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Abstract

Endoscopy is an integral part of medical practice although the procedure is often unpleasant
for the patient. Virtual endoscopy is a diagnosis tool which visualizes 3D image data sets to
show a virtual view of the patient similar to the images generated by a traditional endoscopy. A
virtual endoscopy system called STEPS was developed at the VRVis to simulate transsphenoidal
endonasal pituitary adenoma surgery. This thesis describes a deformation engine extending the
STEPS application to enhance the realism. The two main contributions are the development of
the Divod ChainMail algorithm, an algorithm for direct volume deformation based on the Chain-
Mail and Enhanced ChainMail algorithms, and the integration of the engine into the existing
STEPS. We use a Constrained Particle System to directly model and manipulate the volume
data instead of modeling objects extracted from the volume data. We further proposes a simple
interface to ease integration and enforce reusability of the software components. This thesis
describes our Divod ChainMail algorithm, the interface and integration details, and provides
timing results. Finally, it offers a discussion of the presented methods pointing out possible
improvements and further work.






Kurzfassung

Endoskopie ist ein intergaler Bestandteil medizinischer Verfahren, obwohl diese Methode oft
unangenehm fir den Patienten ist. Virtuelle Endoskopie ist ein Diagnosewerkzeug, das drei-
dimensionale Datensatze visualisiert und so virtuelle Bilder des Patienten generiert, die den
Bildern der traditionellen Endoskopie sehr dhnlich sind. FEin virtuelles Endoskopie System
namens STEPS wurde am VRVis entwickelt und dient zur Simulation von endonasalen, en-
doskopischen Operationen zur Beseitigung von Hypophysentumoren. Diese Arbeit beschreibt
eine Deformations Engine welche die bestehende STEPS Applikation erweitert und so den Re-
alismus der Simulation erh6ht. Die zwei wichtigsten Beitrage dieser Arbeit sind der Divod
Chain Mail Algorithmus, ein Algorithmus zur direkten Deformation des Volumens, welcher
auf dem ChainMail und dem Enhanced ChainMail Algorithmus basiert, sowie die Integration
der Engine in das existierende System. Wir verwenden ein Partikel System um das Volumen,
anstatt aus dem Volumen extrahierte Objekte, zu modellieren und so die Deformation direkt
auf dem Volumen durchzufithren. Weiters stellen wir ein einfaches Interface vor, das die Inte-
gration vereinfacht, sowie die Wiederverwendung einzelener Softwarekomponenten unterstiitzt.
Diese Arbeit beschreibt unseren Divod ChainMail Algorithmus, das Interface, sowie die Details
der Integration und die Resultate der Zeitmessungen. Abschliessend werden mégliche Opti-
mierungen der vorgeschlagenen Algorithmen und Ideen, beziehungsweise Anforderungen, fir
eine weiterfuhrende Arbeit prasentiert.
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Chapter 1

Introduction

Motivation

In recent years, minimally invasive procedures became an integral part of medical
practice [Bartz ’03]. Nowadays, they are applied in many areas including surgery,
neurosurgery, gastroenterology and radiology.

The main advantage of minimally invasive procedures is that they have a less harmful
effect on patients than conventional methods. The endoscope, a tool typically used in
minimally invasive procedures, has a very small diameter. This makes it possible to
operate in very fragile regions of the human body such as the brain. The application
of endoscopy can generally be divided into two classes:

e Diagnosis, done to examine the patient for medical conditions, e.g. tumors, and
does not affect the patient.

e Surgery, conducted to cure the patient from illness, obviously affecting the
patient.

The drawbacks of minimally invasive procedures include high costs in comparison to
radiological diagnosis. However, they are in general cheaper than traditional surgery.
Endoscopic examinations are unpleasant for the patient, the endoscope cannot reach
all regions of the human body such as thin blood vessels and there is also the risk of
infection and other complications.

Virtual Endoscopy

Virtual endoscopy addresses these drawbacks. In virtual endoscopy the region of
interest is visualized as a virtual reality. The data for the visualization is typically
acquired through Computer Tomography or Magnetic Resonance Tomography. In
this virtual environment there are no physical limitations due to the diameter of the
endoscope because the lens of the virtual endoscope is a point without expansion.
Hence, all regions of interest and very small structures can be examined if the sample



rate of the data is sufficiently precise. This makes virtual endoscopy a feasible tool
for diagnosis. Virtual endoscopy is cheaper and less unpleasant for patients than the
conventional endoscopy.

Unfortunately, virtual endoscopy introduces new problems. The visualization of the
data is not an exact representation of the human body which may lead to wrong
diagnoses. Physical properties of the organs have to be modeled with computational
expensive simulation engines which threatens interactivity. Hence, there is a tradeoff
between speed and realism in every virtual endoscopy system. The mechanisms for
interaction should be the same for the virtual and the real endoscopy. This calls for
direct user interaction and manipulation of the data such as cutting and deforming.
These requirements present new problems to the simulation software. The force
feedback of these actions can be simulated with haptic devices. Finally, the radiation
exposure during a Computer Tomography session is a risk to the patient too.

Fields of Application

Although virtual endoscopy has limitations and drawbacks it is already applied in
many medical areas including the following:

e Diagnosis
Virtual endoscopy serves as a diagnosis tool. It is used to identify e.g. colon
polyps and tumors [Laghi et al. '99]. In this application there is a method
introduced called Colon Flattening [Bartroli et al. ’01] to enhance the results
and to aid the user.

e Planning

The planning of a difficult and complex surgery is another field of application.
The medical doctor is able to examine the region of interest form different
perspectives without the patient needing to be physically present all the time.

e Simulation
Similar to planning a medical doctor can simulate an intervention several times
before performing the surgery.

e Teaching

Students can study and practice medical procedures in the virtual reality.

e Intra—operative Support
Virtual endoscopy can also provide intra—operative assistance in the form of nav-
igation assistance or by displaying additional information. Virtual endoscopy
also provides different perspectives and can show the position of vital blood
vessels and nerves which the surgeon could not see without it.

All of these fields demand a certain degree of realism but tradeoffs are possible. Some
applications, diagnosis for example, do rely heavily on the accuracy of the simulation
but not so much on physical realism such as the simulation of deformations. Other



applications such as teaching and simulation benefit more from a physical realistic
look—and—feel environment than from accuracy. The focus of this work is the latter
case.

STEPS

This work deals with a certain type of endoscopy called transsphenoidal endonasal
pituitary surgery. Its purpose is to remove pituitary adenomas. In this procedure
an endoscope and surgical tools are inserted into the head through the nose and
maneuvered to the sphenoid sinus. Then the sellar floor is opened so that the surgeon
can reach the pituitary gland and remove the tumor.

This work builds on work previously conducted at VRVis. A. Neubauer et al. imple-
mented a transsphenoidal surgery simulation system called STEPS. They use a first
hit based rendering technique to visualize the volume data. Polygonal surface ren-
dering is not flexible enough for the given problem. The topology of the object may
change rapidly and each topology change would require a computational expensive
surface extraction step for a polygonal surface rendering based approach. The work
also includes collision detection and force feedback.

Requirements

To enhance the realism even further, an extension of the algorithm to support the
simulation of deformation is desired. Hence, the main focus of this work is to intro-
duce a deformation engine, based on a new algorithm that is fast enough to allow
interactive frame rates and produces plausible deformations, to the existing STEPS
system.

Approach

We propose in this work, a direct volume deformation algorithm called Divod Chain-
Mail based on the ChainMail algorithm [Gibson ’97] and the Enhanced ChainMail
algorithm [Schill et al. ’98]. Our algorithm directly models the volume data and
calculates the deformation without an expensive surface extraction step. The de-
veloped algorithm does not produce physically accurate results, but takes physical
components such as material properties (i.e. stiffness) into account.

Further, we present an interface for the integration of the our developed deforma-
tion engine into the STEPS application. The interface is designed to allow easy
integration and code reusability.

Outlook

The next chapter presents an overview of methods used for soft tissue deformation
and their application in medical simulation software with a focus on virtual en-



doscopy. The third chapter describes our Divod ChainMail algorithm outlining the
improvements made to the original ChainMail algorithms, and discusses the weak-
nesses of the original approaches in regard to our requirements. The details of the
implementation and the integration into the STEPS system are described in the
fourth chapter. The results as well as a discussion of the strength and weaknesses of
this work are presented in the fifth and sixth chapter including a description of the
further work needed.



Chapter 2

Related Work

This work presents a method for deformation of volume data acquired through CT!
which is visualized with iso surfaces. It is part of an endoscopic surgery planning
and simulation system. First, this chapter provides a short overview of the related
system followed by an outline of various deformation modeling techniques.

Related Software

This work is an extension of the existing STEPS system [Neubauer et al. '04]. The
STEPS (Simulation of Transsphenoidal Endonasal Pituitary Surgery) system is in-
tended to aid the planning of an endonasal surgery and to simulate such a procedure
so that students can learn by example. This type of minimally invasive procedure is
used for the removal of various kinds of pituitary tumors. It consists of four views.
The virtual view and three section views which show different cutting planes through
the data (please see figure 2.1).

Motivation

In order to enhance the realism of the simulation a mechanism for simulating the de-
formation of soft tissue is desired. Currently, if the user pushes the virtual endoscope
against the tissue the movement of the endoscope is blocked in order to keep the eye
point of the endoscope outside of the tissue. The real life behavior of the tissue is
different. In real life the tissue would deform according to its material properties and
the forces applied. For example a surgeon is able to push interfering tissue aside.
Overall, deformation and movement of the virtual tissue gives a much more realistic
feeling of the simulated environment. Bringing movement to the virtual reality is
also a first step of injecting life to it.

!Computer Tomography
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Figure 2.1: This is a screenshot from the STEPS application. The top left image shows the
three dimensional view. The other three images are the cutting plane views also called section
views. On the left side the user interactively adjust parameters such as the barrel distortion,
color and fog.

Requirements

The algorithm for calculating the deformations has to produce interactive frame rates
and must be integrated into existing software. The most important existing software
component is the ray caster [Neubauer '01]. It directly renders the iso surface on
basis of volume data. The shape of the rendered surface depends on a threshold.
This threshold defines which iso values are interpreted as tissue and which iso values
are interpreted as air. The data is acquired by CT images and the threshold can
be adjusted interactively. This allows the user to properly fit the threshold to the
data so that reasonable structures are rendered. This is a useful tool for users but
it presents a massive limitation for the deformation approach. It is not feasible
to calculate a mesh for the iso surface, since the iso surface can change rapidly
and hence, the mesh would need to be recalculated. This would lead either to low
performance or to the loss of the interactive threshold adjustment feature. Hence,
an algorithm has to be chosen that does not rely on the use of meshes. Our proposed
Divod ChainMail algorithm directly manipulates the volume data and thus does not
use meshes.



Another limitation is presented by the large data which cannot be kept entirely in
the memory. Hence, it would be necessary to swap the currently needed parts of
the data; a time consuming process. Therefore, global deformation is not possible
at interactive frame rates. This means, that the algorithm has to calculate the
deformation locally.

Outlook

Allowing real time deformations in the STEPS system is the main focus of this work.
The next sections provide an overview of existing deformation algorithms and their
application in virtual reality environments, emphasizing on those used for surgery
simulation and soft tissue modeling.

The conclusion discusses the pros and cons of the various presented algorithms. It
also argues why the ChainMail algorithm 2.7 was chosen as approach for our work,
the Divod ChainMail algorithm, is based on.

2.1 Volume Deformation Algorithms

Much research has been done in the field of deformable modeling for various fields
of application such as animation of cloth, animation of muscles, simulation of car
accidents, computer games, virtual reality or surgery simulation.

The different approaches can be divided into geometrically-based and physically-
based. Geometrically-based methods change the shape of an object indirectly by
moving control points or adjusting parameters of the function which defines the
surface. The advantage of these methods is their high performance. The drawbacks
are:

e they do not model physical properties of material
e they do not use physical laws to calculate the new shape

e since the deformation is calculated indirectly it is difficult to provide direct
manipulation of an object and intuitive interaction

In contrast to geometrically-based methods the physically-based methods incorporate
physical properties of the modeled material and deform the object directly which
offers intuitive and direct user interaction. This comes with high computational
costs which makes it hard to achieve interactivity.

Deformations can also be divided in plastic [O’Brien et al. '02],
[Terzopoulos, Fleischer '88] and elastic deformations. An elastic deformation
assumes that the object attempts to keep the original shape. Hence, the object
tries to stay in its original shape against the applied forces. If the applied forces
are removed from the object a perfectly elastic object will restore its original shape.
In contrast, plastic deformations permanently change the shape of an object. If



the applied forces are removed the object keeps the deformed shape. Most physical
deformations have a plastic and an elastic component. A system that models this
behavior is described in [Teschner et al. '04].

2.2 Particle Systems

Particle systems are a particularly good method for modeling objects that change
over time by flowing, billowing or expanding such as clouds, water, smoke, fire, etc.
[Hearn, Baker ’97]. In a particle system an object is modeled through a set of parti-
cles. Each particle may hold a set of properties such as lifetime, shape, transparency
and color. For example, water is modeled through a large number of drops. A.
Witkin gives a basic introduction to particle system dynamics in [Witkin ’01b].

Particle systems are a wide spread method to model the dynamics of body fluids
such as blood. U. Kihnapfel et al. use a particle system based method in the
software package called KISMET of their surgery simulation system to model blood
to enhance the realism of the entire simulation [Kithnapfel et al. 00].

However, particle systems are not only used to simulate fluids. M. Nakao et al. use
a particle system combined with adaptive tetrahedral subdivision to model accurate
and real-time soft tissue cutting and deformation in a framework for advanced surgery
simulation [Nakao et al. '03].

Particle systems are also applied in the modeling of cloth. For example, B. Eberhardt
et al. use particle systems to model the draping of textile [Eberhardt et al. "00].
They present a flexible method which allows modeling of very stiff materials. Their
approach treats nonlinear forces correctly which is especially important to produce
accurate results in the context of high stiffness. Due to the high flexibility the system
can be suited to different applications such as virtual reality and high accuracy
simulation.

2.2.1 Constrained Dynamics

In a physical model particles and their movements are governed by a set of con-
straints. For example two particles may only be a certain distance apart or a particle
must move along a specific move path.

The problem that arises from these constraints is to make the particles obey the con-
straints as well as the applied forces such as Newton’s law of gravity. This may result
in a very complex system. The computational effort to meet all constraints with re-
spect to the applied forces within such a system may become very time consuming
and the calculation itself numerically unstable.

For a deeper understanding of these problems and basic concepts to counter them
please refer to [Witkin ’0lal.



Some of the outside forces applied to an object may occur through the collision with
another object. A short overview over this topic is presented in the next section.

2.2.2 Collision and Contact

Collision and contact is a vital part to simulate interaction between objects and user
interaction within a virtual reality. In the real world colliding objects usually do not
interpenetrate each other but they deform or change their move path in response
to the collision. Hence, the first step to model deformations accurately is to detect
collisions and contacts between objects. The second step is to check if the detected
collision results in an invalid state of the system. If so, the objects have to be
deformed according to their material properties so that the sanity of the system is
restored.

S. Baraff [Baraff '01] gives an introduction to the topic as part of the SSIGGRAPH
2001 course notes.

2.2.3 Modeling

Particle systems in general can be used for soft tissue modeling. However, their main
field of application is the modeling of fluid or gasiform objects. Constrained Particle
Systems are better suited for soft tissue modeling. An algorithm based on particle
systems with constraint dynamics namely the ChainMail algorithm is outlined in
section 2.7.

2.3 Mass Spring Model

A very wide spread physically-base approach is the Mass Spring Model. An object
is defined through a set of mass points which are connected by dampened springs. If
a deformation occurs it is propagated through the object by the dampened springs
in respect to the forces applied and the characteristics of the springs. The method
is easy to implement and provides fast computation.

The deformation is calculated through solving differential equations. This family of
equations, especially the so called initial value problem class, is very important for
physically based modeling. A profound introduction to the topic can be found in
[Witkin, Baraff "01].

A way to exploit the advantage of the Mass Spring Model is to model different
layers of material with different layers of Mass Spring Models as presented by D.
Terzopoulos and K. Waters. They use three Mass Spring layers for facial animation.
The three layers are associated with three anatomical layers of facial tissue (dermis,
subcutaneous fatty tissue, and muscle)[Terzopoulos, Waters 90].

Another example for the potential of Mass Spring Models is found in a paper done
by U. Kihnapfel et al. who use the Mass Spring technique for endoscopic surgery



training simulation. Their paper presents a surgical training system called ”Karl-
sruhe Endoscopic Surgery Trainer” [Kithnapfel et al. ’00]. The software for the sys-
tem called KISMET uses a Mass Spring Model to simulate the elastodynamics of
the simulated objects.

A method for real time muscle deformations based on the Mass Spring Model is
presented by L. P. Nedel et al.. Their main goal is to produce fast and plausible
results. Hence, they did not strive for a perfect simulation. They introduce a new
type of springs called angular springs to control the muscle volume during simulation
[Nedel, Thalmann ’98]. They also provide two different levels of muscle representa-
tion:

e muscle shapes: A surfaces based model fitted to the boundaries of the medical
image data.

e action lines: Represent the force a muscle produces at the connected bone.

The works described above had to cope with the drawbacks of the Mass Spring
Model. The drawbacks include unrealistic behavior for large deformations and find-
ing appropriate values for the spring constants to produce realistic behavior. This is
especially troublesome for rigid objects such as bone, a problem referred to as stiff-
ness. Modeling stiff objects results in a huge loss of performance. Many calculations
have to be done in a short period because only small steps can be taken.

An approach similar to the Mass Spring Model is presented by M. Teschner et al.
[Teschner et al. ’04]. This approach is based on tetrahedral meshes and derives three
distinct forces based on potential energies at the mass points. These three forces are
modeled to:

e preserve distances between mass points
e preserve the surface area of the object

e preserve the volume of tetrahedra

The properties of the material are governed by weighted stiffness coefficients. Each
material property consist of three coefficients — one for each potential energy. The
three different forces are calculated through the derivation of the corresponding po-
tential energy function.

The big advantage of this approach is that it models both plastic and elastic deforma-
tions. This is done by splitting the calculation in two components, a plastic and an
elastic component, where only the elastic component contributes to the deformation
energy of the object.

The computational effort of this approach is comparable with the effort of a Mass
Spring algorithm. Hence, it produces interactive frame rates for environments with
several thousand deforming primitives. One of the keys for this performance is the
Verlet [Verlet '67] algorithm for numerical integration. It only needs one force com-
putation per integration step which is the most expensive operation in this approach.
Figures 2.2 and 2.3 show the results of this work.



Figure 2.2: Deformation of a falling cube [Teschner et al. ’04]

o

Figure 2.3: Sequence of a plastically deformed cube. [Teschner et al. ’04]

Due to the versatility and effectiveness of this approach it qualifies for a wide range
of applications. The authors currently work on integrating their approach in surgery
simulation such as hysteroscopy simulation and simulation of stent placement.

Mass Spring Models are among the most commonly used techniques for soft tissue
modeling. Even though they suffer from some minor drawbacks their speed combined
with the capability to model physical attributes of material make them a good choice
for soft tissue simulation.

Another commonly used approach called Finite Element Method is presented in the
next section.

2.4 Finite Element Method

The Finite Element Method is a very wide spread approach to volume deformation in
all fields of application. It is a physically-based method which is capable of producing
very realistic results.

In the linear elastic model the Finite Element Method assumes small deformation
steps which is true for stiff objects such as metal. For soft tissues this assumption does
not hold since large deformation steps are possible. However, the major drawback



of the Finite Element Method (FEM) is its high computational cost which does not
allow interactive frame rates the nowadays hardware performance. In general, using
fewer nodes increases the computational speed but decreases the accuracy of the
results. A different approach is presented by ). Zhu who applies FEM to simulate
the macroscopic dynamics of muscle [Zhu '98] emphasizing on a multi resolution
hierarchy on the grid to accelerate the computational speed. F. Ganowvelli et al.
address another drawback of the Finite Element Method:

"However, the use of FEM requires a preprocessing phase strongly depend-
ing on the topology of the object, hence preventing the possibility to cut
the object.” [Ganovelli et al. ’00]

Nienhuys and A. F. van der Strappen also address the problem of cutting using
conjugate gradients [Nienhuys, Strappen '96]. In [Bro-Nielsen, Cotin '01] M. Bro—
Nielsen and S. Cotin introduce three ways to speed up FEM with their algorithm
(see figure 2.4). They exploit the sparse structure of the force vector, explicitly invert
the system matrix and use condensation which compresses the system matrix and
results in a system with the complexity of a surface model but the behavior of a
volumetric model.

The Finite Element Method is often used because it is capable of modeling complex
physical properties of different materials and therefore, able to produce realistic
results. These come at a very high performance cost. Hence, this method is governed
by the tradeoff between performance and realism even more than others. In contrast
to physically-based methods the next sections presents Radial Basis Functions, a
geometrically-based technique.

2.5 Radial Basis Functions

Radial basis functions are a geometrically-based method used for volume deforma-
tion. They are applied in many fields such as 2D and 3D computer animation,
medical applications as well as reconstruction of 3D scattered data. Basically the
approach uses radial functions as an interpolation function between a set of con-
trol points. The class of radial functions has the characteristic that their response
increases/decreases monotonically with the distance from a center point.

N. Kojekine et al. divide radial basis functions into three classes. The first one,
called "native methods” [Savchenko, Schmitt '01] is used for small data sets and is
restricted to small problems. Its high computational cost makes it unfeasible for real-
time animation. The second class of radial basis functions allows modeling of large
data sets since it consists of fast methods. The third class are the so called CSRBF's
(Compactly Supported Radial Basis Functions) described in [Wendland ’95].

N. Kojekine et al. improve CSRBF to models for surface deformations by optimizing
the algorithms for speed as well as memory consumption [Kojekine et al. '02]. A
sample animation is presented in figure 2.5.



An approach using radial basis functions for medical imaging is presented in
[Carr et al. '97] by J. C. Carr et al.. They use Radial Basis Functions (RBFSs) to vi-
sualize human skull from depth maps obtained by X-ray or CT data even over defect
areas. They speed up the algorithm by making assumptions about the geometric
constraints of the nodes of interpolation.

P. Reuter et al. use point based CSRBF approach. The surface is modeled through a
set of surface points which are rendered directly without the need for the creation of a
polygonal mesh [Reuter et al. ’03]. Their approach also allows direct user interaction
through manipulating the surface points.

Another geometrically based approach, the so called Free Form Deformation, is pre-
sented in the next section.

2.6 Free Form Deformation

Free Form Deformation (FFD) was first introduced by T. Sederberg and S. Parry
[Sederberg, Parry ’86] and is a fast tool for representing and modeling flexible ob-
jects. It is originally a graphically-base method but recent work focuses on the
integration of physically based techniques, for example [Hirota et al. '99].

G. Hirota et al. describe a physically-based extension for Free Form Deformation.
The governing physical law of their approach is the conservation of mass. In other
words, the algorithm they developed is volume preserving. This allows more intuitive
modeling and enables designers to easily keep the desired proportionality of objects
with respect to their volume in a complex design with multiple objects.

Since Free Form Deformation is a graphically-based technique the shape of an object
is defined by control points. Intuitive deformation through direct interaction with
the model is not possible. P. Borell and D. Bechmann [Borell, Bechmann '91] and
W. S. Hsu et al. [Hsu et al. '92] address his problem. They both present models for
direct interaction and manipulation of the model which makes the user interface more
intuitive. Both methods calculate the necessary adjustment of the control points for
a given set of input points by means of least-square formulation.

Free Form Deformations are also applied in surgery simulation. C. Basdogan et al.
use a FFD approach to model local deformations for laparoscopic surgery simulation.
The authors decided to use FFD because of its high speed which enables them to
create interactive frame rates [Basdogan et al. '98].

Another example for surgery simulation based on FFD is presented by G. Sela et al..
They introduce an algorithm for real-time incision simulation for meshed surfaces
and volumetric models which supports polynomial as well as spline based models. A
new type of FFDs called DFFDs which support discontinuities is used to calculate
the immediate geometry change due to cuts and the real-time response of the local
tissue due to tension and internal forces [Sela et al. ’04].



Free Form Deformations present an efficient way for deformation. With the intro-
duction of physically-based concepts and direct object manipulation FFDs are well
suited for surgery simulation. The next section presents another technique, called
3D ChainMail, which is geometrically-based with extensions to model physical prop-
erties of an object.

2.7 3D ChainMail

A promising approach to soft tissue deformation called 3D ChainMail is presented
by S. F. F. Gibson [Gibson '97]. The method was originally created for the de-
formation of volumetric objects as needed in surgical simulation for example. It
is geometrically-based but it is capable of simulating material properties to some
extent. The algorithm is extended to model the differences between types of tis-
sue and their interaction in [Schill et al. *98]. The underlying data structure can be
compared to a chain mail in the 2D case extended by a third dimension in the 3D
case. It is the key to the entire algorithm. (compare figure 2.6). The basic idea
of the algorithm works as follows. The elements of an object are linked together
like elements of a chain mail. If one element is moved there is a chance that it will
also make its neighbor elements move since they are connected like a chain. If the
moved element stays within the boundaries of the neighbors, the neighbors do not
have to be moved. If the moved element violates the boundaries of its neighbors, the
neighbors have to be moved to satisfy the boundary constraints again. If a neighbor
is moved, then its its neighbors are moved too if necessary. Like this, the movement
of one element is locally propagated through the object. A sample deformation of a
two dimensional object is shown in figure 2.7.

The 3D ChainMail algorithm consists of two steps to calculate the deformation that
occurs when an element is moved. The first step calculates the movement of the
neighbor elements of the moved element. If any neighbor element has been moved,
the movement of their neighbors is calculated too and so forth. In the second step,
a relaxation step, the object is relaxed by locally adjusting the elements until the
object reaches a valid state of minimum energy.

The main advantage of the 3D ChainMail algorithm is its performance. S. F. F.
Gibson has shown that each element has to be processed at most once. This allows
the algorithm to work on a large data set and still produce interactive response
times. A topology change can easily be done by linking or unlinking elements hence,
it supports actions like cutting for example an important feature required for surgery
simulation.

However, the proposed algorithm has some major drawbacks. First of all, it is
restricted to the use of rectilinear grids and second it only works on homogeneous
data. Two papers have been published which introduce methods to overcome these
restrictions.



The restriction to rectilinear grids is addressed by Y. Li and K. Brodlie [Y. Li '03]
who introduce a Gerneralised ChainMail algorithm. This approach allows any num-
ber of neighbors for an element and does not make assumptions about the topology
of the neighbors. The original 3D ChainMail assumed at most six neighbors and
made assumptions about their respective position. The six designed positions are
left, right, top, bottom, front, back. The restriction of rectilinear grids is overcome
by using relative rather than absolute values for the boundary constraints.

”Note the significant difference from the original ChainMail algorithm, in
that the softness and shearing parameters are expressed relative to the
length of the original link between A and B, rather than as absolute dis-
tance values.” [Y. Li ’03]

M. A. Schill et al. introduce an algorithm to enable the modeling of inhomogeneous
data [Schill et al. ’98]. The basic idea is to change the chain boundaries of the
elements. The movement is governed by the shape of the boundary assigned to a
chain mail element. Different types of tissue are modeled with different shapes of
chain regions. The problem that occurs with the introduction of inhomogeneous
chain regions is that it can not be proven that each element only has to be processed
once. Hence, the speed advantage of this algorithm is lost. M. A. Schill et al. solved
this problem by the use of sorted lists during the neighbor movement calculation.
This increases the computational cost but the algorithm is still able to produce
interactive frame rates.

The 3D ChainMail algorithm is a very fast and capable method for soft tissue mod-
eling. It can be compared to the Mass Spring Model and allows cutting without
further improvements. The next section classifies the different approaches by their
underlying data structure.



Figure 2.4: Simulation of a deformation using Finite Elements and Condensation
[Bro-Nielsen, Cotin ’01]
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Figure 2.6: 2D ChainMail structure [Gibson ’97]

Figure 2.7: 2D ChainMail deformation example [Gibson '97]



2.8 Comparison and Classification by Data Structure

To outline the main difference between these deformation modeling approaches and
our approach we introduce a third classification of the algorithms based on the data
structure they use for modeling the object.

Generally, three underlying types of data structures can be identified:

e Meshes: The object is modeled through a surface or volumetric mesh. Typically,
the nodes of the mesh represent mass points and store additional information
such as color. Commonly used surface meshes are triangular meshes. Tetrahe-
dral meshes are their volumetric dimensional counterpart.

See: [Teschner et al. '04], [Bro-Nielsen, Cotin '01], [Terzopoulos, Waters '90]

e Control Points: The shape of the object is indirectly defined by a set of control
points. An interpolation function is applied to render the surface depending
on the interpolation parameters, the position and the properties of the control
points.

See: [Sederberg, Parry '86], [Kojekine et al. '02]

e Particles: An object is modeled by a large amount of small particles. The
relationship and movement and movement of the particles is usually governed
by a set of constraints.

See: [Kithnapfel et al. ’00], [Reuter et al. 03], [Eberhardt et al. '00]

All algorithms described in this chapter use these data structures to model the shape
of an object. However, the key concept in our approach is to directly model the vol-
ume data without extracting object and topology information. Despite, we propose
an algorithm to directly model and manipulate volume data.

In contrast to the presented approaches, our approach directly models the volume
data on the base of a Constrained Particle System. It exploits the structure of the
volume data set. A volume data set consists of density values which are arranged in
a rectilinear grid. We use a particle system can to model these density values. In
our approach each particle represents one density value. Additionally, neighborhood
and movement constraints are introduced to govern the particles’ movement.

2.9 Conclusion

This chapter presented a vast variety of methods and algorithms for soft tissue de-
formation, both physically and geometrically based. Each of these methods has its
advantages and disadvantages, since every solution is tailored to a specific problem.

Requirements

There are two key requirements for this work which influence the choice of the algo-
rithm applied. The first and most important feature is interactivity. The algorithm



has to allow interactive frame rates and direct user interaction. The second restric-
tion arises from the work of A. Neubauer [Neubauer et al. ’04]. His algorithm allows
the user to interactively change the threshold to adjust the rendered iso surface.
This feature must be preserved which makes every mesh based approach unfeasible
due to the high computational cost of the mesh generation. Instead we propose an
algorithm that directly models the volume data.

Mesh—Based Approaches

The two criteria described above instantly rule out Mesh based approaches as well
as highly realistic physically based approaches. These algorithms come with a high
computational cost. The use of meshes is not flexible enough because the topology
of the object may change very quickly.

Geometrically-Based Approaches

Although there are direct user interaction extensions to the geometrical algorithms
they do not satisfy the requirements either. These algorithms, such as the Free Form
Deformation and the Radial Basis Functions, are based on control points. Hence,
the control points need to be generated from the iso surface. This presents a problem
because the control points need to be updated during each threshold change. Such
a control point update requires a surface extraction step. Additionally, although the
main focus of this work is not physical correctness the algorithm should be physically
plausible to a certain degree.

Particle Systems

Although a particle system where the particles are connected through dampened
springs is possible, the vast majority of the wide spread Mass Spring Model uses
meshes as data structure which makes it unfeasible for this work.

Finally, constrained particle systems meet the two criteria. The do not involve meshes
and they are fast enough for interactivity. A model of Constrained Particle Systems
described in this chapter is the ChainMail algorithm. This algorithm satisfies the
requirements for direct user interaction, speed and flexibility. It was originally de-
signed to model deformation of volumetric objects. However, we use it to directly
model and deform volume data instead.

The Divod ChainMail algorithm including the necessary adjustments to the Chain-
Mail algorithm is presented in the next chapter.






Chapter 3

The Divod ChainMazil algorithm

3.1 Overview

Basically, the Direct Volume Deformation ChainMail algorithm (Divod ChainMail al-
gorithm) for local direct volume deformation consists of the three parts deformation,
mapping and memory management. The first part calculates the deformation of the
ChainMail object. The second part is responsible for mapping the original volume
data to the ChainMail object and mapping the deformed ChainMail object back to
the volume data. The third part handles the loading of the necessary portions of the
ChainMail object into memory.

The calculation of the deformation is based on the 3D ChainMail algorithm first
introduced by S. F. F. Gibson [Gibson '97] and its enhancement to inhomogeneous
data presented by M. A. Schill [Schill et al. '98]. The two algorithms are described
in section 3.2 and 3.3. The Generalised ChainMail algorithm [Y. Li 03] was not
used for our approach since the modeled voxels lie in a rectilinear grid. Therefore,
an extension to a non rectilinear grid as proposed by the Generalised ChainMail
algorithm is not necessary.

The shortcomings of these approaches in respect to A. Neubauer’s work are laid out
in section 3.4 followed by a presentation of our solutions to these problems in section
3.5.

Pseudo—code listings of our algorithm are presented in the next section. A detailed
description of the Divod ChainMail algorithm and the adjustments made is given in
section 3.6.

The mapping algorithm described in 3.6.3 uses barycentric coordinates to calculate
the new voxel values of the volume. A voxel is a single volume element which
represents the density information at the given volume position.

The memory management outlined in section 3.6.4 exploits the fact that the de-
formation propagates locally and outwards through the object. The entire volume
is subdivided into a macro grid of cubes which are loaded on demand to minimize
memory usage.
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Finally, section 3.7 rounds off the chapter with a conclusion and an outlook to further
work.

3.2 Original Algorithm [Gibson ’97]

The 3D ChainMail algorithm was originally designed as a fast algorithm for de-
forming volumetric objects. It is also capable of modeling a wide range of material
properties and anisotropic materials. These are materials which have different prop-
erties along different axes. The approach is based on techniques used in volume
graphics, physically-based graphics and soft tissue modeling with Finite Element
Methods.

Data Structure

The data structure of the algorithm called ChainMail object consists of elements
which represent the volume data. Each element may hold various properties such as
color and transparency. In our case the elements only store density values. Addition-
ally, each element holds information about the deformation and elasticity parameters.
These parameters are the same for every element of a ChainMail object in the original
ChainMail algorithm. An element also stores its left, right, top, bottom, front and
back neighbors and its last position. This is necessary to quickly revert a movement
that resulted in an invalid object state. The algorithm also allows cutting of the
object by simply unlinking elements.

The processing step of the ChainMail algorithm requires the use of six unordered
candidate lists which are further outlined in the description of the algorithm. A
moved elements list is used to track the moved elements.

Deformation Parameters

Two neighboring elements are related to each other by their deformation parameters
called chain region constraints. In the 2D case an element must lie within a relative
horizontal distance between ming, and mazg, from its left and right neighbor and
within the relative vertical distance between ming, and max4, from its top and bot-
tom neighbor. These distance constraints govern the stretch and contraction of the
object. Additionally, the element must lie within the relative horizontal distance be-
tween £sheary, from its top and bottom neighbors and the relative vertical distance
between +sheargq, from its left and right neighbors. These constraints govern the
shearing of the object. In the homogeneous case all deformation constraints have to
be equal for all elements of a ChainMail object. Please refer to figure 3.1 for a 2D
and figure 3.2 for a 3D example. Figure 3.3 shows how chain regions work together
to define the valid regions.
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Figure 3.1: In this figure, the valid region for the element is defined by its left and bottom
neighbor. The left neighbor’s constraints are shown in red, the bottom neighbor’s constraints
are shown in blue.
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Figure 3.2: This figure shows a sample chain region for the right neighbor. In this case the three
dimensional the chain region is defined by a cube with side lengths 2 * shearg,, 2 * shearq, and
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Figure 3.3: This figure shows the chain regions for two elements. Note that all horizontal regions
have the same shape and size, as well as all vertical chain regions have the same shape and size.
The valid region for a neighbor is the intersection between the corresponding horizontal and
vertical chain regions.

In the 3D case the additional parameters ming,, maxy, and shearg, are introduced
to govern the movement along the third axis.

Algorithm

Each neighbor element has to satisfy the chain region constraints otherwise the
ChainMail object is not in a valid state and the violating elements are moved until
they satisfy the region constraints.

The behavior of the elements in the one dimensional case is like the behavior of a
chain. An example where the object’s elements model the elements of a chain is
given in figure 3.4.

Extending this analogy to the second dimension the elements behave as chain el-
ements of a chain mail. A single element may be moved a certain path without
interfering with the neighbors, but if it is moved too far the neighbor chain mail
elements are dragged and moved too.

Hence, if one ChainMail element is moved because of a collision or interaction and
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Figure 3.4: A sample deformation of a one dimensional chain. The initial movement of the right
most element forces the left neighbors to be dragged in order to satisfy the region constraints.
Note, that the drag necessary in the third step is smaller than in the second step. In the fourth
step no drag is necessary and the deformation terminates.

the deformation constraints are violated this also moves the violating neighbor ele-
ments. The initially moved element is the so called sponsor of the neighbor element’s
movement. If the neighbor element is moved it becomes a potential sponsor for its
neighbor elements too. They also have to be moved if they do not satisfy the con-
straints after the violating element was moved and so forth. Through this mechanism
the deformation is propagated locally through the ChainMail object. With each ad-
justment the overall violation decreases until it is below the constraint limit.

Candidate Lists

The checking and tracking of the potentially violating chain elements is done using
unordered candidate lists. If an element is moved all its neighbors are assigned to
the respective candidate list. There are six lists for a three dimensional object: right,
left, front, back, top and bottom. The element is also added to the moved elements
list and stores its last position.

The candidate lists are processed one by one until no candidates remain or the system



enters an invalid state, e.g. collision with another object. In the latter case all moved
elements are set to their last position and the deformation is retried using a smaller
step size for the initial movement. The order of processing of the list is right, left,
top, bottom, front, back.

The processing of the right candidate lists begins with checking the violation con-
T
straints between the first element with the coordinates | y | in the list and its
z
Lieft
sponsoring element Yieft which is the left neighbor. In case of a constraint vio-
Zleft
lation the candidate element is moved a minimum distance to satisfy the constraint
using the following formulas:

if(x — Tiepr < Mingy), T = Tiepr + Mingy

else if(z — xjepr > maxyy), = Tiepr + Maxgy

to calculate the stretch and contraction and:

if(y — yYier < —sheargy),y = yiept — shearg,

else if(y — yiept > shearay),y = yieyt + sheargy

if(z — 2150 < —sheary,), z = 2yt — shearq;
else if(z — zjepr > shearq;), 2 = zje5 + shearq,
to calculate the shear.

In case the element was moved, its right, top, bottom, front and back neighbors are
added to the respective candidate lists. Afterwards, the candidate is removed from
the list and the next candidate of the list is processed until no candidates remain.
The processing of the other lists is similar except that for the left candidate list the
sponsoring element is the right neighbor for the top list it is the bottom neighbor
and so forth. For the top and bottom lists the right and left neighbors do not have
to be added to the respective lists. If a candidate of the top candidate list is moved
its top, front and back neighbors are added for example. For the front and back
list only the non sponsoring neighbor has to be added to the other lists. If a back
candidate is moved only its back neighbor is added to the candidate list for example.

Performance

S. F. F. Gibson identifies three reasons for the speed of the algorithm:

1. each element in the object is considered at most once for each defor-
mation



2. each element is compared to only one neighbor (its sponsoring neigh-
bor) to determine if and how it must be moved

3. the deformation is propagated outwards from the selected point and
the propagation is terminated as soon as possible

While 1 and 3 follow directly from the way the candidate lists are processed point 2
results from the following theorem

”In the 3D ChainMail algorithm, each element can be compared to a single
neighbor when the object has constant deformation limits throughout its
volume.” [Gibson '97]

The proof of this theorem can be found in [Gibson ’97] on page 5.

The ChainMail Algorithm can also model elastic relaxation of an object. It is done
similar to the deformation but instead of deformation parameters relaxation param-
eters are defined to check if an element meets the relaxation constraints with its
neighbors.

The methods for visualization of the object include the following:

e point cloud: visualizing all elements of the object
e surface points: showing only the surface elements

e surface mesh: showing a mesh extracted from the surface elements

S. F. F. Gibson presented a fast algorithm capable of modeling rigid, deformable,
elastic and plastic objects with hundreds of thousands of elements through simple
calculations on a large number of elements.

3.3 Enhanced ChainMail [Schill et al. ’98]

Problem of Original ChainMail Algorithm

Although, the original ChainMail algorithm does support anisotropic data it does
not allow inhomogeneous data. This means that all chain regions within a ChainMail
object have to be equal. This is a huge drawback because the modeled objects often
consist of different material with different properties. A human head for example
consists of softer tissue such as skin or muscle which deforms easily while it also
consists of harder tissue such as bone which does not deform. Hence, it is desirable
to define chain regions with different shapes for different types of tissue within a
single ChainMail object.

The problem that occurs when doing this is that the theorem the speed of the
ChainMail algorithm is based on demands constant deformation limits throughout
the ChainMail object. Hence, if this requirement is not satisfied there are two possible
outcomes. First, the elements have to be compared more than just once to satisfy



the deformation constraints which results in a heavy increase of computation time.
Or second, the elements are only processed once and thus inconsistencies, such as
holes, within the ChainMail object are created.

Sound Wave Approach

M. A. Schill et al. [Schill et al. '98] present an interesting approach to this problem.
They interpret the ChainMail algorithm as the travel of sound through the object.

In their interpretation of the algorithm, information related to the deformation is the
key concept. The initial move creates the initial information about the deformation.
This information is then propagated through the object by comparing two neighbors.
Upon adjusting neighbors to meet the deformation constraints the amount of infor-
mation is decreased. Hence, the information is propagated through the object until it
is fully consumed. This propagation of information is equated with the propagation
of sound in the Enhanced ChainMail algorithm.

The authors studied how sound is propagated through an inhomogeneous object
and applied this knowledge to the ChainMail algorithm: a sound wave travels faster
through stiffer material. Hence, the deformation information should travel faster
through stiffer material too. Stiffness is determined by the material properties be-
tween two neighbors in the Enhanced ChainMail algorithm and influences the order
in which elements are processed. The order of processing defines where and how fast
the information is propagated. This observation is used to make the speed of the
deformation information propagation dependent on the material properties.

Enhanced Algorithm

Instead of six unordered candidate lists which are processed in term on a first moved
first served basis they only use one ordered list. The criterion for ordering the
elements in the list is the degree of constraint violation. The bigger the violation
the earlier the element is processed to make sure that the information is propagated
appropriately. Hence, the element with the biggest violation is always processed first.
For two horizontal neighbor elements with the positions v; and vy the constraint
violation is calculated as follows:

amount of constraint violation = distance(v,v2) — max g,

The use of an ordered list increases the computational cost for inserting an element
depending on the implementation of the list used by O(n) to O(ld(n)) which is still
fast enough to produce interactive frame rates because all other benefits such as the
”each element processed at once most” rule are still intact.



3.4 Problems

The Enhanced ChainMail algorithm is a capable application for soft tissue deforma-
tion. It can model volumetric data from objects with anisotropic and inhomogeneous
material properties. However, this work can not be applied ”as is” to the current
problem of extending the STEPS system by adding support for deformations. The
problems are described in this section.

3.4.1 Visualization

Most of the problems are rooted in the fact, that the STEPS system directly visualizes
the volume using a ray casting algorithm [Neubauer ’01] which has to be reused.
The ray caster can not be used to directly render the ChainMail object. First of
all, the ray caster assumes that all voxels lie in a rectilinear three dimensional grid
with constant distances between them along each axis for performance reasons. If a
ChainMail object is deformed, the elements usually do not satisfy this assumption.

Another requirement is the fact that the volume data has to show the deformation
too. In the STEPS application a user has four views. One view shows the three
dimensional virtual reality and the other three views show a cutting plane of the
multiplanar reconstruction the so called section views. These section views have to
reflect the deformation too.

Hence, it is necessary to map the ChainMail object to the volume. First of all, this
is because the ray caster visualizes the volume. Hence, if the volume is deformed
the ray caster can be applied without further changes and shows the deformation in
the virtual view. The same applies for the section views which directly render the
volume data too.

3.4.2 Large Amount of Data

The second problem arises from the huge size of the data. A typical computer
tomography data set contains 512 x 512 x 64 voxels. This means that the complete
ChainMail object would consist of over 16 million elements.

Estimated Memory Usage

An estimate for the memory used shows the problem. An initialized element requires
224 bytes and a moved element requires 256 bytes because the memory to save the
last position is required. These values were acquired using a Java VM 1.4.2 on a
Windows XP platform. Java is used because STEPS is programmed in Java.

In Java there is no requirement for a sizeof() method such as in C and the mem-
ory an object requires may vary for different implementations of the Java Virtual
Machine. The only methods available are Runtime.totalMemory() which returns the



total memory available to the Virtual Machine Runtime.freeMemory() which returns
the free memory left in the Java Virtual machine and finally Runtime.maxMemory()
which returns the maximum memory the Java Virtual machine will attempt to use.

Determining the Size of an Element

Therefore, the size of the ChainMail element data structure was determined by cre-
ating a large number of elements and examining the memory usage before and after
the elements were created. To minimize the influence of overhead and objects that
were not collected by the garbage collector 150000 objects were created. The current
memory usage is given as:

usage = total M emory — freeMemory

The variable before stores the memory usage before the elements are created and
after stores the memory usage afterwards. Hence, the size for a single element is
given as size = (after — before)/150000.

Overall Memory Requirement Estimation

A typical volume contains 512 % 512 % 64 = 224 elements hence the memory used
to model the entire volume with a single ChainMail object is 22* x 256 = 23? bytes
(approximately 4 GB). The resources available are not sufficient for this amount of
memory required.

Not being able to load the entire ChainMasil object into memory is a general problem.
Because the ChainMail algorithm calculates local deformations it is sufficient to only
load the necessary parts. Therefore, it is necessary to implement a memory man-
agement in the current application which allow to hold only those parts in memory
which are required for the calculation.

3.4.3 Interaction

Interaction with the object is another problem. In the original algorithm, the user
selects an element and moves it to start the deformation. In our application the
user can penetrate the object’s surface with the endoscope at any point. He does
not have any knowledge about where the ChainMail elements are. Hence, it is very
unlikely that the user will precisely hit a single ChainMail element to initiate the
deformation as it is required by the ChainMail algorithm.

The endoscope is rather likely to penetrate between the ChainMail elements. There-
fore, it is necessary to introduce a new type of initiating the deformation.

The second reason why a different way for interaction is required arises from the fact
that the endoscope has a certain diameter. This means that the intersection occurs
in a circular area and not in a single point. To correctly model this case multiple
elements must be moved to initiate the deformation.



3.4.4 Data Structure — Z—Scale

The so called z—scale of the volume data presents another challenge because it causes
a distortion of the image along the z—axis. The z—scale is a measure for the distance
between two voxels along the z—axis. This distance is constant for a single data set
but varies between different data sets. The effect of the distortion of the deformation
is proportional to the z—scale. An example image that shows the effect for a z—scale
of 2.2 is shown is figure 3.5.

Figure 3.5: This picture was taken from a volume with a z-scale of 2.2. The shown deformation
appears approximately twice as big along the z—axis than along the x—axis.

To ease this effect the shape of the chain regions and the calculation of the movement
and dragging of the ChainMail elements are adjusted in regard of the z—scale.

3.4.5 Physical Plausibility

Additionally, to the shape of the deformation the global behavior should also be
physically plausible. It should not be possible to move bone tissue or to deform the
tissue by an unnaturally large amount. The shape of the deformation is governed by
the chain region constraints. However, the original algorithm does not offer a way
to model global constraints.



3.4.6 Relaxation

After the deformation step the original ChainMail algorithm allows a relaxation of
the object. However, it does not describe the relaxation algorithm nor does it define
circumstances or requirements for such a relaxation algorithm. The authors do point
out that the calculation of the relaxation is a very time consuming process and should
be calculated in a separate thread. This thread shall work during the idle time of the
processor because the performance of the deformation calculation would otherwise
be affected. Although, a relaxation of the tissue would make the simulation more
plausible and enhance the experience of the user this work does not implement a
relaxation for the following reason.

High Computational Cost

The benefit of the quality improvement for the visual effect gained by a relaxation
does not justify risking interactivity. The relaxation itself is a very time consuming
process. However, each relaxation step would also require the mapping of the relaxed
object to the volume because it is done in a separate thread. Hence, the effort of the
entire application would approximately double. Another thing to consider is that,
after the relaxation the eye-point of the endoscope must still be outside of the tissue.
Therefore, the relaxation algorithm would have to calculate iso values in the vicinity
of the eye point to check if the calculated relaxation meets this requirement. This
check would require the use of the ray caster because the iso surface is dependent
on the threshold value set and can only be performed at the end of the calculations.
Finally, an endoscope leaves an imprint on the deformed tissue. Hence, the relaxation
must not fully relax the object but leave an amount of deformation intact. For these
reasons, implementing the relaxation is a very complex task which is out of scope
for the present work.

3.4.7 Conclusion

Possible solutions and the solutions chosen to be implemented to the problems de-
scribed in this section,

e visualization: the required visualization method using a ray caster is currently
not supported and the three section views have to reflect the changes made by
the deformation.

e large amount of data: need for memory management.

e interaction: endoscope does not directly interact with ChainMail elements but
interacts with the rendered surface.

e z—scale: causes a distortion effect because the distance between the voxels along
the z—axis is different than their distance along the other two axes.

e physical plausibility: need for global constraints.



e relaxation: the computational cost are too high to implement relaxation in our
algorithm.

as well as a discussion regarding the pros and cons of the different approaches are
presented in the next section 3.5.

3.5 Solutions

3.5.1 Mapping
Why Mapping is Necessary

One way to avoid mapping the object to the volume as described in the latter section
would be to implement a new ray caster that works on non rectilinear grids. But for
performance reasons and memory requirements this approach is unfeasible and the
current first hit based ray caster of the STEPS system has to be used. Additionally,
the section views need to be updated to reflect the changes which requires mapping
the object to the volume. Hence, the original volume data needs to be updated.

Volume Based Mapping

We propose an algorithm to map the deformed ChainMail object directly to the
volume data instead of mapping an object or a surface extracted from the ChainMajil
object. It would be very time consuming to extract object or surface information form
the ChainMail object because the object’s elements represent the voxel values of the
volume and not the real object. Hence, the loaded elements cannot be interpreted
as a point cloud of the object and the boundaries of the object cannot be considered
to represent the surface.

The volume data used for this specific application supports voxel values between
—1000 and 3095. These values are also known as Hounsfield Units (HU). The
corresponding Hounsfield Scale assigns Hounsfield Units to different body tissues
[O.Ennemoser et al. '86]. This interval is internally mapped to the interval 0 —4095.

Reusability of STEPS Components

The mapping also addresses the section view problem because it updates the volume
data. Another benefit is that the currently implemented ray caster can be used
without further changes and the possibility for interactive threshold changes remains
intact. The ray caster has no knowledge of the mapping process because it directly
visualizes the volume data.

The mapping algorithm consists of two parts. The first part handles the mapping
from the volume to the object and the second part is responsible for mapping the
object to the volume.



Mapping the Volume to the Object

The volume data is stored in a rectilinear grid where the volume voxels are located
at the intersection points of the grid lines. In the ChainMail object each element rep-
resents a voxel of the volume. Additionally, the mapper only maps to not deformed
objects and the coordinates of the ChainMail elements and the volume data voxels
are the same for not deformed objects. Hence, it is sufficient to copy the voxel value
from the volume to the newly created ChainMail element with the same coordinates.

Mapping the Object to the Volume

Mapping a deformed object back to the volume presents a bigger challenge. The
quality of the visual effect of the deformation depends heavily on the performance of
the mapping algorithm. Another thing to consider is the requirement for interactiv-
ity. Thus, the mapping algorithm needs to be fast enough to meet this requirement.

First of all it is necessary to identify which voxels of the volume may have changed
due to the deformation and need to be recalculated. Which volume voxels are affected
is dependent on the algorithm used for the mapping.

First Approach — ROI based Mapping

The first approach we implemented to update the volume data was to define a region
of influence around the volume voxel positions. The region of influence has the shape
of a square or a cube in 2D and 3D respectively with a side length of 1. Please see
figure 3.6 for a sample 2D region of influence.

The middle of such a region of influence is the corresponding volume voxel position.
For example the region of interest for the voxel at (3/3) is given as (2.5/2.5), (3.5/2.5),
(2.5/3.5) and (3.5/3.5). All elements inside this region of interest are taken into
account for the recalculation while elements outside of this region are discarded.

Because the calculation of the new voxel value is dependent on the distance and the
value of the surrounding ChainMail elements each moved element may have changed
the value of a volume voxel. These affected volume voxels need to be recalculated.
Affected voxels are those voxels that are part of the volume grid element that encloses
the last position or the current position of a moved element.

A volume grid element in the 2D case consist of 4 voxels that form a square of size
1 (for example (2/2), (2/3), (3/2) and (3/3)). Please see figure 3.7 for a sample 2D
grid element.

In the 3D a grid element is defined as 8 volume voxels building a cube with a
volume size of 1. It is necessary to recalculate the voxels for both positions because
the movement away from the old position causes a change in the old neighborhood
whereas the movement to the new position also causes change. For example, in the
2D case if an element is moved from (2.3/3.2) to (2.4/3.7) the enclosing grid element



Figure 3.6: A sample region of influence in 2D. The region is a square with the same size as
a a grid element. The center of the region is the position of the corresponding volume voxel
depicted by the red dot.

for current and last position is the same. Hence, the volume voxels at (2/3), (2/4),
(3/3) and (3/4) need to be updated. If the element was moved to (2.4/4.1) then the
voxels at (3/5) and (2/5) also need to be recalculated.

The calculation of the new volume values for the affected voxels starts with collecting
all object elements that lie inside the region of interest. For each element in the col-
lection the contributing element value is calculated. This is done by first calculating
the distance of the current element position vy, to the volume voxel position volp,,
along each axis.

d= |UOlpos - Ucurr|

The contributing element value contrib is then given as

contrib = elementygiye * (1 — dy) * (1 — dy) * (1 — dy)

This ensures that object elements which lie exactly on a volume voxel position con-
tribute the complete value because the distance vector is the zero vector. Addi-
tionally, the value contributed decreases with the distance of a voxel. Finally, for n
contributing elements the respective contributed values are summed up to calculate
the new volume voxel value.

n
valueney = E contrib;
=1

This approach is fast but inflexible and likely to create artefacts. As an example
that leads to an artefact imagine a chain region which allows a maximum distance



Figure 3.7: The green region shows a single grid element in the 2D case.

along the x—axis of 1.2. The object is not deformed hence, all object elements have
the same coordinates as the volume voxels. If an element at position pos is initially
moved by the move vector (0.6, 0, 0) its neighbor will be moved by (0.4, 0, 0) to satisfy
the chain region constraint along the x—axis. This leads to a hole at the position pos
because there are no contributing elements left in the region of influence. This case
is depicted in figure 3.8.

The new voxel value results as 0 which is not correct. Additionally, the resulting
values may exceed the valid interval defined by the Hounsfield Scale.

Tri—linear Interpolation based Mapping

Tri-linear interpolation assumes that the eight enclosing elements for a position form
a parallelepiped. A parallelepiped consists of six pairwise congruent and parallel sur-
faces. Unfortunately, this assumption does not hold for deformed objects. Therefore,
we could not use tri-linear interpolation to calculate the new density values.

Hence, we developed another method for mapping the ChainMail object to the volume
using barycentric coordinates.

Barycentric Coordinates based Mapping

Because of the problems with the region of influence based approach we introduced
a new way for calculating the voxel values using barycentric coordinates. The basic
flow of the algorithm is to find the eight elements which form a cube that encloses
the volume position to be updated. This cube is then split to tetrahedrons. Then the
barycentric coordinates for the volume voxel position in the enclosing tetrahedron
are calculated and used to generate the new density value for the voxel.



Figure 3.8: After the element is moved and its neighbor is dragged, the region of influence
remains empty.

Because we use barycentric coordinates the newly calculated values stay within the
valid interval and artefacts are avoided.

The details of this approach are presented as part of the entire algorithm in section
3.6.3.

Deformation Near Volume Boundaries

The mapping is also capable of extending the ChainMasil object over the boundaries
of the volume data set to support deformations near the volume boundaries.

3.5.2 Memory Management
Idea

The desired memory management is supported by our approach because the deforma-
tion is locally propagated through the object. Therefore, it is possible to start with
loading the part of the volume into memory which holds the elements involved for
the initial movement and then as the deformation propagates load the missing parts
on demand. The existing object is extended by the loaded parts through connecting
them to it. Also for subsequent deformations the missing parts of the volume at the
boundaries of the ChainMail object are loaded and connected. Upon the initiation
of a new deformation outside the currently loaded ChainMail object a new object is
created and the old object is removed from memory.



Drawbacks of Clearing the Old Object

This approach offers one major drawback because it is possible to elude the movement
constraint described in section 3.5.5. The purpose of this constraint is to avoid
unnaturally large deformations. When the object is cleared, the deformation stays
intact but the information about the movement of the elements is lost. Hence, if
the user starts a new deformation at the already deformed tissue a new ChainMasl
object is created where the movement information of the volume is out of sync with
the movement information of the object. This allows the user to deform the volume
ignoring the movement constraint.

Possible Solutions to the Drawbacks

Several strategies can be applied to avoid this. The first one is not to clear ChainMail
objects. The problem that occurs from this approach is that at some point two or
more ChainMail objects need to be merged. To avoid merging, the object can also
be extended step by step until the new point is loaded but this leads to huge objects
and requires a lot of computation time. Another way to avoid this would be to
store the movement information before clearing the object. This can be equated to
dumping the object which is also very time consuming. The problem of merging
however cannot be avoided by this approach because the dumped objects may also
overlap.

A completely different approach would be to revert the deformation when clearing an
object. This means destroying the movement information in the volume too. Hence,
the movement information in the volume and a newly created ChainMail object are
in sync. However, the deformation has a plastic component. The endoscope leaves
an imprint in the deformed tissue. Hence, a complete reversion of the volume would
not be physically plausible. For performance reasons none of these approaches were
applied in the current implementation.

3.5.3 Interaction — Multi Move

The interaction between the endoscope and the surface is vital for the realism of the
system. Because the endoscope penetrates at a random surface position and does
not interact directly with the ChainMail elements a certain ChainMail element needs
to be selected to initiate the movement. At first, the nearest element was selected
for the movement but his procedure does not produce physical plausible results.

Idea

To model the endoscope’s diameter and maximize the probability that the eye point
lies outside of the tissue after the deformation the eight elements which enclose the
calculated intersection point are initially moved. The part of the iso surface enclosed



Figure 3.9: The eye point of the endoscope lies inside the tissue

Figure 3.10: The enclosing elements are moved

by the eight elements is approximately moved the same way as the elements. It is
not moved exactly the same way because the shape of the iso surface also depends
on the neighbors of the eight moved elements. However, using this procedure the
endoscope is likely to lie outside the tissue after the deformation (see figures 3.9 and
3.10).

The direction of the endoscope defines the direction of the movement. The length of
the movement is given by the distance between the eye—point of the endoscope and
the intersection point. It is scaled by a configurable scale factor to adjust the depth
and size of the deformations.

First Approach — Moving each Voxel Separately

However, in the original ChainMail algorithm a deformation is initiated by moving a
single element. In contrast, our work proposes to initiate the deformation by moving
eight elements at once.



Hence, a first approach to the multimove problem would be to initiate eight deforma-
tions, one for each element. This approach requires a lot of computation time because
eight separate deformations need to be calculated for each collision. Additionally,
it is very likely that the first moved element causes its neighbors to be dragged by
a certain length lengthg.q.y. Therefore, the length of the original movement vec-
tor lengthpopement must be adjusted. If it is be applied to the seven subsequently
moved elements without adjustment their movement would be incorrect given as:
lengthmovement + lengthdrag-

Moving All Initial Elements at Once

Instead, it is easier to move all eight elements at once and add the neighbors of
each initially moved element which are not initially moved elements themselves to
the candidate list. Because all initial elements are moved the same distance and
direction they do not have to be added to the candidate list since their relative
position does not change and hence there chain region constraints are not violated.

Processing Elements Multiple Times

From here, the algorithm has to be adjusted to avoid that an elements gets processed
more than once. If the ChainMail algorithm is applied "as is” then the elements
would get processed multiple times because there are eight elements that start the
movement. For example assume the two elements vi,, and vyot0m Where vy, is the
top neighbor of vpetton, are moved to initiate the deformation. Following the 2D
algorithm their neighbors are added to the candidate lists. Examining the situation
for the right neighbors where 7po10m is the right neighbor of vyoom and i, is
the right neighbor of vy, already shows the problem. 74410 and 74, were both
added to the candidates list after the initial movement. If r;,, gets processed and
is moved to satisfy the constraints its top, right and bottom neighbors are added to
the candidates list. But since rpo0m, Which is the bottom neighbor of 7y, is already
entered in the candidates list it gets processed more than once. Then, if rpot0m also
needs to be moved r4,, will be reentered in the list of candidates. Please see figure
3.11.

Hence, the speed benefit of the ChainMail algorithin is lost.

Adjusting the Add to Candidate List Rule

To avoid the multiple processing of elements the way the neighbors are added to the
candidates list is changed. For the given example the problem occurs if r,, adds
Tpottom t0 the candidates list and vice versa. If this is avoided the problem does not
occur in the given example. However, this has to assured for all right neighbors. The
right neighbor of r;,, may not add its bottom neighbor and so forth.
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Figure 3.11: This figure shows the case where the elements 7o, and 7pottom get added to the
candidate list twice. They are added by the initial element and they add each other to the list
too if dragged.

This is done by assigning three ignore direction flags, one for each direction, to each
element. This flag stores the direction in which no neighbors may be added. The
information is initially created by the initially moved elements. The directions to
ignore are equal to the directions in which the other initially moved neighbors lie.
To propagate the ignore directions through the object during the dragging step the
sponsor passes its ignore direction flags to its candidates. If a candidate becomes a
sponsor, then it also passes the flags to its candidates and so forth.

Please refer to figure 3.12.

Possible Inconsistencies

This procedure equals cutting the object (in the example the object was cut in the
along the horizontal axis) and calculating the deformation in the two parts indepen-
dently. This presents another problem because in the inhomogeneous case the chain
region constraints may be violated along the cut. In the given example 7p4¢10,m and
Ttop are never checked against each other. In the homogeneous case all chain regions
are equal since the initially moved elements are all moved the same way the dragged
elements are dragged the same distance too and therefore satisfy the constraints.
This observation does not apply to the inhomogeneous case because the distance
the dragged elements are moved varies depending on the shape of the chain region.
Hence, a violation of the chain region constraints may occur. For example, if the
direction of the deformation is straight left and the material on the top side of the
cut is softer than the material on the bottom side of the cut the elements on the



Figure 3.12: This figure shows the effect of the adjustment to the add candidate rule. The object
is cut along the horizontal axis depicted by the line an no neighbors along this line are added to
the candidate list. The deformation propagates separately through the two parts of the object.
The green elements are the initially moved elements which do not add their initially moved
neighbors either. The arrows show the directions in which neighbors are added to the candidate
list.

bottom side may be moved further than the elements on the top side. This may lead
to a shear constraint violation of the elements along the cut line (see figure 3.13).

However, the shape of the chain regions that are used in this application do not
differ by a huge amount. Thus, it is unlikely that a chain region constraint violation
occurs. Most importantly, no visual artefacts were produced from the constraint
violation problem.

Misplaced Deformation

Another problem with this approach is that the center of the deformation does not
appear to be the point of impact.

This effect occurs if the point of impact is near a voxel or near a side of the initially
moved cube. The center of the moved cube appears as the center of the movement.
Hence, if the point of impact is far away the impression of a misplaced deformation
is created. Please see figure 3.14 for a 2D example.



o L > @
o _: o —®
o o—o =
® e =
o o o
® e | e

Figure 3.13: The elements along the top row are dragged further than the elements along the
bottom row. This results in a shear constraint violation marked by the red region.

Proposed Solution to the Misplacement Effect

To soothe this effect, it was proposed to move each of the eight cube elements individ-
ually depending on their distance from the point of impact. At first this seems to be
a promising approach. However, the problems of moving the elements appropriately
in accordance with the chain mail constraints becomes a complex task. It requires
to check all constraints for all eight elements in regard to the point of impact. The
problem becomes more complex for already deformed elements. Additionally, due to
the chain region constraints, movement of the individual elements may not differ by a
great amount. For example, a chain region offset of 0.2 allows a maximum difference
of 0.2 between the movement of each element for an initialized object which is not
enough to counter the misplacement effect.

Finally, the effect shows very well on even surfaces but not on uneven surfaces as they
are modeled in the STEPS application. Hence, the approach of moving the elements
depending on their relative position to the point of impact was disregarded.

3.5.4 Z—Scale Adjustment of Region Constraints
Motivation

A distortion is caused by the fact that the voxel distance along the z—axis is different
than along the other two axes. This ratio is called z—scale and differs for various
volume data sets. All movements propagated along the z—axis appear scaled by
the z—scale factor. This distorts the visualization of the deformation which looks
stretched along the z-axis (see figure 3.5).



Figure 3.14: The endoscope penetrates near a surface of the enclosing cube. However, the
deformation looks exactly as figure 3.10 giving the impression that the deformation is misplaced.

Ratio of Information Propagated

The problem occurs because the ratio of information propagated along the z—axis
and the other two axes is zscale : 1 because the voxels are lying further apart along
the z—scale. If information is passed to a neighbor along the x-axis the distance the
information travels equates one distance unit whereas the distance the information
travels equates z—scale times distant unit along the z—axis.

Idea

To solve the problem we used the analogy of a sound wave traveling through the
material introduced by M. A. Schill et al..

In the case of the z—scale the information propagated along the z—axis is exaggerated
by the z—scale factor. Hence, the amount of information propagated along the z—
axis has to be divided by the z-scale. There are two channels through which the
information is passed along the z—axis. The first channel we called direct channel
propagates the movement information handled by the min and max constraints
of the chain region. The second channel we called shear channel propagates the
movement information derived from the shear constraints. In this case it is the
shear along the x—axis and along the y-axis.

Adjusting the Propagation along the Direct Channel

Hence, to soothe the effect two adjustments are applied. In the first adjustment we
scale the move vector along the z—axis by 1/zscale. The valid ratio of information
propagated along the direct channel of the z—axis and the other two axes is restored.



Adjusting the Propagation along the Shear Channel

To ease the effect along the shear channel we implemented a second adjustment
affecting the chain regions. The deformation information is also propagated along
in the z—axis through the shear constraints if the sponsoring element is a neighbor
along the z—axis and the shear constraints along the x—axis or y—axis are violated.
This results in a drag of a neighbor along the z—axis and thus, to a propagation of
the information along the z—axis. Similar to the direct channel the information has
to be divided by the z—scale factor. We do this by extending the shear constraints
for the x shear and the y shear regions in z-direction. Our shears used for checking
the shear constraints along the z—axis are hence:

zshear, = zscale x shear,

and
zshear, = zscale x shear,

By adapting the shears in this manner neighbors are dragged later and a smaller
distance along the z—axis. This means that the information is consumed faster by
the factor z—scale along the z—axis. Therefore, the ratio of information propagated
along the shear channels is restored.

Adapting the shear constraints of the chain regions and the z component of the initial
move vector to the z—scale restores the original ratio of the information propagated
along different axes and soothes the visual distorting effect of the z—scale factor.

3.5.5 Global Constraints

To ensure physically plausible results we introduce two global constraints.

Movement Constraint

The movement constraint avoids an unnaturally big deformation of the tissue. In the
real world the movement of the tissue is restricted. It is not possible to replace parts
of tissue by a large distance. This constraint is modeled by restricting the allowed
maximum distance an element may move from its original position. A violation oc-
curs if the length of the initial movement is bigger than the movement constraint
or a subsequent deformation causes an element to be moved a bigger distance than
allowed. Our approach makes the size of the movement constraint mcejement for a
single element e dependent on the density value of the element €gey,4¢, and the config-
urable global movement constraint mcgopq- Bigger density values are interpreted as
stiffer material with a more rigid movement constraint. We calculated the movement
constraint mc follows:

MCelement = (1 - (edensity/4096)2) * M Cylobal



Bone Constraint

The bone constraint is introduced in the form of a bone threshold. Because bone
tissue does not deform it is necessary to identify bone elements and stop the defor-
mation process if such a bone element is about to be moved. If an element is tried
to be moved which has a value that is bigger than the bone threshold the constraint
is violated. The Hounsfield Scale associates values around 100HU with spongy bone
tissue and the hard bone is associated with values around 1000HU.

Violation Handling

If one of these constraints is violated the calculation of the deformation is stalled
and the movement is reverted. Then the deformation is retried with a smaller initial
step size.

A detailed description of our adapted version of the ChainMail algorithm supporting
multimove and z-scale as well as the mapping and memory management algorithins
are presented in the next section.

3.6 Algorithm Outline

3.6.1 Component Overview

As described earlier the Divod ChainMail algorithm consists of three components:

e Deformation: calculating the deformation
e Mapping: mapping the ChainMail object from and to the volume

e Memory Management: managing the memory loading required parts and re-
leasing unnecessary parts

The mapping and the memory management are tightly coupled together. Whenever
a portion of the volume needs to be added to the ChainMail object both components
are involved. First, a new piece of the ChainMail object is created to hold the required
part of the volume. In the second step the mapper maps the volume to the newly
created piece. Finally, it is integrated into the existing object. The request for such
a load operation is issued by the component calculating the deformation. It is issued
if the calculation requires an element that is currently not loaded (for example if an
element that is not loaded needs to be moved).

Hence, the interaction of the three components looks as follows (see figure 3.15).

A detailed description of the individual components is presented in the sections 3.6.2,
3.6.3 and 3.6.4.
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Figure 3.15: Interaction of the individual components

3.6.2 Deformation
Basic Flow

The next pseudo code listing presented in figure 3.16 shows the basic flow of the
deformation algorithm.

adjustToZScale(movement.vector);

// check if the object encloses the collision

if (positionIsLoaded(movement.position)) {
// if not, then the object is cleared and a new deformation is started
clearObject();
// load the part of the volume that encloses the position
MemoryManager.loadChunk(movement.position);

// find the eight enclosing elments to initiate the

// deformation with, it might be necessary to load

// chunks if not all eight enclosing elements are loaded
initialElements = findEnclosingElements(movement.position);

// move the eight elements and add their neighbors to the candidate list
multimove(initialElements);

// process all candidates in the candidate list

// if necessary missing neighbors are loaded by the
// MemoryManager and connected to the object.
processCandidatelist();

Figure 3.16: Flow of Deformation Algorithm.



lastPos = STEPS.lastEyePoint;

virtualPos = STEPS.currentEyePoint;

step = virtualPos - lastPos;

step.scale(stepsize);

lastVirtualPos = virtualPos;

while(isInsideTissue(virtualPos)) {

lastVirtualPos = virtualPos;
virtualPos.sub(step);

¥

intersection = 0.5 * (vitualPos + lastVirtualPos);

force = STEPS.currentEyePoint - intersection;

object.performDeformation(intersection, force);

Figure 3.17: Algorithm for calculation of deformation information.

Collision Detection

The request for the deformation is issued from the STEPS system. It detects the
collision of the endoscope with the iso surface and passes the necessary deformation
information consisting of the collision’s position and the force vector to the object.

Calculating the Intersection Point

STEPS stores the current and last position of the eye point. The direction of the
force applied to the tissue is given from the old position of the eye point to the
current position of the eye point.

At first the intersection point is assumed at the eye point of the endoscope which lies
inside the tissue. This point is then repeatedly moved towards the last position of
the eye point by a small step size until it lies outside of the tissue. Finally, the middle
of the last two calculated points, one lies inside the tissue the other one outside of
the tissue, becomes the starting point of the deformation. Please see figure 3.17 for
a pseudo code listing.



Scaling the Force Vector

The deformation algorithm starts with scaling the z—component of the force vector
by the z—scale. This is done to reestablish the valid ration of information propagated
along the z—axis and the other two axis as described in 3.5.4.

Cases at the Beginning

For the given position of collision three cases may occur:

1. The object does contain cubicles and the enclosing elements for the given posi-
tion are loaded: The calculation can proceed.

2. The object does not hold any cubicles : A request to load the cubicle that
holds the desired position is issued to the memory manager. After loading the
cubicle finding the enclosing cube is successfully retried and the calculation can
proceed.

3. The object contains cubicles but the enclosing eight elements can not be found in
the currently loaded elements: It is assumed that a new deformation is initiated
and the memory is released by clearing the object. Now when retrying to find
the enclosing elements the procedure is the same as in case 2.

Finding the Nearest Element

Now, the eight enclosing elements, we also call enclosing cube, for the given position
are acquired. Finding the enclosing eight elements begins with finding the element
which lies nearest to the requested position. Finding the nearest element is done
by getting the top corner element of the cubicle which originally holds the requested
position. Then, the distance of this element to the point is compared to the distances
of its neighbor elements. If a neighbor is closer the process is repeated with the
neighbor that is closest to the position and so forth. The iteration ends when no
neighbor element is closer to the requested point. Please see figure 3.18 for a pseudo
code listing.

During the search for the nearest element it might be necessary to load missing
cubicles. This occurs if a neighbor has to be checked that is currently not loaded.



DeformVoxel findNearest(Position) {
voxel = cubicle.getVoxels().getTopCornerVoxel();
try {
// calculate the distance
act_dist = voxel.getDistance(position); // distance of actual element from
do {
// get the neighbor that is nearer
newVoxel = voxel.getNearer(position);

// calculate the distance of the nearer element
new_dist = newVoxel.getDistance(position); // distance of currently processed neighbor
if (act_dist > new_dist) {
// the neighbor element is nearer. it is set
// to the actual element and the process is repeated
act_dist = new_dist;
voxel = newVoxel;
}
} while (act_dist <= new_dist);
} catch (PositionNotLoadedException pnle) {
// the voxel.getNearer() method may throw a
// PositionNotLoadedException in case a neighbor that could be
// nearer is not loaded. In this case the missing cubicle is
// loaded and the process retried.
throw new PositionNotLoadedException(pnle.getMissingPosition());
}
return voxel;

}

Figure 3.18: Pseudo code listing of the find nearest element algorithm.

Figure 3.19: All neighbors of the encircled element are further away from the grid element
marked with X than the encircled element. Hence, the search for the nearest element will finish
without finding the blue element which is the correct nearest element.



1 7
AL
A

Figure 3.20: The nearest element must be part of the four enclosing elements for the grid
position marked with a square. It is not possible to determine which neighbors are the enclosing
neighbors from the relative position of the element to the grid position.

Picture A: the other two enclosing neighbors are bottom and left.

Picture B: the other two enclosing neighbors are top and left.

Picture C: the other two enclosing neighbors are top and right.

Only the case where the bottom and right neighbor are part of the enclose can be ruled out in
this case.

This algorithm works very well for non deformed objects but is flawed when working
on a deformed object. Consider the case that all neighbors of an element are further
away from a given point but that the next neighbor of the neighbors is the nearest
element. This case is depicted in figure 3.19. In this case the algorithm stops but
does not find the nearest element to the given position. If this happens all elements
of the current object are checked to find the nearest element.

The nearest element to a position is calculated to exploit the fact that such an element
must be part of the enclosing cube because the neighborhood of the elements remains
intact during a deformation. That means the left neighbor of an element always stays
on the left side of this element and so on. Please refer to figure 3.20 for an example
in 2d.



boolean checkEnclose(List cube,Point3d position) {
foreach (tetrahedron = cube.splitToTetrahedrons()) {

barCoor =
calculateBarycentricCoordinates(tetrahedron, position);

if (allComponentsBetweenZeroAndOne(barCoor)) {
return true;
}
}
return false;

}

Figure 3.21: Pseudo code for checking if a point is enclosed by eight elements.

Finding the Enclosing Cube

To find the other seven elements, the eight cubes that can be formed with the nearest
element as a corner element are generated. Each of these cubes is checked if it
contains the position. Unfortunately, the relative position of the desired cube cannot
be identified from comparing the nearest element to the requested position. If an
element lies on the right, top side of the position the enclosing square (in the 2D case)
can either include the top, right neighbor or the right bottom neighbor or the top,
left neighbor. The only two neighbors that cannot be part of the enclosing square at
the same time are the bottom and left neighbor. Hence, all possible cubes have to be
checked. The check is done by splitting the cube to tetrahedrons and examining the
resulting barycentric coordinates of the given point depending on the tetrahedrons.
A detailed description of this procedure is given in section 3.6.3. If all components
of the barycentric coordinate vector are between 0 and 1 inclusive the position lies
inside the tetrahedron. A pseudo code listing is presented in figure 3.21.



void movelnitialCube(List elements) {

// iterate through all elements
foreach (v = cubeVoxels.next()) {
getCubicle(v).addMovedVoxel(v); // add to moved element list

v.move(path); // move the element

// add all not initially moved neighors to the candidate list
// directions are left, right, top, bottom, front, back
foreach (direction dir = directions.next()) {

neighbor = v.getNeighborAt(dir);

// find the element that was not moved
if (neighbor.isInitiallyMoved()) {

dir = -dir;

neighbor = v.getNeighborAt(dir);
}

// set the ignore direction, neighbors in this

// direction will not be added to the candidate list
v.setIgnoreDeformationDirection(-dir);

// Add to neighbor candidate list
deformCandidates.addCandidateToList (v, neighborVoxel);

Figure 3.22: Listing of initial movement.

Moving the Initial Elements

After the eight enclosing elements for the position were found they are all marked as
initially moved elements and moved by the deformation vector passed to the object
from the STEPS system.

As laid out in section 3.5.3 it is necessary to avoid the multiple adding of the neighbors
to the candidates list. Hence, each element holds an ignore deformation direction
flag which tells the element which directions must not be added to the candidate list.
Each sponsoring element passes this information on to the candidates is sponsors and
so forth. The directions to ignore are first created for the initially moved elements
which are the first sponsoring elements. For example, for the top, left, front of the
initially moved cube the three ignoring directions are right back and bottom. Hence,
only the neighbors at the top, left and front are added to the list of candidates.
Please see figure 3.22.

Processing the Candidate List

After the initial elements were moved, the processing of the candidates list begins.
The first candidate in the list, which is the candidate with the biggest constraint vio-
lation is processed. In the current implementation, the list saves entries of candidate
SpONSOr pairs.



// calculating the necessary adjustment for the min and max
// constraints of the left and right neighbors
if (Math.abs(candPos.x - sponPos.x) < minDx) {
path.x = sponPos.x - candPos.x;
if (candidate.getNeighborhood(sponsor) == left) {
path.x += minDx; } else { path.x -= minDx;
}
} else if (Math.abs(candPos.x - sponPos.x) > maxDx) {
path.x = sponPos.x - candPos.x;
if (candidate.getNeighborhood(sponsor) == left) {
path.x += maxDx; } else { path.x -= maxDx;
}
¥

// calculating the necessary adjustment for the

// shear constraints along the y-axis

// of the left and tight neighbor

if (candPos.y - sponPos.y < -shearDy) {
path.y = sponPos.y - shearDy - candPos.y;

} else if (candPos.y - sponPos.y > shearDy) {
path.y = sponPos.y + shearDy - candPos.y;

}

// shear along z axis analogue

/* adjustment for z-scale */

// only the shears are adjusted

if (candPos.y - sponPos.y < -shearDy*zScale /* <-- adjustment */ ) {
path.y = sponPos.y - shearDy*zScale - candPos.y;

} else if (candPos.y - sponPos.y > -shearDy*zScale /* <-- adjustment */) {
path.y = sponPos.y + shearDy*zScale - candPos.y;

}

// shear along x axis analogue

Figure 3.23: Listing of the chain region constraint check.

Depending on the neighborhood the candidates position is checked against the chain
region constraints of the sponsor (refer to figure 3.23). If the candidate is a horizontal
(along x—axis) or vertical (along the y—axis) neighbor, the chain regions are applied
without changes and the path to meet the chain region constraints is calculated. If
the element is a neighbor along the z—axis then the chain region constraints need
to be adjusted if the z—scale adjustment flag was set in the configuration. This is
necessary because the visual effect of the deformation would be distorted along the
z—scale. Please refer to section 3.4.4 for a description of the problem. To avoid the
z—scale effect the shear along the x—axis and the y—axis is multiplied by the z—scale.
This keeps the deformation from expanding faster along the z—axis than along the
other axis.



/* sample adding a candidate along the x--axis */
// sponsor is on the left side
if (sponsoredBy == left) {

// add right, neighbor

addCandidateToList(
sponsor.getRight (), right,
sponsor.getViolationInDirection(right));

// add either top or bottom neighbor,
// the other neighbor will be added by another sponsor

int direction = -sponsor.getIgnoreDeformationDirectionY();
addCandidateToList (sponsor.getNeighborAt(direction),
direction,

sponsor.getViolationInDirection(direction));

// add either front or back neighbor
// the other neighbor will be added by another sponsor
direction = -sponsor.getIgnoreDeformationDirectionZ();
addCandidateToList (sponsor.getNeighborAt(direction),
direction,
sponsor.getViolationInDirection(direction)); sponsor.getViolationInDirection(direction));

/* sample adding a candidate along the y--axis */
if (sponsoredBy == top) {

// left and right neighbors do not need to be added

// add bottom, neighbor

addCandidateToList(
sponsor.getBottom(), bottom,
sponsor.getViolationInDirection(bottom));

// add either front or back neighbor
// the other neighbor will be added by another sponsor
direction = -sponsor.getIgnoreDeformationDirectionZ();
addCandidateToList (sponsor.getNeighborAt(direction),
direction,
sponsor.getViolationInDirection(direction)); sponsor.getViolationInDirection(direction));

/* sample adding a candidate along the z--axis */
if (sponsoredBy == front) {

// left, right, top, bottom neighbors do not need to be added
// add bottom, neighbor
addCandidateToList(

sponsor.getBack(), back,
sponsor.getViolationInDirection(back));

Figure 3.24: Listing of adding the neighbors to the candidate list.



A element is moved by calling the move() method and each moved element is added
to the moved list of the cubicle the element belongs to. If an element is moved its
neighbors which are not lying in an ignore direction are added to the candidate list
as shown in figure 3.24.

With each adjustment the constraint violation decreases until all elements satisfy
the chain region constraints and no further deformation is necessary.

Chain Region

In the current application the voxels have an initial distance of 1 to each neighbor.
Because an initialized object must be valid the chain region’s ming,, ming,, ming.
must be smaller or equal to 1 and the respective mazg,, mazqy, mazq, constraints
must be bigger or equal to 1 while the shear constraints must be bigger or equal to
0.

To have the deformation propagate symmetrically through the object all chain re-
gions we use in this implementation have the shape of cubes. Hence, they are con-
figured using an offset value of fset. This offset is added to 1 to calculate the max
constraints and subtracted from 1 to calculate the min constraints. The values for
shear constraints are set to of fset.

To model inhomogeneous data the size of the chain region depends on the density
value of the corresponding element. Because tissue with a higher density value is
assumed to be stiffer the region is smaller for bigger values.

Finally, we propose to calculate the chain region constraints as follows. The values
for the parameters of one type of constraints (max, min, shear) are the same (e.g.
MAT gy = MATgy = MATqy):

adjustment = of fset * (vo:zcelwlue/4096)2
mazx =1+ of fset — adjustment
min =1 — of fset + adjustment
shear = of fset — adjustment
Since the adjustment increases with the value the size of the chain region decreases
with higher values. Additionally, this approach ensures that the initial object is valid

because the highest density value is 4095 and thus the adjustment is always smaller
than the offset which lies between 0 and 1 exclusive.

The deformed object is then passed to the mapper which maps it to the volume.
The algorithm for the mapping is described in the next section



// only moved elements cause a change of the volume data
List movedElements = DeformObject.getMovedElements();
foreach (movedElement = movedElements.next()) {
// the positions to update are the voxels of the
// voxel grid elements the moved element’s current
// and last position lie in.
// there are 16 positions to calculate, 8 for the
// current position, and 8 for the last position
foreach(updateVoxelPos =
movedElement .getVoxelPositionsToUpdate())
{
// to avoid multiple calculations, already calculated
// values are stored in a hash map
if ('hashMap.containsEntry(updateVoxelPos) {

// in contrast to the find element method of the
// deformation, this method does not need to

// load missing parts of the volume

cube = findEnclosingElements(updateVoxelPos);

// find the enclosing tetrahedron to calculate

// the barycentric coordinates of the poition to

// update

tet = getEnclosingTetrahedron(cube, updateVoxelPos);
barCoords = getBarycentricCoordinates(tet, updateVoxelPos);

// finally caluclate the new danisty value
newDensityValue =

tet.getElement (0) .densityValue * barCoords.x +
tet.getElement (1) .densityValue * barCoords.y +
tet.getElement (2) .densityValue * barCoords.z +
tet.getElement (3).densityValue * barCoords.w;

// enter new value into the hash map
hashMap.enter(updateVoxelPos, newDensityValue);
writeToVolume(updateVoxelPos, newDensityValue);

Figure 3.25: Basic flow of the mapping algorithm.

3.6.3 Mapping Algorithm
Basic Flow

This pseudo code listing in figure 3.25 shows the basic flow of the mapping algorithm.
Note that the memory management component described in detail in subsection 3.6.4
is not required during the mapping.
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Figure 3.26: The blue dots represent the moved elements. The red squares are elements that
were not moved in the last deformation step. The green grid elements have to be updated.

Mapping the Object to the Volume
Influenced Voxels

The algorithm starts with finding all volume voxel positions that need to be updated.
Since the deformation is propagated locally in an outwards fashion through the
object, the unmoved elements that have at least one moved neighbor element present
a border for the region the deformation impacted. Here it is important to only
consider those elements as moved that have been moved in the last deformation
step to avoid unnecessary calculations. Hence, all volume voxels that belong to grid
elements which are inside the region of impact or which contain the borderline of
this region have to be updated.

For grid elements that are completely outside of the region of impact no influencing
element was moved and they not need to be recalculated. An examples for the region
of impact is given in figure 3.26.

The approach applied to find the region of impact exploits the shape of the chain
regions to identify the voxels that have to be updated. There must be at least one
element inside two neighboring grid elements. This is because the maximum allowed
distance of two elements given by the chain region is smaller than the maximum
length of two grid elements combined and the maximum allowed shear is smaller
than the length of one grid element. Hence, it is sufficient to calculate the grid



// calculating the voxels in the neighborhood
// of the current and last position of the
// moved element
foreach(v = movedVoxel.next()) {
for (i=0;i<=1;i++)
for (j=0;j<=1;j++)
for (k=0;k<=1;k++) {
p.set( Math.floor(v.getCurrentPosition().x) + i,
Math.floor(v.getCurrentPosition().y) + j,
Math.floor(v.getCurrentPosition().z) + k);
calculateChangedPoint(p, DeformObject);

if (v.getlastPosition() != null) {

p-set( Math.floor(v.getLastPosition().x) + i,
Math.floor(v.getLastPosition().y) + j,
Math.floor(v.getLastPosition().z) + k);

calculateChangedPoint(p, DeformObject);

Figure 3.27: Listing of how the affected voxels are calculated.

element of the moved elements current and last position as well as their neighboring
grid elements.

For each voxel that needs to be recalculated the eight enclosing cube elements are ac-
quired. In the second step the elements are split to tetrahedrons. The corresponding
numbers of the cube elements are shown in figure 3.28.

Splitting the Enclosing Cube

Asymmetrically splitting the cube to five tetrahedrons where the tetrahedrons consist
of the respective cube elements (Cy,Cy,Cs,Cs), (Co, C1,Cs,Cy), (Cs,Cy,Cgs, Cr),
(C1,C4,C5,Cg) and (Cy,Cs,C4,Cy) creates asymmetrical deformations. For that
reason splitting the cube is done in a symmetrical manner.

The algorithm used for splitting the cube requires the calculation of a virtual element
that lies in the middle of the cube. The virtual element M for a cube consisting of
the elements Cy...C'7 is calculated as follows:

With this virtual element it is possible to split the enclosing cube to twelve tetra-
hedrons where the virtual element belongs to each tetrahedron and the other three
elements are taken from the enclosing cube. This adaptation of the split creates
symmetric visual results. An example of the split for one surface is given in figure
3.29.

We split the cube into twelve tetrahedrons in the following manner, where the virtual
center element is denoted with M and the number of the cube elements is shown



Figure 3.28: Corresponding element numbers for the splitting of the cube to tetrahedrons

in ﬁgure 3.28: (Ma 00301302)3 (Ma 00302503)5 (M7 00,04,07), (Ma COaC3aC7)a
(M7 007017C5)7 (M7 C07047C5)7 (M7 067C1705)7 (M7067017C2)7 (M7 C67027C3)7
(Ma 0670?”07)’ (Ma 067C4705)’ (Ma 06704707)'

Calculating the Barycentric Coordinates

After splitting the cube, the enclosing tetrahedron of the volume voxel that is cal-
culated is taken to calculate the barycentric coordinates. Given the barycentric
coordinates b for a point P and the tetrahedron with the points (A, B, C, D) in the
three dimensional case the absolute coordinates for point P are given as:

P=b,xA+byxB+b,xCH+by,*xD
where the barycentric coordinates are related through:
by +by +b, +b, =1
One tetrahedron yields the following 4 equations:

by Ay +by* By +b, xCyy + by, *x D, = P,
by x Ay +byx By +b,*Cy+by,*Dy = P,
byx A, +byx B, +b,xC, +b,*D, = P,

by +by, +b,+b, = 1

8
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This system is solved using the Gaussian elimination algorithm. If 0 < coordinate <
1 for all four coordinates of the barycentric coordinates the element lies inside the
tetrahedron and thus inside the cube.
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Figure 3.29: Using the bottom surface elements and the middle element yields two tetrahedrons
(M, Cy,Cy,Cs) and (M, Cy,Co,C3). The cube could also be split using the other diagonal
(C1,C3). The key of the splitting is that it is symmetrical.

Calculating the new Density Value

Hence, the new voxel value val is calculated by multiplying the values of the object
elements the tetrahedron consists of with the barycentric coordinates of the point
calculated.

val = by * Ayar + by * Byai + b, % Cyar + by * Dygp

To avoid multiple calculations for a single volume voxel and save processing time,
since it can scheduled for recalculation more than once, we store already calculated
voxel values in a look—up table. If a volume voxel needs to be updated it can first
be checked if the voxel was already recalculated by looking it up in the table.

Mapping the Volume to the Object

Because each element models a single voxel it is sufficient to assign the corresponding
density value to the element. The initial position of a new element is the same as
the position of the corresponding voxel. Hence, a voxel is mapped to an element by
simply copying the density value.

Deformation out of Volume Bounds

A scenario to consider occurs if the deformation is initiated close to a volume bound-
ary. In this case the deformation might propagate over the volume boundaries. If
this happens the object is extended with virtual elements so that the deformation
calculation proceeds unaware of the problem.



In this case the mapping from the object cannot use the original voxel values to
fill the ChainMail object with because the requested positions are out of bounds.
Instead the object elements are initialized with zero.

It is also possible that a position out of the volume bounds is scheduled for recal-
culation. These positions are ignored because they cannot contribute to the visual
image of the deformation.

Performance

The mapping algorithm is computational expensive because it requires to solve an
equation system given by a 4x4 matrix 8 x 12 times per position calculated in the
worst case to find the enclosing cube or tetrahedron for a given position. Therefore,
optimizations are applied. Only cubes and tetrahedrons that contain at least one
moved element are calculated during the mapping process. Additionally, the result
of the method also includes all other necessary information for calculating the new
value. Implementing a faster algorithm for solving the equation system would have
a great impact on the overall performance because it is also applied for checking if
eight elements enclose a point.

Alternatively, a different algorithm for deciding if a point is inside a cube can be
implemented. In this case after finding the cube the enclosing tetrahedron and the
corresponding barycentric coordinates need to be calculated separately.

The algorithm currently used for finding the nearest element (please see section
3.6.2) to a given position consumes a lot of computation time too if the first try fails
because the second try considers all currently loaded elements. Because the nearest
element needs to be found for every calculation of a new voxel value an improvement
of this algorithm would also decrease the computation time consumed, especially for
larger objects.

However, the performance of the mapping is sufficient for the current application as
laid out in section 6.1.

3.6.4 Memory Management
Macro Grid

For the memory management the entire volume is partitioned by a macro—grid con-
sisting of cubes. In a ChainMail object the representation of such a cube is called
cubicle . A cubicle consists of the mapped ChainMail object elements. The purpose
of these cubes is to install a new grid separating the volume into equally sized mem-
ory chunks. This grid is then utilized by the memory management algorithm. A
cubicle in 3D consists of size? (size? in 2d) grid elements (described in section 3.5.1)
and the corner elements of a cube lie on a volume voxel. In the 2D case, the first
cube lies at (0,0), (0, size), (size,0), (size,size). Its right neighbor has the coordinated



Figure 3.30: The thicker lines represent the lines of the macro—grid overlaying the original grid
represented by the thinner lines. A single element of the macro—grid is marked by the green
region.

(size, 0), (size,size), (2*size,0), (2*size, size) and so forth. Please see figure 3.30 for
a 2D example.

Basic Flow

The algorithm for the memory management creates the necessary elements as de-
picted in figure 3.31. It assigns them the corresponding density values and creates
the neighborhood links. The mapper is used to map the original volume density
value to the newly created elements.

Prior to adding a new cubicle to the object it is checked if the cubicle was not
already loaded and if a direct neighborhood required for the connection exists. Then
all neighbor cubicles that are already loaded by the object are acquired and connected
to the new cubicle. The basic flow looks as presented in figure 3.32.

Loading a Cubicle

To load a cubicle the mapper maps the requested volume cube to the cubicle (see
section 3.6.3). The second step in this process is to create the neighborhood links
between the elements. Please refer to figure 3.33



// map the requested position the corresponding position
// of the chunk in the macro grid
chunkPosition = getMacroGridPosition(requestedPosition);
// create a DeformChunk at the requested position
DeformChunk chunk = new DeformChunk(chunkPosition);
for (int i=0; i<size; i++)
for (int j=0; j<size; j++)
for (int k=0; k<size; k++) {

element =

new DeformVoxel(DeformMapper.getValueAt(position+(i,j,k)));
chunk.addElement (element) ;

}
establishNeighborhoodLinks(chunk.getElements) ;

Figure 3.31: Pseudo code listing of the creation of a new cubicle.

if (chunkAlreadyloaded(chunk.getPosition()) {
throw new SamePositionException();
}
// chunk can be connected to the object
if (!directNeighborhoodExists(chunk.getPosition()) {
throw new NoDirectNeighborhoodException();
}
// find all neighbor chunks of the object to the
// new chunk
neighborChunks =
DeformObject.getNeighborChunks (chunk.position);
// connect the new chunk to all neighbor chunks
while(!neighborChunks.empty()) {
chunk.connectWith(neighborChunks.next());

}

Figure 3.32: Pseudo code listing for adding a new cubicle .

Connecting a new Cubicle to the Object

To add a cubicle to an existing object the elements of the cubicle are linked with

the elements of the ChainMail object according to their neighborhood. For example,
if a new cubicle is inserted at the right side of the an already loaded ChainMasil
object cubicle , then the elements on the surface on the right side of the existing
cubicle are be connected with the surface elements on the left side of the new cubicles .
However, there may already be another neighbor to the newly inserted cubicle too
(top or front for example). Hence, the surface elements of the new cubicle are
connected with the corresponding surface elements of those object cubicles which
are in the direct neighborhood. This means, that only cubicles that are part of the
direct neighborhood of the existing ChainMail object may be loaded into memory.
Otherwise the respective elements cannot be connected and the deformation could
not propagate to these unconnected parts.



// create cubicle at the desired position
cubicle = new Cubicle(position);

// calculating the voxels in the neighborhood
// of the current and last position of the

// moved element

for (i=0;i<=1;i++)

for (j=0;j<=1;j++)

for (k=0;k<=1;k++) {

// get the density value at the requersted position
desityValue = mapper.getDensityValueAt(
cubicle.position.x+i,
cubicle.position.y+j,
cubicle.position.z+k);

// create the element

h = new ChainMailVoxel(densityValue,
cubiclePosition.x+i,
cubiclePosition.y+j,
cubiclePosition.z+k);

// add the element to the elemtent list
cubicle.voxellList.add(h);

¥

// establishing neighborhood links

foreach(DeformVoxel v = cubicle.voxelList.next()) {
v.setLeft(findLeftNeighbor(v, voxellist);
v.setRight (findRightNeighbor(v, voxelList);
v.setTop(findTopNeighbor (v, voxellList);
v.setBottom(findBottomNeighbor(v, voxellList);
v.setFront (findFrontNeighbor(v, voxelList);
v.setBack(findBackNeighbor(v, voxellist);

Figure 3.33: Pseudo code of how a cubicle is loaded and the elements are connected.

3.6.5 Connecting two Cubicles

To connect a cubicle to a neighbor all voxels of the two surfaces facing each other
are connected. In the first step the corner elements are used to find two opposing
corner elements of the cubicles . Depending on the neighborhood the top or bottom
corner element of the object’s cubicle is used to find the element which opposes the
bottom or top corner voxel of the neighbor cubicle to connect with. Please see figure
3.34 for an example.
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Figure 3.34: This figure shows two cubicles to be connected with each other. The top corner
element is used to first step to the back corner element and then to the bottom corner element.
Now, two opposing corner elements are found and can be used to connect all surface elements.
(See figure 3.35)
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Figure 3.35: Picture of connecting two neighboring cubicles . The connection starts at the
bottom corner element of the left cubicle and its opposing element. The first row of elements is
connected (1-3). In the second step the top row elements get connected (4-6). Finally, the last
row is connected (7-9).



/* example for connecting a cubicle to a left neighbor */
myConnector = getBottomCornerConnectorVoxel();
neighborConnector = neighbor.getTopCornerConnectorVoxel();

// move the myConnector element until it

// opposes the neighbor connector element

for (int i = 0; i<cubicle_size-1; i++) {
myConnector = myConnector.getTop();

by

for (int i = 0; i<cubicle_size-1; i++) {
myConnector = myConnector.getFront();

}

// my start element of the first row to connect

myLeadingEdge = myConnector;

// neighbor start element of the first row to connect

neighborLeadingEdge = neighborConnector;

// iterate through rows and elements in each row
for (int i = 0; i<cubicle_size; i++) {
for (int j = 0; j<cubicle_size; j++) {
// assign neighborhood
neighborConnector.setLeft(myConnector) ;
myConnector.setRight (neighborConnector);
// get next element in row
myConnector = myConnector.getBack();
neighborConnector = neighborConnector.getBack();
}
// get my beginning element of next row
myLeadingEdge = myLeadingEdge.getBottom();
myConnector = myLeadingEdge;
// get neighbor beginning element of next row
neighborLeadingEdge = neighborLeadingEdge.getBottom();
neighborConnector = neighborLeadingEdge;

Figure 3.36: Sample listing of connecting two cubicles.

For example, if the neighbor cubicle is connected with a cubicle of the object at the
right side then the right surface of the neighbor is connected with the left surface
of the object cubicle . Hence, the top corner voxel of the object’s cubicle is used as
the staring voxel to find the voxel that opposes the bottom corner voxel of the new
neighbor by stepping to the back and bottom. These two voxels are then connected
along with all their row front neighbors. Then the rows at the top side of the two
voxels are connected and so forth. Figure 3.35 depicts a sample connection and figure
3.36 shows sample pseudo code for connecting two cubicles .

Memory Management near Volume Bounds

The memory management algorithm works the same if the deformation propagates
out of the volume bounds. The grid defined by the cubes can be extended in any
direction. The only difference occurs at in the mapping part. Because no volume
values can be mapped the elements values are set to 0. This allows the calculation of
the deformation near volume boundaries without further changes to the algorithm.



3.7 Conclusion

Fundamental ChainMail Algorithms

The first part of this chapter presented the ChainMail and the Enhanced ChainMail
algorithm this work is based on as well as their shortcomings in respect to the
requirements of STEPS. The ChainMail algorithm introduced by S. F. F. Gibson is
a fast an flexible algorithm for the deformation of volumetric objects. It performs
simple calculations on a large number of elements to achieve complex behavior and
is capable of modeling tissue with different material properties and even anisotropic
material. The approach of M. A. Schill et al., called Enhanced ChainMail, extends
the ChainMail algorithm to inhomogeneous data. They use the analogy of a sound
wave that travels quicker through stiffer material than through softer material. This
finding is used to change the order the elements of a ChainMail object are processed
during the calculation of a deformation.

However, the algorithms could not be applied ”as is” to the target environment.
The task was to extend the STEPS application [Neubauer et al. ’04] by introducing
deformations. The STEPS is a virtual endoscopy system that visualizes volume data
using a ray casting algorithm. Therefore, we introduce the Divod ChainMail algo-
rithm which uses a ChainMail object as a means for calculating the deformation. The
result of the calculation is then mapped to the volume data. Because of the large
size of such a volume data set we implemented a memory management algorithm
since the entire volume can not be modeled through a single ChainMail object.

Mulitmove

To integrate the ChainMail algorithm into the STEPS system we developed a new
way for interaction. This allows to initially move eight ChainMail elements. Moving
eight elements makes it likely that the endoscope’s eye point lies outside of the
deformed tissue and models the fact that the endoscope has a certain diameter. The
drawback of this approach is that it may lead to an inconsistent object. However,
this problem was disregarded for performance reasons and because no visual artefacts
are produced.

Z—Scale

A visual distorting effect caused by the z—scale of the volume was soothed by dividing
the amount of information propagated along the z—axis by the z—scale factor. This
is done by dividing the z—component of the initial move vector by the z—scale and
multiplying the chain region shear constraints for the x and y shear along the z—axis
by the z—scale.



Global Constraints

To avoid unnaturally large deformations and the deformation of bone tissue we intro-
duced two global constraints. One constraint governs the maximum allowed move-
ment of an element while the other restricts the movement of elements which belong
to bone tissue. If a violation occurs, the deformation is reverted and retried with a
smaller step size.

Mapping & Memory Management

The last two presented parts of this chapter are the mapping and the memory man-
agement. The mapping of the object to the volume is of great importance for the
quality of the visual image because the ray caster directly renders the volume data.
The first approach implemented using regions of influence to calculate new element
values has the risk of creating holes inside the volume. The barycentric coordinates
based method uses a symmetrical approach for the tetrahedron generation because
the asymmetrical approach produces asymmetrical results in the visualized deforma-
tion image.

The memory management uses the fact that the deformation propagates locally
through the object. The object is extended at the boundaries if the deformation
exceeds the currently loaded ChainMail object. 1If a new deformation is started
outside of the volume the current object is cleared and a new object is created. This
procedure allows to bypass the movement constraint but for performance reason this
problem was not addressed.

The mapping and the memory management work together. Whenever a cubicle is
loaded into memory, the volume values need to be mapped to the new ChainMail ob-
ject part. If a deformation runs out of the volume bounds, the memory management
proceeds normally and generates a virtual cubicle . Then the mapping initializes
the new elements with zero value. This way the algorithm can be applied without
further changes to deformations near the volume boundaries.

A description of the implementation of the described algorithm is presented in the
next chapter.






Chapter 4

Implementation

4.1 Implementation Overview

This chapter presents a description of the current implementation. First, it describes
the framework, the related STEPS software. This description is followed by an
outline of the interface we developed to ease integration, and the data types used.

4.2 Related Software

The STEPS system shows the user a three dimensional view of the volume data and
three cutting planes. A user sees the virtual reality in the three dimensional view
through the viewpoint of the endoscope. Additional parameters such as the iso value
threshold, barrel distortion or the viewing angle of the endoscope can be configured
interactively. STEPS also supports force feedback if the endoscope collides with the
tissue. For the sake of platform independence the STEPS application was entirely
developed in Java.

4.3 Software Design

To allow flexibility of the software an object oriented approach was chosen for the
design. The focus was to strictly separate the individual software components from
each other. This allows flexibility and code reuse.

The first component implemented in the original plugin is a ray caster which visual-
izes the volume data. The volume data represents the second component. It is used
as a clear separation between the deformation algorithm and the visualization be-
cause the ray caster does not need to have any knowledge of the newly implemented
deformation algorithm. A general deformation algorithm for extending the STEPS
system can be split into three distinct components.
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e Deformation: calculation of the deformation on the deform object, depending
on the input, typically the point of impact and a move vector.

e Mapping: mapping the volume to the object and mapping the deformed object
to the volume data using a mapper object.

e Memory Management: loading parts of the object necessary for the calculation
of deformation and release unnecessary parts.

To support this splitting a minimal API is desired. The idea of this APT is to allow
interchanging different component implementations. For example using different
mapping algorithms for one deform object. However, this separation cannot be
achieved in all cases because the mapping might depend on the corresponding object’s
data structure which holds information necessary for the mapping as well as the
memory management depends on the shape and internal structure of the deformation
object.

However, using the API presented in the next section a clean separation between
the mapper and the object is achieved through the introduction of a DeformVoxel
interface.

4.4 Interface

The purpose of this interface is first of all to outline how the components work
together and describe the important steps of the work flow. Secondly, it separates
the individual components and was created to enforce code reusability and flexibility.
For example the implemented mapper is able to map any object that implements the
given interface without changes. The interface diagram is presented in figure 4.1.

4.4.1 DeformVoxel

The DeformVoxel is the smallest unit of the interface. The DeformChunk consists
of such DeformVoxels. It only offers a minimal interface, sufficient to be used by
implementations of the DeformMapper interface. It implements a minimal set of
functions, because each algorithm needs to implement its own voxel element class to
add the algorithm dependent functionality.

Attributes

A DeformVoxel has the following attributes

currentPosition: The current position of the element.

lastPosition: The last position before the element was moved.

originalPosition: The position the element was created at.

value: The density vale of the element.



e left: The left neighbor element.

e right: The right neighbor element.

e top: The top neighbor element.

e bottom: The bottom neighbor element.

e front: The front neighbor element.

e back: The back neighbor element.
This set of attributes is sufficient for a wide range of mappers since the most im-
portant data for the mapper is the value, position and neighborhood of the elements

that need to be mapped. Thus, a separation of the deformation calculation and the
mapping is achieved.

Methods

e move(Vector3d): This method moves the element by the given vector. First
the last position is set to the current position. Then vector is added to the
current position.

4.4.2 DeformMovement

The purpose of the DeformMovement interface is to provide means for extending the
information passed to the deformation object within the interface. For example, an
application might also want to add information like normal vectors. However, classes
that implement this simple interface can still be used ”as is”.

Attributes

The DeformMovement consists of two attributes.

e position: The starting position of the deformation.

e path: The deformation vector, i.e. the magnitude and direction of the deforming
force.

4.4.3 DeformChunk

The DeformChunk interface provides the basic methods to for the DeformMemoryMan-
ager 4.4.4 and the DeformObject 4.4.5 to handle the memory chunks. Such a memory
chunk consists of a list of elements and is created by the DeformMemoryManager.
The DeformObject consists of these memory chunks and hence, is responsible for
their tracking and connecting.



Attributes

e voxels: Supplies the contained DeformVoxels to the DeformQObject.

e position: The position of the chunk. Each chunk is used to load a certain volume
region. The position can be used to identify the region this chunk loaded.

e movedVoxels: A list of references to the moved element which belong to this
chunk. This was added to the interface to offer mapping algorithms a way for
directly accessing moved elements.

Methods

e connectWith(DeformChunk):  This method connects the two neighboring De-
formChunks. Because a DeformChunk has no knowledge of other loaded Deform-
Chunks the DeformObject is responsible for connecting a new DeformChunk all
neighboring DeformChunks of the entire object.

This method throws the following exceptions

e SamePositionException: This exception is thrown if the two chunks to connect
have the same position to avoid unnecessary loading of chunks. Additionally,
the two chunks can not be connected to each other.

e NoDirectNeighborhoodException: This exception is thrown if the two chunks
cannot be connected because they are not direct neighbors.

e NeighborhoodAmbiguousException: This exception is thrown if the two chunks
can not be connected because the direction of the neighborhood is not uniquely
defined. To connect two chunks they must share a surface. In this case they
share at most an edge.

These errors must be handled by the DeformObject when adding a new chunk.

4.4.4 DeformMemoryManager

The DeformMemoryManager is responsible for loading requested volume parts in the
form of DeformChunks. Therefore, it maps the volume voxels to DeformVoxels and
assigns them to the DeformChunk. To map the volume density values to the voxels
a DeformMapper is used (4.4.6).

Attributes

e DeformMapper: Used to map the volume data to the newly created DeformVox-
els.



Methods

e |0adChunk(Point3d): This method is called by the DeformObject to create a new
DeformChunk. It returns the DeformChunk at the given position. The chunk is
created by mapping the requested volume potion to a list of DeformVoxels. This
includes setting the current and original position and setting the neighborhood
information of the DeformVoxels. The list of DeformVoxels is then assigning the
new DeformChunk.

Because the underlying mapper handles out of bounds errors they do not need
to be considered in this method.

4.4.5 DeformObject

The DeformQObject calculates the deformation and is passed to the mapper for up-
dating the volume. It consists of DeformChunks and is responsible for keeping track
of them and needs to connect new chunks to itself to keep the objects integrity.

However, the main purpose is the calculation of the deformation which is done in
the performDeformation(DeformMovement) method. This method also updates the
volume data using the DeformMapper interface.

Attributes

The DeformObject interface consists of the following attributes.

e DeformChunks: The list of chunks the object consists of.
e Mapper: The mapper that is used to map the object to the volume data.

Methods
The following methods are offered by the DeformObject interface.

e getVoxels(): Returns the list of DeformVoxels belonging to the object by calling
the getVoxels() method for each contained chunk.

e getMovedVoxels(): Returns the list of moved DeformVoxels belonging to the
object by calling the getMovedVoxels() method for each contained DeformChunk.

e getChunk(Point3d): Returns the DeformChunk at the given position if it is
loaded, null otherwise.

e performDeformation(): Calculates the deformation and updates the volume data
using the mapper attribute.

This interface does not export any errors. This minimizes the necessary effort for
integrating it into an existing software. performDeformation() is the only method
that should be used by the calling application. The mapper should be set at object
creation. The other methods are interfaces offered to the other components.



4.4.6 DeformMapper

The DeformMapper interface provides the methods to map the volume to a Deform-
Chunk and to map a deformed DeformObject to the volume. To separate mappers
from the object’s implementation the DeformVoxel interface is introduced. This in-
terface offers information sufficient for a wide range of mapping algorithms.

Attributes

e volume: The volume to be used during the mapping process.

Methods

The three methods the DeformMapper offers to the DeformObject and the Deform-
MemoryManager are:

e updateVolumeData(DeformObject): This method maps the given object to the
volume attribute. If the method uses the DeformVoxel interface to calculate
the new values from the deformed object it works with every object which also
implements this interface.

e getVolumeValueAt(): This method returns the density value of a given position.

e getZScale(): Returns the z-scale of the volume.

The mapper must handle all out of bounds errors internally so that the other com-
ponents remain unaware of the error.

The next section describe the actually implemented classes for realizing the Chain-
Mail algorithm.

4.5 Data Structure

4.5.1 ChainMailVoxel

The ChainMailVoxel implements the DeformVoxel interface. Further, it contains the
following attributes and methods.

Attributes

e id: A unique identifier for the ChainMailVoxel.
e chainRegion: The corresponding chain region of the ChainMailVoxel.

e ignoreDeformationDirectionX,
ignoreDeformationDirectionY,
ignoreDeformationDirectionZ: The direction along the respective axis where no



neighbors may be added to the candidate list because they are added by another
initially moved element. For example if the ignoreDeformationX flag is set to left
then the left neighbors of the ChainMailVoxel are not added to the candidate
list Please refer to section 3.5.3 for a description of the problem.

e islnitiallyMoved If set to true if the ChainMailVoxel is an initially moved element.

e wasMovedDuringDeformationStep: Set to true if the ChainMailVoxel was moved
during the last deformation step.

Methods

e move(): This method first checks the ChainMailVoxel value against the bone con-
straint. If this check is passed the ChainMailVoxel’s current position is stored in
last position. Then the ChainMailVoxel is moved by the given vector, and marked
as moved during the last deformation step. Finally, the new ChainMailVoxel po-
sition is checked against the movement constraint. If the movement constraints
is violated the method throws a MovementViolatesMoveConstraintsException. If
the bone constraint is violated the method throws a MovementViolatesBoneCon-
straintsException. These exceptions are caught by the ChainMailDeformObject
which reverts the current deformation and retries it with a smaller step size.

e undoMove(): The method is called during a reversion of the deformation. This
method clears the moved flag and sets the current position to last position.

e getViolation(): The method calculates the amount of the chain region constraint
violation for two ChainMailVoxels. It is the ordering criteria for the candidates
in the candidate list.

4.5.2 Chain Region

Attributes

e maxDx: The maximum allowed distance between two ChainMailVoxels along the
X—axis.

e maxDy: The maximum allowed distance between two ChainMailVoxels along the
y—axis.

e maxDz: The maximum allowed distance between two ChainMailVoxels along the
Z—axis.

e minDx: The minimum allowed distance between two ChainMailVoxels along the
X—axis.

e minDy: The minimum allowed distance between two ChainMailVoxels along the
y—axis.

e minDz: The minimum allowed distance between two ChainMailVoxels along the
Z—axis.



e maxHorzDx: The maximum allowed shear between two ChainMailVoxels along
the x—axis.

e maxVertDy: The maximum allowed shear between two ChainMailVoxels along
the y—axis.

e maxDepthDz: The maximum allowed shear between two ChainMailVoxels along
the z—axis.

e zScale: The z—scale of the volume necessary to adjust chain regions as described
in section 3.5.4.

Methods

e calculatePathToMeetConstraints(): This method calculates the necessary adjust-
ment for a ChainMailVoxel to satisfy the chain region constraints. The method
takes a candidate ChainMailVoxel and its sponsor ChainMailVoxel and returns
the path the candidate has to be move to satisfy the constraints.

4.5.3 ChainMailCubicle

The ChainMailCubicle implements the DeformChunk interface. Additionally, it ex-
tends the interface by the following attributes.

Attributes

e left: The left neighbor ChainMailCubicle.

e right: The right neighbor ChainMailCubicle.

e top: The top neighbor ChainMailCubicle.

e bottom: The bottom neighbor ChainMailCubicle.
e front: The front neighbor ChainMailCubicle.

e back: The back neighbor ChainMailCubicle.

o leftTopFrontCornerVoxel: The voxel in the left, top and front corner of the De-
formCubicle.

e rightBottomBackCornerVoxel: The voxel in the right, bottom and back corner
of the DeformCubicle.

These two voxels are required for connecting two neighboring ChainMailCubicles.

4.5.4 ChainMailDeformObject

The ChainMail object is respousible for calculating the deformation and associates
all other components. It strictly implements the DeformObject interface.



4.6 Configuration

Upon creation the ChainMailDeformObject reads the configuration and sets the pa-
rameters for itself and the associated components. The configuration is a stored in
a simple text file. The entries are key value pairs separated by a '=’.

The configurable parameters are:

e cubicle size: Sets the size of the cubicles . Bigger cubicles means less loading
operations but a single load takes more time.

e scale factor: The factor the initial move vector is scaled by. This allows adjust-
ing the visual effect.

e offset: This value defines the shape and size of the chain regions. A smaller
offset means smaller chain regions and stiffer behavior of the object.

e maximum allowed movement for element: Defines the movement constraint.
e bone threshold: Defines the bone constraint.
e adapt regions to z—scale: A flag that toggles the z—scale adjustment.

e max tries: Defines the number of retries in case a constraint violation occurs
during the calculation.

e step scale: Defines the factor by which the initial move vector is scaled at
the start of each retry. For example, if the movement is retried the first time
the vector is moveretry1 = MoVesriginal * stePscale and for the second retry it is
MOVErety2 = MOVEoriginal * step? cate- Therefore, the step scale should be between
0 and 1 exclusive.

This section described the main data structures used in this implementation.

4.7 Integration

Requirements

The requirement for the integration of the deformation algorithm was that it must
not affect the ray casting algorithm in any way. Secondly, only a minimum of code
should be subject to integrate the ChainMail algorithm into the STEPS application.

The second requirement was met by providing a minimum interface for the deforma-
tion to the STEPS system. The existing isCollision method that detects a collision
was extended to calculate the intersection point and the deformation vector using
an iterative approach. The intersection point and the deformation vector are then
passed to the ChainMailDeformObject via the performDeformation() method with cal-
culates the deformation and updates the volume. Finally, no further error handling is
necessary in the STEPS system because no errors a propagated through he deforma-
tion interface minimizing the change to the code necessary in the STEPS application.



Changes to the STEPS System

The first requirement was met by directly updating the volume data. The ray caster
only works on the volume and does not need any additional information for the
visualization. Therefore, using the volume as the interface between the deforma-
tion and the visualization the ChainMail algorithm can be added without having to
change the ray casting algorithm. The ray caster is completely unaware of the new
component.

The only component that has to be changed in the current STEPS system is the
user interaction. In the original application the user cannot interact with the tissue.
However, the user can set a ”detect collisions” flag. This flag tells the application to
check for collisions between the iso surface and the endoscope. If a collision occurs
the eye point of the endoscope is set back to the last valid position.

This is done to ensure that the eye point of the endoscope is kept outside the tissue.
Obviously, this function presents a good starting point for the integration of the
ChainMail algorithm for two reasons.

e [t is able to detect collisions between the iso surface and the endoscope. Such
collisions trigger the start of a deformation.

e [t is responsible for replacing the endoscope’s eye point to keep it outside the
tissue. This is also a requirement for the deformation.

Hence, the so called isCollision() method was changed to introduce the ChainMail
extension to the existing STEPS system.

Acquisition of Deformation Data

The calculation of the deformation depends on three things as input. The volume
data, the starting point of the deformation as well as the deformation vector which
gives the length and direction of the deformation.

Obviously, the intersection point of the endoscope and the iso surface is the starting
point of the deformation. Unfortunately, the isCollision() method only checks if the
eye point of the endoscope lies inside the tissue. That means that the iso value
calculated at the position of the eye point is bigger than the threshold. Hence, the
method has to be extended to calculate the intersection point.

The calculation of the intersection point is done in an iterative fashion. A virtual
point is repeatedly moved from the eye point towards the last position of the eye point
by a small step size until it lies outside of the tissue. That means, the calculated iso
value at the position is smaller than the threshold. Then the middle of this position
and the last position inside the tissue gives the point of impact.

The vector of the deformation is given by the point of impact I and the eye point £
of the endoscope. Hence, the deformation vector v is given by v = F — 1.



Finally, the volume data needs to be passed to the deformation engine. This is done
at object creation because the ChainMailMapper demands a volume at creation.

The objects are integrated in the same class that holds the isCollision method, namely
the STEPSVolume class. The STEPSVolume class is extended by two private member
variables to hold the ChainMailDeformMapper and the ChainMailDeformObject. The
two objects are initialized if a first collision occurs.

To initiate a deformation, the ”detect collision” flag must be set by the user. Then,
if the endoscope penetrates the tissue, the intersection point and the deformation
vector are calculated. Together they are used to create a DeformMovement object
which is the input for the deformation calculation.

The ChainMail object provides the performDeformation() method as the interface to
calculate the deformation. This method takes the DeformMovement as input and
also updates the volume data using the ChainMailMapper member after a successful
deformation. Hence, from the STEPS view only a single call is necessary to calculate
the deformation and update the volume data.

Error Handling

No additional error handling needs to be implemented in the STEPS system because
no errors are propagated trough the performDeformation() interface method. All
errors that occur during the deformation calculation are handled entirely inside the
ChainMail extension. In the worst case the volume will not get updated. However,
this is still a valid case for the STEPS system. Hence, it is completely unaware of
these errors which eases the integration of the ChainMail extension.

The next section concludes the chapter with a review of the presented implementation
details.

4.8 Conclusion

This chapter described the implementation and integration of the Divod Chain-
Majil algorithm into the existing STEPS application.

STEPS consists of 4 views: a virtual reality view and three cutting plane views. The
goal of this work was to extend the STEPS plugin by adding a deformation engine.
The deformation should then be visible in all four views. This is achieved using three
components, a mapper, a memory manager and a component for the deformation
calculation.

To allow easy integration, flexibility and code reusability an interface was intro-
duced to allow the splitting of these three components. Additionally, the interface
required by the STEPS application was minimized to a single call. This call does
not propagate any errors hence, no additional error handling has to be done upon
integration.



The separation is based on the fact that all four views directly render the volume
data. Hence, the volume data is used to separate the extension from the visualization
process. The only additional thing that needed to be done within the existing plugin
was to calculate the point of impact and the force vector of the collision. These are
the parameters necessary to calculate the deformation and requires to change the
method STEPSVolume.isCollision().

The actual implementation of the Divod ChainMail algorithm follows the interface.
For example, the implemented mapper is capable of mapping all objects that imple-
ment the ChainMailVoxel interface.

The object that calculates the deformation implements the DeformObject interface
and consists of cubicles which hold the actual elements. The cubicles and elements
implement the DeformChunk and DeformVoxel interface respectively. The object is
mapped to the volume by a mapper that implements the DeformMapper interface.
This mapper is also used to map the volume to the object. This is done if the
object requests a missing chunk from the memory manager which implements the
DeformMemoryManager interface.

The results of this work as well as a discussion and outlook to further work is pre-
sented in the next chapters.
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Chapter 5

Results

5.1 Overview

This chapter presents the results of this work. To show the functioning of the Divod
ChainMail algorithm and the impact the parameters have on the resulting image the
next section first shows results from artificial test data sets before continuing with
screenshots from the actual application. There are two artificial data sets used. One
is a homogeneous cube with the density values of 2000, the other is an inhomogeneous
cuboid with density values of 1000 and 2000 to 2500.

The visual results are followed by an analysis of the algorithms performance based
on timing tests. This analysis also refers to different parameter tunings and relates
the visual results to the achieved performance.

The analysis is concluded by a discussion of the results and an outlook on further
work in the next chapter.

All tests were conducted on an Acer Travelmate 6000 with an Intel Centrino 1600
MHz and 768 MB RAM. The operating system used for the tests is Windows XP
Home Edition SP 2. The images were taken using the Tiani JVision 3.13 and the
STEPS .15 plugin. The timing tests were done with Eclipse 3.0 and the Java SDK
1.4.2, Java RE 1.4.2.

5.2 Visual Results

The first set of results presented in this section were created by deforming a cube
5.1.

For each deformation the initial deform vector is (0,1,0). Hence, the depth of the
deformation only depends on the scale factor defined in the configuration. The
second parameter that influences the shape of the deformation is the offset value
which defines the size of the chain regions. Unless stated otherwise, the offset used
for the images is 0.2 and the scale factor 1.2.
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Figure 5.1: Test cube with the corresponding axis alignment.

The next section presents the results of the timing tests used to measure the perfor-
mance of the implementation.

Z—Scale

Figure 5.2 shows the effect of the z—scale adjustment. The deformation on the left
side has no z—scale adjustment. Hence, it appears stretched along the z—axis. Please
note, that the deformation is too large along the z—axis and not too small along the
other two axes. Therefore, the propagation along the stretch has to be diminished.
The picture on the right shows the effect of the adjustment. The deformation still
appears stretched by a small factor. This is because the deformation is propagated
in a discrete manner by the Chain Mail algorithm. The effect gets for smaller for
smaller offsets because it is a better approximation to continuous data. The offset
value used for this image is 0.25.

The effect is also visible in the cutting plane views shown in figure 5.3.

Angular Deformation

Figure 5.4 shows the difference between an angular and non angular deformation.
The middle of the deformation is shifted in the direction of the force shown by
the yellow vector. The increase of the surface is steeper at the pushed part left of
the deformation’s middle than on the pulled part on the right which is physically
plausible.



Figure 5.2: This figure demonstrates the effect of the z—scale adjustment.

Banssiion 4

Figure 5.3: The stretch along the z—axis shown in the corresponding cutting plane views



Figure 5.4: Picture of an angular deformation on the left. The top right side shows the corre-
sponding cutting plane view. The picture on the bottom right shows the same deformation with
a non angular force vector for reference.

Subsequent Deformation

The result of subsequent deformations is depicted in figure 5.5. Comparing the
resulting image to figure 5.2 the huge difference caused by the offset change is visible.
On one hand the deformation does not appear stretched any more. However, the
shape of the deformation is rectangular rather than circular because of the cubic chain
regions. Another effect caused by the cubic shape of the chain regions is presented
in figure 5.10. The result of several continuous deformations is shown on the right
side. First there middle area of the deformation was deformed further but because
of the movement constraints, its size is smaller. Two other deformations show on the
top left of the original deformation. Again, they are smaller because the movement
constraint restricted the movement of the already deformed parts. However, they
are bigger than the deformation in the middle since the outside elements were not
moved as far as the inside elements in the initial deformation.



Figure 5.5: The left picture shows the initial deformation. The right picture shows subsequent
deformations. The offset value used for the two images is 0.1.

Deformation of Edge

A special case of a deformation at the edge of the cube is presented in figure 5.6. It
shows the depth of the deformation and the tissue appears to be drawn towards the
point of collisions (left picture).

Figure 5.6: This figure shows the result of a deformation near the edge of the cube. The picture
on the left represents the view in the direction of the deformation vector. The picture on the
right shows a direct view of the deformed edge.



Inhomogeneous Data

The results of modeling inhomogeneous data are presented in figure 5.7 and figure
5.8. Figureb.7 depicts the deformation near the edge of two regions with different
density values. The deformation in the upper side of the edge, where the data has
higher density values, is smaller than the deformation in the lower part of the data

with smaller density values.

Figure 5.7: This figure shows the effect of the inhomogeneous chain region near the edge of the
two different data regions.

In figure 5.8 The upper left side of the figure shows an inhomogeneous data set. The
softer material on the upper side of the data set has a density value of 1000 and
is marked with red frames. The stiffer material on the lower side of the data set
has a density value of 2000 and is marked with blue frames. The pictures on the
right are enlarged views of the deformations on the left. The top view shows the
softer material, the bottom view the stiffer material. The figure on the left bottom
is the cutting plane view of the deformed volume data. The pictures show, that the
deformation of the softer material is steeper and slightly bigger. This is because the
chain regions used for modeling the softer material are bigger. The cutting plane
view also reflects the difference between the deformation. (In this figure the effect is
exaggerated in the cutting plane view because of the different density regions.)



Figure 5.8: This picture shows the effect of the inhomogeneous chain regions.



Figure 5.9: This sequence shows a typical use case. The offset is 0.2 and the scale factor is 1.2
in this image sequence.

Application

A typical use case is shown in figure 5.9. The endoscope is currently in the nose
and pushed forward towards the sphenoid. In this case the space is narrow and
collisions are likely to occur. The top left picture shows the initial data set without
deformations. As the endoscope is pushed further it collides with the tissue. The
resulting deformation encircled in the right top picture. The resulting image of a
consecutive deformation is encircled in the right bottom picture. A new collision at
the opposite side of the latter deformations deforms the tissue further.



Figure 5.10: Stage Artefact.

Artefacts

Figure 5.10 shows an artefact that occurs for large deformations with large offset
values. (The offset for this image is 0.25 and the scale factor is 2.5). For such a
setup a stage effect occurs in the deformation. The reason for that is the cubic shape
of the chain regions. The left image shows the virtual view. It clearly shows the
stages between the moved elements. The right view presents the cutting plane view
which also reflects the stage artefact for this setup. This effect can be soothed by
assigning a smaller offset, however, the deformation would then become very large
and the computational cost increases dramatically (please refer to the timing test
section 6.1).

A similar situation as in figure 5.9 is shown in figure 5.11. Again the endoscope
reaches a narrow passage through the nasal ways. The top left picture shows the
undeformed data. In the top right picture, two deformations were conducted. One
by shifting the endoscope to the left, the other by shifting the endoscope to the right.
Then the endoscope was pushed forward and the tissue was deformed in the same
manner as described above. The result is presented in the bottom left picture. The
final picture on the bottom right was taken after deforming the tissue again but this
time only the tissue on the right side of the endoscope was deformed. This creates
an unwanted bump on the left side. The reason for this is, that the ChainMail
object does not regard the shape of the modeled object. In this particular case the
object is too large. It models both sides conjoined although they should be treated
independently because they are separated. Hence, if one side is deformed it also
affects the other side. The next image shows another artefact which is caused by the
inability of the object to model the shape of the tissue.



Figure 5.11: Artefact due to not modeling the object shape.

Another artefact caused by not modeling the shape of the object is shown in figure
5.12. The left picture shows the non deformed view. After the deformation the
entire bump structure disappears as shown in the right picture. This behavior is
not physically plausible. The structure would rather be pushed or bent to a side.
The reason the bump disappears is that there is no tissue around the bump. Hence,
the deformation shifts the bump deeper into the existing tissue but no surrounding
tissue that would contribute to the position where the bump was exists and the bump
disappears.



Figure 5.12: Disappearing of bump structure due to not modeling the object shape.






Chapter 6

Analysis

6.1 Timing Tests

The first observation presented in this section is the measurement of the memory
management component. Hence, the time required to load a cubicle depending on
its size. The effort for loading a cube is O(n?).

Cubicle size ‘ time [ms] ‘
3 1.062
4 4.657
) 12.698
6 31.755
7
8
9

66.176
132.35
248.29
10 446.81
11 740.36
12 1156

Figure 6.1: Time required to load a cubicle depending on the cubicle size.

Figure 6.1 shows that cubicle sizes bigger than 7 should be avoided because in this
case loading of two cubicles already requires more than 0.25 seconds. It is very likely
that at least two cubicles need to be loaded during a deformation step. Together
with the time required for calculating the deformation the performance is too slow
for interactivity. A smaller cubicle size requires less time for loading a cubicle and
minimizes the overall memory usage. However, the overload for inserting increases
and more load requests are necessary. We suggest cubicle sizes ranging from 3 to 6.

Figure 6.2 presents timing tests for the the deformation calculation which also in-
cludes the loading of missing cubicles and the mapping. It shows that the deforma-
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chain region Number of Time for Time for
offset moved elements | Deformation [ms] | Mapping [ms]
0.40 56 110 100
0.20 224 160 270
0.15 392 170 441
0.10 1000 230 1171
0.08 1888 331 4757

Figure 6.2: The timing for the Deformation and Mapping components respectively. The scale
factor for the tests is 1.0. The Deformation performs well even for a large amount of elements
but the time needed to calculate the updated volume data increases drastically with the number
of moved elements.

tion calculation and memory management (using a cubicle size of 3) perform well
even for a large amount of points. However, it clearly identifies the mapping as the
performance bottleneck of this implementation.

The reason for the bad performance of the mapping is the large amount of moved
elements. Finding the enclosing tetrahedron for a given position is the operation that
has the biggest impact on the performance of the mapping because it uses barycentric
coordinates for the check. Each cube to check is split in 12 tetrahedrons thus, the
method to calculate the barycentric coordinates of a point is called 69959 times with
a given offset of 0.08. Using a non symmetrical split which only yields 5 tetrahedrons
results in an overall speed up of 0.7 seconds. This is just a small adjustment but has
a huge effect. Hence, a better way for identifying the eight enclosing elements needs
to be implemented for mapping larger amounts of elements in an interactive fashion.

However, the amount of elements moved depends on two parameters: the scale factor
for the initial deformation and the offset. The pictures in section 5.2 were created
using an offset of 0.2 and a scale factor of 1.2. For this configuration the time needed
for the deformation is 170ms and for the mapping of 328 moved elements is 351ms.
Hence, the overall time required is 521ms which is sufficient for interactivity.

6.2 Discussion

This work presented a flexible algorithm for fast direct volume deformation based on
the works of S. F. F. Gibson, M. A. Schill et al. and A. Neubauer. It extended the
STEPS system for transsphenoidal surgery simulation by adding deformations. It is
able to calculate the deformation and directly manipulate the volume data without
the need of some sort of intermediate step such as a surface extraction.

The algorithm used is fast enough for the amount of data to process to provide
interactivity. The depth and size of a deformation can be configured by two pa-
rameters. However, although the algorithm supports modeling anisotropic data, the



simple configuration restricts the chain regions used to isotropic data but can easily
be extended by adding parameters to specify individual offsets for each axis. The
implemented algorithm also models inhomogeneous data.

The distorting effects caused by the z-scale factor was soothed using the analogy
of a sound wave propagating through the object, by adjusting the shear constraints
along the stretched axis and the z—component of the initial move vector.

To restrict the deformation and avoid unnaturally large deformations as well as the
deformation of bone tissue a bone and a movement constraint were introduced.

This work also proposes an interface feasible for extending the STEPS application.
It consists of three components responsible for the memory management, the calcu-
lation of the deformation and the mapping to and from the volume. This separation
allows code reuse and increases the maintainability and easy integration into the
STEPS system of the software. To allow a full separation of the mapping and the
deformation calculation a simple DeformVoxel interface was introduced and the ob-
ject ensures that all elements necessary for mapping are loaded. Hence, the mapper
does not need to reload missing parts.

The deformations acquired with this implementation are reasonable although several
problems were not solved.

Section 6.1 shows that the performance of the mapper is a bottleneck of the appli-
cation for large amount of elements to be mapped. The limit is around 400 — 500
elements. Another issue are the missing features such as relaxation and considering
the shape of the modeled object during the calculation.

A detailed presentation of the current problems and the further work needed is
presented in the next section.

6.3 Further Work

The further work needed can be split in two parts. The first part are improvements
to the existing algorithm and the second part is adding new features to it.

Improvements

The improvements mainly concern the performance of the mapping. Currently, the
way to find the eight enclosing elements for a given position is time consuming.
A separation between the calculation of the barycentric coordinates and the check
if a cube contains the requested position is required. Additionally, an equation
solver with a better performance as the one currently implemented is desirable.
The approach to find the nearest element for a given position, which is part of
finding the enclosing eight elements, does not always return the correct element.
This causes futile calculations and requires to find the nearest element using an



expensive search of the currently loaded elements. Another improvement required
concerns the multimove which may lead to an inconsistent ChainMail object.

Desired Features

The new features focus on enhancement of the realism.

¢ Relaxation
A relaxation is currently not implemented for performance reasons. One of the
problems is that each relaxation requires a mapping step which is a bottle neck
and that iso—values near the eye point of the endoscope need to be calculated
to check if the eye point is still outside the tissue. An analysis of the problems
can be found in section 3.4.6.

e Avoid Clearing of Object

Currently, the object is cleared if a new deformation is started at a position
outside of the currently loaded object. This allows the user to deform the vol-
ume without being restricted by the movement constraint. Therefore, another
method to handle this case is required. The suggested way to do this is to keep
the created objects in memory and merge them together as they expand. Here
it must be ensured that the merged object satisfy the chain region constraints.
This can be achieved if only non moved elements are allowed as surface elements
which is the case in the current implementation.

e Modeling the Object Shape

Regarding the shape of the object during the calculation is also a missing feature
which creates artefacts such as the one shown in figure 5.11. The reason for this
is that unconnected parts of the tissue are modeled as connected in the chain
mail object. To handle this case separate ChainMail objects are required for
each modeled unconnected tissue. Now the problem is that these objects may
collide with each other during a deformation and hence a collision detection
needs to be implemented. Modeling individual structures separately requires
a segmentation step. The segmentation depends on the given threshold value
for the iso surface. Hence, new way for adding missing parts of the volume to
the existing object is required since a missing part might be the begin of an
individual structure and a segmentation step has to be conducted each time the
threshold values is changed because the topology might change too.

Despite the further work needed, this work produces reasonable results and shows
that interactive direct volume deformation is possible in the given STEPS environ-
ment. This work is a starting point for further direct volume deformation extensions
to the STEPS system.



Chapter 7

Summary

7.1 Introduction

Endoscopy

Minimally invasive procedures are medical applications of growing importance. The
fields they are applied in include surgery, neurosurgery, gastroenterology, radiology
and transsphenoidal tumor surgery. The benefits of this procedure are lower cost
than traditional surgery and a less harming effect for the patient. Additionally, the
risk of injuring the patient during a minimally invasive surgery is smaller than for a
traditional surgery.

During a minimally invasive procedure a small endoscope is inserted into the region
of interest along with a set of tools such as a rongeur for example. The little size
of the endoscope allows the doctor to reach regions difficult to access, such as the
sphenoid or the colon.

However, there are several drawbacks of endoscopy. The procedure is unpleasant for
the patient and the risk of injuring the patient remains. Although the minimally
invasive procedure is cheaper than the traditional surgery it is still expensive and
due to the diameter of the endoscope some region of interest are inaccessible, such
as small blood vessels.

Virtual Endoscopy

Virtual endoscopy was introduced to address these drawbacks. In a virtual endoscopy
the surgeon relies on a 3D view of the patient’s region of interest. The data for the
visualization is typically acquired using tomography. The virtual reality endoscopy
offers several benefits.

The doctor can reach every point of interest because the virtual endoscope is a point
without dimensions. It is less harmful for the patient because it is a non invasive
procedure. The patient does not need to be physically present for the diagnose
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and the medial doctor can go through the data several times. This makes virtual
endoscopy a tool for diagnosis, surgery planning and simulation, education, and
inter—operative support.

The drawbacks of virtual endoscopy are first of all that a true realistic visualization
of the data is not possible. Hence, the traditional endoscopy has to be used if
the medical doctor is in doubt due to the inaccurate visualization. The physical
behavior has to be modeled which is computational expensive. Hence, a tradeoff
between interactivity, visual performance and physically plausible behavior has to
be established. Finally, the patient’s exposure to radiation during a CT' procedure
presents a health risk.

Motivation

A. Neubauer et al. implemented a virtual endoscopy system for endonasal transsphe-
noidal pituitary surgery [Neubauer et al. ’04]. They use a cell-based first-hit ray
caster for direct volume based rendering of the data [Neubauer ’01]. The ray caster
supports interactive threshold changes which allows the user to interactively adjust
the shape of the rendered surface to maximize the accuracy of the visualization.

The focus of our work is to extend the existing application called STEPS by the
integration of a deformation engine to simulate the deformation of tissue. This was
desired to enhance the realism of the application. The main requirements for the
resulting deformation are that it is physically plausible and that the calculation is
fast enough to allow interactive frame rates. The ray caster used allows interactive
threshold changes. This feature must also be supported by the deformation engine.

Approach

Our Divod ChainMail algorithm, which is based on the ChainMail and Enhanced
ChainMail algorithms, for direct volume deformation is presented in this work. Un-
like other deformation algorithms we directly model the volume instead of objects. We
use a Constrained Particle system to model the volume and calculate the deforma-
tion. For the integration of our algorithm into the STEPS application we developed
a simple interface which enforces flexibility and code reusability.

The advantages of virtual endoscopy overweight the drawbacks and a lot of research
has been conducted to resolve the remaining drawbacks. The results of this related
research are presented in the next section.

7.2 Related Work

This section provides an overview of the research conducted in the fields of physical
modeling and virtual endoscopy.

! Computer Tomography



Classification

Methods for physical modeling can be divided into two categories.

e physically based: the deformation and interaction of objects is calculated using
laws of physics such as Newton’s law of gravity.

e geometrically based: deform the object by moving it’s defining control points,
without the application of physical laws.

Physically based algorithms produce more realistic results than the geometrically
base approaches. However, the high computational cost of physically based models
often does not meet the requirement for interactivity. Thus, the faster geometrically
based models are often applied. Another thing to consider is interaction with the ob-
ject. For geometrically based models intuitive interaction is hard to archive because
the shape of the object is indirectly defined by control points.

Mass Spring Model

One of the most popular methods for physical modeling is the Mass Spring Model,
because of its speed and flexibility. In this model objects are defined through mass
points which are connected by dampened springs. Hence, if a force is applied to
a mass point it is propagated to the other mass points through the springs. The
KISMET endoscopy simulation system uses this approach for physical modeling
[Kithnapfel et al. '00]. A system similar to the Mass Spring Model is introduced
by M. Teschner et al.. They derive three distinct forces from the potential energies
of mass points which arranged in a tetrahedral mesh to calculate the deformation
[Teschner et al. ’04].

Finite Element Method

Another widely used approach is the so called Finite Element Method (FEM). It is
a physically based and computational expensive method which yields very realistic
results. To integrate it into interactive applications a lot of effort has been taken
to optimize and decrease computation time. For example (. Zhu uses the FEM to
simulate macroscopic dynamics of muscle [Zhu ’98]. FEM based models require a
preprocessing step which depends on the topology of the object. This preprocess-
ing step is also necessary for Mass Spring System based approaches if meshes are
used as data structure. Hence, changes to the topology such as cutting have to be
avoided. This problem is addressed by H. W. Nienhuys and A. F. van der Strappen
[Nienhuys, Strappen ’96].

Radial Basis Functions

The Radial Basis Functions (RBFs) are a geometrically based approach. It uses
radial functions as interpolation functions for a set of control points. RBFs can be



divided into three classes [Kojekine et al. "02]

e Native Methods: these methods are computationally very expensive and not
feasibly for interactive applications.

e Fast Methods: fulfill the requirements of interactive applications but are re-
stricted to small problems.

e Compactly Supported Radial Basis Functions (CSRBFs): they combine the
advantages of the two latter classes. Hence, they are fast enough for interactive
applications but not restricted to a certain set of problems.

The CSRBFs are further optimized for speed and memory consumption by N. Ko-
jekine at al.. J. C. Carr et al. use CSRBFs in medical imaging. They visualize
human skull from depth maps even across defect areas [Carr et al. "97].

Free Form Deformation

Another fast geometrically base approach introduced by T. Sederberg and S. Parry
is Frree Form Deformation (FFD). G. Hirota et al. describe a way to add physically
based extensions [Hirota et al. '99]. They add the rule of preservation of mass that
governs the deformation. Models to ease direct intuitive interaction are presented
by P. Borell and D. Bechmann [Borell, Bechmann '91] as well as W. S. Hsu et al.
[Hsu et al. '92]. A FFD based model is applied in the laproscopic surgery simulation
system implemented by C. Basdogan et al. [Basdogan et al. '98]. They decided to
use FFDs due to their good performance. G. Sela et al. introduced a new type of
FFDs called DFFDs which support discontinuities and allow topology changes due
to cuts [Sela et al. ’04].

ChainMail Algorithm

This work is further based on the ChainMail algorithm [Gibson '97] presented by S.
F. F. Gibson. It is a fast and flexible algorithm for the deformation of volumetric
objects that supports modeling different material properties and anisotropic material.
M. A. Schill et al. extended this approach to inhomogeneous material with the
Enhanced ChainMail algorithm [Schill et al. '98] and the restriction to rectilinear
grids is overcome by the Generalised ChainMail algorithm[Y. Li '03] introduced by
Y. Li and K. Brodlie.

The next section presents the Divod ChainMail algorithm as well as the ChainMail
and Enhanced ChainMail algorithm this work is based on.

7.3 Diwvod ChainMazl algorithm

The Direct Volume Deformation ChainMail algorithm (Divod ChainMail algorithm )
consists of three parts.



e Deformation: This part is responsible for calculating the deformation. It is
based on the original ChainMail and Enhanced ChainMail algorithms. However,
some adjustments were applied to the original algorithms to integrate them into
the existing application.

e Mapping: The mapping is the link between the object and the application’s ray
caster. The object needs to be mapped to the volume which is then visualized.
Hence, the mapping needs to be fast and the quality of the visualization depends
on the mapping algorithm used.

e Memory Management: Due to the large amount of data the ChainMail ob-
ject can not model the entire volume because it would exceed available memory.
Therefore, we implemented a mechanism for memory management.

Original ChainMail

In the original ChainMail algorithm an object is modeled through a set of elements
which are connected by a rectilinear grid. Hence, each element has a left, right,
top, bottom, front and back neighbor element. Each element may hold material
properties such as color, temperature and density. Additionally, each element has a
set of region constraints which define the valid region a neighbor element has to lie
in. These constraints are minDx, mazDxshear X, minDy, max Dy, shearY for the
2D case. Please see 3.1 for a detailed description. In the 3D case the constraints
minDz, maxDz and shearZ are added.

Such an object can be compared to a chain mail in the 2D case. If a single chain
element of a chain mail is moved only a short distance it does not influence the
neighboring elements but if the movement length is big enough it forces the neigh-
boring chain elements to move too. The same behavior applies to the elements of a
ChainMail object. The chain regions define how far an element can be moved without
forcing the neighbors to be moved too.

A deformation is initialized by moving a single element. After the first element is
moved, its neighbors are added to candidates lists to check if they violate the chain
region constraints and need to be moved too. There are 4 candidate lists in the 2D
case: right, left, top, bottom. In the 3D case two additional lists for the front and
back neighbors are needed.

Candidate Processing

If a candidate needs to be moved its neighbors are also added to the candidates list
since they might violate the constraints too. In the 2D case, candidates from the
left list add their top, bottom and left neighbors, candidates from the right list add
their right top and bottom neighbors, candidates from the top list only add their top
neighbor and candidates from the bottom list only add the bottom neighbor to the
corresponding list. In the 3D case candidates from the left, right, top and bottom



list also add their front and back neighbors. The candidates from the front list only
add their front neighbor. The candidates from the back list only add their back
neighbor.

The algorithm continues by first processing the right, then the left, the top and
finally the bottom candidate list until all lists are exhausted.

The speed of the original ChainMail algorithm, which is capable of modeling several
thousand elements, roots in the fact that each element is processed at most once.
However, the theorem this finding is based on, restricts the ChainMail algorithm to
homogeneous data. Thus, all elements of a ChainMail object need to have the same
chain regions.

Enhanced ChainMail

To overcome this restriction M. A. Schill et al. used the analogy of a sound wave
propagating though material. They found that the sound wave propagates faster
through stiffer material and used this observation to change the way the candidate
elements are processed. To ensure that the deformation propagates through stiffer
material fastest they replace the four candidate lists by a single ordered list. The
ordering criterion is the amount of constraint violation, where the element with the
biggest violation is processed first. This allows the modeling of inhomogeneous data
through assigning each element an individual chain region.

Shortcomings

In the original ChainMail algorithm the deformation is initialized by moving a single
element. Since the user interacts with the visualized surface and is unaware of the
elements a different approach for initiating the movement is required. The approach
implemented in this algorithm is moving the eight enclosing elements of the position
where the endoscope intersects the surface. The eight elements are equally moved
by the force vector which is the vector between the endoscope’s eye point and the
intersection point. With this procedure the eye point is likely to lie outside of the
tissue after the deformation and the diameter of the endoscope is modeled.

Another problem arises from the z—scale in the volume data set. The distance be-
tween two elements along the x—axis and y—axis is one distance unit but along the
z—axis it is z—scale times distance unit. This causes a distortion in the form of a
stretch of the resulting deformation along the z—axis. To overcome this problem the
z—component of the initial force vector is divided by z-scale and the chain region
shear constraints for the x and y shear are multiplied by z—scale for the neighbors
along the z—axis.

Finally, to avoid unnaturally large displacement of the tissue and the deformation of
bone tissue we introduced two counstraints. A movement constraint that restricts the
length an element may be moved and a bone constraint that restricts the movement



of elements with density values that represent bone tissue. If one of these constraints
is violated the movement is reverted and retried with a smaller initial step size.

Mapping

The mapping is the second integral part of the algorithm. Because the ray caster
directly renders the volume it can be used to clearly separate the deformation engine
from the STEPS application. Thus, it is necessary to update the volume data by
mapping the deformed object. For the initial creation of the object it is also necessary
to map the volume data to the object.

Each object element represents one volume voxel. The mapping to the object is done
by assigning each new element the density value of the corresponding volume voxel.

The mapping to the volume uses barycentric coordinates. First, the eight enclosing
elements of the volume position to be updated are acquired. Then a virtual middle
element of these eight elements is calculated to allow a symmetrical split of the
enclosing cube to twelve tetrahedrons. The symmetrical split is necessary to produce
symmetrically visual results.

One of the twelve tetrahedrons is enclosing the point to be updated. This tetrahedron
is used to calculate the barycentric coordinates of the corresponding point which are
subsequently used for the calculation of the new density value for the given position.

Memory Management

A single object element requires approximately 250 bytes. Hence, due to the large
amount of volume voxels (512 x 512 x 128) it is not possible to map every volume
voxel to an object element. This would exceed the available memory.

Therefore, a memory management mechanism has been implemented. The memory
management exploits the fact that the deformation propagates locally and outwards
through the object. The volume grid is divided into a macro grid where a macro
grid cell has the shape of a cube and consists of size® volume grid cells. A volume
grid cell consists of eight elements which form a cube of the size 1.

The ChainMail object consists of cubes which are called cubicles . Each cubicle mod-
els one macro grid element. If the deformation exceeds the currently loaded object,
the missing part is loaded in the form of a cubicle which elements are initialized using
the mapper.

If a deformation propagates out of volume bounds, the memory manager produces
virtual cubicles with the elements density value set to zero. This allows the algorithm
to proceed unaware of the problem.

Initially the object is empty. Thus, the first cubicle is loaded with the start of the
deformation and encloses the intersection point of the endoscope and the surface. If
a subsequent deformation occurs, the object checks if it already holds the position



of the intersection. If so, the deformation is calculated using the existing object. If
the position is not loaded, the current object is cleared and a new object is started
by loading the first cubicle . This is done to avoid large objects and to avoid the
problem of merging two objects which requires collision detection. However, this
procedure allows the user to elude the movement constraint. If the user starts a
new deformation at a different position the current object gets cleared. If the user
then returns to the already deformed position a new object is created with reset
movement constraints which allows a larger deformation than permitted.

Algorithm Outline
Initialization

The deformation is initialized by moving the eight enclosing elements for a given
position, typically the point of collision. Due to initially moving eight elements,
candidate elements would be added multiple times to the candidate list. To avoid
duplicates each element holds a flag that stores the direction in which neighbors
must not be added to the list. The neighbors that lie in these ignoring directions are
added to the candidate list by one of the other seven initially moved elements.

This approach has a drawback because it allows inconsistencies within the ChainMail
object. However, these inconsistencies have no impact on the visual outcome and are
very unlikely to occur as laid out in section 3.5.3.

In case of bone or the movement constraint violations the current deformation is
reverted. All elements in the moved list are reset to their last position. The defor-
mation is then retried with a smaller step size.

Chain Regions

The chain regions used in this approach have a cubic shape which is governed by an
offset parameter and the density value of the modeled element to model inhomoge-
neous data. The density value is used to scale the offset value: of fsetseareq = 0f fsetx
(element,aiue/4096)? The shear factors are set to the scaled offset value. shear =
of fsetscaieq The min and max constraints are given as min = 1 — of fsetseqreq and
max = 1+ of fsetscqieq- Hence, the offset has to be between 0 and 1 because the
initial distance of an element to the neighbors is 1 and the initial object has to be in
a valid state. With this configuration the stiffer material has smaller chain regions
which results in smoother deformations.

Since stiff material does not deform as easily as soft material the movement constraint
mc for a single element is also influenced by the density value of the element e given
asme = (1 — (epatue/4096)2) * movement constraint Where movement constraint 15 the
global movement constraint.

A configuration file allows to tune the parameters for the given data set.



Calculation of new Density Value

The first mapping algorithm implemented caused artefacts in the form of holes inside
the volume. The currently implemented mapping uses barycentric coordinates to
calculate the new density value of a voxel.

The first step in this procedure is to find the nearest element for the position to be
updated. This is done because the nearest element must be one of the eight enclosing
elements for the given position. Hence, all eight cubes that can be formed with the
nearest element as corner element are checked if they enclose the position. The check
is done using barycentric coordinates.

The cube is split into twelve tetrahedrons in a symmetrical manner. A symmetrical
split yields symmetrical visual results. Then the barycentric coordinates for the
point are calculated and checked if each component of the coordinates satisfies the
condition 0 < beomponent < 1 which means that the tetrahedron encloses the element.
The barycentric coordinates (bg,by,b.,by) and the density values of the enclosing
tetrahedron points (V1, Vs, V3, Vy) are then applied to calculate the new density value
given as density = by x V1 + by x Vo + b, x V3 + by, * V.

To symmetrically split the cube a virtual middle element M is calculated. For
example, the split of the bottom surface consisting of the points Py, P;, P, P3 yields
the 2 tetrahedrons (M, Py, Py, P») and (M, Py, P, Ps).

Barycentric Coordinates

The barycentric coordinates are calculated by solving a set of four equations. Cur-
rently, a non optimized version of the Gaussian algorithm is implemented. However,
the drawback of this approach is that the barycentric coordinates are also calculated
for cubes that do not contain the voxel. This results in a large number of unnecessary
calculations and drastically reduces performance.

A similar problem exists with the algorithm implemented to find the nearest element
for a given position. It does not always return the correct element because the
implemented algorithm may terminate prematurely. In this case an expensive second
try which checks all loaded elements is necessary to find the correct nearest element.

However, the performance for the given problem is acceptable and allows interactiv-
ity.

Loading a new Cubicle

To create a new cubicle it is necessary to initialize the new elements. Hence, the
memory manager requires the mapper to read the corresponding density values.

The memory manager also links the elements together. That is, it creates the ap-
propriate neighborhood links for the elements within the new cubicle loaded.



Connecting a new Cubicle to the existing Object

The ChainMail object then connects the new cubicle to the already loaded parts.
That requires establishing the neighborhood links for the opposing surface elements.
For example, if a cubicle is added at the right side of the existing object the elements
on the right surface of the object’s corresponding cubicle have to be connected with
the elements on the left side of the new cubicle . It is important to note that the
other five possible neighbor cubicles have to be connected as well.

If a deformation propagates out of volume bounds the memory manager creates
virtual chunks with elements initialized with zero so that the deformation calculation
proceeds unaware of the problem.

7.4 Implementation

Interface

The purpose of this work is to integrate a deformation engine into the STEPS appli-
cation. The main focus is on implementing a first prototype. Hence, lot of further
work is expected to be done. Therefore, a basic interface for deformation engines to
be integrated into the existing application was developed.

The interface models the three components of the algorithm.

e Deformation
e Mapping

e Memory Management

To fully separate the mapping from the memory management and the deformation a
basic DeformVoxel interface is proposed. It holds the information about the position,
value and the neighborhood of an element which is sufficient for a wide range of
mapping algorithms.

Another thing that is emphasized on is an easy integration into the existing system.
This is achieved by offering a single method which calculates the deformation and
updates the volume date. Secondly, this method does not propagate errors. Hence,
additional error handling is not required when integrating the deformation engine.

The data passed from the STEPS application to the deformation engine consists of a
force vector and the intersection point between the endoscope and the iso surface. It
is calculated in the isCollision() method of the STEPS implementation which checks
if a collision between the endoscope and the iso surface occurred.

Integration

The deformation engine is integrated by creating the mapper, the memory manager
and the deformation object. Then the method performDeformation() is called in the



isCollision() call passing the force vector and the intersection point to the deform
engine.

The intersection point is calculated iteratively. First, the point is assumed at the
eye point of the endoscope. Then it is repeatedly moved towards the last position
of the eye point by a small step size until it lies outside the tissue. The middle of
the last point inside the tissue and the first point outside the tissue is taken as the
intersection point. The vector from the intersection point to the eye point is the
force vector.

7.5 Results

The performance of the implementation is manly determined by the mapper. For
1000 moved elements the mapper needs 1, 17 seconds to map the deformed object to
the volume. The time required to calculate the deformation is 230 milliseconds. Ad-
ditionally, the time required for the calculation of the deformation does not increase
drastically even for large numbers of moved elements. For 1888 moved elements it
requires 331 milliseconds. The time required by the mapping drastically increases
with the number of moved elements. It already takes 4,76 seconds to update the
volume for 1888 elements.

The reason for this decrease in performance is the way the enclosing cube for a
given position is calculated. As shown in section 3.6.3 a lot of futile calculations are
conducted to find the enclosing cube and tetrahedron. Hence, a faster way to solve
this problem is required for larger amounts of moved elements.

The number of elements moved depends on the ratio between the offset and the scale
factor for the initial movement. The offset governs how many elements are dragged
where smaller offsets cause more dragging. The scale factor defines the size of the
initial movement. A large initial movement also causes more elements to be dragged.

In the current implementation the offset is set to 0.2 and the scale factor is set to
1.2. The performance for these parameters is 170ms for the deformation and for
the mapping 351ms. This sums up to 521ms for a single deformation step and is
sufficient to give an interactive impression.

7.6 Conclusion

The presented work shows an approach to integrate a deformation engine into the
existing STEPS application. The results of this prototype are already promising
although a lot of optimizations are still required the performance is sufficient for
interactivity.

Large numbers of moved elements have to be avoided because the mapping which is
the performance bottleneck requires over a second to map 1000 moved elements and
the computational time increases drastically with the number of elements to map.



However, the current configuration does not require such large numbers of elements
to be moved resulting in a sufficient performance.

The described interface allows code reuse and enhances the flexibility of the software.
For example the mapping component is independent from the deformation and the
memory management and can be interchanged. Easy integration is achieved by
handling all errors internally and providing a single method which calculates the
deformation and updates the volume data. Hence, the ray casting algorithm stays
unaware of the new engine.

Further work includes optimizations of the the implementation and adding new fea-
tures. Most of the optimizations focus on the mapper and the way the eight enclosing
elements for a given position are found.

Desired new features include a better multimove strategy that avoids inconsisten-
cies as well as a way for collision detection and merging ChainMail objects so that
currently unused objects are not removed from memory which allows to ignore the
movement constraint. The collision detection is also necessary if the different types
of tissue are modeled individually through multiple ChainMail objects. That also
requires a segmentation of the data. The artefacts that are created because the
shape of the object is not modeled could then be avoided. For example two separate
structures are currently modeled by a single ChainMail object. Hence, a deformation
of one structure in the object also influences the other structure which is unrealistic
behavior. Furthermore, a relaxation step would further increase the realism of the
application.

This work presented our Divod ChainMail algorithm for fast direct volume deforma-
tion. It also described the integration of the deformation engine prototype into the
existing STEPS application. Although there is still a lot of room for improvement
concerning the performance and the features of the implementation the requirement
of an interactive impression is met together with good visual results and the work
presents a starting point for further direct volume deformation applications in the
STEPS environment.
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