Interactive Volume Rendering based on a "Bubble Model"

Balázs Csébfalvi, Eduard Gröller

Institute of Computer Graphics and Algorithms Vienna University of Technology

Motivation

- Fast volume previewing
- No a priori knowledge about the data
- Avoid time-consuming specification of an appropriate transfer function
- Visualize preferably all the internal structures
- Interactive frame rates on low-end HW
- Fully interactive control of the rendering parameters

Traditional methods

Indirect volume rendering - "Marching Cubes"
computationally expensive preprocessing
which iso-surface represents the data best?
3D graphics HW is required for fast rendering

Direct volume rendering time-demanding transfer function specification HW acceleration is required for fast rendering

Simplification of the general visualization model

General model [Max 95]: $I = I_0 \prod t_i + \sum c_i \prod t_j$

Simplified model:

 $I = I_0 \prod t_i$ where $t_i = 1$ - α_i and $\alpha_i = |\nabla f_i| \cdot s$

Silhouette enhancement using the "bubble model"

Images rendered using the "bubble model"

Advantages of the bubble model

- All the internal structures can be rendered at the same time independently from their data values
- Only one rendering parameter (linear opacity scaling)
- No visual overload only the voxels with high gradient magnitudes contribute to the generated image

Interactive rendering

- Extraction of surface voxels (gradient magnitudes are higher than a predefined threshold)
- Extracted voxels are projected in back to front order using a shear-warp projection
- Due to the data reduction the relevant information can be visualized interactively even on a low-end PC

Shear-warp projection

$$M_{view} = M_{warp} \cdot M_{shear}$$

Bucket sort of the surface voxels

The extended rendering model

The interactive rendering technique supports additional shaded iso-surfaces Real-time shading using gradient quantization and lookup tables The rendering parameters (the density) threshold defining the iso-surface and the opacity scaling) can be changed interactively providing an immediate visual feedback

Volume rendering using the "bubble model"

The user interface

	🛃 CT Viewer
	Resolution Load
	X: 256 Y: 256 Z: 225 <u>E</u> xit
head256.den	Rendering parameters
	opacity scaling: 1282
	threshold: 95
De la secol	Statistics
	frames/second: 3.824 Data reduction rate: 0.16911
	Histogram:

Performance

volume	resolution	data reduction rate	frame rates
tooth	256 × 256 × 161	3.48 %	14.28 - 20.37 Hz
body	202 × 152 × 255	16.89 %	4.74 - 7.14 Hz
small head	128 × 128 × 113	25.19 %	14.08 – 20.12 Hz
big head	256 × 256 × 225	16.91 %	2.44 – 3.71 Hz

Limitations

 Trade-off between speed and image quality
One voxel is projected onto one pixel equivalent with nearest-neighbor resampling
High-quality zooming is not supported
Only parallel projection

Conclusion

- Enhancement of the silhouettes of all the internal structures contained in the data
- Only the relevant voxels are stored and rendered
- Hardware acceleration is not required to achieve high frame rates (5-20Hz)
- No transfer function specification
- Fully interactive volume rendering (rotation and modification of the two parameters)