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Abstract

This thesis is about shadow generation in real-time and its problems. Its focus is
on shadow mapping, a real-time technique to render high quality shadows. A lot
of literature is available concerning shadow mapping and the problems associated
with it. But most of this literature concerns itself only with certain problematic
parts of shadow mapping, but not with all the problems of shadow mapping to-
gether. In this thesis we will give a minute report of all these problems and why
and how they occur. We will discuss the major methods to cure them and identify
and adopt the methods so that they can be used together for demanding real-time
applications to avoid all of the shadow mapping problems.

All things considered this thesis should provide an insight into the current
state of research in the field of real-time shadow generation with shadow maps,
and should expand this overview by giving the reader all the methods at hand to
cure the problems of shadow mapping and use it in a complex real-time scenario
without visible artefacts.
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Kurzfassung

Diese Diplomarbeit ist über die Erzeugung von Schatten in Echtzeit und den dabei
auftretenden Problemen verfasst. Das Hauptaugenmerk liegt dabei beim Shadow
Mapping, einer Echtzeittechnik für die Erzeugung von hochqualitativen Schat-
ten. Eine Menge Literatur, die sich mit Shadow Mapping und den dabei auftre-
tenden Problemen beschäftigt, ist vorhanden. Aber der Großteil dieser Literatur
beschäftigt sich nur mit einzelnen problematischen Teilen des Verfahrens und
schafft deshalb keinen Überblick über alle vorhanden Probleme dieses Ansatzes.
In dieser Diplomarbeit berichten wir genau über die Ursache und Wirkung all
dieser Probleme. Wir besprechen die wichtigsten Methoden und wir kombinieren
diese, damit sie gemeinsam genutzt werden können, um den Anforderungen von
Echtzeit-Anwendungen zu entsprechen.

Insgesamt sollte diese Diplomarbeit einen Einblick in den Status quo der For-
schung im Bereich der Generierung von Schatten in Echtzeit mit Shadow Maps
liefern. Zusätzlich sollte diese Arbeit dem Leser die Werkzeuge zur Verfügung
stellen, mit denen er die Probleme von Shadow Mapping unter komplexen und
praktischen Bedingungen, ohne sichtbare Artefakte lösen kann.
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Chapter 1

Overview

• Chapter 2 of this thesis gives an introduction into the field of shadow gener-
ation and discusses why shadows are so important for computer generated
graphics.

• Chapter 3 will describe the three problems of shadow mapping: Projection
aliasing, perspective aliasing and incorrect self-(un) shadowing and illus-
trates how and why these errors arise.

• Chapter 4 introduces a short overview of methods that cure all three prob-
lems at once. Regrettably these methods are not real-time methods. We will
also discuss the intricacies of focusing the shadow map on the right vol-
ume in space that contains all the necessary shadow casters and receivers.
Additionally filtering, as a tool that can help to alleviate all three errors, is
explained in this chapter.

• Chapter 5 will elaborate algorithms that can handle incorrect self-(un) shad-
owing, like biasing.

• Chapter 6 is aimed to resolve the problems with projection aliasing.

• Chapter 7 discusses the minimization of perspective aliasing and some of
the hardware accelerated methods derived from the initial paper Perspective
shadow maps (PSM) by Stamminger and Drettakis [SD02].

• Chapter 8 provides a minute explanation of Light space perspective shadow
maps, a shadow mapping technique developed by Michael Wimmer and the
author [WSP04]. This technique is used to minimize the effects of perspec-
tive aliasing.

• Chapter 9 is devoted to the involved implementation of applying shadow
maps to large-scale, polygon-rich and dynamic environments, a very de-
manding setup with many real-world properties found in todays applica-
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tions. This implementation uses a combination of solutions to all the de-
scribed problems. We also state the results achieved by this implementation.

• Chapter 10 summarizes all our efforts and concludes this thesis.



Chapter 2

Introduction

In this chapter we will give an introduction to the field of shadowing with an
emphasise on real-time applications. In Section 2.1 we will relate the reasons
for using shadows in computer graphics and the role shadows play in computer-
generated images (the why). In Section 2.2 we will introduce the basic definitions
used in this thesis and explain what shadows are and how they can be generated
algorithmically in computer graphics. Finally we provide a brief discussion of
the various shadow generation algorithms for real-time purposes in Section 2.3,
namely the two most robust, shadow maps and shadow volumes.

2.1 Why shadows?

Shadows give important visual cues for perceiving the geometric relationship be-
tween objects. This means a shadow can help to clarify position, size and geom-
etry of the shadow casters and the geometry of the shadow receiver as well as the
distance to the light source (see Figure 2.1).

Consider a tree: Without a shadow, the tree just floats above the ground, miss-
ing the firm connection to the terrain in reality provided by his shadow. In general
the gap between the object and its shadow on the ground plane gives the observer
a hint how distant the object is to the shadowed surface. In the case of the ground,
this answers the question how high the object is flying above ground or if it is
standing on the ground. Additional shadows help to create a certain atmosphere
and add immensely to the realism of a scene.

Today the most commonly used form of shadows are hard shadows produced
from a directional or point light. This simple model produces so-called hard shad-
ows. In the case of a hard shadow, a point is either in shadow or not. This binary
decision produces very noticeable shadow edges, which can make the shadow
be falsely perceived as a separate object. In addition the high contrast edges are
very noticeable to the human visual apparatus, too. Artefacts are therefore easily
noticed.

In contrast, most of the shadows present in nature are very soft and blend
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Fig. 2.1: The same image is shown once without and once with a shadow. With the
shadow attached the objects interrelationship is far easier to understand.

seamlessly into their environment. These soft shadows are inconspicuous, because
they gradually shift their color from a bright one in the lit regions, to the darkened
shadowed color. But nevertheless, they influence the realism of the generated
image immensely. Definitely more complex to compute than hard shadows, soft
shadows are therefore a valuable technique to investigate, and the recent effort to
do so can be measured by the large number of published papers on this topic. The
used light model for these kinds of shadows are volume or area lights.

An excellent overview of shadow algorithms as well as real-time computer
graphics in general can be found in Möller and Haines’ Real-Time Rendering
book [MH02]. A bulk of information and references can be found in [HLHS03]
and on the accompanying web-page.

2.2 The basics

In this section, we introduce the basic definitions we use in this thesis. We intro-
duce the term shadow and the basics of shadow generation.

2.2.1 Real-time vs. interactive frame rates

In future sections we will repeatedly talk about real-time applications, so at first
we need to define what real-time means: We define real-time applications as ap-
plications that demand at least 60 frames per second as an absolute minimum.
Interactive applications on the other side need a frame rate typically situated in
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the range of 2-12 frames per second. A frame in this respect is a new rendering of
the world, which incorporates a change of the camera, change of the environment
and/or change of the lighting situation.

The main focus in this thesis lies on techniques that can be used in real-time
applications. Methods such as ray-tracing, photon mapping, radiosity and Monte-
Carlo ray-tracing can produce realistic shadows, but none of them is currently
capable of delivering these at real-time or even at interactive frame-rates. As a
consequence, thess approaches are not handled here in detail.

2.2.2 What are shadows?

A point is considered to be in shadow when this point cannot be seen from the
viewpoint of the light source. The object that is the cause for not seeing this point
is called the shadow caster, occluder or blocker, which blocks the light rays from
reaching the point. The object on which the point in shadow lies is called the
shadow receiver.

Fig. 2.2: A shadow caster casts an umbra and penumbra region when illuminated by an
area light source.

This simple definition holds for point lights. When we consider an area or
volume light source it is possible that an object is just partly hidden from the light
source. A point in such a partially hidden region lies in the penumbra region of the
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shadow. The points which are totally hidden from the light source lie in the umbra
of the light source. An example of such a configuration can be found in Figure 2.2.
The umbra and penumbra together are called the shadow. The common type of
real-time shadows, the hard shadow, has no penumbra region because the light
source that generates the shadow has no physical extent. It simply consists of the
umbra.

Note that the penumbra region is not just a blurred version of the shadow
receiver outline. A soft shadow gets blurrier the farther the shadow caster is away
from the shadow receiver, as can be seen in Figure 2.3. The larger the light source
gets, the smaller the umbra region becomes, therefore the soft shadow umbra is
generally not equivalent to the hard shadow generated by a point light at the center
of the light source. The exact determination of the umbra and penumbra region is
a 3D visibility problem, which is notoriously hard to solve.

Fig. 2.3: The blurriness of a soft shadow increases the farther the shadow caster and
receiver are apart.

A special case occurs when the receiver and the caster are the same object.
We use the therm self-shadowing for such a constellation. The toes of the left
foot in Figure 2.3 are shadowed by the shadow of the right foot. If both feet are
considered to be part of one object, this is a case of self-shadowing.
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2.2.3 Rendering methods
In this branch of computer graphics a synthetic image of the world is generated
through a mathematical description of a scene. The objects inside the scene, the
camera, the lighting conditions and the surface properties are described through
numbers, and some formulas for animation of these numbers may be given. To
produce the final image, consisting of numbers that represent colors, various meth-
ods exists, called rendering methods. A rendering method is therefore a mecha-
nism to convert the mathematical description of the scene into color information.

To understand the problems of the different shadow algorithms, we must un-
derstand the different rendering methods. Each method introduces its own prob-
lems and difficulties for shadows generation. For the sake of simplicity we distin-
guish two methods of rendering: ray tracing and polygon rasterization.

Ray tracing

Ray tracing has its basics in a simplified model of the physical propagation light.
It models laser like light rays passing through the scene, after emanating from
the eye. At each intersection of a ray and an object the object properties, like
reflectance and transparancy, are considered and the previous ray is ended, but
maybe new rays are generated according to the properties of the object.

For ray tracing shadows, are a natural extension of the algorithm. For each
intersection of a ray and an object, simply send shadow feelers to each light
source in the scene. If there is no intersection on the route to the light source,
this light source is visible to this point and therefore the illumination of the point
has changed by the influence of this light source.

Ray tracing is a global rendering method. This means that at each point, we
need to access all the information of the scene, like visibility, through casting rays.
Ray tracing has to be done for each pixel (picture elements) on the cameras image
plane. For a viewport of, for example, 800x600 pixels this means 480.000 ray
tracing steps, as described above, have to be calculated. This technique is there-
fore slow and not even suitable for interactive image generation with today’s speed
of hardware. Nevertheless the generated images are accurate for scenarios with
a dominant specular lighting. For diffuse lighting conditions the laser like rays,
used in ray tracing, are not valid anymore. In ideally diffuse lighting conditions
the incoming radiation is, upon reflection, reemanated equally into all directions.
Global illumination methods, like radiosity, provide solutions for such scenarios.

Polygon rasterization

A way to generate the pixels faster is polygon rasterization. For each polygon,
the screen space coordinates of its vertices are calculated. The pixels that are
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overlapped by the polygon can then be easily determined and are set to a certain
color. This color can be calculated through the application of formulas to incor-
porate the lighting contribution and the various surface properties. However this
method doesn’t solve the visibility problem. Here a z-buffer can help. For each
screen-pixel the depth value of the nearest fragment is stored in this z-buffer. We
use the term fragment for a pixel with additional information like depth, normal
and possible other data. On rasterizing each fragment, the z-buffer is checked if
there is no nearer fragment already at this position. If this is the case, the current
fragment is discarded and the fragment already calculated stays put.

Shadow determination would be the responsibility of the formulas used to
calculate the lighting contribution. How this is done exactly, without using shadow
feelers for each fragment, is the basic of real-time shadow generation, which is
desribed in the next section.

2.3 Shadowing in real time

Shadowing is a visibility problem because it is concerned with the question: Is a
point visible from the point-of-view of the light? As a visibility problem the range
of applicable methods is very wide. We can use 3d, 2.5d as well as 2d methods.
We can use rather unintuitive spaces, like line-space or the post-perspective space.
We can state the visibility problem in object or in image space. All this is done
to make it easier (faster) to solve the problem of visibility because it is extremely
difficult to solve fast and accurately.

The fastest methods for shadowing are specialized visibility algorithms. The
two methods described in the following are both rather intuitive 3d methods. The
first, shadow volumes by Crow [Cro77] is an object-space method, which means
that it works with geometrical representations of the objects in the scene to calcu-
late the shadows and therefore gives accurate results. The second method, shadow
mapping by Williams [Wil78], on the other hand is an image-space method. This
means it works with a two-dimensional image with a finite resolution, to store
some values needed for shadow determination. Both can handle scenes with gen-
eral sets of shadow casters and receivers, including self-shadowing. We will de-
scribe these two methods in the next two subsections.

2.3.1 The shadow map algorithm

The use of shadow mapping has gone a long way since its introduction by Williams
[Wil78] and its fully hardware-accelerated use today. His basic idea was to ren-
der the scene from the point of view of the light into a z-buffer and save the so
gathered depth values in the so called shadow map. For a point light, these depth
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values give the distance each point visible to the light has to the light source. Upon
rendering the scene from the eye-point, each pixel is transformed into light space
and its depth compared to the depth stored in the shadow map. If the stored depth
is nearer to the light, the pixel must be in shadow and the lighting of the pixel can
be altered to reflect this (see Figure 2.4).

Fig. 2.4: On the right side we see the shadow map, generated from the point-of-view of the
light. In the middle the transformation of a sample fragment from eye-space (blue sample)
to light-space (orange sample) is shown. On the right side we see the final rendering with
the applied shadow-map.

With the use of projective texture mapping as described by Segal [SKvW+92],
shadow mapping can be easily matched to hardware, with one additional render
pass to create the light view depth image, the shadow map.

An important benefit of shadow maps is that they can handle everything that
can be drawn. This means we are not limited to polygonal data as geometry in-
put. Another important benefit of shadow mapping is that it is independent of the
scene geometry, which makes it suitable for highly tesselated scenes. This inde-
pendence comes from the fact that shadow mapping is an image space technique.
This means it uses a two-dimensional finite image, the shadow map, to store the
gathered depth samples in a regular grid. This on the other hand introduces some
aliasing problems (see Chapter 3) due to the nature of regular sampling through
the shadow map. Another disadvantage of shadow maps is the difficulty of cal-
culating the shadow of omnidirectional point lights. The reason why a point light
is difficult to do with shadow maps lies in its spherical view. No single frustum
can reflect this, and so a number of shadow maps and associated frusta have to be
built to divide this spherical view into manageable bits.
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2.3.2 The shadow-volume algorithm

A completely different approach to shadow creation was first described by Crow
[Cro77]. This object-space method builds the actual shadow volumes created by
the silhouette edges of the shadow casters as seen from the light source. Each
silhouette edge is extruded in light direction to infinity to form a quad and together
with the other edges creates a shadow volume.

A means of determination whether a pixel is in shadow is then provided with
an inside-outside-test. For each pixel, we count the shadow volume faces we
cross between the view point and the pixel. For front-facing faces, we increase
our counter because we enter another shadow-volume, and for back-facing faces,
we decrement our counter because we leave a shadow-volume (see Figure 2.5). If
the total count is greater than zero, we are in a shadow-volume, hence the pixel
is shadowed. This test can be implemented with the aid of a stencil-buffer in
hardware.

Fig. 2.5: A pixel is in shadow if the count is positive.

The obvious advantage over shadow maps is that no aliasing can appear, be-
cause the shadow boundaries are determined geometrically. Omnidirectional point
light shadows can be calculated too, which are complex to calculate with shadow
maps.

A disadvantage of this technique is the vast amount of fill-rate needed to render
all the shadow-volumes. Additionally a silhouette detection has to be made, which
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for polygon-rich scenes means another performance penalty. Finally, only polyg-
onal data can be processed, because we need a simple way to detect the edges and
extrude them. Under the aspect of soft shadows, the inherent hard shadow edges
of this method are another drawback.

2.4 Summary

In this chapter we introduced shadowing as an important technique to enhance
the realism of a computer-generated scene. We described what shadowing means
and how it is done in theory, as well as in real-time with the two most important
shadowing techniques, shadow volumes and shadow maps.

For further information, regarding shadow algorithms, we recommend Möller
and Haines’ Real-Time Rendering book [MH02].



Chapter 3

Problems of shadow mapping

In this chapter we give an extensive presentation of the problems of the shadow
map algorithm and introduce the practical implications that are the result of these
problems.

As discussed in Section 2.3.1, shadow mapping is an image space technique
normally used with a z-buffer (the shadow map) to store the depth information
from the point-of-view of the light source (see Figure 3.1 for an example depth
buffer image).

Fig. 3.1: The shadowed eye view (left) is created with the depth informations stored in
the shadow map (right), the depth view of the light.

The z-buffer is a finite and regular grid, which stores a distance at each of
its grid cells. On sample of this grid can map to several samples, leading to the
‘blocky’ appearance typical of image-space algorithms. In general we need an
individual shadow map depth information for each transformed fragment to avoid
such errors. This would mean that the resolution of the shadow map should vary
and should give us an individual depth value for each transformed eye-space frag-
ment. This effect is called undersampling and it causes these incorrect shadowing
results, which are a form of aliasing artefacts present in all image space meth-
ods. This basic (meaning not “augmented”) form of the technique will be called
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standard shadow mapping (SSM) in the rest of the thesis.
In the following sections we will describe the three main problems of shadow

mapping:

• Perspective aliasing (see Section 3.1)

• Projection aliasing (see Section 3.2)

• Incorrect self-(un)shadowing (see Section 3.3)

3.1 Perspective aliasing

Fig. 3.2: The far away shadows have enough resolution, but the shadows near the
view point have insufficient resolution caused by perspective aliasing.

Perspective aliasing is common with standard shadow maps for a perspective
eye view. A perspective view shows nearby objects larger than distant objects.
The light space in which the standard shadow map is calculated does not incorpo-
rate this information. So an object is stored with a fixed resolution in the shadow
map, regardless of the distance to the eye. The outcome is a shadow resolution
that is too low for nearby objects and too high for distant objects in eye space. In
Figure 3.2 the light source is symbolized by the small sun (yellow). The shadow
map is represented by a one-dimensional grid (orange) and its texels are sym-
bolized through the space between the small vertical strips. The light direction is
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straight downward (orange arrows). The scene objects are two trees on the ground
(green). The camera is observing this scene from the right side. The equally
spaced shadow resolution (in light-space) is unequally distributed in eye-space.
This leads to enough resolution for far away shadows (blue), but insufficient res-
olution for the shadows near the view point (red).

This effect is biggest if the light direction and the view direction of the camera
are perpendicular to each other. The smallest effect of perspective aliasing occurs
if the light direction and the camera are facing in the same direction (are parallel
to each other).

Fig. 3.3: The result of perspective aliasing is insufficient shadow map resolution for shad-
ows near the view point.

In Figure 3.3 the actual effect on shadows can be seen. The marked (red)
square in the front is one texel of the shadow map, magnified in eye-space through
projection aliasing. Also it is clearly visible that perspective aliasing is only a
problem near the point-of-view of the camera because the shadow map texels
in the distance are too small to be distinguished from each other and therefore
provide sufficient shadow resolution for far away objects.

3.2 Projection aliasing

Surfaces that are roughly parallel to the light direction are sampled sparsely in the
shadow map like in Figure 3.4. In this figure the crown of the tree is roughly par-
allel to the view direction of the light. The marked (red) part of the tree is stored
in just one shadow map texel. The camera sees the same texel enlarged and with
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insufficient resolution. A single shadow texel projects to many pixels on screen,
leading to the projection aliasing error. The outcome are incorrect shadows. But
the worst thing about projection aliasing is its large temporal incontinuity on cam-
era movement. This can lead to severe shadow flickering when moving around in
a scene and greatly disturbs the intended effect of the shadow.

Fig. 3.4: The result of perspective aliasing is insufficient shadow map resolution for shad-
ows near the view point.

In contrast to perspective aliasing, projection aliasing is independent of the
angle between the view direction of the camera and the light direction. It is only
dependent of the the light direction and the surface normal. It is largest if the
surface normal is perpendicular to the light direction. In this case the surface
projected into the shadow map has no area and so no depth information is stored.
This leads to arbitrary shadowing results and an infinite projection aliasing error.
Projection aliasing is smallest if the light direction and the surface normal are
parallel to each other. In this case the area of the projected surface in the shadow
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map is maximized and therefore a maximum of depth information is stored in the
shadow map. The result is no projection aliasing in this case.

Fig. 3.5: The projection aliasing artefacts, the black stripes, in the eye view (left) are
caused by too few samples of the cubes sides as seen from the light view (right).

Figure 3.5 shows an extreme case of projection aliasing. The light shines
straight down on thousands of green cubes with their sides facing side-ways,
standing on green hills. All things considered this is a case with large projec-
tion aliasing. The light view shows hardly any depth information for the sides of
the cubes and the result are the stripes in the eye view. These stripes are the rest
of the shadows that should shadow all of the side-surfaces of the cubes, so the
shadows are badly out of shape. And worst of all these stripes are going to jump
randomly when moving around, causing irritating flickering effects.

3.3 Incorrect self-shadowing (“shadow acne”)

In shadow mapping, sampling takes place at two times in the process: Once when
the shadow map is created and the depth information of the scene from the point-
of-view of the light source is stored in a regular and finite grid. And once when the
unshadowed fragments from the point-of-view of the eye are calculated and have
to fit the output frame-buffer resolution. Most of the time these two sampling
processes will lead to two different samplings of the scene data. Therefore on
transformation of the eye-space fragments to light-space, resampling takes place.

In Figure 3.6, the sampling is represented through the lines emanating in the
mid-points of the corresponding pixels of the shadow map (orange) at the top and
of the observer frame-buffer (blue) from the left side. The line (green) represents
a polygon in the scene. Obviously this polygon should not shadow itself. In the
marked case (red circle) the observer’s distance should be smaller than the depth
stored in the shadow map to get the correct shadowing results. But the different
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Fig. 3.6: Different sampling, once in light-space and once in eye-space can lead to incor-
rect self(un)-shadowing

samplings lead to the reverse case: The observer’s distance is greater than the
distance stored in the shadow map, leading to incorrect self-shadowing.

Fig. 3.7: Depth quantization is another cause for incorrect self-shadowing.

An additional problem, leading to incorrect self-(un)shadowing, is depth quan-
tization. The depth information that is stored in the shadow map is not exact, but
uses an integer or floating point representation of finite precision. Most com-
mon are shadow maps with 24 bit of integer information for a stored texel. This
means not every depth value can be represented exactly in the shadow map, but
the shadow values are rounded to the nearest depth value representable through
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the given shadow map precision. This means the orange lines emanating from the
light source cannot assume any length, but just certain lengths limited through the
precision of the shadow map (see Figure 3.7). The stippled lines represent the
depth values that can be stored in the shadow map. The depth that is used for
the depth comparison for shadow mapping is therefore not the depth at the real
intersection of sample and geometry.

Fig. 3.8: The moiré patterns (incorrect self-shadowing) are caused by resampling errors

Figure 3.8 shows the results of incorrect self-shadowing: visible patterns of
shadowed and unshadowed regions. Obviously the ground should be unshadowed,
except where the trees are casting shadows.

3.4 Summary

In this chapter we discussed the various problems of shadow mapping. We iden-
tified three main problems: perspective aliasing, projection aliasing and incorrect
self-shadowing. The causes for thess problems are found in undersampling, re-
sampling and depth quantization errors, which are common problems for any im-
age space algorithm. Table 3.1 summaries the causes for each of the noted errors.
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Error Cause Result
Perspective
aliasing

Undersampling Insufficient resolution near
the observer

Projection
aliasing

Undersampling Insufficient resolution on
polygons almost parallel
to the light direction

Incorrect
Self-(un)
shadowing

Resampling;
depth precision

Moiré-patterns

Tab. 3.1: The different errors of shadow mapping.



Chapter 4

General solutions to the problems of
shadow mapping

In this section we take a look at techniques that influence all aspects of shadow
mapping (see Chapter 3). Section 4.1 shows techniques to solve all of the prob-
lems of shadow mapping at once. Regrettably, this comes at the cost of speed.
Section 4.2 describes what volume of space is needed for the generation of the
shadow map and how this volume can be determined. In Section 4.3 we elaborate
on the various filtering techniques usable for shadow mapping.

4.1 Solutions for all problems of shadow mapping

The image-space nature of shadow mapping is already discussed in Section 2.3.1
and Chapter 3. The main problem of the image-space approach is undersampling
and the resulting aliasing artefacts.

Numerous solutions to this undersampling problem exists. Johnson [JMB04]
proposes the use of an irregular z-buffer that can eliminate thess problems, by
providing different sampling densities, based on the projected size of the eye space
pixels in the light space. The down side of this method is that it is currently not
suitable for hardware, and a software implementation is not competitive to today’s
hardware methods in terms of the attainable speed. A similar approach was chosen
by Aila and Laine [AL04].

Another solution introduced by Fernando et al. [FFBG01] is to use a hierarchi-
cal grid as a shadow map structure. This hierarchy is refined only when required,
and the appropriate resolution is chosen according to the impact on image qual-
ity a given pixel has with a cost-benefit function, hence the name adaptive shadow
maps. This approach doesn’t map well to hardware implementations and therefore
the speed of this method is only interactive.
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4.2 Focussing the light space

In standard shadow maps, the view frustum often covers only a small area while,
the remainder of the shadow map is wasted (no visible information is stored there).
To increase the amount of useful information that is stored in the shadow map,
we only want to consider those parts of the light space for the shadow map that
can cast a visible shadow into the view frustum. Brabec [BAS02] showed the
importance of focusing the shadow map to the visible parts of the scene. This step
seems obvious, but some intricacies are involved. A geometrical recipe was given
by Stamminger and Dretakis [SD02]. The idea is to calculate the convex hull of
the view frustum V and the light position l (for directional lights this position
is at infinity) and afterwards clip this body with the scene bounding volume S
and the light frustum L. We call the resulting intersection body B and write the
calculation as

B = (V + l) ∩ S ∩ L (4.1)

where + denotes the convex hull operation and ∩ denotes the clipping operation.
Clipping to the scene bounding volume S is necessary because today very large
view frusta are common and they frequently extend outside the scene borders.
But this method can still be improved. The idea is to work with the clipped view
frustum. This means before we do the convex hull determination and the clipping
with scene and light frustum, we clip the view frustum with the scene bounding
box S. This leads to

B = ((V ∩ S) + l) ∩ S ∩ L (4.2)

This removes the part of the volume that is inside the view frustum, but outside
the scene bounding volume. Figure 4.1 shows this process. Our new method gains
smaller sized volumes, but nevertheless includes all relevant casters and ocluders.
In Figure 4.2 we can see how this process is done in 3D with a real scene.

For the implementation of such a simple method, special purpose geometrical
functions are often the best choice, because we only use convex volumes with a
small number of corner points. We will discuss such an implementation in more
detail in Chapter 9.

If we have more CPU time to spare, we can also use a more involved method,
for example unit cube clipping as described by Kozlov [Koz04]. If we use a
visibility algorithm, O’Rorke’s article [O’R04] gives various practical hints for
using this visibility information to decrease the volume we have to consider for
the shadow map generation.

All in all, a trade-off between exact volume determination for a given scene
with higher resulting shadow quality and higher computational costs, and a sim-
pler method with a coarser result but with a faster execution has to be made. For
densely filled scenes, a coarser approach is often the wiser choice because the
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Fig. 4.1: For calculating the focus region B (violet) we use the view frustum V (blue),
the light frustum L (orange) and the scene bounding volume S (green). Left: B of a spot
light is calculated by extruding the clipped view frustum V ∩ S and clipping it with the
spot light frustum L and the scene bounding volume S. Right: B of a directional light is
calculated by extruding the clipped view frustum and clipping it with S.

computation cost for huge numbers of objects are high, and often the gain for
such a scene is minimal. On the other side, for sparely crowded scenes a more
involved approach can gain a lot over a simple scene approach.

4.3 Filtering

Filtering of shadow maps is an important technique that can improve the quality of
the resulting shadows greatly [Hec86]. We will discuss the basics of fast filtering
of shadow maps and the ideas of percentage closer filtering to produce softer, less
blocky shadows.

4.3.1 Bilinear filtering

Normally textures are filtered bilinearly. Bilinear filtering takes four samples to
interpolate one resulting sample. The four used samples are the nearest pixels
in the texture to the exact texture coordinate. First we interpolate twice in one
coordinate direction between samples 0 and 1 and between samples 2 and 3 to
get the two interpolated samples A and B. Finally we once interpolate in the
other coordinate direction between samples A and B to get the final sample S
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Fig. 4.2: Left: The clipping of the view frustum (blue) with the scene bounding box
(green) decreases its size considerably (V ∩ S). Right: The final intersection body B
(violet) with a light direction from above (orange arrows)

(see Figure 4.3 and the following formulas).

Fig. 4.3: Left: The two blue sample pairs are each linearly interpolated to get A and B.
Finally these two are linearly interpolated to get the final sample S. This process is called
bilinear interpolation. Right: The interpolation of the first two samples leads to 21.4 and
of the second pair to 9.6. After the final interpolation the resulting value is 19.

sampleA = sample0 + u(sample1 − sample0) (4.3)
sampleB = sample2 + u(sample3 − sample2) (4.4)
sampleS = sampleA + v(sampleB − sampleA) (4.5)

sample0..3 denote the four samples 0..3. sampleA,B,S denote the interpolated
samples A, B, S. u, v denote the u respective the v coordinate direction.

For example if we use a texture of 512x512 pixels and we also use texture coor-
dinates that are in the range [0, 511] for each dimension, we can address each pixel
of the texture with an integer pair of texture coordinates. (12, 40) would for in-
stance reference to the pixel in the 13th column and in the 41th row of our texture.
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Real texture coordinates are fractional. If we had gathered the texture coordinate
(4.7, 320.2), we would use the pixels at coordinates (4, 320),(5, 320),(4, 321) and
(5, 321) for interpolation.

As can be seen in the Formulas 4.3- 4.5, the fractional parts of the texture
coordinates are used as weights to mix the four samples together. If the four
sample values were 20, 22, 25, 3 than the bilinear interpolation would lead to:

sampleA = 20 + 0.7(22− 20) = 21.4

sampleB = 25 + 0.7(3− 25) = 9.6

sampleS = sampleA + 0.2(sampleB − sampleA) =

= 21.4 + 0.2(9.6− 21.4) =

= 19

4.3.2 Percentage closer filtering

For depth maps, ordinary bilinear filtering gives unsatisfactory results. The first
problem is that after bilinearly interpolating a new depth value, this depth value is
subjected to the depth comparison to determine if this pixel lies in shadow. This
test can only give a binary decision which leads to hard shadow edges and makes
soft shadow edges impossible. The second and more serious problem is the fact
that the bilinear interpolation makes no sense for the depth values along the edges
of objects.

For example take a look at Figure 4.3, right. A surface has a depth value of
for example 19.5 and lies on the red spot in the shadow map. Bilinear filtering
gives a shadow map depth on this position of 19. 19 < 19.5 → 1 which means
the red point in the shadow map is nearer and the example point is farther away.
The binary result prohibits smooth shadow borders and determines the point to be
100% inside the shadow.

Percentage closer filtering (PCF) [RSC87] solves these problems by reversing
the order in which the filtering and the comparison steps are applied. In its simple
hardware implemented form, PCF uses a bilinear filter after the comparison has
taken place. Nevertheless the filtering is not applied to colors, but to binary tex-
ture values, the results of the depth comparison. This means that after the depth
comparison a binary map results and on this binary map the bilinear filtering takes
place.

For our example this leads to four comparisons:

20 < 19.5 → 0

22 < 19.5 → 0

25 < 19.5 → 0
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3 < 19.5 → 1

Three times we get the result that our sample is in front of the shadow map sample,
so it is unshadowed, and one time we get the result that our sample is behind the
shadow map sample and is shadowed. These results are bilinearly interpolated

sampleA = 0 + 0.7(0− 0) = 0

sampleB = 0 + 0.7(1− 0) = 0.7

sampleS = sampleA + 0.2(sampleB − sampleA) =

= 21.4 + 0.2(0.7− 0) =

= 0.14

Fig. 4.4: Percentage closer filtering first conducts the depth tests and afterwards bilinearly
interpolates the results to acquire a smooth shadow value.

and result in 0.14. The sample is 14% shadowed (see Figure 4.4). We used a
simple 2x2 box filter on the shadow map. PCF results in smooth shadow boarders,
removing some of the “blockyness” of a unfiltered shadow map. Improvements of
this method can include a larger box filter (3x3 or 4x4 are feasible values, but lead
to slower results because 9 respective 16 texture accesses are needed, opposite to
only 4 texture accesses with the 2x2 box filter).

The original percentage closer filtering is much more involved. It requires that
the region for which we like to determine the shadowing status is mapped into
the shadow map space and is then stochastically sampled. This means the size
and shape of the filter kernel would change for each region. Off-line rendering
systems implement this more advanced form of PCF and yield superior results.
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NVidia GeForce 3+ hardware implements a version of the 2x2 box filtered
percentage closer filtering in hardware. ATI only supports PCF in the form of
emulation through shaders, which results in slower rendering. Figure 4.5 shows
the results of the different filtering methods.

Fig. 4.5: The results of different filtering schemes. Left: Unfiltered (the nearest shadow
map texel is used) Middle: Bilinear filtering Right: Percentage closer filtering.

4.4 Summary

In this chapter we gave a brief overview of techniques that can alleviate all the
problems of shadow mapping. We introduced techniques, like adaptive shadow
maps, that can solve all aliasing problems of shadow maps, but are too slow for
real-time purposes. We discussed the intricacies involved in focusing the shadow
map and provided several recipes for managing this step. Finally we discussed
in detail the most important filtering method for shadow maps, percentage closer
filtering. In the following chapters we will venture into the different errors of
shadow maps one at a time and search out more specialized methods to deal with
them.
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Solutions to incorrect self-shadowing

As already mentioned in Section 3.3 incorrect self shadowing is a problem that is
almost surely present in most shadow mapping cases. Therefore fast and robust
solutions to this problem are of utmost importance. In the next sections we will
describe most of the import methods for real-time computer graphics. In Sec-
tion 5.1, we will talk about the most widely used method, biasing, and give an
in-depth discussion of the different methods for bias calculation. Afterwards we
take a look at more elaborate schemes from the literature in Section 5.2. Sec-
tion 5.3 gives a valuable comparison of practical biasing approaches that work
robustly and fast. Finally Section 5.4 summarizes our findings.

5.1 Biasing

Fig. 5.1: A biased polygon can avoid incorrect self-shadowing.

The standard solution to incorrect self shadowing is, as is so often the case in
computer graphics, just a workaround for the problem. This solution is a manually
defined depth bias. A depth bias is a small increment added to the shadow map
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depth values to move them further away in order to avoid an incorrect shadowing
of the corresponding shadow casters. This normally needs user intervention and
provides in general no automatic solution for an arbitrary scene. The main benefit
of this method is its easy support through hardware and the speed penalty (that is,
however, not worth mentioning) involved in using this method.

Figure 5.1 shows that biasing actually moves the geometry away from the
point of view of the light source. The unbiased polygon (green line) becomes the
biased polygon (stippled green line) and the beforehand wrong shadow map depth
becomes correct because in the marked case (red circle) the observer’s distance to
the light is now smaller than the “bias augmented” distance stored in the shadow
map. As a consequence, incorrect self-shadowing disappears (see Figure 5.2).

Fig. 5.2: The moiré patterns are caused by incorrect self-shadowing (left). When a bias is
applied the artefacts disappear (right).

A problem of the bias is that the shadow is moved in light-space z-direction.
In Figure 5.1, we can see that biasing is equivalent to moving the geometry away
from the light source for the depth test. This can lead to noticeably misplaced
shadows (see Figure 5.3).

If we use a simple constant bias, all depth values are moved the same amount.
This leads to varying results for polygons with different depth slopes. For a depth
slope near zero, hardly any biasing is needed, while for a polygon that is almost
parallel to the light direction (large depth slope) a big bias is appropriate. Fig-
ure 5.4 shows this effect and introduces the solution: slope-scale biasing. Here
the bias is altered dependent on the depth slope of the polygon. Because a raster-
izer has to calculate the depth slope anyway, this method is extremely hardware-
friendly.
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Fig. 5.3: A larger biasing value leads to a larger misplacement of the resulting shadows,
but also leads to a more reliable avoidance of incorrect self-shadowing.

Fig. 5.4: Slope-scale biasing moves a polygon dependent on it’s depth slope

However, slope-scale biasing has problems with the non-linear distribution
of z-depth values present at point (spot) lights, PSM, TSM, LispSM and similar
methods that will be discussed later in Chapter 7. This non-linear distribution of
depth values is generated by the perspective transformation that involves an 1/w
term, generating a hyperbolic depth value distribution. Therefore the false self-
shadowing problem is increased for these algorithms. For Trapezoidal shadow
maps (TSM [MT04]), the biasing problem is so great that the authors of the paper
recommend omitting the z-coordinate from the perspective transformation, actu-
ally generating linearly distributed depth values. Kozlov [Koz04] proposes to use
slope-scale biasing in world-space for PSM and transforms the results into post-
projective space. LispSM has less problems with self-shadowing artefacts and can
reuse slope-scale biasing.

Another method for avoiding incorrect self-shadowing is backside rendering.
As can be seen in Figure 5.5, backside-rendering uses the backside of the ge-
ometry for generating the shadow map. This can be achieved by rendering with
reversed backside-culling. The shadow map depth comparison is therefore shifted
to the back side of the geometry, removing any incorrect self-shadowing, but in-
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Fig. 5.5: Backside rendering uses the backside of the geometry for generating the shadow
map, leading to a more robust shadow map test for closed geometry.

troducing incorrect self-unshadowing. Incorrect self-unshadowing is the pendant
to incorrect self-shadowing that occurs on the front side of geometry as seen from
the point of view of the light. Incorrect self-unshadowing only occurs on the back
side of geometry, as seen from the point of view of the light source (see Figure 5.6,
bottom, left). It has the same reasons, the resampling from eye to light space as in-
correct self-shadowing. What we have gained is that self-unshadowing only takes
place on polygons that are facing away from the light and should be darkened by
the normal shading equations anyway. Alternatively we could also use slope-scale
biasing for the backsides with an inversed bias (see Wang and Molnar [WM94]).

5.2 Two shadow maps

The following techniques are more theoretical than as practical methods because
of their speed penalty.

Second-depth shadow mapping, as proposed by Wang and Molnar [WM94], is
a solution that can handle most incorrect self-shadowing configurations well. The
idea is to assume solid shadow casters. With this assumption, the depth test can
be transfered from the nearest surface as seen from the light source to the second
nearest surface. This gives different results as with backside rendering. Here a
technique like depth peeling is needed to correctly determine the second nearest
surface.

Later Weiskopf and Ertl influenced by the work of Wang and Molnar and
Woo [Woo92], the midpoint shadow maps, proposed dual shadow maps [WE03].
The first shadow map contains the depth of the first surface visible from the light
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source, as any normal shadow map does. The second shadow map contains the
depth of the second surface, the surface you would encounter if you had stripped
away the surfaces stored in the first depth map. The two used shadow maps contain
the first respectively the second depth from the light source. These two shadow
maps are combined in the function

zbias = min(
z2 − z1

2
, zoffset) (5.1)

where z1 denotes the depth value from the first shadow map, z2 the depth value
from the second shadow map and zoffset an offset value, that is typically in the
magnitude of the size of the objects in the scene. The first part z2−z1

2
is responsible

for shifting the z-value used for the later depth test for shadow mapping between
the first and second depth and for this reason makes the comparison more robust,
for closed occluders and receivers. zoffset removes unshadowing artefacts of far-
away receiver and occluder constellations. This constant is the maximum bias and
therefore can be chosen quite large because the closed configurations are already
handled by z2−z1

2
. The disadvantage of this method is the performance penalty

introduced by the additional shadow map generation pass and for depth peeling.
For arbitrary scenes with large quantities of objects, an automatic method

seems indispensable. One offset value rarely suffices to solve the biasing prob-
lem of the whole scene exactly, and manually choosing offset values can be too
time consuming. Dual shadow maps are problematic to use because the genera-
tion of the shadow map per se is already expensive. A lot of objects are visible for
the common directional lights and have to be rasterized. The second shadow map
we would need to generate would nearly double the costs of this step. Also depth
peeling introduces further costs, which make these approaches slow.

5.3 In practice

The methods [WM94] [Woo92] [WE03] mentioned in Section 5.2 are unsuited
for real-time applications because of the performance penalty introduced by the
generation of the second depth image needed by all of them. In the following
discussion we therefore restrict ourselves to the fast methods that work with small
or no speed penalty.

We present extensive experiments with different biasing methods for a non
linear shadow mapping approach, LispSM, that is suitable for practice. We found
that a simple slope-scale biasing with the hyperbolic z-distribution of LispSM, as
for example provided by the polygon offset interface of Open GL, gives satisfying
results for common configurations. The needed bias can be much smaller than
the value needed for a constant bias. The resulting shadows are therefore less
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shifted respectively more correctly positioned than with the bigger constant bias.
For example in our test scene, we could avoid most self-shadowing artefacts with
a relatively small slope-scale bias of 2.0/4.0, where 2.0 is the value of the factor
parameter and 4.0 is the value of the units parameter. The formula that calculates
the resulting bias is

bias = factor ∆z + r units (5.2)

where ∆z is the depth slope of the polygon relative to the screen are of the polygon
and r is the smallest value that is guaranteed to produce a resolvable offset for a
given implementation. This means that factor sets the influence of the depth
slope and units sets the minimal bias value.

The use of a linear z-distribution as proposed in the TSM paper is also easily
incorporated into LispSM with the aid of vertex shaders. The results with linear
z biasing are slightly better as with the hyperbolic z-distribution, but come at the
cost of additional hardware requirements, namely vertex shaders. Backside ren-
dering was implemented too. This method removes all self-shadowing artefacts
on the ground, but in all other cases the quality is similar to normal slope-scale
biasing.

The matrix of images in Figure 5.6 shows the results with the various combina-
tions of the afore-mentioned methods. The performance of the different methods
is equal, because of the unnoticeable penalty in rendering time these methods in-
troduce. On all our test platforms, no speed difference at all is perceivable. As can
be seen, the version with a linear z-distribution together with slope-scale biasing,
and the back-side rendering method give the best results in this setup.

5.4 Summary

In this chapter we gave an explanation of the different approaches to cure the in-
correct self-(un)shadowing problems of shadow maps and stated their individual
advantages and drawbacks. We divided our analysis into the fast biasing meth-
ods and the more complex, more time-consuming methods that use two shadow
maps for a correcter bias estimation. However, in practice the bias methods have
the definitive speed advantage and can provide usable results for common situa-
tions. On comparing the various fast methods, we identified backside rendering as
the most robust method for scenarios with closed geometry and common lighting
calculations.
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Fig. 5.6: Left: no biasing; Middle: constant biasing; Right: slope-scale biasing; Top:
hyperbolic z-distribution; Center: linear z-distribution; Bottom: back-side rendering



Chapter 6

Solutions to projection aliasing

In this chapter we will discuss various methods to alleviate the problem of projec-
tion aliasing. After a general discussion in Section 6.1, we will talk in Section 6.2
about how the normal scene lighting can help to hide projection aliasing. Finally
Section 6.3 investigates blurring to hide projection aliasing and increase the real-
ism of the resulting shadows through softer shadow edges.

6.1 Exact solutions

Fig. 6.1: The angle between the light vector L (orange) and the surface normal N (green)
determines the amount of projection aliasing.

For a fixed eye position, the amount of projection aliasing depends on the
angle between the light vector L and the surface normal N (see Figure 6.1). If
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this angle is small, a small amount of projection aliasing occurs. If this angle is
big, approaching 90◦, the maximum of projection aliasing for this constellation is
reached.

Fig. 6.2: The ratio between the angle β, the angle between the light vector and the sur-
face normal, and the angle α, the angle between the view vector and the surface normal,
determines the amount of projection aliasing.

For a variable eye position the amount of projection aliasing (see Figure 6.2)
is determined by

cos(α)

cos(β)
. (6.1)

If this ratio is ≤ 1 no projection aliasing is present. If it is > 1 projection aliasing
is present.

It is difficult to counteract this shadow mapping problem because it is depen-
dent on the scene geometry. Therefore projection aliasing cannot be solved by
a simple global method that operates on the whole scene, but requires a detailed
analysis of the scene geometry. A correct solution to projective aliasing remains
an open problem for real-time shadow mapping approaches.

Solutions exists that work at interactive speed. For example hierarchical shadow
maps [FFBG01], or the irregular z-buffer [JMB04] [AL04]. These approaches are
already discussed in Chapter 4 in more detail. Also more advanced shadowing
methods, like soft shadowing, can reduce projection aliasing artefacts, through
the additional visibility information used in these approaches or through the softer
nature of the resulting shadows, which hides a number of artefacts.
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6.2 Lighting

Luckily we don’t need to solve projection aliasing if we can hide it. Scene lighting
is normally not entirely determined by a shadow map, but it is common to use
other lighting approximations too. For example, Lambert’s law,

I = IL ∗ cos(α) (6.2)

where I is the intensity at a point, IL is the intensity of the light and α is
the angle between the light vector L and the surface normal N (see Figure 6.1).
Equation 6.2 is a good model for the lighting of a perfectly diffuse material. This
equation gives a high intensity for points on a surface roughly perpendicular to
the light direction and a low intensity, little illumination, for points on a surface
roughly parallel to the light direction. If we compare this to the cases with a lot
of projection aliasing and the cases with little projection aliasing, we deduce that
in the former case, the large amount of projection aliasing is little illuminated and
therefore hidden from the eye of the observer.

Fig. 6.3: The image quality of a scene with severe projection aliasing (left) is greatly
improved by applying diffuse lighting (right).

In Figure 6.3 we can see on the left side an unlit scene with a shadow map
applied and noticeable projection aliasing artefacts. We have marked three areas
(red transparent areas) of severe projection aliasing as samples, but note that many
other areas of projection aliasing are present in this image. On the right side
diffuse lighting is applied. Very noticeably the projection aliasing artefacts are
hidden in the dark areas created through the lighting.

But in real-time graphics lighting is often simulated in partitioning it in three
parts (Phong illumination model):

• ambient part: Iamb = IL(amb)
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• diffuse part: Idiff = IL(diff) ∗ cos(α)

• specular part: Ispec = cos(ρ)shi

and the properties of the light are partitioned into two parts: the ambient fac-
tor IL(amb) and the diffuse factor IL(diff). The ambient part should simulate
light that is so scattered around that no inherent direction is noticeable. It is only
dependent on the ambient factor of the light. For hiding projection aliasing this
part is unsuited because it can only raise the lighting, created by the diffuse term.
Also the ambient part should never get shadowed because it has no incident light
direction.

The diffuse part of the lighting we have already discussed. This part represents
the light intensity of a given point from a perfectly diffuse object. It only depends
on the incident angle α of the light-rays and the diffuse factor of the light. The
diffuse part is our great hope for hiding projection aliasing. It is well suited for
concealing the artefacts of projection aliasing.

Fig. 6.4: The angle ρ (green) between view vector V (blue) and the reflexion vector R
(orange) is used for the specular lighting calculation (left). Two border-cases for high
specularity: The view vector and the reflection vector are closely aligned (middle, right).

The specular part should simulate perfectly specular (reflective) objects, like
mirrors, through the generation of a highlight, when gazing into the reflection vec-
tor of the light. This part of the lighting simulation is dependent on the angle ρ and
the shininess shi of the surface the point is on. The angle ρ is the angle between
view vector V and the reflection vector R. The reflection vector R is calculated by
reflecting the light vector L around the surface normal N (see Figure 6.4 left). This
dependence of ρ on the view vector makes the specular part view dependent. The
shininess is a material property and can be chosen when specifying the material.
A greater shininess leads to a more concentrated highlight, while a smaller shini-
ness leads to a dumper surface and a more diffuse highlight. The specular part is
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biggest when the view vector is aligned with the reflection vector (see Figure 6.4
middle and right). The specular part is at its maximum, when the angle between
the incident light and the emitted light are equal.

For projection aliasing exactly the reverse is true. This means that perspective
aliasing is not present, when the specular lighting is at its maximum. All in all the
specular part of the lighting therefore poses no problem in respect to projection
aliasing.

On analysing the three different parts of the lighting simulation in real-time
graphics for our goal, hiding projection aliasing, we can conclude with three rules:

• ambient part: choose as small as possible if per light; a global ambient is
independent and therefore poses no problem;

• diffuse part: is good for hiding artefacts;

• specular part: no specular part inside shadows;

6.3 Blur

Another method to hide projection aliasing is blurring of the applied shadow map.
Direct blurring of a shadow map does not yield a correct result because a shadow
map contains depth values. Blurring is a weighted average calculation of neigh-
boring pixels. If we blur depth values we would calculate a new depth at the
processed pixel, lying somewhere in between the pixel and its neighbor’s original
depth. This makes no sense in respect to the following depth compare with the
transformed fragments from eye-space. The depth profile stored in the shadow
map would change and the shadow map test would give wrong results, especially
in parts where the shadow map has discontinuities.

Fig. 6.5: The shadow map is applied to the unlit and unicoloured geometry.
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Therefore blurring must be applied after the shadow map test is performed.
This leads to the idea of an eye-space blur. The main idea is to apply shadow
mapping onto unlit, unicoloured geometry, generating a monochrome or grey-
scale (grey values originate from percentage-closer-filtering) image of the mapped
shadows (see Figure 6.5).

This image can be blurred to generate a 2D-texture that can be applied as an
intensity lookup texture for the lighting calculation in the final rendering. As can
be seen in Figure 6.6, projection aliasing can be removed with a high enough blur
at the cost of shadow details.

Fig. 6.6: The same scene starting with no shadow map blur and with 1x, 2x, 4x, 8x, and
16x blur. Notice the regions marked in red with projection aliasing artefacts and how the
artefacts disappear with the increasing blur.

When we look closer at the blurred shadow maps in Figure 6.6, we can soon
identify the drawback of this solution: While shadows in the front profit highly
from a large blur, shadows in the back are overblurred and lack any detail. The so-
lution to the loss of shadow detail in the distance is to use a depth-dependent blur.
Near the viewer, the shadow map is blurred more, and with increasing depth the
shadows are less and less blurred, to preserve shadow details in the distance. This
is successful because the projection aliasing artefacts in the distance are generally
much smaller (in terms of the pixel area) than the ones near the view point.
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6.4 Summary

An open problem for future work remains projection aliasing. As a problem that
depends on the actual geometry in the scene it is difficult to find a fast method
that can deal with it. The use of a common lighting scheme, including a diffuse
lighting term, can hide most of the projection aliasing. Another method is the use
of blurring. But our results show that some shadow details have to be sacrificed
to remove projection aliasing with this method. In combining the two methods,
we can produce images with little visible projection aliasing and less blur (see
Figure 6.7).

Fig. 6.7: Noticeable projection aliasing (top-left) can be reduced through blurring (top-
right) and lighting (bottom-left). When blurring and lighting are combined, they can hide
projection aliasing quite efficiently (bottom-right).



Chapter 7

Solutions to the perspective aliasing
problem

In this chapter we will take a look at solutions that avoid the perspective aliasing
error present in the shadow mapping process. We recommend Appendix A for a
short introduction to perspective space.

In Section 7.1 we will explain the basic idea to solve projection aliasing.
Section 7.2 describes the first fully hardware-accelerated algorithm, perspective
shadow mapping, and its problems. Section 7.3 states improvements to the per-
spective shadow mapping algorithm. Finally Section 7.4 summarizes the findings
of this chapter.

7.1 The idea

Perspective aliasing describes the problem that for a perspective view often the
near shadows (with respect to the point of view of the eye) have too little resolution
in the shadow map, while the farther away objects display sufficient resolution
(see Figure 7.1).

Fig. 7.1: In a standard shadow map (SSM) perspective aliasing leads to insufficient
shadow resolution near the observer.
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As discussed in section 3.1 this is due to the fact that in standard shadow maps
(SSM) the resolution with which objects are stored wholly depends on the point of
view of the light source. For point (spot) lights, this means objects near the light
source get more resolution than those farther away, and for directional lights this
means all objects get the same resolution because the light source is indefinitely
far away.

A simple solution is to use multiple shadow maps. For example one for the
near objects and one for the far objects. This means a partitioning of the view
frustum into subsets and each subset is rendered into its own shadow map. The
problem of this approach is the generation of disjunct sets of shadow casters and
receivers. Each of these sets is rendered into its own shadow map. If no disjunct
sets can be found, geometry has to rendered multiple times generating overlapping
sets and degenerating performance, due to the additional rendering costs involved.
On applying the shadow maps, a decision must be made which shadow map is
used for an object present in different shadow maps.

Another idea is to redistribute the resolution of the shadow map in a better
way. To minimize perspective aliasing, we need to introduce a view-dependent
redistribution of the shadow map. Objects that are near to the eye should have a
higher resolution, i.e., more space in the shadow map (see Figure 7.2).

Fig. 7.2: A view-dependent shadow map, which redistributes the available resolution of
the shadow map, can decrease perspective aliasing.

Complex data structures to encompass this functionality are for example hi-
erarchical shadow maps [FFBG01], which use a hierarchical shadow map that is
updated as needed. Or the irregular z-buffer [JMB04] [AL04] that uses a z-buffer
with irregular resolution to minimize aliasing artifacts. These approaches are dis-
cussed in more detail in Chapter 4. But the main problem of these approaches
is that they are not hardware accelerated and therefore the speed is currently just
interactive.

The problem is to do a redistribution of the shadow map with the means of
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Fig. 7.3: Redistribution of the resolution of the shadow map is the key to minimize per-
spective aliasing. A standard shadow map has a uniform resolution distribution (top). A
shadow map, like in Figure 7.2, has a nonuniform distribution (bottom).

current hardware. Figure 7.3 shows how such a redistribution can look like in a
1-dimensional shadow map. The main idea of the faster methods is the use of a
perspective transformation to generate the desired redistribution. This simple idea
is influenced by the fact that the perspective aliasing is introduced by the perspec-
tive transformation of the eye. In an orthogonal view, no perspective aliasing is
present.

This trick makes shadow maps view dependent because the distance relation-
ship from the eye to each object changes at each view change that includes a
translation. Additionally the set of shadow casters to consider may change with
every viewpoint transformation. This implicates a regeneration of the shadow
map every single frame. But this means no additional cost for today’s dynamic
environments with dynamic lighting conditions because we already have to recal-
culate the shadow map each frame anyway. Finally, the regeneration each frame
demands as small as possible calculation overhead for the used algorithms because
the execution costs have to be paid each frame.

7.2 Perspective shadow mapping

The idea to use an additional perspective transformation on creating the shadow
map to decrease perspective aliasing was first published in the paper Perspective
shadow maps (PSM) by Stamminger and Drettakis [SD02]. The eye’s perspective
transformation is reused for this purpose, effectively moving the shadow mapping
calculations into the post perspective space of the eye. This means that first we
transform the scene into the post-perspective space of the eye, as we would for
normal rendering, and afterward we construct in this space the light space used
for shadow mapping. In Figure 7.4 we can see the effect of such a transformation.
The view frustum (blue) is transformed into a rectangle. This should create an
even distribution of the depth map samples in eye space.

Unfortunately in real-world scenarios, serious robustness and quality issues
emerge [WSP04] and various special cases have to be considered, which compli-
cates implementation.
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Fig. 7.4: In theory perspective shadow maps should provide an ideal redistribution.

7.2.1 Uneven z-distribution

The most severe problem of perspective shadow mapping, in terms of strength and
frequency of occurrence, is the uneven z-distribution. The result of this is a very
high shadow quality near the eye, but very low shadow quality farther away. The
cause for this is the post perspective space of the eye, which introduces too much
warp for scenes with a small near plane distance (see Figure 7.5).

To understand why this is the case we have to take a look at post-perspective
z. With a common perspective transformation in column major style

c 0 0 0
0 d 0 0

0 0 f+n
n−f

2fn
n−f

0 0 −1 0


with n denoting the near plane distance and f indicating the far plane distance,
we get the post perspective zpp by

zpp =
f

f − n

[
f + n

f
+ 2

n

z

]
. (7.1)

For common scenes with f much larger than n, f
f−n

and f+n
f

are both very
close to 1, which leads to

zpp ≈ 1 + 2
n

z
lim

f→∞
zpp = 1 + 2

n

z
. (7.2)

As we can see the distribution of zpp depends entirely on n, the near plane
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Fig. 7.5: The uneven z-distribution of perspective shadow maps leads to very high quality
near shadows, but low quality far of shadows. This scene has a near plane distance of 0.1
and a far plane distance of 70.

distance. This means that the near plane distance highly influences the post per-
spective space.

z −1 −1.25 −1.5 −2 −4 −16 −100

zpp −1 −0.6 0.3̇ 0 0.5 0.875 0.98

Tab. 7.1: The input z-values are in the range [−n,−f ] (here [−1,−∞]) and are mapped
to the output range [−1, 1].

Table 7.1, for example shows for n = 1 and f = ∞ the zpp values for input
z values. We can see that half of the resolution of zpp (range [−1, 0[) is used up
for the first unit of z (range [−1,−2]). The rest of the available resolution (range
]0, 1]) is used for the entire scene in the range from [−2,∞], which obviously is
the much greater part of the scene. This means half of the space of the shadow
map is used up for the first unit of z. Obviously shadows that are farther away
have very little shadow map space left and are therefore of less quality. This
problem was already detected by the authors of the paper and they recommended
a read-back of the z-buffer to push away the near plane as far as possible. Later
geometrical methods where used to give faster, but coarser results.

Therefore the shadow quality is hard to predict and usually bad for scenes with
very near and far off objects, which are exactly the kind of scenes we would need
perspective shadow maps for. The shadow quality can change rapidly from frame
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to frame on viewpoint changes because of the possible changes in the near plane
distance. This results in flickering shadows when animating the scene.

7.2.2 Shadows from behind
The next intricacy of perspective shadow maps are shadows from behind the point
of view of the eye. In this case geometry behind the point of view of the eye can
cast a shadow in front of the eye. The post perspective space of the eye has a
singularity in the eye position. Upon perspective transformation, points on lines
that intersect the eye (camera) plane can change their order. And for shadows
from behind, such lines occur when geometry behind the point of view of the eye
cast a shadow in front of the eye.

Fig. 7.6: In post perspective space lines are mapped to lines, but points on lines may
change their order. On the left side a line through the camera plane with four sample
points is shown. On the right side this line is transformed into post perspective space.
The point (1) on the line behind the eye is mapped to the other side of the infinity plane.

In Figure 7.6 the point (1) is mapped on the other side of the infinity plane,
moving it from the first position to the fourth position.

To avoid this situation all points we are interested in for shadow mapping
must lie in front of the camera plane. Usually this amounts to the points inside
the intersection body B (see Chapter 4 for details regarding B). One solution to
this problem is to virtually move back the camera for the generation of the shadow
map to get all points of B lying in front of the camera plane. In Figure 7.7 we
can see the effect this has on the perspective transformation. On the left side the
virtual camera is moved backwards until all points of interest are in front of the
camera plane. Note that the far plane stays at the same distance to the point of
view of the eye, but the near plane is adapted to encompass all of B. After the
perspective transformation into the post perspective space of the virtual camera,
the ordering of the points stays the same as in normal space.
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Fig. 7.7: A virtual camera move-back eliminates the problem of a changed point order in
post perspective space.

This move-back alters the post-perspective space. And the result is decreased
perspective foreshortening. As we move the virtual camera more backwards, the
perspective foreshortening decreases further. If we reach an infinite move-back,
no perspective foreshortening is present, resulting in an uniform shadow map and
nullifying the effect of perspective shadow maps. This is the case for example
for a light shining directly from behind into the view direction. A problem of
this approach is discontinuity. We try to find the smallest move-back that en-
compasses all shadow casters that contribute to the shadows in the view frustum
because as the move-back increases, the quality of the shadows decreases. This
leads to advanced visibility methods that use hierarchical scene representations or
similar methods to determine the needed shadow casters. With these methods, the
move-back distance can change abruptly when a shadow caster suddenly has no
influence on the visible shadows. This introduces the before mentioned disconti-
nuity in shadow quality, which leads to fidgety shadows in animated scenes.

7.2.3 Light sources

Working in post-perspective space is certainly less intuitive than working in Eu-
clidean space. For instance the type of the light source we are working with
changes when entering the perspective space. The cause for this is the perspec-
tive transformation that can move the finite positions of point lights to infinity,
changing them to directional lights, or moving directional lights at infinity to a
finite position, converting them to point lights. Even an inverted point light is
possible. This means this light source does not emanate light rays, but the light
rays are converging on a single point. This is the case for light sources from be-
hind the viewer, because these are mapped beyond the infinite plane through the
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perspective transformation.

Fig. 7.8: The transformation into post perspective space changes the type of light source.

In Figure 7.8 we can see the six different cases. On the left side we see the
three transformations of directional lights, and on the right side we see the three
transformations of point lights. We can see that every directional light that is not
parallel to the near plane of the view frustum is transformed into a point light in
post perspective space. So only directional lights that are parallel to the near plane,
for instance a light that shines directly from above the viewer, stays a directional
light in post perspective space (see Figure 7.8, left, first case). For point lights the
situation is similar. The only point lights that result in directional lights in post
perspective space are the ones on the eye (camera) plane (see Figure 7.8, right,
second case). The eye (camera) plane is here defined as the plane through the eye
position with the view direction as normal vector.

The ideal case occurs when a directional light source is resulting in post per-
spective space. A directional light source does not introduce any additional per-
spective distortion, as would be introduced by a post perspective point light. The
worst cases are point lights in post perspective space that are near the unit cube of
the post-perspective intersection body B. These are bad cases because these lights
need to have a very large field of view to encompass the whole unit cube. Regret-
tably post-perspective point lights are the majority case and point lights near the
unit cube are frequent for scenes with an f much larger than n.

7.3 Improvements to perspective shadow mapping

Various papers concerning the problems of perspective shadow maps have been
published. Chong’s master thesis [Cho03], for instance, presented a reparameter-
ization of PSM into a more general frame-work. In this frame-work, perspective
shadow maps were analyzed in 2D. Based on this, Chong and Gortler [CG04]
presented a shadow algorithm that is capable of calculating a perspective shadow
map that gives optimal results for a chosen plane of interest.
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Besides these more theoretical approaches, Kozlov [Koz04] investigated prac-
tical advancements of PSM to solve their problems. He introduced an inverse
projection matrix that can eliminate the need for virtual cameras and the associ-
ated move-back. The idea is to construct a perspective transformation that allows a
negative near plane and a positive far plane. This makes it possible to look beyond
the infinity plane and restore the original order of points on lines intersecting the
camera plane (see Section 7.2.2 for details to the problem). To bring this matrix to
good use, the graphics hardware needs high precision shadow map depth-values.
The author states that 24-bit fixed-point depth values are enough for reasonable
cases. However, the introduction of floating-point 32-bit precision depth-values
in new hardware mitigates this problem.

Kozlov further proposes to use a more elaborate determination of the inter-
section body B with Unit cube clipping limited to the bounding volumes of the
shadow receivers. He argues that this method decreases the dependency of the
shadow quality on the light position (see Section 7.2.3 for details on lights and
PSM). A second method Kozlov uses to decrease the dependency of light position
and resulting shadow quality is a cube shadow map. He uses the backfacing unit
cube faces with respect to the light as cube-map faces. This means that up to six
smaller shadow maps need to be calculated.

Trapezoidal shadow maps (TSM) [MT04] build on top of the idea of perspec-
tive shadow maps. The idea is to approximate the eye frustum as seen from the
light with a trapezoidal. For this a new space, the trapezoidal space is introduced.
The size of this trapezoid is maximized in the shadow map. Then a 2D perspec-
tive transformation is used to redistribute the shadow map resolution. This is used
together with an iterative process that repeatedly determines the perspective trans-
formation and so tries to minimize perspective aliasing.

Light space perspective shadow maps (LispSM) [WSP04] is a concurrent ap-
proach to the TSMs of the last paragraph. The shadow quality of both approaches
is similar. This approach uses an additional perspective transformation that is ap-
plied after the light space is determined. The free parameter of this transformation
determines the strength of the perspective warp. This parameter is calculated with
a formula, derived from a perspective aliasing error analysis. This approach is
handled in detail in Chapter 8.

Both approaches can handle most cases where PSM has problems well, but
degenerate to the standard shadow map in the dueling frusta case. Here the light
direction is roughly parallel to the view direction of the eye. Generally, these
reparameterisations cannot increase the shadow quality for parallel view and light
directions. One example of this instance is the miner’s headlamp situation. In this
situation the standard shadow map causes nearly no perspective aliasing. This
means that the degradation to standard shadow maps is the logical and correct
proceeding. Other instances of the dueling frusta case are less optimal, but are not
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simply solved by a reparameterisation.
Recently a recipe for handling the duelling frust case with an extension to TSM

was published on the internet [Ald04]. This method uses a single shadow map and
divides it into four viewports that are used to render into adaptively. An update of
up to four light views is, however, costly for polygon-rich scenes and additionally
makes the implementation and the involved data structure more complicated.

7.4 Summary

This chapter has elaborated solutions to the perspective aliasing problems inher-
ent in shadow maps. We discussed the most promising approach, Perspective
shadow maps, and its problems. We showed the importance of this initial idea for
more recent algorithms that overcome the limitations of PSM and provide robust
and versatile shadow maps with a much lesser perspective aliasing problem. The
following chapter 8 describes one of these methods in more detail: Light space
perspective shadow maps, a technique developed by the author.
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Light space perspective shadow maps

In this chapter we describe the algorithm called Light space perspective shadow
maps (LiSPSM) [WSP04]. We start from Perspective shadow maps (PSM) [SD02]
in Section 8.1, where we state what we want from a shadow mapping algorithm
and in which way we have to apply the ideas of PSM to meet our requirements.
Section 8.2 relates methods to choose the free parameter of LiSPSM, n, which
controls the strength of the perspective foreshortening. Section 8.3 gives some
impressions how a reparameterization can improve, but also how a reparameteri-
zation can be in vain in certain cases. Finally Section 8.4 summarizes the findings
of this chapter.

8.1 The setup

Perspective shadow maps sound good in theory (see Chapter 7 for details), but
when it comes down to real world applications, a lot of problems pop up. As we
have already described in Sections 7.2.1, 7.2.2 and 7.2.3, the main problems of
PSM are:

• An uneven z-distribution

• Quality fluctuations with shadows from behind

• Quality dependence on the light source position

• Unintuitive post-perspective space

Our approach is to use the initial idea of using a perspective transformation
to redistribute the shadow map resolution (further on called LiSPSM transfor-
mation), but to avoid the known pitfalls of perspective shadow maps. Our first
observation is that the LiSPSM transformation does not have to be the perspective
transformation used for the eye. The only things it has to satisfy, to be useful in our
context, is to provide more resolution near the eye. Realizing this, we searched for
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a way we could specify a transformation that satisfies all the properties we have
not found in PSM:

• Better z-distribution (tunable)

• Shadows from behind should be no special case

• Less quality dependence on the light source position

• Remove unintuitive post-perspective space

The first step to our solution is to specify the LiSPSM transformation in light
space. The light space is the local coordinate frame that is gained after trans-
forming the geometry by the transformations of the light source. This includes a
rotation and a translation for a directional light and additionally includes a per-
spective transformation for point (spot) light. This has the effect that a spot light
is transformed into a directional light and can be handled the same way as a direc-
tional light.

Fig. 8.1: Light space perspective shadow maps use a perspective transformation that has
near and far planes aligned with the light direction. The view frustum is blue. The frustum
of the LiSPSM transformation P is red. The light rays are orange. Left: The configuration
as seen from the point of view of the light. Right: A side view of the same setting with
the light-rays coming top-down.

In this space we specify the LiSPSM transformation so that the near and far
plane of this transformation (of the frustum P ) are parallel to the direction of the
light (see Figure 8.1). This guarantees that light rays are mapped to light rays, and
we avoid the light source conversion with many different cases, as required with
PSM.
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To achieve the effect of getting a better shadow resolution near the eye, we
should position the near plane of P near the eye. Additionally P has to contain
all relevant shadow casters and receivers. This means that P has to be focused
to contain the intersection body B (see Chapter 4 for details regarding B). In
Figure 8.2, we can see the effect such a transformation has. The scene (green)
is warped. The parts of the scene near the eye are enlarged and the parts further
away are shrunk. When this scene is afterwards written into the shadow map more
resolution is granted to the larger parts.

Fig. 8.2: Light space perspective shadow maps use a light space aligned perspective trans-
formation for the redistribution of the shadow map resolution. We see the scene before
(left) and after the application (right) of the LiSPSM transformation.

What we still need to specify to completely determine the frustum P is the
projection center C (the red sphere in Figure 8.1). The distance of C to the near
plane of P will determine the strength of the perspective warp. This means the
greater this distance is, the more LiSPSM will resemble uniform shadow maps,
and the smaller this distance is, the more space on the shadow map is used for
objects near the near plane of P and less space for distant objects. We will later
show how to choose this distance n in a way that the projection error for objects at
the near plane and objects at the far plane is equalized. The other two remaining
coordinates of C can be chosen to resemble the eye coordinates in light space.
This provides a similar perspective distribution as the perspective transformation
of the eye.

A fact that was already stated before is that shadow maps with a shadow map
resolution redistribution tailored to the eye have to be calculated every frame or
at least at every major view change, because otherwise the redistribution of the
shadow map is not valid anymore. B also becomes invalid and some newly visible
shadow caster are not sampled into the shadow map. This is true for focused
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uniform shadow maps, for PSM, for TSM and for LiSPSM, as well as others,
too. To put this problem into perspective, we only want to state that in dynamic
environments, a regeneration of shadow maps every frame is mandatory anyway.

8.2 The free parameter n

The parameter n denotes the near plane distance of the projection center C and
thus controls the strength of the perspective foreshortening (see Figure 8.3 and
Figure 8.4). To find a “good” n means to find a level of perspective foreshortening
that minimizes projection aliasing errors in the resulting shadows.

Fig. 8.3: Changing n leads to different warps of the scene. Left: n is small (in the size of
zn leading to similar warps as with PSM. Right: n is big leading to hardly any warp.

Various methods of choosing n are possible. For instance empirically gath-
ered tables or formulas could be used. A very simple method would be to choose
a constant n. To understand why a constant n is not advisable and why we adopted
a more mathematical approach, we must first understand on what parameters pro-
jection aliasing is dependent.

8.2.1 The aliasing formula

Aliasing in shadow mapping is caused by undersampling. The process is depicted
in Figure 8.5 for a small edge. Note that this figure shows a directional light
because we can make the same observations as in the complexer point light case.
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Fig. 8.4: Left: n is chosen too small and too much shadow map resolution is used for near
shadows. Right: n is chosen too big and too little shadow map resolution is used for near
shadows.

We assume that the shadow map has texels in the size of ds × ds in the lo-
cal parameterisation of the shadow map, representing the shaft of rays passing
through it. From the light source a shaft of width ds hits the ground at length dz.
This edge has length dz/ cos β. When seen from the point of view of the eye (be-
fore perspective projection) this edge assumes the length dy = dz cos(α)

cos(β)
. After the

perspective projection of the eye the edge becomes dp = dy
z

wide on the screen.
The shadow map aliasing error is the ratio of dp in respect to ds, so we have to
construct a term for dp

ds
. If dp

ds
= 1 no undersampling and aliasing is present. If

dp
ds

> 1 undersampling occurs and aliasing is present. Putting our observations
together this leads to

dp

ds
=

1

z

dz

ds

cos α

cos β
. (8.1)

This formula can be divided into three parts:

• Projection: cos α
cos β

• Perspective: 1
z

• Parameterization: dz
ds

Projection is responsible for projection aliasing, which we cannot change be-
cause this part depends on the scene geometry (see Figure 8.5 green parts) itself.
What we want to do is to reduce perspective aliasing 1

z
through a reparameteri-

zation of the shadow map dz
ds

. Perspective aliasing is caused by the perspective
projection of the viewer. If a perspective foreshortening effect occurs along the
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Fig. 8.5: Aliasing in shadow mapping.

shadow map plane (on a axis roughly parallel to the shadow map plane) we can
counteract the induced perspective aliasing by a shadow map reparameterization.

This means that we have the greatest influence on perspective aliasing when
the view direction is parallel to the shadow map plane (see Figure 8.6). We will
therefore look at the perspective aliasing errors of different reparameterizations of
shadow maps s = s(z) for this special case.

Fig. 8.6: The optimal case for a shadow map reparamterization, the view direction is
parallel to the shadow map plane.
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8.2.2 Reparameterizations of shadow maps
To remind us of the criteria for an optimal parameterization, we state that such a
reparameterization would make dp

ds
= 1 (constant) over the whole depth range.

We will start by the most common reparameterization, the uniform “reparam-
eterization”. Here

s ∼ z ⇒ ds

dz
∼ 1 ⇒ dp

ds
∼ 1

z
(8.2)

This means that dp
ds

is large when 1
z

is large, so the error is greatest on the near
plane and diminishes at the distance.

Next we take a look at perspective shadow maps. Here

s ∼ 1

z
⇒ ds

dz
∼ 1

z2
⇒ dp

ds
∼ z (8.3)

So we have a small error at the near plane and a linear increase in error as we
move away from the near plane.

The ideal reparameterization can be constructed by setting (assuming no pro-
jection aliasing is present)

dp

ds
=

dz

ds

1

z
= 1 ⇒ ds =

dz

z
s =

∫
ds =

∫ z

zn

dz

z
= ln

z

zn

⇒

s ∼ ln z ⇒ ds

dz
∼ 1

z
⇒ dp

ds
∼ 1 (8.4)

So the ideal reparameterization is logarithmic.
For LiSPSM we have to find the reparameterisation that is created through P .

In this case dp
ds

depends on n. Figure 8.6 shows the needed parameters for this
analysis. zn and zf denote the near respective the far distance of the view frustum
of the eye. n and f are the same parameters for the frustum P . z and z′ describe
the distance to an arbitrary point in the view frustum respective in the frustum P .
It is simpler to describe the effect of P on s in terms of the parameters of P . So
we write our equations in terms of z′. z′ has the following relationship to s

s =
1

2
+

f + n

2(f − n)
+

nf

z′(f − n)
(8.5)

From Figure 8.6 we can easily deduce that z′ = z− zn +n and substituting it into
the formula

s =
1

2
+

f + n

2(f − n)
+

nf

(z − zn + n)(f − n)
(8.6)

We can differentiate ds
dz

ds

dz
=

nf

(z − zn + n)2(f − n)
. (8.7)
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From Figure 8.6 we can easily deduce that f = n + zf − zn and substituting it
into the formula

ds

dz
=

n(n + zf − zn)

(z − zn + n)2(zf − zn)
(8.8)

and finally inserting this result into Equation 8.1 (with the assumption of projec-
tion aliasing cos α

cos β
= 1), we get

dp

ds
=

1

z

(z − zn + n)2(zf − zn)

n(n + zf − zn)
. (8.9)

This equation has one minimum at n − zn. The two maxima are therefore at
the borders of the relevant range [zn, zf ]. We opted for a solution of this equation
that equalizes the error at these maxima (for details see [WSP04]), leading to

nopt = zn +
√

znzf (8.10)

Figure 8.7 compares the errors of the described shadow map reparameteriza-
tions.

Fig. 8.7: Perspective aliasing errors plotted against z-coordinate for different shadow
mapping techniques.
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8.2.3 The general case
It is important to note that a reasonable reparameterization should consider the
angle between the view direction and the shadow map plane. As already noted the
influence of a reparameterization is greatest when the view direction is parallel
to the shadow map plane. This influence decreases till the view direction is per-
pendicular to the shadow map plane (parallel to the light direction). In this case
a reparameterization has no positive effect and therefore should converge to the
uniform parameterization of the shadow map.

We can incorporate this by including an angle γ into our formula that accounts
for the tilt of the view vector from the light direction (see Figure 8.8).

Fig. 8.8: The z-range affected by the reparameterization is small when the view direction
gets near the light direction.

nopt =
zn +

√
zn(zn + d sin γ)

sin γ
(8.11)

In this formula, zn is the near plane distance of the camera, γ is the absolute
value of the angle between view direction and light direction, and d is the extent of
the frustum of P in the light space z direction. When looking at the optimal case
formula, we can identify that we removed zf and substituted it by ∆z = dsinγ,
with d = zf − zn.

On checking our new formula, we get that for γ = 0 (parallel view and light
direction) nopt goes to infinity and therefore a uniform shadow map results, and
for γ = π

2
(parallel view and shadow plane) the original, optimal case formula,

results.

nopt =
zn +

√
zn(zn + (zf − zn) sin(π

2
))

sin(π
2
)

=
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=
zn +

√
zn(zn + (zf − zn)1)

1
=

= zn +
√

znzf (8.12)

8.2.4 A new formula

This formula works fine for directional lights. For point lights, however, we need
to generalize the formula to take into account the change in scale induced by the
perspective projection of the point light. We also need to take into account that
the view frustum may be clipped by the scene bounding box or the light frustum.
We have therefore derived a new formula which is applicable to all cases:

nopt =
d√

z1

z0
− 1

(8.13)

Fig. 8.9: Construction of z0 and z1 (for simplicity, V is shown instead of B.

The values z0 and z1 (signed!) represent the range of eye-space z-coordinates
for which the perspective error should be equalized (see Figure 8.9). Note that
when setting z0 = −zn and z1 = −(zn + d sin(γ)) (the minus sign arises because
of the −z-axis), this formula is identical to the one given above. It is valid for
directional lights where the view frustum is contained in the scene bounding box.
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8.3 Good and bad cases for reparameterizations

The use of a perspective transformation gives the best results for perpendicular
view and light directions because in this case the perspective transform can influ-
ence the whole depth range of the view frustum (see Figure 8.10). This is also the
case where the most perspective aliasing is present. In the case of parallel light
and view vectors, no perspective aliasing is present and the perspective transfor-
mation can only worsen the quality of the shadow map. This is called the duelling
frusta case (see Figure 8.11).

Fig. 8.10: For near perpendicular view and light directions LispSM (left) gives the best
results. Uniform shadow mapping (right) has much more perspective aliasing.

Fig. 8.11: For near parallel view and light directions LispSM (left) converges to uniform
shadow mapping (right), making the shadow borders blocky.
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8.4 Summary

This chapter gave an in-depth analysis of Light space perspective shadow maps.
We explained the shortcomings of previous approaches and what we gained by
using our new method, located in light-space. Additionally we gave considerable
inside information about the choice of n and how an “optimal” parameter can be
found for directional and point lights. This theoretical background should enable
the reader to use his own analogous proceedings, if the presented formulas are
not sufficient for his special needs. The next chapter will discuss how the theory
developed in this chapter can be used to implement a robust and versatile shadow
mapping algorithm that can be used in real-world scenarios (see Figure 8.12).

Fig. 8.12: Illustrates the effect of the LiSPSM perspective warp (right) in comparison to
standard shadow mapping (left). The lower images show the corresponding light views



Chapter 9

Implementing shadow maps in
real-world scenarios

In this chapter we tackle the intricacies of applying shadow mapping to a real-
world scenario. We chose a demanding challenge for any real-time shadow al-
gorithm: a large-scale, polygon-rich and dynamic environment. We use the tech-
niques presented in various chapters of this thesis to solve the problems encoun-
tered. This will result in a combination of the adapted LiSPSM with backside
biasing and blurring to counteract perspective aliasing, false self-shadowing and
projection aliasing.

The remainder of this chapter is structured as follows: Section 9.1 states the
general problems our setup implicates. In Section 9.2 we describe the actual im-
plementation of the algorithms. Finally, Section 9.5 concludes this chapter with a
summary of the properties of our implementation.

9.1 The Problem

What are the problems of shadowing a large-scale, polygon-rich and dynamic
environment? Let’s take a look at each of the three properties of the environment
and the demands that these properties place on any shadow algorithm:

A dynamic environment is a scene that may vary from frame to frame. For
example some objects move or the position or direction of the light changes. This
makes it necessary to regenerate the shadow each frame because of the possible
changes in shadow casters or lighting conditions that affect the resulting shadow.
This demands an algorithm that can calculate a new shadow each frame in a matter
of milliseconds.

A polygon-rich environment, in our context and at this point of hardware
speed, is a scene that contains roughly 100,000 or more visible triangles. This
makes the use of classical geometry-based shadow algorithms, for example the
classical shadow volume algorithm [Cro77], difficult. The shadow-volume algo-
rithm needs a silhouette search and consumes fill-rate proportional to the number
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of silhouette edges. Approaches to use simpler geometry for the shadow genera-
tion are possible, but may result in incorrect shadows. Additionally the generation
of the simpler geometry is a non-trivial task. There simply is no robust and uni-
versal algorithm currently known that handles all configurations correctly.

A large-scale environment is a scene that contains near as well as far off ob-
jects, in arbitrary positions and sizes. In these environments, point, spot and direc-
tional lights are common. Especially directional lights, used to simulate the sun
for instance, often cover large parts of the terrain. This setup means no additional
problems for the shadow-volume approach because the geometrical nature of the
algorithm makes it independent of the scales that occur in the scene. However we
had to rule this approach out because of its performance deficit in polygon-rich
scenes. The image space approaches, namely shadow mapping, have problems
with such constellations. Solutions to these problems exist. We will use light
space perspective shadow maps [WSP04] to overcome these problems.

9.2 Implementation of LiSPSM

In this section, we will give a recipe for the LiSPSM algorithm. The main idea of
LiSPSM is to warp the shadow map by introducing a perspective transform into
the shadow mapping process (see Chapter 8). In the transformed shadow map,
near objects will have higher resolution, so that shadow quality is equally good
for near and distant objects.

9.2.1 Algorithm outline
The main steps of the algorithm are to focus the shadow map on the relevant parts
of the scene, and to find the perspective matrix and its parameters for LiSPSM
(note that the focusing step is a good idea even for standard shadow maps) (see
Chapter 4 for details):

1. Focus shadow map on the focus region

2. Find light space matrix L (which is a conventional shadow mapping matrix)

(a) Set L to be the frame L−1
v created from the view direction v and the

light direction l, rooted at the eye point (directional lights) or the light
position (point lights)

(b) For point lights, append the point light projection Lp, so that L =
LpL

−1
v

(c) Rotate L so that the view frustum points “upward” (in the shadow
map), making L = LrLpL

−1
v
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3. Find LiSPSM projection matrix P

4. Calculate n, the near plane distance of the LiSPSM projection

5. Find projection center C for P and generate its translation Pt

6. Find frustum planes for P , giving the LiSPSM matrix as P = PpPt

7. Apply shadow mapping using the joint matrix PL instead of just L

9.2.2 Focusing the shadow map

As already discussed at length in Section 4.2 focusing is an important step for any
shadow mapping algorithm, to waste as little as possible of shadow map space to
invisible parts of the scene. Since all involved bodies are simple convex polyhedra,
it is easier to implement the required operations directly instead of using general
purpose convex hull and polyhedra intersection algorithms. Equation 4.2 indicates
the following focusing steps, here given in pseudo-code:

Object temp; // temporary intersection object

calcFrustum(temp, invEyeProjView);
clip(temp, sceneBV);

if (pointLight) {
convexHullWithPoint(temp, lightPos);

}
else {

convexHullWithDirection(temp, -lightDir, sceneBV);
}

clip(temp, sceneBV);

if (pointLight) {
calcFrustum(lightFrustum, invLightProjView);
clip(temp, lightFrustum);

}

return temp;

Some notable operations are:
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• calcFrustum() creates a solid view frustum representation (e.g., a b-
rep) in world space by feeding the 8 points of a centered 2-unit cube into
the inverse of the combined view and projection matrix (PV ) of the desired
frustum.

• clip(): intersection of two convex objects. The first object is simply
clipped by each plane of the second object and the created holes are filled
with new polygons.

• The convex hull operation depends on whether the light is a point or direc-
tional light:

– convexHullWithPoint() calculates the 3D convex hull of a con-
vex body and a point. It removes all polygons of the body that are
front-facing with respect to the point, leaving a hole in the form of a
closed edge loop. The hole is closed by connecting the line loop to the
point with a triangle fan.

– convexHullWithDirection(): The directional case is best han-
dled separately: We extrude the given convex body temp along the
inverted light direction −l, knowing that we will clip to the scene
bounding volume afterwards. This is done by moving the light-facing
polygons of temp along −l up to the given scene bounding volume.
The resulting holes are then filled with quads.

9.2.3 Finding the light space matrix L

The light space matrix L transforms from world space into light space, the local
coordinate frame of the light. This is a space spanned by the plane in which the
conventional shadow map is defined, and its normal. For point lights, light space
also includes the point light pro-jection. The LiSPSM projection P will be defined
in light space. Therefore, light space needs to be rotated so that the view vector
coincides with the projection direction of P .

Initial light space definition

The coordinate frame Lv is basically the transformation matrix used in conven-
tional shadow mapping, but with the axes exchanged so that the LiSPSM projec-
tion is easier to define (more specifically, the z-axis of light space will also be
the z-axis of the LiSPSM projection, which makes the mathematical formalism to
find the optimal LiSPSM parameters more natural). It is created from the inverted
light direction −l and the view direction v in the same way as a look-at matrix
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(but with y and z exchanged), using −l as view direction and v as up-vector (see
Figure 9.1):

Lvy = −l

Lvx = v × Lvy

Lvz = Lvx × Lvy

This choice makes the shadow projection plane parallel to the x/z-plane (as
opposed to the x/y-plane as in conventional shadow mapping), so the light is
actually looking down the y-axis. For the frame’s origin, we use the eye position
for directional lights and the light posi-tion for point lights. The required matrix
is the inverse of the matrix Lv, which is constructed from the normalized versions
of the above vectors.

Fig. 9.1: Construction of the perspective frustum P in 3D

For directional lights, we set the light space matrix L = L−1
v . For point lights,

we set L = LpL
−1
v , where Lp is the point light projection matrix associated with

the light (a stan-dard projection matrix as defined for example by an OpenGL
Frustum-call).

Light space rotation

One degree of freedom in determining light space is the rotation on the shadow
map plane. The initial frame defined above rotates the shadow map so that the
view vector, projected into the shadow map, points “upwards” in the shadow map
before perspective projection. For point lights, however, the projection can cause
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the frustum orientation to flip for views that are tilted with respect to the shadow
map.

The aim is to rotate the shadow map (after projection!) so that the redistribu-
tion of shadow map samples occurs in the correct direction. We assume that the
transformed view vector vls (after the point light perspective projection Lp) indi-
cates this “correct” direction. However, we can not simply transform the vector
v by Lp, since parallel directions are not maintained by perspective projection.
Instead we transform a ray corresponding to v. A natural choice for the starting
point of this ray would be the eye position. However, there is no guarantee that
the eye position is in front of the shadow plane, or even anywhere near the body
B. We therefore employ the following simple algorithm to find a “safe” starting
point for the orientation ray:

1. Create the body LV S = L ∩ V ∩ S (using the same clipping operations as
before).

2. Transform LV S into eye space.

3. Find a vertex eeye of LV S nearest to the eye, i.e., with the maximum z-
coordinate (note that LV S is by construction always in front of the eye). In
order to find a more robust solution, we take the average of all vertices that
are within a small distance to the vertex with the maximum z-coordinate.

4. Transform eeye back into world space eworld.

In most cases, eworld will be a point on the near clipping plane of the view
frustum. To define the orientation ray, we also find another point bworld which is
sufficiently far along v from eworld. The ray is then transformed to light space by
transforming eworld and bworld using L, and homogenizing the points, giving els

and bls.
The rotation Lr is now created with the light space vectors (0, 1, 0) and bls −

els as the up-vector in exactly the same way as in the previous section (look-at).
Finally, we include this rotation into our light space matrix by setting L = LrL.

9.2.4 Finding the LiSPSM projection matrix P

The LiSPSM projection matrix P creates a perspective transformation in light
space such that the projection plane of P is perpendicular to the shadow map
plane. As discussed in Chapter 8, this ensures that light rays are mapped to light
rays so that light direction and type remains unchanged. In order to completely
define P , we need to find a projection center C and the frustum planes.
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Finding the LiSPSM projection center C

We transform the focus body B into light space using L and calculate its bounding
box in light space. The near and far planes of the LiSPSM projection are then
defined to be at z = Bznear and z = Bzfar

(we work along the−z-axis, so Bznear =
Bzmax and Bzfar

= Bzmin
) respectively, for z-coordinates in light space. To find C,

we proceed in two steps. First select an appropriate point Cstart on the near plane
of the LiSPSM projection, then move distance n back from the near plane. The
distance n of C to the near plane is the main parameter of the LiSPSM method,
and will be discussed in a following section; here, we assume it is given. Cstart is
defined as (elsx , elsy , Bznear)

T , i.e., the projection of els (see Section 9.2.3) onto
the near plane. els is a good starting point, as it is the best approximation to the
original viewpoint we have available in light space (if Cstart is close to the original
viewpoint, this will help self shadowing problems later on) (see Figure 9.2)

Fig. 9.2: Construction of Cstart from a point els on the camera near plane in light space
(for simplicity, V is shown instead of B.)

Knowing C, P can be initialized with a translation Pt that centers light space
at C.

LiSPSM frustum planes

To find the frustum planes of P , we project B onto the LiSPSM projection near
plane and find its extents. This can be done using a temporary projection matrix
Ptemp with the frustum parameters [l, r, b, t] = [−1, +1,−1, +1], while from the
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previous section it already follows that the near plane distance should be set to n,
and the far plane distance to n + |Bzfar

− Bznear |. The bounding rectangle of the
projected vertices of B gives the final frustum parameters l, r, b, t, so that P can
be set up as PpPt. In a last step, P is also multiplied with the viewport matrix that
is usually used to fit the result of the projection, which lies between −1 and 1 in
all coordinates, into the range of [0, 1] for texture mapping.

9.2.5 Setting the parameter n

The parameter n encodes the near plane distance of the LiSPSM projection and
thus controls the strength of the perspective warping effect. As discussed in Sec-
tion 8.2, a smaller n gives a stronger warping effect, causing near shadows to
gain quality and far shadows to lose quality. In Section 8.2.3, we introduced
Equation 8.11. In this equation, we could use d = |Bzfar

− Bznear | for our im-
plementation, because the focus body B z-extents in light-space are a more exact
approximation of the affected z-range. However, with the the more general Equa-
tion 8.13 we can handle point lights too.

The relevant z-values

The values z0 and z1 can be said to represent the eye-space z-range for which
the LiSPSM projection is optimized. Mathematically, Equation 8.13 is derived
by choosing two points at the near and far plane of the LiSPSM frustum P and
choosing n such that the perspective error is identical for these two points. We
choose the points on a line perpendicular to the near plane of P (and therefore to
the light direction). As shown in Figure 8.9, the idea is to pick z0 at the intersection
of the camera and the LiSPSM frustum near planes. If the camera near plane does
not intersect B, we use the next possible parallel plane that does (as shown in a
previous section, this plane goes through eworld).

In order to find the intersection point z0ls
in light space, we transform the

plane equation of the chosen plane into light space by multiplying it with the
inverse transpose of L. Then we intersect the transformed plane with the planes
z = Bznear and x = elsx to give z0ls

. The second point, at the LiSPSM far plane,
is z1ls

= [z0lsx
, z0lsy

, Bznear ]. The values z0 and z1 in eye space are calculated by
transforming z0ls

and z1ls
using L−1 and the camera view matrix.

Note that due to construction, z0 will usually be fixed at zn if the camera near
plane is at least partly visible in the light frustum. For directional lights, z1 will
give the same result (but signed) as in the original formula. For point lights, z1

varies due to the perspective projection of the light. Also, both values can vary
when B differs significantly from V .
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Considerations for zn and zf

For many situations, z0 and z1 will – through the construction given in the previous
section – largely depend on the near and far camera frustum planes zn and zf , so
we take a look at how these values influence shadow quality. Note first that the
perspective aliasing error has two maxima at the (LiSPSM) near and far plane,
and a minimum near the viewer (see Figure 9.3 for zf = 100). When using the
formula given above, the maxima at the near and far plane are equalized. The
value of these maxima can be shown to depend on the ratio z1/z0. This means
that larger frusta (smaller zn and/or larger zf ) lead to larger errors. However, this
is not necessarily visible, since the location of the minimum can accidentally shift
to a location where shadow quality is more apparent.

Fig. 9.3: Error distribution from near plane to z = 100 for LiSPSM (different values of
zf ), uniform shadow maps (zf = 100) and PSM (zf = 100).

Let us then analyze the simple case that the view direction is perpendicular to
the light direction, with a directional light source and a view frustum contained in
the scene bounding box. The parameter n then evaluates to

nopt = zn +
√

znzf (9.1)

Enlarging the frustum (bigger zf ) will lead to a smaller warping effect (larger
n), because more accuracy needs to go into the distant regions, which can only be
achieved by making the mapping more like a uniform shadow map. This can be
undesirable for two reasons:
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• The total maximum error increases for larger frusta.

• The location of minimum error will move away from the viewer, so that the
apparent shadow quality can be even lower even though the maximum error
is not so strong (see Figure 9.3 for error plots with different zf ).

It is therefore advisable to choose zf as small as possible. Sometimes, how-
ever, the far plane is determined through other application concerns. An interest-
ing option is therefore to construct a “virtual” view frustum Vv for the calculation
of n. In this virtual frustum, zf can be used as a tuning parameter by which the
user can determine up to which point in the actual view frustum shadows should
have acceptable quality. Vv is applied by basing the calculations in section 9.2.5
(i.e., the values d, z0 and z1) not on the intersection body B, but on an intersection
body calculated using Vv.

It is important to note that this new far plane distance is not usable for the
intersection body calculation used for focusing because it is possible that invisible
objects inside the view frustum cast a shadow inside the visible part of the view
frustum (see [O’R04] for details). The shadows of these objects would not be
generated if we used this new far plane distance for all calculations. We only
propose to use the new far plane distance for the calculation of nopt. With this
optimization, we give these invisible shadow caster objects with visible shadows
less space/resolution in the shadow map.

If occlusion culling is used before the main render pass (for example in a pre-
process or in a depth-only pass [BWPP04]), this can be used to adjust zf automat-
ically: just set zf to the farthest vertex of the farthest encountered object. Note,
however, that this may introduce shadow continuity problems if objects become
visible or disappear, because the area of minimum error suddenly moves.

Another effect is that sometimes a smaller value zn can lead to better appar-
ent shadow quality. A smaller zn causes a stronger warping effect (smaller n),
because more accuracy is needed at the near plane, which in turn moves the area
of minimum error nearer to the viewer. The main reason for the apparent better
quality is that this area of minimum error is more conspicuous to the viewer than
distant shadows, which will deteriorate in the process. If the reduction of shadow
quality in distant regions is not visible, then zf was chosen to be too large in the
first place.

9.2.6 A side-note for directional lights: the body vector
Until now we assumed that the view direction is the most logical choice for the
up-direction of our light-space for directional lights. This choice influences the
validity of our choice of z0 and z1, and with this the quality of the shadows gener-
ated by our formula.
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The problem is that we want to focus on the intersection body B, and this body
can greatly differ from the original view frustum. We propose to use the direction
from the eye position to the other end of the intersection body B that is in the
middle of the volume of the body. We call this vector body vector. It is clear that
in certain cases this vector differs from the view direction we used till now.

A very fast method of calculating the body vector is to treat B as a point
cloud and sum up all vectors emanating from the eye position to each point. This
method automatically gives more weight to points that are far away from the eye
position (intersection points with the far plane), which is good because generally
these points influence the volume of the body much more than the points near the
view frustum near plane. Wrong results are possible if the intersection body B
had had parts near the far plane intersection results with much more intersections
than on other parts of the far plane intersection results. In this case, simple adding
up gives wrong results. In practice we found no robustness problems with this
approach that would call for the usage of a more complex method.

9.3 Correct biasing

We have noticed that with LiSPSM, simple slope-scale biasing works fairly well.
This is probably due to the choice of the projection center C, which is as close as
possible to the original eye direction, and due to the fact that the required perspec-
tive warp is often not very strong. The best results, however, were obtained using
a technique called backside mapping (as discussed in Section 5.1). This simple
trick reverses backface culling for the shadow map rendering pass, thus only ren-
dering the back sides of objects into the shadow map [WM94]. This can only be
used for closed objects, of course.

9.4 Projection aliasing

9.4.1 Lighting equation effects

As already discussed in Section 6.2, the Phong lighting model actually helps us to
hide some of the projection aliasing artefacts. The only thing to avoid is a strong
per-light ambient term, which can lead to strong illumination regardless of the in-
coming angle. Since the ambient term is meant to simulate global interreflections,
a hard shadow due to an ambient term would be unrealistic anyway.
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9.4.2 Blurring
Should projection aliasing still be objectionable, the effect can be hidden using a
simple image-space blur effect (see Section 6.3). Instead of rendering the shadow
in the main rendering pass, we start with an initial pass where, in addition to the
depth buffer, we write the shadow attenuation term (subject to percentage-closer
filtering) to the color channel. The shadow term is then copied into a texture using
a shader that executes a simple blur. It is advisable to decrease the blur filter
kernel with increasing depth value, so that small shadows in the distance don’t get
overly blurred. For multiple light sources, this has to be carried out for each light
separately, either using multiple passes or the multiple render target functionality
in newer cards. During the main rendering pass, the blurred shadow texture(s)
is used to attenuate the diffuse color. No shadow calculations are necessary, and
depth writes can be disabled.

9.5 Summary

Shadow mapping is a very popular shadow algorithm especially for computer
games. While traditional shadow maps have been prone to aliasing errors, the
techniques used in this chapter helps to improve the quality of shadow mapping in
most common situations without increasing the cost of the basic algorithm. Light
Space Perspective Shadow Maps redistribute shadow quality so that near objects
receive more resolution, but also maintain sufficient resolution for far objects. We
have shown how to deal robustly with perspective aliasing and biasing, and pro-
posed a method to deal with the problem of projective aliasing. LiSPSM works
for both directional lights and point lights, but has a greater effect for lights that
are directional or close to directional. This makes LiSPSM an ideal choice for
outdoor lighting of huge scenes.



Chapter 10

Summary

This thesis has presented an introduction to the field of shadow mapping. We gave
a thorough description of the underlying theory, as well as a detailed report of the
problems involved in shadow mapping. The most important ones are perspective
aliasing and projection aliasing, which are caused by undersampling, and incor-
rect self-shadowing, caused by resampling and depth quantization. Later on, we
attacked each of these problems and provided theoretically sound as well as prac-
tically usable solutions. For incorrect self-shadowing, we showed that biasing is
a valuable tool to correct this artifact. For projection aliasing, we gave hints how
to hide it with the help of the Phong lighting model and blurring. But the main
part of this thesis was devoted to the removal of perspective aliasing artifacts. We
listed the main methods for getting rid of this problem and showed their shortcom-
ings. Thence we embarked on a minute explanations of the reasons why and how
we can overcome most of these problems with the aid of Light space perspective
shadow maps.

Furthermore we provided the recipe of a real-world implementation that actu-
ally shows the usability of our theoretical findings in practice.

All in all we hope to give you with this thesis an immediate starter kit to
shadow maps and a theoretical basis too, for the ones who want to improve on the
shown techniques.

These final pictures (see Figure 10.1) where taken from the implementation
described in the last chapter. In this demo we have implemented the described
methods and improvements based on the LiSPSM algorithm, and used it for a
scene lit by one directional light source. The scene is an outdoor environment that
contains 5.000 tree-like objects and uses Coherent Hierarchical Culling (CHC)
[BWPP04] for visibility determination.

We implemented 2x2 percentage closer filtering with the OpenGL Shading
Language because not all hardware vendors supply us with automatically applied
PCF for shadow maps. Fogging was disabled. The platform was a Pentium4
2.4GHz with 1GB RAM and an ATI Radeon 9600 with 265MB RAM. The pic-
tures shown in Figure 10.1 where captured using a 512x512 pixel viewport res-
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Fig. 10.1: Various views of our test scene viewport 800x512 pixel, shadow map
2048x2048 pixel, 2x2 PCF enabled

olution and a 2048x2048 pixel shadow map resolution. The field of view of the
view frustum was 60◦, near plane distance was 0.1 and the far plane distance was
70.



Appendix A

The perspective space

In this appendix we will introduce the basics of perspective projections in Sec-
tion A.1 and of perspective transformations in Section A.2. After this introduc-
tion we show how a correct perspective transformation is constructed and explain
the OpenGL perspective transformation matrix in its homogeneous form in Sec-
tion A.3.

A.1 The perspective projection

A projection is an operation that “loses” one dimension. So for instance if we
want to display a three-dimensional scene on a dwo-dimensional screen, we do a
projection. Two types of projection are very common:

• Orthogonal projections

• Perspective projections

An orthogonal projection is done by running a line through each point we want
to project. All of this lines are parallel to each other, and we intersect these lines
with the viewing plane. The resulting intersection points are the two-dimensional
orthogonal projections of the original three-dimensional points.

A perspective projection is constructed the following way: First we identify
all points with a line through a “center of projection”. Then we intersect these
lines with the viewing plane. The intersection points are the two-dimensional
perspective projections of the original three-dimensional points.

A.2 Towards the perspective transformation

We have already underlined that projections remove one dimension. For com-
puter graphics, where we usually have a two-dimensional output medium and
three-dimensional input data, all seems to work fine at first glance. On the sec-
ond glance, problems appear. We want to determine visibility. For instance, we
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want to know if a polygon is in front of another polygon. We further want that
three-dimensional lines map to three-dimensional lines, which is useful for hidden
surface removal.

Therefore we need a transformation that keeps the third coordinate, the per-
spective transformation. The difference between a perspective projection and a
perspective transformation in our context is that the perspective projection maps
from 3D to 2D and the perspective transformation from 3D to 3D. This means
that a perspective transformation transforms a 3D space into another 3D space,
called post-perspective space. With this property in mind, it is clearly no problem
to repeatedly use perspective transformations to construct new spaces. But first
we must find such a perspective transformation. The simple mapping

(x, y, z) → (
xn

z
,
yn

z
, n)

maps 3D lines to 3D lines, but all depth information is lost.

(x, y, z) → (
xn

z
,
yn

z
, z)

maps endpoints of a line in a way that the same relative depths are conserved
after mapping, but it fails to map lines to lines. In Section A.3, we show a rep-
resentation of perspective transformations in standard 4 by 4 matrices to use the
hardware acceleration provided by common consumer hardware with a fixed ren-
dering pipeline.

A.3 The perspective transformation and its matrix

We start with an instructive version of a perspective projection on the plane z =
−d. Our projection center is the origin. If we want to project a point p onto this
plane at the point q, we first take a look at how we can project its x-coordinate px.
The idea to the projection is found by applying similar triangle math.

In Figure A.1, we see that px and pz are similar to qx and −d, which gives us
the resulting qx as

px

pz

=
qx

−d
⇔ qx = −d

px

pz

. (A.1)

The y-coordinate of q is found in the same way as qy = −dpy/pz and the z-
coordinate is already given by qz = −d.

To find the perspective transformation we use a similar method. For a perspec-
tive transformation it is suitable to specify a near and a far plane between which
we want our input z-values to lie. These planes are given by their signed distance
to the origin, n for the near plane and f for the far plane. The mapping of x and
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Fig. A.1: Projection works with similar triangle math.

y coordinates should be the same mapping the perspective projection provides.
With Equation A.1 this leads to

qx = n
px

pz

qy = n
py

pz

.

This input z-range should be mapped by the transformation into the range [−1, 1].

[n, f ] → [−1, 1] (A.2)

Since we also want to map the z-coordinates perspectively, we use the same for-
mula as devised for the mapping of x and y coordinates, but in a general form.
Where we used just npx resp. npy, we now use apz + b, resulting in

qz =
apz + b

pz

= a +
b

pz

.

To solve this equation we recall Equation A.2 and we can therefore state

−1 = a +
b

n
∧ 1 = a +

b

f
.

After a derivation we get

b =
2nf

n− f
∧ a =

n + f

f − n
.
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To summarize, q is

q =


npx

pz

npy

pz
.

n+f
f−n

+ 2nf
(n−f)pz


The 4x4 matrix in homogenous form looks like this

n 0 0 0
0 n 0 0

0 0 n+f
f−n

2nf
n−f

0 0 1 0

 ·


x
y
z
1


Common graphics libraries, like OpenGL for instance, use a changed coor-

dinate frame after perspective transformation. Before the perspective transfor-
mation, OpenGL uses a right handed coordinate system with the z-axis pointing
towards the viewer, and afterwards OpenlGL uses a left handed coordinate system
with the z-axis pointing away from the viewer. This can be introduced into our
matrix by a scale matrix that inverts the z-coordinate

n 0 0 0
0 n 0 0

0 0 n+f
f−n

2nf
n−f

0 0 1 0

 ·


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 =


n 0 0 0
0 n 0 0

0 0 −n+f
f−n

2nf
n−f

0 0 −1 0


To imitate a real camera, OpenGL adds a field of view in the y-direction fovy and
an aspect ratio aspect for the field of view of the x-direction. This leads to the
perspective transformation matrix generated by the gluPerspective OpenGL call

cotan(
fovy

2
)

aspect
0 0 0

0 cotan(fovy

2
) 0 0

0 0 n+f
n−f

2nf
n−f

0 0 −1 0


where cotan denotes the cotangent.
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