(direction),

direction,
sponsor.getViolationInDirection(direction)); sponsor.getViolationInDirection(direction));

/* sample adding a candidate along the z--axis */
if (sponsoredBy == front) {

// left, right, top, bottom neighbors do not need to be added

// add bottom, neighbor
addCandidateToList(

sponsor.getBack(), back,
sponsor.getViolationInDirection(back));

Figure 3.24: Listing of adding the neighbors to the candidate list.

A element is moved by calling the move() method and each moved element is addedto the moved list of the cubicle the element belongs to. If an element is moved itsneighbors which are not lying in an ignore direction are added to the candidate listas shown in �gure 3.24.
With each adjustment the constraint violation decreases until all elements satisfythe chain region constraints and no further deformation is necessary.
Chain Region
In the current application the voxels have an initial distance of 1 to each neighbor.Because an initialized object must be valid the chain region's mindx, mindy, mindzmust be smaller or equal to 1 and the respective maxdx, maxdy, maxdz constraintsmust be bigger or equal to 1 while the shear constraints must be bigger or equal to0.
To have the deformation propagate symmetrically through the object all chain re-gions we use in this implementation have the shape of cubes. Hence, they are con-�gured using an o�set value offset. This o�set is added to 1 to calculate the maxconstraints and subtracted from 1 to calculate the min constraints. The values forshear constraints are set to offset.
To model inhomogeneous data the size of the chain region depends on the densityvalue of the corresponding element. Because tissue with a higher density value isassumed to be sti�er the region is smaller for bigger values.
Finally, we propose to calculate the chain region constraints as follows. The valuesfor the parameters of one type of constraints (max, min, shear) are the same (e.g.
maxdx = maxdy = maxdz):

adjustment = offset � (voxelvalue=4096)2
max = 1 + offset� adjustment
min = 1� offset+ adjustment
shear = offset� adjustment

Since the adjustment increases with the value the size of the chain region decreaseswith higher values. Additionally, this approach ensures that the initial object is validbecause the highest density value is 4095 and thus the adjustment is always smallerthan the o�set which lies between 0 and 1 exclusive.
The deformed object is then passed to the mapper which maps it to the volume.The algorithm for the mapping is described in the next section

// only moved elements cause a change of the volume data
List movedElements = DeformObject.getMovedElements();
foreach (movedElement = movedElements.next()) {
// the positions to update are the voxels of the
// voxel grid elements the moved element's current
// and last position lie in.
// there are 16 positions to calculate, 8 for the
// current position, and 8 for the last position
foreach(updateVoxelPos =
movedElement.getVoxelPositionsToUpdate())

{
// to avoid multiple calculations, already calculated
// values are stored in a hash map
if (!hashMap.containsEntry(updateVoxelPos) {

// in contrast to the find element method of the
// deformation, this method does not need to
// load missing parts of the volume
cube = findEnclosingElements(updateVoxelPos);

// find the enclosing tetrahedron to calculate
// the barycentric coordinates of the poition to
// update
tet = getEnclosingTetrahedron(cube, updateVoxelPos);
barCoords = getBarycentricCoordinates(tet, updateVoxelPos);

// finally caluclate the new danisty value
newDensityValue =

tet.getElement(0).densityValue * barCoords.x +
tet.getElement(1).densityValue * barCoords.y +
tet.getElement(2).densityValue * barCoords.z +
tet.getElement(3).densityValue * barCoords.w;

// enter new value into the hash map
hashMap.enter(updateVoxelPos, newDensityValue);
writeToVolume(updateVoxelPos, newDensityValue);

}
}

}

Figure 3.25: Basic ow of the mapping algorithm.
3.6.3 Mapping Algorithm
Basic Flow
This pseudo code listing in �gure 3.25 shows the basic ow of the mapping algorithm.Note that the memory management component described in detail in subsection 3.6.4is not required during the mapping.

Figure 3.26: The blue dots represent the moved elements. The red squares are elements thatwere not moved in the last deformation step. The green grid elements have to be updated.
Mapping the Object to the Volume
Inuenced Voxels
The algorithm starts with �nding all volume voxel positions that need to be updated.Since the deformation is propagated locally in an outwards fashion through theobject, the unmoved elements that have at least one moved neighbor element presenta border for the region the deformation impacted. Here it is important to onlyconsider those elements as moved that have been moved in the last deformationstep to avoid unnecessary calculations. Hence, all volume voxels that belong to gridelements which are inside the region of impact or which contain the borderline ofthis region have to be updated.
For grid elements that are completely outside of the region of impact no inuencingelement was moved and they not need to be recalculated. An examples for the regionof impact is given in �gure 3.26.
The approach applied to �nd the region of impact exploits the shape of the chainregions to identify the voxels that have to be updated. There must be at least oneelement inside two neighboring grid elements. This is because the maximum alloweddistance of two elements given by the chain region is smaller than the maximumlength of two grid elements combined and the maximum allowed shear is smallerthan the length of one grid element. Hence, it is su�cient to calculate the grid

// calculating the voxels in the neighborhood
// of the current and last position of the
// moved element
foreach(v = movedVoxel.next()) {
for (i=0;i<=1;i++)
for (j=0;j<=1;j++)
for (k=0;k<=1;k++) {
p.set(Math.floor(v.getCurrentPosition().x) + i,

Math.floor(v.getCurrentPosition().y) + j,
Math.floor(v.getCurrentPosition().z) + k);

calculateChangedPoint(p, DeformObject);

if (v.getLastPosition() != null) {
p.set(Math.floor(v.getLastPosition().x) + i,

Math.floor(v.getLastPosition().y) + j,
Math.floor(v.getLastPosition().z) + k);

calculateChangedPoint(p, DeformObject);
}
}

Figure 3.27: Listing of how the a�ected voxels are calculated.
element of the moved elements current and last position as well as their neighboringgrid elements.
For each voxel that needs to be recalculated the eight enclosing cube elements are ac-quired. In the second step the elements are split to tetrahedrons. The correspondingnumbers of the cube elements are shown in �gure 3.28.
Splitting the Enclosing Cube
Asymmetrically splitting the cube to �ve tetrahedrons where the tetrahedrons consistof the respective cube elements (C1; C4; C5; C6), (C0; C1; C3; C4), (C3; C4; C6; C7),(C1; C2; C3; C6) and (C1; C3; C4; C6) creates asymmetrical deformations. For thatreason splitting the cube is done in a symmetrical manner.
The algorithm used for splitting the cube requires the calculation of a virtual elementthat lies in the middle of the cube. The virtual element M for a cube consisting ofthe elements C0:::C7 is calculated as follows:

M = 18 �
7X

i=0Ci
With this virtual element it is possible to split the enclosing cube to twelve tetra-hedrons where the virtual element belongs to each tetrahedron and the other threeelements are taken from the enclosing cube. This adaptation of the split createssymmetric visual results. An example of the split for one surface is given in �gure3.29.
We split the cube into twelve tetrahedrons in the following manner, where the virtualcenter element is denoted with M and the number of the cube elements is shown

Figure 3.28: Corresponding element numbers for the splitting of the cube to tetrahedrons

in �gure 3.28: (M;C0; C1; C2), (M;C0; C2; C3), (M;C0; C4; C7), (M;C0; C3; C7),(M;C0; C1; C5), (M;C0; C4; C5), (M;C6; C1; C5), (M;C6; C1; C2), (M;C6; C2; C3),(M;C6; C3; C7), (M;C6; C4; C5), (M;C6; C4; C7).
Calculating the Barycentric Coordinates
After splitting the cube, the enclosing tetrahedron of the volume voxel that is cal-culated is taken to calculate the barycentric coordinates. Given the barycentriccoordinates b for a point P and the tetrahedron with the points (A;B;C;D) in thethree dimensional case the absolute coordinates for point P are given as:

P = bx �A+ by �B + bz � C + bw �D
where the barycentric coordinates are related through:

bx + by + bz + bw = 1
One tetrahedron yields the following 4 equations:

bx �Ax + by �Bx + bz � Cx + bw �Dx = Px (3.1)
bx �Ay + by �By + bz � Cy + bw �Dy = Py (3.2)
bx �Az + by �Bz + bz � Cz + bw �Dz = Pz (3.3)

bx + by + bz + bw = 1 (3.4)
This system is solved using the Gaussian elimination algorithm. If 0 � coordinate �1 for all four coordinates of the barycentric coordinates the element lies inside thetetrahedron and thus inside the cube.

Figure 3.29: Using the bottom surface elements and the middle element yields two tetrahedrons(M;C0; C1; C2) and (M;C0; C2; C3). The cube could also be split using the other diagonal(C1; C3). The key of the splitting is that it is symmetrical.

Calculating the new Density Value
Hence, the new voxel value val is calculated by multiplying the values of the objectelements the tetrahedron consists of with the barycentric coordinates of the pointcalculated.

val = bx �Aval + by �Bval + bz � Cval + bw �Dval
To avoid multiple calculations for a single volume voxel and save processing time,since it can scheduled for recalculation more than once, we store already calculatedvoxel values in a look{up table. If a volume voxel needs to be updated it can �rstbe checked if the voxel was already recalculated by looking it up in the table.
Mapping the Volume to the Object
Because each element models a single voxel it is su�cient to assign the correspondingdensity value to the element. The initial position of a new element is the same asthe position of the corresponding voxel. Hence, a voxel is mapped to an element bysimply copying the density value.
Deformation out of Volume Bounds
A scenario to consider occurs if the deformation is initiated close to a volume bound-ary. In this case the deformation might propagate over the volume boundaries. Ifthis happens the object is extended with virtual elements so that the deformationcalculation proceeds unaware of the problem.

In this case the mapping from the object cannot use the original voxel values to�ll the ChainMail object with because the requested positions are out of bounds.Instead the object elements are initialized with zero.
It is also possible that a position out of the volume bounds is scheduled for recal-culation. These positions are ignored because they cannot contribute to the visualimage of the deformation.
Performance
The mapping algorithm is computational expensive because it requires to solve anequation system given by a 4x4 matrix 8 � 12 times per position calculated in theworst case to �nd the enclosing cube or tetrahedron for a given position. Therefore,optimizations are applied. Only cubes and tetrahedrons that contain at least onemoved element are calculated during the mapping process. Additionally, the resultof the method also includes all other necessary information for calculating the newvalue. Implementing a faster algorithm for solving the equation system would havea great impact on the overall performance because it is also applied for checking ifeight elements enclose a point.
Alternatively, a di�erent algorithm for deciding if a point is inside a cube can beimplemented. In this case after �nding the cube the enclosing tetrahedron and thecorresponding barycentric coordinates need to be calculated separately.
The algorithm currently used for �nding the nearest element (please see section3.6.2) to a given position consumes a lot of computation time too if the �rst try failsbecause the second try considers all currently loaded elements. Because the nearestelement needs to be found for every calculation of a new voxel value an improvementof this algorithm would also decrease the computation time consumed, especially forlarger objects.
However, the performance of the mapping is su�cient for the current application aslaid out in section 6.1.
3.6.4 Memory Management
Macro Grid
For the memory management the entire volume is partitioned by a macro{grid con-sisting of cubes. In a ChainMail object the representation of such a cube is calledcubicle . A cubicle consists of the mapped ChainMail object elements. The purposeof these cubes is to install a new grid separating the volume into equally sized mem-ory chunks. This grid is then utilized by the memory management algorithm. Acubicle in 3D consists of size3 (size2 in 2d) grid elements (described in section 3.5.1)and the corner elements of a cube lie on a volume voxel. In the 2D case, the �rstcube lies at (0,0), (0, size), (size,0), (size,size). Its right neighbor has the coordinated

Figure 3.30: The thicker lines represent the lines of the macro{grid overlaying the original gridrepresented by the thinner lines. A single element of the macro{grid is marked by the greenregion.

(size, 0), (size,size), (2*size,0), (2*size, size) and so forth. Please see �gure 3.30 fora 2D example.
Basic Flow
The algorithm for the memory management creates the necessary elements as de-picted in �gure 3.31. It assigns them the corresponding density values and createsthe neighborhood links. The mapper is used to map the original volume densityvalue to the newly created elements.
Prior to adding a new cubicle to the object it is checked if the cubicle was notalready loaded and if a direct neighborhood required for the connection exists. Thenall neighbor cubicles that are already loaded by the object are acquired and connectedto the new cubicle. The basic ow looks as presented in �gure 3.32.
Loading a Cubicle
To load a cubicle the mapper maps the requested volume cube to the cubicle (seesection 3.6.3). The second step in this process is to create the neighborhood linksbetween the elements. Please refer to �gure 3.33

// map the requested position the corresponding position
// of the chunk in the macro grid
chunkPosition = getMacroGridPosition(requestedPosition);
// create a DeformChunk at the requested position
DeformChunk chunk = new DeformChunk(chunkPosition);
for (int i=0; i<size; i++)
for (int j=0; j<size; j++)
for (int k=0; k<size; k++) {
element =

new DeformVoxel(DeformMapper.getValueAt(position+(i,j,k)));
chunk.addElement(element);

}
establishNeighborhoodLinks(chunk.getElements);

Figure 3.31: Pseudo code listing of the creation of a new cubicle.
if (chunkAlreadyLoaded(chunk.getPosition()) {
throw new SamePositionException();

}
// chunk can be connected to the object
if (!directNeighborhoodExists(chunk.getPosition()) {
throw new NoDirectNeighborhoodException();

}
// find all neighbor chunks of the object to the
// new chunk
neighborChunks =

DeformObject.getNeighborChunks(chunk.position);
// connect the new chunk to all neighbor chunks
while(!neighborChunks.empty()) {
chunk.connectWith(neighborChunks.next());

}

Figure 3.32: Pseudo code listing for adding a new cubicle .
Connecting a new Cubicle to the Object
To add a cubicle to an existing object the elements of the cubicle are linked withthe elements of the ChainMail object according to their neighborhood. For example,if a new cubicle is inserted at the right side of the an already loaded ChainMailobject cubicle , then the elements on the surface on the right side of the existingcubicle are be connected with the surface elements on the left side of the new cubicles .However, there may already be another neighbor to the newly inserted cubicle too(top or front for example). Hence, the surface elements of the new cubicle areconnected with the corresponding surface elements of those object cubicles whichare in the direct neighborhood. This means, that only cubicles that are part of thedirect neighborhood of the existing ChainMail object may be loaded into memory.Otherwise the respective elements cannot be connected and the deformation couldnot propagate to these unconnected parts.

// create cubicle at the desired position
cubicle = new Cubicle(position);

// calculating the voxels in the neighborhood
// of the current and last position of the
// moved element
for (i=0;i<=1;i++)
for (j=0;j<=1;j++)
for (k=0;k<=1;k++) {

// get the density value at the requersted position
desityValue = mapper.getDensityValueAt(
cubicle.position.x+i,
cubicle.position.y+j,
cubicle.position.z+k);

// create the element
h = new ChainMailVoxel(densityValue,

cubiclePosition.x+i,
cubiclePosition.y+j,
cubiclePosition.z+k);

// add the element to the elemtent list
cubicle.voxelList.add(h);

}
// establishing neighborhood links
foreach(DeformVoxel v = cubicle.voxelList.next()) {
v.setLeft(findLeftNeighbor(v, voxelList);
v.setRight(findRightNeighbor(v, voxelList);
v.setTop(findTopNeighbor(v, voxelList);
v.setBottom(findBottomNeighbor(v, voxelList);
v.setFront(findFrontNeighbor(v, voxelList);
v.setBack(findBackNeighbor(v, voxelList);

}

Figure 3.33: Pseudo code of how a cubicle is loaded and the elements are connected.
3.6.5 Connecting two Cubicles
To connect a cubicle to a neighbor all voxels of the two surfaces facing each otherare connected. In the �rst step the corner elements are used to �nd two opposingcorner elements of the cubicles . Depending on the neighborhood the top or bottomcorner element of the object's cubicle is used to �nd the element which opposes thebottom or top corner voxel of the neighbor cubicle to connect with. Please see �gure3.34 for an example.

Figure 3.34: This �gure shows two cubicles to be connected with each other. The top cornerelement is used to �rst step to the back corner element and then to the bottom corner element.Now, two opposing corner elements are found and can be used to connect all surface elements.(See �gure 3.35)

Figure 3.35: Picture of connecting two neighboring cubicles . The connection starts at thebottom corner element of the left cubicle and its opposing element. The �rst row of elements isconnected (1-3). In the second step the top row elements get connected (4-6). Finally, the lastrow is connected (7-9).

/* example for connecting a cubicle to a left neighbor */
myConnector = getBottomCornerConnectorVoxel();
neighborConnector = neighbor.getTopCornerConnectorVoxel();

// move the myConnector element until it
// opposes the neighbor connector element
for (int i = 0; i<cubicle_size-1; i++) {
myConnector = myConnector.getTop();

}
for (int i = 0; i<cubicle_size-1; i++) {
myConnector = myConnector.getFront();

}
// my start element of the first row to connect
myLeadingEdge = myConnector;
// neighbor start element of the first row to connect
neighborLeadingEdge = neighborConnector;

// iterate through rows and elements in each row
for (int i = 0; i<cubicle_size; i++) {
for (int j = 0; j<cubicle_size; j++) {
// assign neighborhood
neighborConnector.setLeft(myConnector);
myConnector.setRight(neighborConnector);
// get next element in row
myConnector = myConnector.getBack();
neighborConnector = neighborConnector.getBack();

}
// get my beginning element of next row
myLeadingEdge = myLeadingEdge.getBottom();
myConnector = myLeadingEdge;
// get neighbor beginning element of next row
neighborLeadingEdge = neighborLeadingEdge.getBottom();
neighborConnector = neighborLeadingEdge;

}

Figure 3.36: Sample listing of connecting two cubicles.
For example, if the neighbor cubicle is connected with a cubicle of the object at theright side then the right surface of the neighbor is connected with the left surfaceof the object cubicle . Hence, the top corner voxel of the object's cubicle is used asthe staring voxel to �nd the voxel that opposes the bottom corner voxel of the newneighbor by stepping to the back and bottom. These two voxels are then connectedalong with all their row front neighbors. Then the rows at the top side of the twovoxels are connected and so forth. Figure 3.35 depicts a sample connection and �gure3.36 shows sample pseudo code for connecting two cubicles .
Memory Management near Volume Bounds
The memory management algorithm works the same if the deformation propagatesout of the volume bounds. The grid de�ned by the cubes can be extended in anydirection. The only di�erence occurs at in the mapping part. Because no volumevalues can be mapped the elements values are set to 0. This allows the calculation ofthe deformation near volume boundaries without further changes to the algorithm.

3.7 Conclusion
Fundamental ChainMail Algorithms
The �rst part of this chapter presented the ChainMail and the Enhanced ChainMailalgorithm this work is based on as well as their shortcomings in respect to therequirements of STEPS. The ChainMail algorithm introduced by S. F. F. Gibson isa fast an exible algorithm for the deformation of volumetric objects. It performssimple calculations on a large number of elements to achieve complex behavior andis capable of modeling tissue with di�erent material properties and even anisotropicmaterial. The approach of M. A. Schill et al., called Enhanced ChainMail, extendsthe ChainMail algorithm to inhomogeneous data. They use the analogy of a soundwave that travels quicker through sti�er material than through softer material. This�nding is used to change the order the elements of a ChainMail object are processedduring the calculation of a deformation.
However, the algorithms could not be applied "as is" to the target environment.The task was to extend the STEPS application [Neubauer et al. '04] by introducingdeformations. The STEPS is a virtual endoscopy system that visualizes volume datausing a ray casting algorithm. Therefore, we introduce the Divod ChainMail algo-rithm which uses a ChainMail object as a means for calculating the deformation. Theresult of the calculation is then mapped to the volume data. Because of the largesize of such a volume data set we implemented a memory management algorithmsince the entire volume can not be modeled through a single ChainMail object.
Mulitmove
To integrate the ChainMail algorithm into the STEPS system we developed a newway for interaction. This allows to initially move eight ChainMail elements. Movingeight elements makes it likely that the endoscope's eye point lies outside of thedeformed tissue and models the fact that the endoscope has a certain diameter. Thedrawback of this approach is that it may lead to an inconsistent object. However,this problem was disregarded for performance reasons and because no visual artefactsare produced.
Z{Scale
A visual distorting e�ect caused by the z{scale of the volume was soothed by dividingthe amount of information propagated along the z{axis by the z{scale factor. Thisis done by dividing the z{component of the initial move vector by the z{scale andmultiplying the chain region shear constraints for the x and y shear along the z{axisby the z{scale.

Global Constraints
To avoid unnaturally large deformations and the deformation of bone tissue we intro-duced two global constraints. One constraint governs the maximum allowed move-ment of an element while the other restricts the movement of elements which belongto bone tissue. If a violation occurs, the deformation is reverted and retried with asmaller step size.
Mapping & Memory Management
The last two presented parts of this chapter are the mapping and the memory man-agement. The mapping of the object to the volume is of great importance for thequality of the visual image because the ray caster directly renders the volume data.The �rst approach implemented using regions of inuence to calculate new elementvalues has the risk of creating holes inside the volume. The barycentric coordinatesbased method uses a symmetrical approach for the tetrahedron generation becausethe asymmetrical approach produces asymmetrical results in the visualized deforma-tion image.
The memory management uses the fact that the deformation propagates locallythrough the object. The object is extended at the boundaries if the deformationexceeds the currently loaded ChainMail object. If a new deformation is startedoutside of the volume the current object is cleared and a new object is created. Thisprocedure allows to bypass the movement constraint but for performance reason thisproblem was not addressed.
The mapping and the memory management work together. Whenever a cubicle isloaded into memory, the volume values need to be mapped to the new ChainMail ob-ject part. If a deformation runs out of the volume bounds, the memory managementproceeds normally and generates a virtual cubicle . Then the mapping initializesthe new elements with zero value. This way the algorithm can be applied withoutfurther changes to deformations near the volume boundaries.
A description of the implementation of the described algorithm is presented in thenext chapter.

Chapter 4

Implementation

4.1 Implementation Overview
This chapter presents a description of the current implementation. First, it describesthe framework, the related STEPS software. This description is followed by anoutline of the interface we developed to ease integration, and the data types used.
4.2 Related Software
The STEPS system shows the user a three dimensional view of the volume data andthree cutting planes. A user sees the virtual reality in the three dimensional viewthrough the viewpoint of the endoscope. Additional parameters such as the iso valuethreshold, barrel distortion or the viewing angle of the endoscope can be con�guredinteractively. STEPS also supports force feedback if the endoscope collides with thetissue. For the sake of platform independence the STEPS application was entirelydeveloped in Java.
4.3 Software Design
To allow exibility of the software an object oriented approach was chosen for thedesign. The focus was to strictly separate the individual software components fromeach other. This allows exibility and code reuse.
The �rst component implemented in the original plugin is a ray caster which visual-izes the volume data. The volume data represents the second component. It is usedas a clear separation between the deformation algorithm and the visualization be-cause the ray caster does not need to have any knowledge of the newly implementeddeformation algorithm. A general deformation algorithm for extending the STEPSsystem can be split into three distinct components.

79

� Deformation: calculation of the deformation on the deform object, dependingon the input, typically the point of impact and a move vector.
� Mapping: mapping the volume to the object and mapping the deformed objectto the volume data using a mapper object.
� Memory Management: loading parts of the object necessary for the calculationof deformation and release unnecessary parts.

To support this splitting a minimal API is desired. The idea of this API is to allowinterchanging di�erent component implementations. For example using di�erentmapping algorithms for one deform object. However, this separation cannot beachieved in all cases because the mapping might depend on the corresponding object'sdata structure which holds information necessary for the mapping as well as thememory management depends on the shape and internal structure of the deformationobject.
However, using the API presented in the next section a clean separation betweenthe mapper and the object is achieved through the introduction of a DeformVoxelinterface.
4.4 Interface
The purpose of this interface is �rst of all to outline how the components worktogether and describe the important steps of the work ow. Secondly, it separatesthe individual components and was created to enforce code reusability and exibility.For example the implemented mapper is able to map any object that implements thegiven interface without changes. The interface diagram is presented in �gure 4.1.
4.4.1 DeformVoxel
The DeformVoxel is the smallest unit of the interface. The DeformChunk consistsof such DeformVoxels. It only o�ers a minimal interface, su�cient to be used byimplementations of the DeformMapper interface. It implements a minimal set offunctions, because each algorithm needs to implement its own voxel element class toadd the algorithm dependent functionality.
Attributes
A DeformVoxel has the following attributes
� currentPosition: The current position of the element.
� lastPosition: The last position before the element was moved.
� originalPosition: The position the element was created at.
� value: The density vale of the element.

� left: The left neighbor element.
� right: The right neighbor element.
� top: The top neighbor element.
� bottom: The bottom neighbor element.
� front: The front neighbor element.
� back: The back neighbor element.

This set of attributes is su�cient for a wide range of mappers since the most im-portant data for the mapper is the value, position and neighborhood of the elementsthat need to be mapped. Thus, a separation of the deformation calculation and themapping is achieved.
Methods
� move(Vector3d): This method moves the element by the given vector. Firstthe last position is set to the current position. Then vector is added to thecurrent position.

4.4.2 DeformMovement
The purpose of the DeformMovement interface is to provide means for extending theinformation passed to the deformation object within the interface. For example, anapplication might also want to add information like normal vectors. However, classesthat implement this simple interface can still be used "as is".
Attributes
The DeformMovement consists of two attributes.
� position: The starting position of the deformation.
� path: The deformation vector, i.e. the magnitude and direction of the deformingforce.

4.4.3 DeformChunk
The DeformChunk interface provides the basic methods to for the DeformMemoryMan-
ager 4.4.4 and the DeformObject 4.4.5 to handle the memory chunks. Such a memorychunk consists of a list of elements and is created by the DeformMemoryManager.The DeformObject consists of these memory chunks and hence, is responsible fortheir tracking and connecting.

Attributes
� voxels: Supplies the contained DeformVoxels to the DeformObject.
� position: The position of the chunk. Each chunk is used to load a certain volumeregion. The position can be used to identify the region this chunk loaded.
� movedVoxels: A list of references to the moved element which belong to thischunk. This was added to the interface to o�er mapping algorithms a way fordirectly accessing moved elements.

Methods
� connectWith(DeformChunk): This method connects the two neighboring De-
formChunks. Because a DeformChunk has no knowledge of other loaded Deform-
Chunks the DeformObject is responsible for connecting a new DeformChunk allneighboring DeformChunks of the entire object.

This method throws the following exceptions
� SamePositionException: This exception is thrown if the two chunks to connecthave the same position to avoid unnecessary loading of chunks. Additionally,the two chunks can not be connected to each other.
� NoDirectNeighborhoodException: This exception is thrown if the two chunkscannot be connected because they are not direct neighbors.
� NeighborhoodAmbiguousException: This exception is thrown if the two chunkscan not be connected because the direction of the neighborhood is not uniquelyde�ned. To connect two chunks they must share a surface. In this case theyshare at most an edge.

These errors must be handled by the DeformObject when adding a new chunk.
4.4.4 DeformMemoryManager
The DeformMemoryManager is responsible for loading requested volume parts in theform of DeformChunks. Therefore, it maps the volume voxels to DeformVoxels andassigns them to the DeformChunk. To map the volume density values to the voxelsa DeformMapper is used (4.4.6).
Attributes
� DeformMapper: Used to map the volume data to the newly created DeformVox-
els.

Methods
� loadChunk(Point3d): This method is called by the DeformObject to create a new
DeformChunk. It returns the DeformChunk at the given position. The chunk iscreated by mapping the requested volume potion to a list of DeformVoxels. Thisincludes setting the current and original position and setting the neighborhoodinformation of the DeformVoxels. The list of DeformVoxels is then assigning thenew DeformChunk.Because the underlying mapper handles out of bounds errors they do not needto be considered in this method.

4.4.5 DeformObject
The DeformObject calculates the deformation and is passed to the mapper for up-dating the volume. It consists of DeformChunks and is responsible for keeping trackof them and needs to connect new chunks to itself to keep the objects integrity.
However, the main purpose is the calculation of the deformation which is done inthe performDeformation(DeformMovement) method. This method also updates thevolume data using the DeformMapper interface.
Attributes
The DeformObject interface consists of the following attributes.
� DeformChunks: The list of chunks the object consists of.� Mapper: The mapper that is used to map the object to the volume data.

Methods
The following methods are o�ered by the DeformObject interface.
� getVoxels(): Returns the list of DeformVoxels belonging to the object by callingthe getVoxels() method for each contained chunk.� getMovedVoxels(): Returns the list of moved DeformVoxels belonging to theobject by calling the getMovedVoxels()method for each contained DeformChunk.� getChunk(Point3d): Returns the DeformChunk at the given position if it isloaded, null otherwise.� performDeformation(): Calculates the deformation and updates the volume datausing the mapper attribute.

This interface does not export any errors. This minimizes the necessary e�ort forintegrating it into an existing software. performDeformation() is the only methodthat should be used by the calling application. The mapper should be set at objectcreation. The other methods are interfaces o�ered to the other components.

4.4.6 DeformMapper
The DeformMapper interface provides the methods to map the volume to a Deform-
Chunk and to map a deformed DeformObject to the volume. To separate mappersfrom the object's implementation the DeformVoxel interface is introduced. This in-terface o�ers information su�cient for a wide range of mapping algorithms.
Attributes
� volume: The volume to be used during the mapping process.

Methods
The three methods the DeformMapper o�ers to the DeformObject and the Deform-
MemoryManager are:
� updateVolumeData(DeformObject): This method maps the given object to thevolume attribute. If the method uses the DeformVoxel interface to calculatethe new values from the deformed object it works with every object which alsoimplements this interface.
� getVolumeValueAt(): This method returns the density value of a given position.
� getZScale(): Returns the z{scale of the volume.

The mapper must handle all out of bounds errors internally so that the other com-ponents remain unaware of the error.
The next section describe the actually implemented classes for realizing the Chain-Mail algorithm.
4.5 Data Structure
4.5.1 ChainMailVoxel
The ChainMailVoxel implements the DeformVoxel interface. Further, it contains thefollowing attributes and methods.
Attributes
� id: A unique identi�er for the ChainMailVoxel.
� chainRegion: The corresponding chain region of the ChainMailVoxel.
� ignoreDeformationDirectionX,
ignoreDeformationDirectionY,
ignoreDeformationDirectionZ: The direction along the respective axis where no

neighbors may be added to the candidate list because they are added by anotherinitially moved element. For example if the ignoreDeformationX ag is set to leftthen the left neighbors of the ChainMailVoxel are not added to the candidatelist Please refer to section 3.5.3 for a description of the problem.
� isInitiallyMoved If set to true if the ChainMailVoxel is an initially moved element.
� wasMovedDuringDeformationStep: Set to true if the ChainMailVoxel was movedduring the last deformation step.

Methods
� move(): This method �rst checks the ChainMailVoxel value against the bone con-straint. If this check is passed the ChainMailVoxel's current position is stored inlast position. Then the ChainMailVoxel is moved by the given vector, and markedas moved during the last deformation step. Finally, the new ChainMailVoxel po-sition is checked against the movement constraint. If the movement constraintsis violated the method throws a MovementViolatesMoveConstraintsException. Ifthe bone constraint is violated the method throws a MovementViolatesBoneCon-
straintsException. These exceptions are caught by the ChainMailDeformObjectwhich reverts the current deformation and retries it with a smaller step size.

� undoMove(): The method is called during a reversion of the deformation. Thismethod clears the moved ag and sets the current position to last position.
� getViolation(): The method calculates the amount of the chain region constraintviolation for two ChainMailVoxels. It is the ordering criteria for the candidatesin the candidate list.

4.5.2 Chain Region
Attributes
� maxDx: The maximum allowed distance between two ChainMailVoxels along thex{axis.
� maxDy: The maximum allowed distance between two ChainMailVoxels along they{axis.
� maxDz: The maximum allowed distance between two ChainMailVoxels along thez{axis.
� minDx: The minimum allowed distance between two ChainMailVoxels along thex{axis.
� minDy: The minimum allowed distance between two ChainMailVoxels along they{axis.
� minDz: The minimum allowed distance between two ChainMailVoxels along thez{axis.

� maxHorzDx: The maximum allowed shear between two ChainMailVoxels alongthe x{axis.
� maxVertDy: The maximum allowed shear between two ChainMailVoxels alongthe y{axis.
� maxDepthDz: The maximum allowed shear between two ChainMailVoxels alongthe z{axis.
� zScale: The z{scale of the volume necessary to adjust chain regions as describedin section 3.5.4.

Methods
� calculatePathToMeetConstraints(): This method calculates the necessary adjust-ment for a ChainMailVoxel to satisfy the chain region constraints. The methodtakes a candidate ChainMailVoxel and its sponsor ChainMailVoxel and returnsthe path the candidate has to be move to satisfy the constraints.

4.5.3 ChainMailCubicle
The ChainMailCubicle implements the DeformChunk interface. Additionally, it ex-tends the interface by the following attributes.
Attributes
� left: The left neighbor ChainMailCubicle.
� right: The right neighbor ChainMailCubicle.
� top: The top neighbor ChainMailCubicle.
� bottom: The bottom neighbor ChainMailCubicle.
� front: The front neighbor ChainMailCubicle.
� back: The back neighbor ChainMailCubicle.
� leftTopFrontCornerVoxel: The voxel in the left, top and front corner of the De-
formCubicle.

� rightBottomBackCornerVoxel: The voxel in the right, bottom and back cornerof the DeformCubicle.These two voxels are required for connecting two neighboring ChainMailCubicles.
4.5.4 ChainMailDeformObject
The ChainMail object is responsible for calculating the deformation and associatesall other components. It strictly implements the DeformObject interface.

4.6 Con�guration
Upon creation the ChainMailDeformObject reads the con�guration and sets the pa-rameters for itself and the associated components. The con�guration is a stored ina simple text �le. The entries are key value pairs separated by a '='.
The con�gurable parameters are:
� cubicle size: Sets the size of the cubicles . Bigger cubicles means less loadingoperations but a single load takes more time.
� scale factor: The factor the initial move vector is scaled by. This allows adjust-ing the visual e�ect.
� o�set: This value de�nes the shape and size of the chain regions. A smallero�set means smaller chain regions and sti�er behavior of the object.
� maximum allowed movement for element: De�nes the movement constraint.
� bone threshold: De�nes the bone constraint.
� adapt regions to z{scale: A ag that toggles the z{scale adjustment.
� max tries: De�nes the number of retries in case a constraint violation occursduring the calculation.
� step scale: De�nes the factor by which the initial move vector is scaled atthe start of each retry. For example, if the movement is retried the �rst timethe vector is moveretry1 = moveoriginal � stepscale and for the second retry it is
moverety2 = moveoriginal�step2scale. Therefore, the step scale should be between0 and 1 exclusive.

This section described the main data structures used in this implementation.
4.7 Integration
Requirements
The requirement for the integration of the deformation algorithm was that it mustnot a�ect the ray casting algorithm in any way. Secondly, only a minimum of codeshould be subject to integrate the ChainMail algorithm into the STEPS application.
The second requirement was met by providing a minimum interface for the deforma-tion to the STEPS system. The existing isCollision method that detects a collisionwas extended to calculate the intersection point and the deformation vector usingan iterative approach. The intersection point and the deformation vector are thenpassed to the ChainMailDeformObject via the performDeformation() method with cal-culates the deformation and updates the volume. Finally, no further error handling isnecessary in the STEPS system because no errors a propagated through he deforma-tion interface minimizing the change to the code necessary in the STEPS application.

Changes to the STEPS System
The �rst requirement was met by directly updating the volume data. The ray casteronly works on the volume and does not need any additional information for thevisualization. Therefore, using the volume as the interface between the deforma-tion and the visualization the ChainMail algorithm can be added without having tochange the ray casting algorithm. The ray caster is completely unaware of the newcomponent.
The only component that has to be changed in the current STEPS system is theuser interaction. In the original application the user cannot interact with the tissue.However, the user can set a "detect collisions" ag. This ag tells the application tocheck for collisions between the iso surface and the endoscope. If a collision occursthe eye point of the endoscope is set back to the last valid position.
This is done to ensure that the eye point of the endoscope is kept outside the tissue.Obviously, this function presents a good starting point for the integration of theChainMail algorithm for two reasons.
� It is able to detect collisions between the iso surface and the endoscope. Suchcollisions trigger the start of a deformation.
� It is responsible for replacing the endoscope's eye point to keep it outside thetissue. This is also a requirement for the deformation.

Hence, the so called isCollision() method was changed to introduce the ChainMailextension to the existing STEPS system.
Acquisition of Deformation Data
The calculation of the deformation depends on three things as input. The volumedata, the starting point of the deformation as well as the deformation vector whichgives the length and direction of the deformation.
Obviously, the intersection point of the endoscope and the iso surface is the startingpoint of the deformation. Unfortunately, the isCollision() method only checks if theeye point of the endoscope lies inside the tissue. That means that the iso valuecalculated at the position of the eye point is bigger than the threshold. Hence, themethod has to be extended to calculate the intersection point.
The calculation of the intersection point is done in an iterative fashion. A virtualpoint is repeatedly moved from the eye point towards the last position of the eye pointby a small step size until it lies outside of the tissue. That means, the calculated isovalue at the position is smaller than the threshold. Then the middle of this positionand the last position inside the tissue gives the point of impact.
The vector of the deformation is given by the point of impact I and the eye point Eof the endoscope. Hence, the deformation vector v is given by v = E � I.

Finally, the volume data needs to be passed to the deformation engine. This is doneat object creation because the ChainMailMapper demands a volume at creation.
The objects are integrated in the same class that holds the isCollisionmethod, namelythe STEPSVolume class. The STEPSVolume class is extended by two private membervariables to hold the ChainMailDeformMapper and the ChainMailDeformObject. Thetwo objects are initialized if a �rst collision occurs.
To initiate a deformation, the "detect collision" ag must be set by the user. Then,if the endoscope penetrates the tissue, the intersection point and the deformationvector are calculated. Together they are used to create a DeformMovement objectwhich is the input for the deformation calculation.
The ChainMail object provides the performDeformation() method as the interface tocalculate the deformation. This method takes the DeformMovement as input andalso updates the volume data using the ChainMailMapper member after a successfuldeformation. Hence, from the STEPS view only a single call is necessary to calculatethe deformation and update the volume data.
Error Handling
No additional error handling needs to be implemented in the STEPS system becauseno errors are propagated trough the performDeformation() interface method. Allerrors that occur during the deformation calculation are handled entirely inside theChainMail extension. In the worst case the volume will not get updated. However,this is still a valid case for the STEPS system. Hence, it is completely unaware ofthese errors which eases the integration of the ChainMail extension.
The next section concludes the chapter with a review of the presented implementationdetails.
4.8 Conclusion
This chapter described the implementation and integration of the Divod Chain-Mail algorithm into the existing STEPS application.
STEPS consists of 4 views: a virtual reality view and three cutting plane views. Thegoal of this work was to extend the STEPS plugin by adding a deformation engine.The deformation should then be visible in all four views. This is achieved using threecomponents, a mapper, a memory manager and a component for the deformationcalculation.
To allow easy integration, exibility and code reusability an interface was intro-duced to allow the splitting of these three components. Additionally, the interfacerequired by the STEPS application was minimized to a single call. This call doesnot propagate any errors hence, no additional error handling has to be done uponintegration.

The separation is based on the fact that all four views directly render the volumedata. Hence, the volume data is used to separate the extension from the visualizationprocess. The only additional thing that needed to be done within the existing pluginwas to calculate the point of impact and the force vector of the collision. These arethe parameters necessary to calculate the deformation and requires to change themethod STEPSVolume.isCollision().
The actual implementation of the Divod ChainMail algorithm follows the interface.For example, the implemented mapper is capable of mapping all objects that imple-ment the ChainMailVoxel interface.
The object that calculates the deformation implements the DeformObject interfaceand consists of cubicles which hold the actual elements. The cubicles and elementsimplement the DeformChunk and DeformVoxel interface respectively. The object ismapped to the volume by a mapper that implements the DeformMapper interface.This mapper is also used to map the volume to the object. This is done if theobject requests a missing chunk from the memory manager which implements the
DeformMemoryManager interface.
The results of this work as well as a discussion and outlook to further work is pre-sented in the next chapters.

Figure 4.1: Interface diagram.

Chapter 5

Results

5.1 Overview
This chapter presents the results of this work. To show the functioning of the DivodChainMail algorithm and the impact the parameters have on the resulting image thenext section �rst shows results from arti�cial test data sets before continuing withscreenshots from the actual application. There are two arti�cial data sets used. Oneis a homogeneous cube with the density values of 2000, the other is an inhomogeneouscuboid with density values of 1000 and 2000 to 2500.
The visual results are followed by an analysis of the algorithms performance basedon timing tests. This analysis also refers to di�erent parameter tunings and relatesthe visual results to the achieved performance.
The analysis is concluded by a discussion of the results and an outlook on furtherwork in the next chapter.
All tests were conducted on an Acer Travelmate 6000 with an Intel Centrino 1600MHz and 768 MB RAM. The operating system used for the tests is Windows XPHome Edition SP 2. The images were taken using the Tiani JVision 3.13 and theSTEPS .15 plugin. The timing tests were done with Eclipse 3.0 and the Java SDK1.4.2, Java RE 1.4.2.
5.2 Visual Results
The �rst set of results presented in this section were created by deforming a cube5.1.
For each deformation the initial deform vector is (0; 1; 0). Hence, the depth of thedeformation only depends on the scale factor de�ned in the con�guration. Thesecond parameter that inuences the shape of the deformation is the o�set valuewhich de�nes the size of the chain regions. Unless stated otherwise, the o�set usedfor the images is 0:2 and the scale factor 1:2.

93

Figure 5.1: Test cube with the corresponding axis alignment.

The next section presents the results of the timing tests used to measure the perfor-mance of the implementation.
Z{Scale
Figure 5.2 shows the e�ect of the z{scale adjustment. The deformation on the leftside has no z{scale adjustment. Hence, it appears stretched along the z{axis. Pleasenote, that the deformation is too large along the z{axis and not too small along theother two axes. Therefore, the propagation along the stretch has to be diminished.The picture on the right shows the e�ect of the adjustment. The deformation stillappears stretched by a small factor. This is because the deformation is propagatedin a discrete manner by the Chain Mail algorithm. The e�ect gets for smaller forsmaller o�sets because it is a better approximation to continuous data. The o�setvalue used for this image is 0:25.
The e�ect is also visible in the cutting plane views shown in �gure 5.3.
Angular Deformation
Figure 5.4 shows the di�erence between an angular and non angular deformation.The middle of the deformation is shifted in the direction of the force shown bythe yellow vector. The increase of the surface is steeper at the pushed part left ofthe deformation's middle than on the pulled part on the right which is physicallyplausible.

Figure 5.2: This �gure demonstrates the e�ect of the z{scale adjustment.

Figure 5.3: The stretch along the z{axis shown in the corresponding cutting plane views

Figure 5.4: Picture of an angular deformation on the left. The top right side shows the corre-sponding cutting plane view. The picture on the bottom right shows the same deformation witha non angular force vector for reference.

Subsequent Deformation
The result of subsequent deformations is depicted in �gure 5.5. Comparing theresulting image to �gure 5.2 the huge di�erence caused by the o�set change is visible.On one hand the deformation does not appear stretched any more. However, theshape of the deformation is rectangular rather than circular because of the cubic chainregions. Another e�ect caused by the cubic shape of the chain regions is presentedin �gure 5.10. The result of several continuous deformations is shown on the rightside. First there middle area of the deformation was deformed further but becauseof the movement constraints, its size is smaller. Two other deformations show on thetop left of the original deformation. Again, they are smaller because the movementconstraint restricted the movement of the already deformed parts. However, theyare bigger than the deformation in the middle since the outside elements were notmoved as far as the inside elements in the initial deformation.

Figure 5.5: The left picture shows the initial deformation. The right picture shows subsequentdeformations. The o�set value used for the two images is 0:1.

Deformation of Edge
A special case of a deformation at the edge of the cube is presented in �gure 5.6. Itshows the depth of the deformation and the tissue appears to be drawn towards thepoint of collisions (left picture).

Figure 5.6: This �gure shows the result of a deformation near the edge of the cube. The pictureon the left represents the view in the direction of the deformation vector. The picture on theright shows a direct view of the deformed edge.

Inhomogeneous Data
The results of modeling inhomogeneous data are presented in �gure 5.7 and �gure5.8. Figure5.7 depicts the deformation near the edge of two regions with di�erentdensity values. The deformation in the upper side of the edge, where the data hashigher density values, is smaller than the deformation in the lower part of the datawith smaller density values.

Figure 5.7: This �gure shows the e�ect of the inhomogeneous chain region near the edge of thetwo di�erent data regions.
In �gure 5.8 The upper left side of the �gure shows an inhomogeneous data set. Thesofter material on the upper side of the data set has a density value of 1000 andis marked with red frames. The sti�er material on the lower side of the data sethas a density value of 2000 and is marked with blue frames. The pictures on theright are enlarged views of the deformations on the left. The top view shows thesofter material, the bottom view the sti�er material. The �gure on the left bottomis the cutting plane view of the deformed volume data. The pictures show, that thedeformation of the softer material is steeper and slightly bigger. This is because thechain regions used for modeling the softer material are bigger. The cutting planeview also reects the di�erence between the deformation. (In this �gure the e�ect isexaggerated in the cutting plane view because of the di�erent density regions.)

Figure 5.8: This picture shows the e�ect of the inhomogeneous chain regions.

Figure 5.9: This sequence shows a typical use case. The o�set is 0:2 and the scale factor is 1:2in this image sequence.

Application
A typical use case is shown in �gure 5.9. The endoscope is currently in the noseand pushed forward towards the sphenoid. In this case the space is narrow andcollisions are likely to occur. The top left picture shows the initial data set withoutdeformations. As the endoscope is pushed further it collides with the tissue. Theresulting deformation encircled in the right top picture. The resulting image of aconsecutive deformation is encircled in the right bottom picture. A new collision atthe opposite side of the latter deformations deforms the tissue further.

Figure 5.10: Stage Artefact.

Artefacts
Figure 5.10 shows an artefact that occurs for large deformations with large o�setvalues. (The o�set for this image is 0:25 and the scale factor is 2:5). For such asetup a stage e�ect occurs in the deformation. The reason for that is the cubic shapeof the chain regions. The left image shows the virtual view. It clearly shows thestages between the moved elements. The right view presents the cutting plane viewwhich also reects the stage artefact for this setup. This e�ect can be soothed byassigning a smaller o�set, however, the deformation would then become very largeand the computational cost increases dramatically (please refer to the timing testsection 6.1).
A similar situation as in �gure 5.9 is shown in �gure 5.11. Again the endoscopereaches a narrow passage through the nasal ways. The top left picture shows theundeformed data. In the top right picture, two deformations were conducted. Oneby shifting the endoscope to the left, the other by shifting the endoscope to the right.Then the endoscope was pushed forward and the tissue was deformed in the samemanner as described above. The result is presented in the bottom left picture. The�nal picture on the bottom right was taken after deforming the tissue again but thistime only the tissue on the right side of the endoscope was deformed. This createsan unwanted bump on the left side. The reason for this is, that the ChainMailobject does not regard the shape of the modeled object. In this particular case theobject is too large. It models both sides conjoined although they should be treatedindependently because they are separated. Hence, if one side is deformed it alsoa�ects the other side. The next image shows another artefact which is caused by theinability of the object to model the shape of the tissue.

Figure 5.11: Artefact due to not modeling the object shape.

Another artefact caused by not modeling the shape of the object is shown in �gure5.12. The left picture shows the non deformed view. After the deformation theentire bump structure disappears as shown in the right picture. This behavior isnot physically plausible. The structure would rather be pushed or bent to a side.The reason the bump disappears is that there is no tissue around the bump. Hence,the deformation shifts the bump deeper into the existing tissue but no surroundingtissue that would contribute to the position where the bump was exists and the bumpdisappears.

Figure 5.12: Disappearing of bump structure due to not modeling the object shape.

Chapter 6

Analysis

6.1 Timing Tests
The �rst observation presented in this section is the measurement of the memorymanagement component. Hence, the time required to load a cubicle depending onits size. The e�ort for loading a cube is O(n3).

Cubicle size time [ms]3 1.0624 4.6575 12.6986 31.7557 66.1768 132.359 248.2910 446.8111 740.3612 1156
Figure 6.1: Time required to load a cubicle depending on the cubicle size.

Figure 6.1 shows that cubicle sizes bigger than 7 should be avoided because in thiscase loading of two cubicles already requires more than 0:25 seconds. It is very likelythat at least two cubicles need to be loaded during a deformation step. Togetherwith the time required for calculating the deformation the performance is too slowfor interactivity. A smaller cubicle size requires less time for loading a cubicle andminimizes the overall memory usage. However, the overload for inserting increasesand more load requests are necessary. We suggest cubicle sizes ranging from 3 to 6.
Figure 6.2 presents timing tests for the the deformation calculation which also in-cludes the loading of missing cubicles and the mapping. It shows that the deforma-

105

chain region Number of Time for Time foro�set moved elements Deformation [ms] Mapping [ms]0.40 56 110 1000.20 224 160 2700.15 392 170 4410.10 1000 230 11710.08 1888 331 4757
Figure 6.2: The timing for the Deformation and Mapping components respectively. The scalefactor for the tests is 1:0. The Deformation performs well even for a large amount of elementsbut the time needed to calculate the updated volume data increases drastically with the numberof moved elements.

tion calculation and memory management (using a cubicle size of 3) perform welleven for a large amount of points. However, it clearly identi�es the mapping as theperformance bottleneck of this implementation.
The reason for the bad performance of the mapping is the large amount of movedelements. Finding the enclosing tetrahedron for a given position is the operation thathas the biggest impact on the performance of the mapping because it uses barycentriccoordinates for the check. Each cube to check is split in 12 tetrahedrons thus, themethod to calculate the barycentric coordinates of a point is called 69959 times witha given o�set of 0:08. Using a non symmetrical split which only yields 5 tetrahedronsresults in an overall speed up of 0:7 seconds. This is just a small adjustment but hasa huge e�ect. Hence, a better way for identifying the eight enclosing elements needsto be implemented for mapping larger amounts of elements in an interactive fashion.
However, the amount of elements moved depends on two parameters: the scale factorfor the initial deformation and the o�set. The pictures in section 5.2 were createdusing an o�set of 0:2 and a scale factor of 1:2. For this con�guration the time neededfor the deformation is 170ms and for the mapping of 328 moved elements is 351ms.Hence, the overall time required is 521ms which is su�cient for interactivity.
6.2 Discussion
This work presented a exible algorithm for fast direct volume deformation based onthe works of S. F. F. Gibson, M. A. Schill et al. and A. Neubauer. It extended theSTEPS system for transsphenoidal surgery simulation by adding deformations. It isable to calculate the deformation and directly manipulate the volume data withoutthe need of some sort of intermediate step such as a surface extraction.
The algorithm used is fast enough for the amount of data to process to provideinteractivity. The depth and size of a deformation can be con�gured by two pa-rameters. However, although the algorithm supports modeling anisotropic data, the

simple con�guration restricts the chain regions used to isotropic data but can easilybe extended by adding parameters to specify individual o�sets for each axis. Theimplemented algorithm also models inhomogeneous data.
The distorting e�ects caused by the z{scale factor was soothed using the analogyof a sound wave propagating through the object, by adjusting the shear constraintsalong the stretched axis and the z{component of the initial move vector.
To restrict the deformation and avoid unnaturally large deformations as well as thedeformation of bone tissue a bone and a movement constraint were introduced.
This work also proposes an interface feasible for extending the STEPS application.It consists of three components responsible for the memory management, the calcu-lation of the deformation and the mapping to and from the volume. This separationallows code reuse and increases the maintainability and easy integration into theSTEPS system of the software. To allow a full separation of the mapping and thedeformation calculation a simple DeformVoxel interface was introduced and the ob-ject ensures that all elements necessary for mapping are loaded. Hence, the mapperdoes not need to reload missing parts.
The deformations acquired with this implementation are reasonable although severalproblems were not solved.
Section 6.1 shows that the performance of the mapper is a bottleneck of the appli-cation for large amount of elements to be mapped. The limit is around 400 � 500elements. Another issue are the missing features such as relaxation and consideringthe shape of the modeled object during the calculation.
A detailed presentation of the current problems and the further work needed ispresented in the next section.
6.3 Further Work
The further work needed can be split in two parts. The �rst part are improvementsto the existing algorithm and the second part is adding new features to it.
Improvements
The improvements mainly concern the performance of the mapping. Currently, theway to �nd the eight enclosing elements for a given position is time consuming.A separation between the calculation of the barycentric coordinates and the checkif a cube contains the requested position is required. Additionally, an equationsolver with a better performance as the one currently implemented is desirable.The approach to �nd the nearest element for a given position, which is part of�nding the enclosing eight elements, does not always return the correct element.This causes futile calculations and requires to �nd the nearest element using an

expensive search of the currently loaded elements. Another improvement requiredconcerns the multimove which may lead to an inconsistent ChainMail object.
Desired Features
The new features focus on enhancement of the realism.
� RelaxationA relaxation is currently not implemented for performance reasons. One of theproblems is that each relaxation requires a mapping step which is a bottle neckand that iso{values near the eye point of the endoscope need to be calculatedto check if the eye point is still outside the tissue. An analysis of the problemscan be found in section 3.4.6.
� Avoid Clearing of ObjectCurrently, the object is cleared if a new deformation is started at a positionoutside of the currently loaded object. This allows the user to deform the vol-ume without being restricted by the movement constraint. Therefore, anothermethod to handle this case is required. The suggested way to do this is to keepthe created objects in memory and merge them together as they expand. Hereit must be ensured that the merged object satisfy the chain region constraints.This can be achieved if only non moved elements are allowed as surface elementswhich is the case in the current implementation.
� Modeling the Object ShapeRegarding the shape of the object during the calculation is also a missing featurewhich creates artefacts such as the one shown in �gure 5.11. The reason for thisis that unconnected parts of the tissue are modeled as connected in the chainmail object. To handle this case separate ChainMail objects are required foreach modeled unconnected tissue. Now the problem is that these objects maycollide with each other during a deformation and hence a collision detectionneeds to be implemented. Modeling individual structures separately requiresa segmentation step. The segmentation depends on the given threshold valuefor the iso surface. Hence, new way for adding missing parts of the volume tothe existing object is required since a missing part might be the begin of anindividual structure and a segmentation step has to be conducted each time thethreshold values is changed because the topology might change too.

Despite the further work needed, this work produces reasonable results and showsthat interactive direct volume deformation is possible in the given STEPS environ-ment. This work is a starting point for further direct volume deformation extensionsto the STEPS system.

Chapter 7

Summary

7.1 Introduction
Endoscopy
Minimally invasive procedures are medical applications of growing importance. The�elds they are applied in include surgery, neurosurgery, gastroenterology, radiologyand transsphenoidal tumor surgery. The bene�ts of this procedure are lower costthan traditional surgery and a less harming e�ect for the patient. Additionally, therisk of injuring the patient during a minimally invasive surgery is smaller than for atraditional surgery.
During a minimally invasive procedure a small endoscope is inserted into the regionof interest along with a set of tools such as a rongeur for example. The little sizeof the endoscope allows the doctor to reach regions di�cult to access, such as thesphenoid or the colon.
However, there are several drawbacks of endoscopy. The procedure is unpleasant forthe patient and the risk of injuring the patient remains. Although the minimallyinvasive procedure is cheaper than the traditional surgery it is still expensive anddue to the diameter of the endoscope some region of interest are inaccessible, suchas small blood vessels.
Virtual Endoscopy
Virtual endoscopy was introduced to address these drawbacks. In a virtual endoscopythe surgeon relies on a 3D view of the patient's region of interest. The data for thevisualization is typically acquired using tomography. The virtual reality endoscopyo�ers several bene�ts.
The doctor can reach every point of interest because the virtual endoscope is a pointwithout dimensions. It is less harmful for the patient because it is a non invasiveprocedure. The patient does not need to be physically present for the diagnose

109

and the medial doctor can go through the data several times. This makes virtualendoscopy a tool for diagnosis, surgery planning and simulation, education, andinter{operative support.
The drawbacks of virtual endoscopy are �rst of all that a true realistic visualizationof the data is not possible. Hence, the traditional endoscopy has to be used ifthe medical doctor is in doubt due to the inaccurate visualization. The physicalbehavior has to be modeled which is computational expensive. Hence, a tradeo�between interactivity, visual performance and physically plausible behavior has tobe established. Finally, the patient's exposure to radiation during a CT1 procedurepresents a health risk.
Motivation
A. Neubauer et al. implemented a virtual endoscopy system for endonasal transsphe-noidal pituitary surgery [Neubauer et al. '04]. They use a cell{based �rst{hit raycaster for direct volume based rendering of the data [Neubauer '01]. The ray castersupports interactive threshold changes which allows the user to interactively adjustthe shape of the rendered surface to maximize the accuracy of the visualization.
The focus of our work is to extend the existing application called STEPS by theintegration of a deformation engine to simulate the deformation of tissue. This wasdesired to enhance the realism of the application. The main requirements for theresulting deformation are that it is physically plausible and that the calculation isfast enough to allow interactive frame rates. The ray caster used allows interactivethreshold changes. This feature must also be supported by the deformation engine.
Approach
Our Divod ChainMail algorithm, which is based on the ChainMail and EnhancedChainMail algorithms, for direct volume deformation is presented in this work. Un-like other deformation algorithms we directly model the volume instead of objects. Weuse a Constrained Particle system to model the volume and calculate the deforma-tion. For the integration of our algorithm into the STEPS application we developeda simple interface which enforces exibility and code reusability.
The advantages of virtual endoscopy overweight the drawbacks and a lot of researchhas been conducted to resolve the remaining drawbacks. The results of this relatedresearch are presented in the next section.
7.2 Related Work
This section provides an overview of the research conducted in the �elds of physicalmodeling and virtual endoscopy.1Computer Tomography

Classi�cation
Methods for physical modeling can be divided into two categories.
� physically based: the deformation and interaction of objects is calculated usinglaws of physics such as Newton's law of gravity.� geometrically based: deform the object by moving it's de�ning control points,without the application of physical laws.

Physically based algorithms produce more realistic results than the geometricallybase approaches. However, the high computational cost of physically based modelsoften does not meet the requirement for interactivity. Thus, the faster geometricallybased models are often applied. Another thing to consider is interaction with the ob-ject. For geometrically based models intuitive interaction is hard to archive becausethe shape of the object is indirectly de�ned by control points.
Mass Spring Model
One of the most popular methods for physical modeling is the Mass Spring Model,because of its speed and exibility. In this model objects are de�ned through masspoints which are connected by dampened springs. Hence, if a force is applied toa mass point it is propagated to the other mass points through the springs. TheKISMET endoscopy simulation system uses this approach for physical modeling[K�uhnapfel et al. '00]. A system similar to the Mass Spring Model is introducedby M. Teschner et al.. They derive three distinct forces from the potential energiesof mass points which arranged in a tetrahedral mesh to calculate the deformation[Teschner et al. '04].
Finite Element Method
Another widely used approach is the so called Finite Element Method (FEM). It isa physically based and computational expensive method which yields very realisticresults. To integrate it into interactive applications a lot of e�ort has been takento optimize and decrease computation time. For example Q. Zhu uses the FEM tosimulate macroscopic dynamics of muscle [Zhu '98]. FEM based models require apreprocessing step which depends on the topology of the object. This preprocess-ing step is also necessary for Mass Spring System based approaches if meshes areused as data structure. Hence, changes to the topology such as cutting have to beavoided. This problem is addressed by H. W. Nienhuys and A. F. van der Strappen[Nienhuys, Strappen '96].
Radial Basis Functions
The Radial Basis Functions (RBFs) are a geometrically based approach. It usesradial functions as interpolation functions for a set of control points. RBFs can be

divided into three classes [Kojekine et al. '02]
� Native Methods: these methods are computationally very expensive and notfeasibly for interactive applications.
� Fast Methods: ful�ll the requirements of interactive applications but are re-stricted to small problems.
� Compactly Supported Radial Basis Functions (CSRBFs): they combine theadvantages of the two latter classes. Hence, they are fast enough for interactiveapplications but not restricted to a certain set of problems.

The CSRBFs are further optimized for speed and memory consumption by N. Ko-jekine at al.. J. C. Carr et al. use CSRBFs in medical imaging. They visualizehuman skull from depth maps even across defect areas [Carr et al. '97].
Free Form Deformation
Another fast geometrically base approach introduced by T. Sederberg and S. Parryis Free Form Deformation (FFD). G. Hirota et al. describe a way to add physicallybased extensions [Hirota et al. '99]. They add the rule of preservation of mass thatgoverns the deformation. Models to ease direct intuitive interaction are presentedby P. Borell and D. Bechmann [Borell, Bechmann '91] as well as W. S. Hsu et al.[Hsu et al. '92]. A FFD based model is applied in the laproscopic surgery simulationsystem implemented by C. Basdogan et al. [Basdogan et al. '98]. They decided touse FFDs due to their good performance. G. Sela et al. introduced a new type ofFFDs called DFFDs which support discontinuities and allow topology changes dueto cuts [Sela et al. '04].
ChainMail Algorithm
This work is further based on the ChainMail algorithm [Gibson '97] presented by S.F. F. Gibson. It is a fast and exible algorithm for the deformation of volumetricobjects that supports modeling di�erent material properties and anisotropic material.M. A. Schill et al. extended this approach to inhomogeneous material with theEnhanced ChainMail algorithm [Schill et al. '98] and the restriction to rectilineargrids is overcome by the Generalised ChainMail algorithm[Y. Li '03] introduced byY. Li and K. Brodlie.
The next section presents the Divod ChainMail algorithm as well as the ChainMailand Enhanced ChainMail algorithm this work is based on.
7.3 Divod ChainMail algorithm
The Direct Volume Deformation ChainMail algorithm (Divod ChainMail algorithm)consists of three parts.

� Deformation: This part is responsible for calculating the deformation. It isbased on the original ChainMail and Enhanced ChainMail algorithms. However,some adjustments were applied to the original algorithms to integrate them intothe existing application.
� Mapping: The mapping is the link between the object and the application's raycaster. The object needs to be mapped to the volume which is then visualized.Hence, the mapping needs to be fast and the quality of the visualization dependson the mapping algorithm used.
� Memory Management: Due to the large amount of data the ChainMail ob-ject can not model the entire volume because it would exceed available memory.Therefore, we implemented a mechanism for memory management.

Original ChainMail
In the original ChainMail algorithm an object is modeled through a set of elementswhich are connected by a rectilinear grid. Hence, each element has a left, right,top, bottom, front and back neighbor element. Each element may hold materialproperties such as color, temperature and density. Additionally, each element has aset of region constraints which de�ne the valid region a neighbor element has to liein. These constraints are minDx;maxDxshearX;minDy;maxDy; shearY for the2D case. Please see 3.1 for a detailed description. In the 3D case the constraints
minDz;maxDz and shearZ are added.
Such an object can be compared to a chain mail in the 2D case. If a single chainelement of a chain mail is moved only a short distance it does not inuence theneighboring elements but if the movement length is big enough it forces the neigh-boring chain elements to move too. The same behavior applies to the elements of aChainMail object. The chain regions de�ne how far an element can be moved withoutforcing the neighbors to be moved too.
A deformation is initialized by moving a single element. After the �rst element ismoved, its neighbors are added to candidates lists to check if they violate the chainregion constraints and need to be moved too. There are 4 candidate lists in the 2Dcase: right, left, top, bottom. In the 3D case two additional lists for the front andback neighbors are needed.
Candidate Processing
If a candidate needs to be moved its neighbors are also added to the candidates listsince they might violate the constraints too. In the 2D case, candidates from theleft list add their top, bottom and left neighbors, candidates from the right list addtheir right top and bottom neighbors, candidates from the top list only add their topneighbor and candidates from the bottom list only add the bottom neighbor to thecorresponding list. In the 3D case candidates from the left, right, top and bottom

list also add their front and back neighbors. The candidates from the front list onlyadd their front neighbor. The candidates from the back list only add their backneighbor.
The algorithm continues by �rst processing the right, then the left, the top and�nally the bottom candidate list until all lists are exhausted.
The speed of the original ChainMail algorithm, which is capable of modeling severalthousand elements, roots in the fact that each element is processed at most once.However, the theorem this �nding is based on, restricts the ChainMail algorithm tohomogeneous data. Thus, all elements of a ChainMail object need to have the samechain regions.
Enhanced ChainMail
To overcome this restriction M. A. Schill et al. used the analogy of a sound wavepropagating though material. They found that the sound wave propagates fasterthrough sti�er material and used this observation to change the way the candidateelements are processed. To ensure that the deformation propagates through sti�ermaterial fastest they replace the four candidate lists by a single ordered list. Theordering criterion is the amount of constraint violation, where the element with thebiggest violation is processed �rst. This allows the modeling of inhomogeneous datathrough assigning each element an individual chain region.
Shortcomings
In the original ChainMail algorithm the deformation is initialized by moving a singleelement. Since the user interacts with the visualized surface and is unaware of theelements a di�erent approach for initiating the movement is required. The approachimplemented in this algorithm is moving the eight enclosing elements of the positionwhere the endoscope intersects the surface. The eight elements are equally movedby the force vector which is the vector between the endoscope's eye point and theintersection point. With this procedure the eye point is likely to lie outside of thetissue after the deformation and the diameter of the endoscope is modeled.
Another problem arises from the z{scale in the volume data set. The distance be-tween two elements along the x{axis and y{axis is one distance unit but along thez{axis it is z{scale times distance unit. This causes a distortion in the form of astretch of the resulting deformation along the z{axis. To overcome this problem thez{component of the initial force vector is divided by z{scale and the chain regionshear constraints for the x and y shear are multiplied by z{scale for the neighborsalong the z{axis.
Finally, to avoid unnaturally large displacement of the tissue and the deformation ofbone tissue we introduced two constraints. A movement constraint that restricts thelength an element may be moved and a bone constraint that restricts the movement

of elements with density values that represent bone tissue. If one of these constraintsis violated the movement is reverted and retried with a smaller initial step size.
Mapping
The mapping is the second integral part of the algorithm. Because the ray casterdirectly renders the volume it can be used to clearly separate the deformation enginefrom the STEPS application. Thus, it is necessary to update the volume data bymapping the deformed object. For the initial creation of the object it is also necessaryto map the volume data to the object.
Each object element represents one volume voxel. The mapping to the object is doneby assigning each new element the density value of the corresponding volume voxel.
The mapping to the volume uses barycentric coordinates. First, the eight enclosingelements of the volume position to be updated are acquired. Then a virtual middleelement of these eight elements is calculated to allow a symmetrical split of theenclosing cube to twelve tetrahedrons. The symmetrical split is necessary to producesymmetrically visual results.
One of the twelve tetrahedrons is enclosing the point to be updated. This tetrahedronis used to calculate the barycentric coordinates of the corresponding point which aresubsequently used for the calculation of the new density value for the given position.
Memory Management
A single object element requires approximately 250 bytes. Hence, due to the largeamount of volume voxels (512 � 512 � 128) it is not possible to map every volumevoxel to an object element. This would exceed the available memory.
Therefore, a memory management mechanism has been implemented. The memorymanagement exploits the fact that the deformation propagates locally and outwardsthrough the object. The volume grid is divided into a macro grid where a macrogrid cell has the shape of a cube and consists of size3 volume grid cells. A volumegrid cell consists of eight elements which form a cube of the size 1.
The ChainMail object consists of cubes which are called cubicles . Each cubicle mod-els one macro grid element. If the deformation exceeds the currently loaded object,the missing part is loaded in the form of a cubicle which elements are initialized usingthe mapper.
If a deformation propagates out of volume bounds, the memory manager producesvirtual cubicles with the elements density value set to zero. This allows the algorithmto proceed unaware of the problem.
Initially the object is empty. Thus, the �rst cubicle is loaded with the start of thedeformation and encloses the intersection point of the endoscope and the surface. Ifa subsequent deformation occurs, the object checks if it already holds the position

of the intersection. If so, the deformation is calculated using the existing object. Ifthe position is not loaded, the current object is cleared and a new object is startedby loading the �rst cubicle . This is done to avoid large objects and to avoid theproblem of merging two objects which requires collision detection. However, thisprocedure allows the user to elude the movement constraint. If the user starts anew deformation at a di�erent position the current object gets cleared. If the userthen returns to the already deformed position a new object is created with resetmovement constraints which allows a larger deformation than permitted.
Algorithm Outline
Initialization
The deformation is initialized by moving the eight enclosing elements for a givenposition, typically the point of collision. Due to initially moving eight elements,candidate elements would be added multiple times to the candidate list. To avoidduplicates each element holds a ag that stores the direction in which neighborsmust not be added to the list. The neighbors that lie in these ignoring directions areadded to the candidate list by one of the other seven initially moved elements.
This approach has a drawback because it allows inconsistencies within the ChainMailobject. However, these inconsistencies have no impact on the visual outcome and arevery unlikely to occur as laid out in section 3.5.3.
In case of bone or the movement constraint violations the current deformation isreverted. All elements in the moved list are reset to their last position. The defor-mation is then retried with a smaller step size.
Chain Regions
The chain regions used in this approach have a cubic shape which is governed by ano�set parameter and the density value of the modeled element to model inhomoge-neous data. The density value is used to scale the o�set value: offsetscaled = offset�(elementvalue=4096)2 The shear factors are set to the scaled o�set value. shear =
offsetscaled The min and max constraints are given as min = 1 � offsetscaled and
max = 1 + offsetscaled. Hence, the o�set has to be between 0 and 1 because theinitial distance of an element to the neighbors is 1 and the initial object has to be ina valid state. With this con�guration the sti�er material has smaller chain regionswhich results in smoother deformations.
Since sti� material does not deform as easily as soft material the movement constraint
mc for a single element is also inuenced by the density value of the element e givenas:mc = (1 � (evalue=4096)2) � movementconstraint where movementconstraint is theglobal movement constraint.
A con�guration �le allows to tune the parameters for the given data set.

Calculation of new Density Value
The �rst mapping algorithm implemented caused artefacts in the form of holes insidethe volume. The currently implemented mapping uses barycentric coordinates tocalculate the new density value of a voxel.
The �rst step in this procedure is to �nd the nearest element for the position to beupdated. This is done because the nearest element must be one of the eight enclosingelements for the given position. Hence, all eight cubes that can be formed with thenearest element as corner element are checked if they enclose the position. The checkis done using barycentric coordinates.
The cube is split into twelve tetrahedrons in a symmetrical manner. A symmetricalsplit yields symmetrical visual results. Then the barycentric coordinates for thepoint are calculated and checked if each component of the coordinates satis�es thecondition 0 � bcomponent � 1 which means that the tetrahedron encloses the element.The barycentric coordinates (bx; by; bz; bw) and the density values of the enclosingtetrahedron points (V1; V2; V3; V4) are then applied to calculate the new density valuegiven as density = bx � V1 + by � V2 + bz � V3 + bw � V4.To symmetrically split the cube a virtual middle element M is calculated. Forexample, the split of the bottom surface consisting of the points P0; P1; P2; P3 yieldsthe 2 tetrahedrons (M;P0; P1; P2) and (M;P0; P2; P3).
Barycentric Coordinates
The barycentric coordinates are calculated by solving a set of four equations. Cur-rently, a non optimized version of the Gaussian algorithm is implemented. However,the drawback of this approach is that the barycentric coordinates are also calculatedfor cubes that do not contain the voxel. This results in a large number of unnecessarycalculations and drastically reduces performance.
A similar problem exists with the algorithm implemented to �nd the nearest elementfor a given position. It does not always return the correct element because theimplemented algorithm may terminate prematurely. In this case an expensive secondtry which checks all loaded elements is necessary to �nd the correct nearest element.
However, the performance for the given problem is acceptable and allows interactiv-ity.
Loading a new Cubicle
To create a new cubicle it is necessary to initialize the new elements. Hence, thememory manager requires the mapper to read the corresponding density values.
The memory manager also links the elements together. That is, it creates the ap-propriate neighborhood links for the elements within the new cubicle loaded.

Connecting a new Cubicle to the existing Object
The ChainMail object then connects the new cubicle to the already loaded parts.That requires establishing the neighborhood links for the opposing surface elements.For example, if a cubicle is added at the right side of the existing object the elementson the right surface of the object's corresponding cubicle have to be connected withthe elements on the left side of the new cubicle . It is important to note that theother �ve possible neighbor cubicles have to be connected as well.
If a deformation propagates out of volume bounds the memory manager createsvirtual chunks with elements initialized with zero so that the deformation calculationproceeds unaware of the problem.
7.4 Implementation
Interface
The purpose of this work is to integrate a deformation engine into the STEPS appli-cation. The main focus is on implementing a �rst prototype. Hence, lot of furtherwork is expected to be done. Therefore, a basic interface for deformation engines tobe integrated into the existing application was developed.
The interface models the three components of the algorithm.
� Deformation� Mapping� Memory Management

To fully separate the mapping from the memory management and the deformation abasic DeformVoxel interface is proposed. It holds the information about the position,value and the neighborhood of an element which is su�cient for a wide range ofmapping algorithms.
Another thing that is emphasized on is an easy integration into the existing system.This is achieved by o�ering a single method which calculates the deformation andupdates the volume date. Secondly, this method does not propagate errors. Hence,additional error handling is not required when integrating the deformation engine.
The data passed from the STEPS application to the deformation engine consists of aforce vector and the intersection point between the endoscope and the iso surface. Itis calculated in the isCollision() method of the STEPS implementation which checksif a collision between the endoscope and the iso surface occurred.
Integration
The deformation engine is integrated by creating the mapper, the memory managerand the deformation object. Then the method performDeformation() is called in the

isCollision() call passing the force vector and the intersection point to the deformengine.
The intersection point is calculated iteratively. First, the point is assumed at theeye point of the endoscope. Then it is repeatedly moved towards the last positionof the eye point by a small step size until it lies outside the tissue. The middle ofthe last point inside the tissue and the �rst point outside the tissue is taken as theintersection point. The vector from the intersection point to the eye point is theforce vector.
7.5 Results
The performance of the implementation is manly determined by the mapper. For1000 moved elements the mapper needs 1; 17 seconds to map the deformed object tothe volume. The time required to calculate the deformation is 230 milliseconds. Ad-ditionally, the time required for the calculation of the deformation does not increasedrastically even for large numbers of moved elements. For 1888 moved elements itrequires 331 milliseconds. The time required by the mapping drastically increaseswith the number of moved elements. It already takes 4; 76 seconds to update thevolume for 1888 elements.
The reason for this decrease in performance is the way the enclosing cube for agiven position is calculated. As shown in section 3.6.3 a lot of futile calculations areconducted to �nd the enclosing cube and tetrahedron. Hence, a faster way to solvethis problem is required for larger amounts of moved elements.
The number of elements moved depends on the ratio between the o�set and the scalefactor for the initial movement. The o�set governs how many elements are draggedwhere smaller o�sets cause more dragging. The scale factor de�nes the size of theinitial movement. A large initial movement also causes more elements to be dragged.
In the current implementation the o�set is set to 0:2 and the scale factor is set to1:2. The performance for these parameters is 170ms for the deformation and forthe mapping 351ms. This sums up to 521ms for a single deformation step and issu�cient to give an interactive impression.
7.6 Conclusion
The presented work shows an approach to integrate a deformation engine into theexisting STEPS application. The results of this prototype are already promisingalthough a lot of optimizations are still required the performance is su�cient forinteractivity.
Large numbers of moved elements have to be avoided because the mapping which isthe performance bottleneck requires over a second to map 1000 moved elements andthe computational time increases drastically with the number of elements to map.

However, the current con�guration does not require such large numbers of elementsto be moved resulting in a su�cient performance.
The described interface allows code reuse and enhances the exibility of the software.For example the mapping component is independent from the deformation and thememory management and can be interchanged. Easy integration is achieved byhandling all errors internally and providing a single method which calculates thedeformation and updates the volume data. Hence, the ray casting algorithm staysunaware of the new engine.
Further work includes optimizations of the the implementation and adding new fea-tures. Most of the optimizations focus on the mapper and the way the eight enclosingelements for a given position are found.
Desired new features include a better multimove strategy that avoids inconsisten-cies as well as a way for collision detection and merging ChainMail objects so thatcurrently unused objects are not removed from memory which allows to ignore themovement constraint. The collision detection is also necessary if the di�erent typesof tissue are modeled individually through multiple ChainMail objects. That alsorequires a segmentation of the data. The artefacts that are created because theshape of the object is not modeled could then be avoided. For example two separatestructures are currently modeled by a single ChainMail object. Hence, a deformationof one structure in the object also inuences the other structure which is unrealisticbehavior. Furthermore, a relaxation step would further increase the realism of theapplication.
This work presented our Divod ChainMail algorithm for fast direct volume deforma-tion. It also described the integration of the deformation engine prototype into theexisting STEPS application. Although there is still a lot of room for improvementconcerning the performance and the features of the implementation the requirementof an interactive impression is met together with good visual results and the workpresents a starting point for further direct volume deformation applications in theSTEPS environment.

Chapter 8

Acknowledgements

I want to thank Andr�e Neubauer for his patience, his advise, and the time hespent helping me. Further I was to thank Katja B�uhler for her patience, her ad-vise and for inviting me to the CESGC in the year 2004 where I had a fabuloustime (http://www.cg.tuwien.ac.at/studentwork/CESCG/). I also want to thankEduard Gr�oller for his support as well as Erich Liebmann and Bernhard Schie-mann who gave valuable hints. Further I want to thank the VRVis research cen-ter (http://www.VRVis.at), where parts of this work have been done as part of thebasic research on visualization (http://www.VRVis.at/medvis/), for supporting mywork, as well as Tiani Medgraph (http://www.tiani.com) for support and providingmedical data sets. I would also like to give thanks to Sylvia Mittermann for supportas well as Peter Pongratz and Mario Gatto for being there. Finally, I want to thankmy parents for there enduring �nancial and emotional support throughout the years.

121

Bibliography

D. Bara� (2001). SIGGRAPH Coursenotes - Physically Based Modeling, Collisionand Contact (slides only). Pixar Animation Studios.A. V. Bartrol��, R. Wegenkittl, A. K�onig, E. Gr�oller, E. Sorantin (2001).Virtual Colon Flattening. Data Visualization, Proceedings of Symposium onVisualization, S. 127 { 136.D. Bartz (2003). Virtual Endoscopy in Research and Clinical Practice. STAR -State of the Art Report, Proceedings of EUROGRAPHICS 2003.C. Basdogan, C. Ho, M. A. Srinivasan, S. D. Small, S. L. Dawson (1998).Force interactions in laparoscopic simulations: Haptic rendering of soft tissues.Proceedings of MMVR 1998, S. 385 { 391.P. Borell, D. Bechmann (1991). Deformation of n-dimensional objects. Proceed-ings of ACM Symposium on Solid Modeling, S. 351 { 370.M. Bro-Nielsen, S. Cotin (2001). Real-time Volumetric Deformable Modelsfor Surgery Simulation using Finite Elements and Condensation. Proceedingsof Medical Image Computing and Computer-Assisted Intervention (MICCAI),Lecture Notes in Computer Sience 2208.J. C. Carr, W. R. Fright, R. K. Beatson (1997). Surface Interpolation withRadial Basis Functions for Medical Imaging. Proceedings of IEEE Transactionon Medical Imaging, 16:96{107.B. Eberhardt, O. Etzmuss, M. Hauth (2000). Implicit-Explicit Schemes forFast Animation with Particle Systems. In Eurographics Computer Animationand Simulation Workshop 2000, 2000.F. Ganovelli, P. Cignoniz, C. Montanix, R. Scopigno (2000). A Multires-olution Model for Soft Objects supporting interactive cuts and lacerations.Proceedings of EUROGRAPHICS 2000, 19(3).S. F. F. Gibson (1997). 3D ChainMail: a Fast Algorithm for Deforming Volu-metric Objects. Proceedings of Symposium on interactive 3D Graphics, ACMSIGGRAPH, S. 149{154.D. Hearn, M. P. Baker (1997). Computer Graphics C Version. Prentice Hall.G. Hirota, R. Maheshwari, M. C. Lin (1999). Fast Volume-Preserving FreeFrom Deformation Using Multi-Level Optimization. Proceedings of ACM SolidModeling.
122

W. S. Hsu, J. S. Hughes, H. Kaufmann (1992). Direct Manipulation of Free-Form Deformations. Proceedings of Computer Graphics, 26(2):177 { 184.
N. Kojekine, V. Savchenko, M. Senin, I. Hagiwara (2002). Real-time 3DDeformations by Means of Compactly Supported Radial Basis Functions. Pro-ceedings of EUROGRAPHICS 2002.
U. G. K�uhnapfel, H. K. Cakmak, H. Maa� (2000). Endoscopic Surgery Train-ing using Virtual Reality and deformable Tissue Simulation. Proceedings ofComputers & Graphics, 24:671{682.
A. Laghi, P. Pavone, V. Panebianco, I. Carbone, L. Francone (1999).Volume-rendered Virtual Colonoscopy: Preliminary Clinical Experience. Pro-ceedings of Computer Assisted Radiology and Surgery, S. 171 { 275.
M. Nakao, T. Kuroda, H. Oyama, M. Komori, T. Matuda, T. Takahashi(2003). Physically-Based Fine and Interactive Soft Tissue Cutting. IPSJJOURNAL4, 44(8).
L. P. Nedel, D. Thalmann (1998). Real Time Muscle Deformations Using Mass{Spring Systems. Proceedings of CGI 1998, S. 156{165.
A. Neubauer, S. Wolfsberger, M.-Th�er�ese Forster, L. Mroz, R. We-genkittl, K. B�uhler (2004). STEPS - an Application for Simulation ofTranssphenoidal Endonasal Pituitary Surgery. Proceedings of IEEE Visual-ization 2004, S. 513{520.
A. Neubauer (2001). Master Thesis, Cell-Based First-Hit Ray Casting. Instituteof Computer Graphics, Vienna University of Technology.
H. W. Nienhuys, A. F. van der Strappen (1996). A sugrey simulation sup-porting cuts and �niteelement deformation. Proceedings of Computer GraphicsForum, 15(4):C57 { C66.
J. O'Brien, A. Bargteil, J. Hodgins (2002). Graphical Modeling and Animationof Ductile Fracture. Proceedings of SIGGRAPH 2002, S. 291 { 294.
O.Ennemoser, H. Canaval, W. Ambach (1986). Computerised tomography(CT) in education: a demonstration experiment for students. European Journalof Physics, 7:88{90.
P. Reuter, I. Tobor, C. Schlick, S. Dedieu (2003). Point-based Modelling andRendering using Radial Basis Functions. Proceedings of the 1st internationalconference on Computer graphics and interactive techniques in Austalasia andSouth East Asia (Graphite 2003), S. 111{118.
V. Savchenko, L. Schmitt (2001). Reconsturcting Occlusal Surfaces of Teeth Us-ing a Genetic Algortihm with Simulated Annealing Type Selection. Proceedingsof 6th ACM Symposium on Solid Modeling and Application, S. 39{46.
M. A. Schill, S. F. F. Gibson, H.-J. Bender, R. M�anner (1998). Biomechan-ical Simulation of the Vitreous Humor in the Eye Using Enhanced ChainMailAlgorithm. Proceedings of Medical Image Computation and Computer AssistedInterventions (MICCAI) 1998, S. 679{687.

T. Sederberg, S. Parry (1986). Free Form Deformation of Solid Geometric Mod-els. ACM Computer Graphics, Proceedings of SIGGRAPH 1986 Proceedings,20:151 { 160.
G. Sela, S. Schein, G. Elber (2004). Real-time Incision Simulation Using Dis-continuous Free Form Deformation. Proceedings of International Symposiumon Mediacal Simulation 2004.
D. Terzopoulos, K. Fleischer (1988). Modeling Inelastic Deformation: Viscoelas-ticity, Plasticity, Fracture. Proceedings of SIGGRAPH 1988, S. 269 { 278.
D. Terzopoulos, K. Waters (1990). Physically-Based Facial Modeling, Analysis,and Animation. The Journal of Visualization and Computer Animation, 1:73{ 80.
M. Teschner, B. Heidelberger, M. M�uller, M. Gross (2004). A Versatile andRobust Model for Geometrically Complex Deformable Solids. Proceedings ofCGI 2004, S. 312{319.
L. Verlet (1967). Computer Experiments on Classical Fluids. Ii. Equilibrium Cor-relation Functions. Physical Review, 165:201 { 204.
H. Wendland (1995). Piecewise polynomial, positive de�ned and compactly sup-ported radial functions of minimal degree. Proceedings of AICM, 4:389{396.
A. Witkin, D. Bara� (2001). SIGGRAPH Coursenotes - Physically Based Mod-eling, Di�erential Equatoin Basics. Pixar Animation Studios.
A. Witkin (2001a). SIGGRAPH Coursenotes - Physically Based Modeling, Con-strained Dynamics. Pixar Animation Studios.
A. Witkin (2001b). SIGGRAPH Coursenotes - Physically Based Modeling, ParticleSystem Dynamics. Pixar Animation Studios.
K. Brodlie Y. Li (2003). Soft Object Modelling with Generalised ChainMail {Extending the Boundaries of Web-based Graphics. Proceedings of CoputerGraphics Forum, 22(4):717{727.
Q. Zhu (1998). Masters Project Final Report, 3D Voxel-Based Muscle Volume De-formation by Finite Element Method. Department of Computer Sience, SUNYat Stony Brook, New York.

