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Abstract

This thesis introduces a volume rendering technique that is conceptually based on the shear-

warp factorization. The novelty in our approach is that we perform the shear transformation

entirely in the frequency domain. A compensation for the direction dependent sampling distance

along the viewing rays, which is present in the standard shear-warp approach, is developed.

This compensation is also carried out in the frequency domain and is capable of producing freely

selectable sampling distances. The accurate scaling of the volume slices is achieved by using

the zero padding interpolation property. Finally, a high quality gradient estimation scheme

is presented which uses the derivative theorem of the Fourier transform. Experimental trials

have shown that the presented method can outperform established algorithms in the quality

of the resulting images. Especially in the case when the dataset was acquired according to the

sampling theorem, the presented method is capable of a perfect reconstruction of the original

function.

Kurzfassung

In dieser Diplomarbeit wird eine Volumen-Rendering Methode, die konzeptionell auf der Shear-

Warp Faktorisierung basiert, vorgestellt. Die Innovation in unserem Ansatz besteht darin, dass

die Shear-Transformation vollständig im Fourier-Raum durchgeführt wird. Eine Kompensation

für die richtungsabhängige Abtastrate auf den Blickstrahlen wird vorgestellt. Diese Kompen-

sation wird ebenfalls im Fourier-Raum durchgeführt und kann beliebige Abtastraten produ-

zieren. Hochgenaues Skalieren von Volumen-Schichten erreichen wir durch die Verwendung

der Zero-Padding-Interpolationseigenschaft. Zuletzt wird ein hoch qualitatives Gradienten-

Berechnungsschema eingeführt, welches das Ableitungs-Theorem der Fourier Transformation

benutzt. Experimentelle Versuche haben gezeigt, dass die hier präsentierte Methode bereits

etablierte Algorithmen in der Qualität überbieten kann. Speziell im Falle, dass der verwendete

Datensatz unter Einhaltung des Sampling-Theorems aquiriert wurde, ist die hier präsentierte

Methode fähig, die originale Function perfekt zu rekonstruieren.
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Chapter 1

Introduction

There is no shame in not knowing;

the shame lies in not finding out.

Russian proverb

Volume rendering has become a very fruitful area of research over the last decades. Its

applications reach from medical imaging to scientific visualization of data. Fast and, especially,

accurate display of the data can be crucial for decisions made by surgeons or researchers. The

intention of this thesis is to introduce a rendering technique that provides results in superior

quality compared to those obtained from existing methods.

1.1 Motivation

The basic challenge in volume rendering is to display data that is given on a three-dimensional

grid from arbitrary directions. The volume rendering algorithms can be classified into two

categories, image order and object order based algorithms. In this work we focus on the image

order algorithms that cast for each pixel of the final image one ray through the scene. Since

rays coming from an arbitrary direction usually don’t hit the sample points exactly, some

form of interpolation is needed, in order to calculate data along the rays. Although a lot of

research has been done in this area, the interpolation filters used in standard methods are only

approximations to the perfect reconstruction of the sinc filter kernel. Therefore visible artifacts

are introduced in the final images.

The use of the Fourier transform in volume rendering was first proposed in 1990 by Dunne

et al. [7] followed by Malzbender [21], Levoy [19], Totsuka and Levoy [34]. All these approaches

focus on the Projection Slice Theorem [31] that states that slicing in the frequency domain

equals a projection in the spatial domain. Therefore to composite a given volume onto a

1
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viewing plane a two dimensional slice is extracted of the three dimensional frequency domain

representation of the volume. This slice has to be in the same orientation as the chosen viewing

plane. The inverse Fourier transformation of this slice leads to the resulting image. If the

projected volume is of size N 3, the extraction of the slice and the following inverse Fourier

transform has a complexity of O(N 2logN) as compared to the projection in spatial domain

with a complexity of O(N 3). The forward Fourier transform, O(N 3logN), of the volume has

to be done only once, and is considered as a preprocessing step. The gain in rendering speed

comes with the drawback of a low image quality. Resulting images are similar to X-ray imaging.

In our proposed method we create regular ray casting like images [17] that feature occlusion

and use transfer-function specification to map the density values to optical properties. To

achieve this we had to turn away from the projection slice theorem and use other properties of

the Fourier transform, that have found wide applications in 1D and 2D signal processing. In

particular we exploit the Packing Theorem, which is also known as zero padding, to perform

zooming operations, Shifting Theorem to offset the data along the coordinate axis and the

Derivative Theorem to calculate derivatives of the input signals.

The Shear-Warp Factorization introduced by Lacroute et al. [14] was designed to be one of

the fastest software based rendering algorithms. This method uses three copies of the volume,

represented as stacks of slices, each aligned to one of the main coordinate axis. The stack of

slices which is the closest to be perpendicular to the viewing direction is used in a given ren-

dering pass. The viewing transformation of the volume from the object space into the image

space is factorized into a permutation, a shear and a warp transformation. The permutation

transformation is already performed by choosing one of the three stacks. The shear transfor-

mation uses 2D interpolation within the slices as compared to computationally more expensive

3D interpolation schemes [17]. Additionally no rotation is applied to the slices, just shifts par-

allel to the coordinate axis are done. These shears can be done in the frequency domain by

applying the time shifting theorem onto both axes of the two-dimensional slices. To create a

high quality zoom, the slices can be scaled by zero padding in the frequency domain. The shear

transforms the volume into the sheared object space, from which the slices are projected onto

the intermediate image plane. The final image is created by performing the remaining warping

transformation on this 2D frame buffer.

We suggest a rendering algorithm based on the shear-warp factorization carrying out the

shear transformation in the frequency domain. To further improve image quality a modification

of the standard shear-warp approach is introduced to calculate intermediate slices in order to

obtain a selectable and viewing direction independent sampling distance along the viewing rays.

For high quality gradient estimation three copies of the volume dataset are created. Each of

them is differentiated in the direction of one of the three main coordinate axis by applying the

derivative theorem. These volumes are then processed through the proposed rendering pipeline
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to the sheared object space, where they are combined to form a gradient vector field. The

gradient vector field is used for calculating lighting effects on the data slices before they are

blended into the intermediate image.

1.2 Goals

The intention of this thesis is to bring high quality signal processing methods that are based

on the Fourier transform to the volume rendering pipeline. Therefore the following goals were

set:

• Show how the Fourier transform and its theorems can be used to interpolate and differ-

entiate functions provided as sampled data with very high quality.

• Combine the approach of the shear-warp factorization with Fourier transform based meth-

ods to create a volume rendering method that can perform interpolation with sinc filter

quality.

• Introduce high quality gradient estimation by exploiting the derivative theorem of the

Fourier Transform.

1.3 Structure

This document is structured in the following way:

Chapter 2 provides a review of the Related Work on which this thesis is based. This includes an

introduction to volume rendering techniques and the role of the Fourier transform in this

area. Additionally a brief overview of the theory of sampling and interpolation is given.

Chapter 3 introduces the Fourier Transform and its theorems which are used in this work.

Chapter 4 describes in detail the algorithm of the Shear-Warp Factorization in the Fourier Domain.

Chapter 5 provides Implementation details to discuss issues that arise when dealing with data in the

Fourier domain.

Chapter 6 presents the rendering Results and provides qualitative analysis of the images obtained

by the new technique in comparison to traditional methods.

Chapter 7 gives a Summary of the presented work.

Chapter 8 finally draws Conclusions and gives suggestions for Future Work.
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1.4 Notation

The mathematical notation used throughout this thesis is introduced here. The symbols for

the number sets are N for non-negative integers, Z for integers, R for real and C for complex

numbers. For complex numbers the lower case i represents the complex unit, i.e. i2 = −1, and

an asterisk like ∗ indicates the complex conjugate.

Continuous signals are represented using brackets as in x(t), while discrete signals use square

brackets as in x[n]. Finite discrete signals have only a finite number of non-zero elements.

Therefore the signal x[n] has length N if beside a sequence of N elements all remaining elements

of x[n] are zero. The sequence of the N non-zero elements in a finite discrete signal is assumed

to start at the index n = 0, that signifies that x[n] = 0 for n < 0 and n > N − 1.

Periodic signals are indicated with a circumflex on the top of the function name as in x̂(t)

for continuous periodic signals and x̂[n] for discrete periodic signals. Unless otherwise stated,

continuous periodic signals have a period of 2π. To express that a signal has a specific length,

that length is included as a subscript in capital letters after the signal name. As an example

xN [n] is a signal with length N and x̂N [n] is a signal with period N .

Lower case letters as signal names indicate spatial domain signals, capital letters stand

for the frequency domain signals. Corresponding names of signals from the spatial and the

frequency domain indicate transform pairs related through the Fourier transform. Whereas the

spatial domain signal represents the signal itself and the frequency domain signal captures the

frequency spectrum representation of the original signal. The transform pair relation is also

expressed by a two-sided arrow like f̂ [n] ⇐⇒ F̂ [µ].

Higher dimensional signals are indicated by a number of function arguments that correspond

to the dimensionality of the signal as in f [l,m, n] for a three dimensional signal. If the signal has

a specific length in each dimension, that length is included as a subscripts as in fLMN [l,m, n].

Because of the separability property of the Fourier transform, multi-dimensional signals

can possibly be transformed to the frequency domain in only a selected number of directions,

where the remaining directions stay in the spatial domain. These resulting signals of these

operations are indicated by a lower case function name and the index variables of the directions

in the frequency domain are labeled with Greek letters. For example the signal f̂LMN [l,m, n]

is Fourier transformed in l direction into f̂LMN [λ,m, n].

Unless otherwise stated, it is assumed that the function values of spatial domain signals are

real and the function values of the frequency domain signals are complex. Multi-dimensional

signals which have some axes in the spatial domain and some axes in the frequency domain are

assumed to be complex.



Chapter 2

State of the Art in Volume Rendering

Inventions reached their limit long

ago, and I see no hope for further

development.

Julius Frontinus, 1st century A.D.

The intention of this thesis is to bring new aspects of the Fourier transform to the field

of volume rendering. Reconstruction of discrete signals is an important part of many volume

rendering algorithms, therefore a brief introduction to the mathematical basics of Sampling

and Reconstruction is given. The next section provides an overview of Optical Models for

Direct Volume Rendering followed by an introduction to the most common Volume Rendering

Techniques. The last section deals with the role of the Fourier Transform in Volume Rendering,

which is mainly an application of the projection slice theorem of the Fourier transform.

2.1 Sampling and Reconstruction

The data used in volume rendering is usually given as sample points on a particular grid. In

order to be able to render the volume from an arbitrary angle, interpolation within these sample

points is necessary. The basic concepts and requirements of this process are addressed in this

section.

2.1.1 Special Functions

There are several functions used in sampling theory to simplify the notation of mathematical

equations. The most common ones that are necessary to follow the ideas in this thesis are

briefly introduced here.

5
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Dirac delta

δ(t) is the unit impulse function or Dirac delta function, see Figure 2.1(a), defined as

δ(t) = 0, t 6= 0 (2.1)
∫ +∞

−∞
δ(t)dt = 1 (2.2)

For discrete signals, also known as the unit sample sequence, see Figure 2.1(b),

δ[n] =

{

1 n = 0

0 n 6= 0
(2.3)

t

(a)

n

1

(b)

Figure 2.1: (a) The continuous impulse δ(t) and (b) the discrete impulse δ[n].

Impulse Train

The shah function qq(t) is a continuous impulse train, which is used to relate continuous and

discrete signals, Figure 2.2.

qq(t) =
∞

∑

n=−∞

δ(t − n) (2.4)

Unit Step

H(t) is called the unit step function, see Figure 2.3(a), defined as

H(t) =











1 t > 0
1
2

t = 0

0 t < 0

(2.5)
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1

n321-1-2-3

Figure 2.2: The shah function qq(t).

in the continuous case, also known as the Heaviside function. The unit step for the discrete

case, see Figure 2.3(b),

H[n] =

{

1 n ≥ 0

0 n < 0
(2.6)

1

t

(a)

1

n321-1-2-3

(b)

Figure 2.3: (a) Continuous unit step H(t) and (b) discrete unit step H[n].

Box

The rectangle or box function is used in relating continuous and discrete signals, see Fig-

ure 2.4(a). The continuous version is defined as follows

Π(t) =

{

1 | t |< 1
2

0 | t |> 1
2

(2.7)

and the discrete box, see Figure 2.4(b),

ΠN(n) =

{

1 0 ≤ n ≤ N − 1

0 otherwise
(2.8)
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1

t1/2-1/2-1 1

(a)

1

n321-1-2-3

(b)

Figure 2.4: (a) The continuous box Π(t) and (b) the discrete box Π3[n].

Sinc

The sinc function is the Fourier transform pair to the continuous box function. It is used in

relating continuous and discrete signals, see Figure 2.5. It is given by

sinc(t) =
sinπt

πt
(2.9)

1

n31-1-3-5 5

Figure 2.5: The sinc function sinc(t).

2.1.2 Filter Theory

To make the continuous world around us accessible to a computer that is only capable of pro-

cessing discrete numbers, is it inevitable to convert a given signal into numbers. The first step

is to transform the continuous-time signal into a discrete-time signal. This means measuring

the signal value in a periodic manner over the domain of the function and storing the obtained

values in a list. How many samples are necessary to represent a signal perfectly is determined

by its frequency spectrum. If a function has a very complex characteristics, then more samples

are needed to cover the information. Shannon’s sampling theorem, also known as Nyquist crite-
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rion gives the general answer to the question of how many samples are necessary to completely

represent the continuous function by its discrete samples. It states that the sampling frequency

must be at least twice the maximum frequency in the sampled signal. If the sampling is done

according to the Nyquist criterion, the original signal can be reconstructed by convolving with

the sinc function. If the sampling rate is smaller, aliasing artifacts occur.

Figure 2.6 gives an overview of how sampling and reconstruction work. The left column

represents the spatial domain and shows all the events that occur during the process, the right

column does the same for the frequency domain. The first line introduces the band limited initial

function Figure 2.6(a) and its spectrum Figure 2.6(b). In the second row the sampling shah

function Figure 2.6(c) and its Fourier transform pair, also a shah function, but with reciprocal

spacing as seen in Figure 2.6(d) are used to sample the input signal in spatial domain. The

sampling is done in the spatial domain by multiplication of the input signal with the shah

function which gives Figure 2.6(e) as a result. Multiplication in spatial domain is equivalent

to a convolution in frequency domain. Therefore Figure 2.6(f) is the result of convolving the

spectrum of the input signal with the Fourier transform pair of the sampling shah function.

We now have the sampled data available. In order to reconstruct the original input function,

the situation of the first row in Figure 2.6 has to be restored. This can be done by multiplying

with a box function in the frequency domain to cut out the central replica of the spectrum (see

Figure 2.6(h)). The Fourier transform pair to the box is the sinc function (see Figure 2.6(g)).

Multiplication with the box in frequency domain signifies convolution with the sinc function

in spatial domain, to restore the original function.

If the signal is sampled with a lower frequency, the replicas of the frequency spectrum

move closer. At the point when the sample frequency gets bellow the Nyquist frequency the

replicas begin to overlap, see Figure 2.7. The overlapping areas of the replicas are summed up,

which makes a reconstruction of the original function impossible. This error introduces aliasing

artefacts in the reconstruction process.

An example for signal processing is the human voice, which has frequency components up

to 20kHz. In order to follow the Nyquist criteria a sampling rate of 44.1kHz has been specified

in the CD audio standard [11].
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t

(a)

-T sT

(b)

tspacing 2T
1

(c)

-T s2TT-2T

(d)

tspacing 2T
1

(e)

-2T -T 2T sT

(f)

t

(g)

2T-T-2T sT

(h)

t

(i)

-T sT

(j)

Figure 2.6: Sampling and reconstruction. The left column represents the spatial domain,
whereas the right column displays the equivalent signals in the frequency domain. (a) initial
function and (b) its frequency spectrum. (c) the sampling Shah-function and (d) its Fourier
transform pair. (e) is the result after a multiplication of (a) and (c). Therefore (f) equals the
convolution of (b) and (d). (g) the sinc function is a transform pair to (h) the box function.
The multiplication of (f) with (h) creates (j) the spectrum of the original function. Hence a
convolution of (e) with (g) leads to (i) the original function.
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t

(a)

-T sT

(b)

tspacing 1.5T
1

(c)

-1.5T s1.5T

(d)

tspacing 1.5T
1

(e)

T-T t

(f)

Figure 2.7: Sampling of a function below the Nyquist criteria. (a) and (b) show the same
initial function and its spectrum as in Figure 2.6. (c) is the sampling Shah-function with a
coarser spacing and (d) the Fourier transform pair which has a proportional finer spacing. The
multiplication of (a) with (c) gives (e). The dual operation to the multiplication in spatial
domain is the convolution in the frequency domain. Therefore the convolution of (b) with (d)
gives (f). The closer spacing of the impulses in (d) leads to overlapping of the replicas of the
spectrum in the frequency domain. The resulting function is indicated by a bold line in (f).
The overlap of the replicas makes a perfect reconstruction of the initial function impossible.
The introduced error is referred to as aliasing.
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2.2 Optical Models for Direct Volume Rendering

The rendering equation (Equation 2.10) introduced by Kajiya [12] describes a physically based

model of how the light emitted by one or several light sources propagates through a scene. It

takes into account how rays get reflected on surfaces, the scattering of light from one surface

to another, until the rays finally enter the observers eye.

I(x, x′) = g(x, x′)
[

ε(x, x′) +

∫

S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

(2.10)

I(x, x′) is related to the intensity of light passing from point x′ to point x, g(x, x′) is a

“geometry” term, ε(x, x′) is related to the intensity of emitted light from x′ to x and ρ(x, x′, x′′)

is related to the intensity of light scattered from x′′ to x via a patch of surface at x′.

As this equation contains integrals over the whole space and infinite recursions, it is practi-

cally not possible to evaluate it analytically. Therefore simplifications have to be made to make

this approach more practical.

Blinn [3] first introduced a volume density scattering model to computer graphics. Equa-

tion 2.11 gives a form of the low-albedo volume rendering integral (VRI) used by Meißner et

al. [25].

Iλ(x, r) =

∫ L

0

Cλ(s)µ(s)e(−
R s

0
µ(t)dt)ds (2.11)

The VRI analytically computes Iλ(x, r) the amount of light of wavelength λ coming from

ray direction r that is received at location x on the image plane. L is the length of the ray r, the

volume is composed of particles with certain densities µ which receive light from all surrounding

light sources and reflect this light towards the observer according to their specular and diffuse

material properties. Additionally particles may also emit light on their own. So Cλ is the light

of wavelength λ reflected and/or emitted at location s in the direction of r. To account for

the higher reflectance of particles with larger densities, the reflected color is weighted by the

particle density. The light scattered at s is then attenuated by the densities of the particles

between s and the image plane. In general the VRI cannot be computed analytically as pointed

out by Max [24], therefore practical volume rendering algorithms discretize the VRI into a

series of intervals sj with constant color Cλ(sj) and opacity α(sj). Further the exponential

function is approximated with the first two terms of the Taylor series expansion, which leads

to Equation 2.12, known as the compositing equation [18].

Iλ(x, r) =

L/∆s
∑

i=0

Cλ(si)α(si) ·
i−1
∏

j=0

(1 − α(sj)) (2.12)

It is also possible to look at compositing on a per-slice, instead of a per-ray basis. Each slice
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represents a certain distance to the projection plane. The slices are composited either in a back

to front (B2F) or a front to back (F2B) order onto the final image plane. B2F compositing is

the naive solution, with a blending operator that is referred to as the “over” operator [28] (see

Equation 2.13).

Si+1 = Si(1 − αi) + Ciαi (2.13)

Si refers to the sum after i slices, and the voxel with the color Ci and the opacity αi is

composed over the already accumulated image.

A more sophisticated method is the F2B compositing which allows early ray termination

that can accelerate the rendering of datasets which have many voxels with high opacity. During

the F2B compositing the transparency αacc of the already composited volume is accumulated for

each pixel. If the αacc value of a certain pixel reaches an value very close to 1.0 the compositing

process for this pixel is stopped and the current color of the pixel is assumed to be the final

result. Equation 2.14 shows how to add up the color component, and Equation 2.15 computes

the accumulated opacity.

Si+1 = Si + (1 − αacci
)Ciαi (2.14)

αacci+1
= αacci

+ (1 − αacci
)αi (2.15)

Si refers to the composited color of the first i slices, while Ci and αi are the color and

opacity of the currently processed sample. αacci
is the opacity of the composited slice packet

after i slices.

2.3 Volume Rendering Techniques

This section gives an introduction to the main approaches in volume rendering. The field is

separated into subsections according to the approach of image creation.

2.3.1 Image Order

Image Order techniques are focusing on the image plane as starting point of the algorithm.

The basic idea is that for every pixel of the final image a ray is cast into the scene. The

ray is sampled on its course and the simplified volume rendering equation, Equation 2.12, is

evaluated.

Ray casting introduced by Levoy [17] is a very good representative of this approach, Fig-

ure 2.8 illustrates the concept. The computational complexity of these algorithms is governed
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by the number of pixels in the final image.

Figure 2.8: In image order techniques for each pixel in the final image one ray is cast through
the scene. The final pixel color is gathered by evaluating the volume rendering integral along
the ray.

2.3.2 Object Order

The volume data is the center of interest in Object Order methods. A rendering operation is

performed for each voxel in the volume dataset. A representative of this approach is Splatting

introduced by Westover [36]. Every voxel is seen as a particle and projected to the image plane,

where it creates a footprint according to its color and opacity. Voxels closer to the image plane

blend over the footprints left by voxels further away. This achieves an approximation to the

simplified volume rendering equation. The aligned memory access can gain a significant accel-

eration in render time, compared to ray casting. The computational complexity of object order

methods is predetermined by the number of voxels in the volume to be rendered. Figure 2.9

illustrates the concept of this method.

2.3.3 Hybrid Order

Image and object order approaches have several advantages and disadvantages. The aim of

Hybrid Order techniques is to combine the advantages and to create a fast and relatively

accurate rendering algorithm. The Shear-Warp Factorization introduced by Lacroute and

Levoy [14] is the fastest known purely software based volume rendering algorithm.

The conceptual idea is to transform the volume into an intermediate coordinate system

which is called the “sheared object space”. The definition of this space is that all viewing

rays are parallel to the third coordinate axis. The transformation is illustrated in Figure 2.10

for the parallel projection. The horizontal lines represent slices of the volume data which
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Figure 2.9: In object order techniques each voxel of the input volume is projected onto the
image plane.

are intersected by the viewing rays. One stack of these slices representing the volume has to

be stored for each coordinate axis. The stack most perpendicular to the viewing direction is

selected and transformed in order to set the viewing rays perpendicular to the slices. They can

now be composited into the intermediate image in a back-to-front order. The final warping

step eliminates distortions in the intermediate image and performs eventual rotations around

the viewing axis. A summary of these steps can be seen in Figure 2.11. The reason why this

algorithm is considered a hybrid order technique is that voxel slices of the volume are composed

into the intermediate image, which is considered an object order operation. Afterwards for each

pixel in the final image the corresponding position in the intermediate image is computed which

gives the final pixel color. This second warping step is the image order component.

viewing rays

volume
slices

image
plane

shear

project

warp

Figure 2.10: In the shear-warp factorization approach the volume is tranformed to the sheared
object space by translating each slice in a way that the viewing rays become perpendicular to
the slices.
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final imageintermediate imagevoxel slice

2. project
& composite

intermediate 
image scanline

1. shear &
resample

voxel
scanline 3. warp

& resample

Figure 2.11: The three conceptual steps of the shear-warp algorithm: shear and resample
the volume slices, project the resampled slices onto the intermediate image, and warp the
intermediate image into the final image.

2.3.4 Texture Mapping

Through the availability of very powerful programmable graphics hardware the Texture Mapping

approach has become very interesting. Early work was done by Cabral [4]. At the beginning

only 2D textures intended to enhance surface graphics was supported. The concept is very

similar to the shear-warp factorization (see Section 2.3.3). The volume is separated into one

stack of slices for each main coordinate axis. The stack which is most perpendicular to the

viewing axis is selected for rendering, this is done by mapping the slice information onto a stack

of triangles which has the same geometric setup as the slices they represent. Transformation of

the triangles and blending into the frame buffer is done on the graphics hardware. This method

is illustrated in Figure 2.12.

Further development led to the introduction of graphics cards that feature 3D textures.

The volume data is stored in the memory of the graphics hardware, if a triangle intersects the
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Figure 2.12: The 2D texture approach uses one stack of texture slices for each of the main
coordinate axes. The one most parallel to the projection plane is displayed in a back-to-front
order with alpha blending.

3D texture, the cutting plane is projected onto the triangle. To use this behavior for volume

rendering, a stack of slices parallel to the projection plane intersecting the volume is drawn.

The geometric transformation and the compositing is done in hardware again. The setup for

different angles can be seen in Figure 2.13.

Figure 2.13: The 3D texture mapping method uses one 3D texture, which is mapped onto slices
parallel to the projection plane. These slices are then displayed in a back-to-front order with
alpha blending.

2.4 Fourier Transform in Volume Rendering

Frequency domain volume rendering (FDVR), often also referred to as Fourier volume rendering

(FVR), is a volume rendering technique first introduced by Dunne et al. [7]. Malzbender [21],

Levoy [19] and Totsuka [34] contributed in establishing this method in the following years.

Recently Lee et al. [15], Westenberger and Roederik [35], Entezari et al. [8], Stark [31], Dorn-

hofer [6] contributed improvements to this approach. The main enhancements where in adding

shading and the extention to non Cartesian grids.

The FVR method is based on the Projection Slice Theorem of the Fourier transform, which

states that a two-dimensional slice s, passing the origin of the frequency domain representation

of a three-dimensional volume, inverse Fourier transformed, equals a projection of the whole
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volume along the normal vector to s. If the size of the volume is N 3, then computational

expense of this operation is O(N 2logN) as compared to O(N 3) of the pure spatial domain

equivalent.

Unfortunately even with the most recent improvements this method generates only “x-ray”

like images, see Figure 2.14. The lack of occlusion and support of transfer functions are the

major drawbacks of this method.

Figure 2.14: The UNC-brain dataset from different angles, using Fourier Volume Rendering.

During the work on this thesis a paper by Li et al. [20] was published that uses the same

principle as our method, i.e., to perform the resampling of the volume in the frequency domain.

Their approach is to decompose the transformation matrix into four shear operations. These

four shear operations are performed by exploiting various frequency domain techniques and

require multiple forward and backward Fourier transforms. In our approach the transformation

matrix is factored according to the shear-warp factorization which requires only one shear

operation to be executed in the frequency domain. Another issue is that if the volume is

resampled by the application of shear operations it is necessary to add sufficient spatial domain

zero padding to fully accommodate the rotated volume. The problem that arises if the spatial

domain zero padding is too small, is that parts of the data volume pass over the border of

the volume and through the periodicity of the dataset enter from the other side. This error is

amplified by the consecutive shears. To allow arbitrary positions of the volume a symmetric

spatial domain zero pad of
√

3
2

times the maximal volume resolution has to be applied. This

creates an up to three times higher memory consumption as compared to our method that does

not require spatial domain zero padding in that dimension. We further introduce a gradient

estimation scheme that takes advantage of the derivative theorem of the Fourier transform

which could probably be applied to their work.



Chapter 3

Fourier Transform

In mathematics you don’t understand

things. You just get used to them.

Johann von Neumann

The aim of this chapter is to provide a collection of equations and theorems of the Fourier

transform used in later sections. In the interest of brevity is it not possible to give a full intro-

duction into Fourier transforms in this work. A more comprehensive and detailed introduction

to the Fourier transform can be found for example in Oppenheim and Schafers book [27].

3.1 Transform Pair

The Fourier transform links a signal with its representation in the frequency domain. There

are several forms of the Fourier transform depending whether the input signal is continuous,

finite or periodic. We define the following transforms accordingly:

Fourier Transform (FT):

X(σ) =

∫ +∞

−∞
x(t)e−2πiσtdt (3.1)

x(t) =
1

2π

∫ +∞

−∞
X(σ)e2πiσtdσ (3.2)

Discrete-Time Fourier Transform (DTFT):

X̂(σ) =
∞

∑

n=−∞

x[n]e−2πiσn (3.3)

x[n] =
1

2π

∫ +π

−π

X̂(σ)e2πiσndσ (3.4)

19
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Discrete Fourier Transform (DFT):

X̂M [µ] =
N−1
∑

n=0

x̂N [n]e−in 2πµ

M (3.5)

x̂N [n] =
1

M

M−1
∑

µ=0

X̂M [µ]eiµ 2πn
N (3.6)

To get x̂N [n] back exactly from X̂M [µ] we need M ≥ N , but in most applications typically

M = N . The computational effort for this transform is O(NM), or O(N 2) when N = M .

There are more sophisticated algorithms named Fast Fourier Transform (introduced by Cooley

and Tukey [5]); usually denoted as FFT that accomplishes the transform in O(NlogN) time

complexity. For the FFT, there are no restrictions on N , but the most well known version of

the algorithm is the radix 2 transform, which assumes N = 2k [27].

3.2 Shift Theorem

To obtain the original data samples f̂N [n] displaced by an offset a along the coordinate axis,

the frequency domain representation F̂N [ν] is multiplied with a complex exponential function

term, given by

f̂N [n − a] ⇐⇒ e−ia 2πν
N F̂N [ν] (3.7)

eia 2πn
N f̂N [n] ⇐⇒ F̂N [ν − a] (3.8)

It is possible to displace the frequency domain representation F̂N [ν] by performing a similar

multiplication in spatial domain, see Equation 3.8.

3.3 Convolution Theorem

Wolfram [23] states that “A convolution is an integral that expresses the amount of overlap of

one function g(t) as it is shifted over another function f(t)”. The convolution of continuous

signals is indicated by ∗, the symbol for the discrete periodic convolution is a ~. The Convolu-

tion Theorem states that if a convolution of two signals f(t) and g(t) in the spatial domain is

equal to y(t) (Equation 3.9), and the multiplication of their Fourier transform pairs F (σ) and

G(σ) gives Y (σ) (Equation 3.10), then y(t) and Y (σ) are transform pairs.

y(t) = f(t) ∗ g(t) =

∫ ∞

−∞
f(τ)g(t − τ)dτ (3.9)

Y (σ) = F (σ)G(σ) (3.10)
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The convolution is computed in different ways depending on the form of the involved signals. In

our application we convolve only discrete periodic signals with the same period length N . In this

case the periodic convolution as defined in Equation 3.11 for spatial domain and Equation 3.12

for the frequency domain is used.

ŷN [n] = f̂N [n] ~ ĝN [n] =
N−1
∑

m=0

f̂N [m]ĝN [n − m] (3.11)

ŶN [ν] = NF̂N [ν]ĜN [ν] (3.12)

The computational complexity of performing the convolution in spatial domain is O(N 2). The

frequency domain approach includes a forward and inverse Fourier transform (each O(NlogN))

plus the multiplication of the signals in the frequency domain (O(N)). Therefore the cost of

computing the convolution in frequency domain is O(NlogN), which is substantially faster

than the convolution in spatial domain.

3.4 Packing Theorem

The Packing Theorem is used to change the number of samples in one period of a signal f̂N [n]

with period N to f̂K [n] with period K. The packing operator is applied on the frequency domain

representation F̂N [µ], of the signal f̂N [n], to obtain F̂K [µ]. In case of K > N , the extension

of the signal period is performed by appending zero valued samples to the frequency domain

representation of the signal, see Equation 3.14. If the resulting period K is smaller than N ,

samples representing high frequency components are removed from F̂N [µ], see Equation 3.15.

PackK{F̂N [µ]} = F̂K [µ] (3.13)

with

F̂K [µ] =

{

K
N

F̂N [µ] 0 ≤ µ mod K ≤ N − 1

0 N ≤ µ mod K ≤ K − 1
(3.14)

for µ ∈ Z and K ≥ N .

F̂K [µ] = K
N

F̂N [µ] 0 ≤ µ mod K ≤ N − 1 (3.15)

for µ ∈ Z and K ≤ N .

The factor K
N

keeps the values of f̂K [n] at the scale of f̂N [n]. This operation is often also

referred as zero padding. A drawback of this method is that arbitrary scaling of signals is not

possible; the period of a given signal can only be changed in discrete steps.



CHAPTER 3. FOURIER TRANSFORM 22

3.5 Derivative Theorem

Taking the derivative of the discrete Fourier transform (Equation 3.6), gives

x̂′
N [n] =

1

M

M−1
∑

µ=0

X̂M [µ]eiµ 2πn
N · iµ2π

1

N
(3.16)

This leads to the Derivative Theorem for the DFT which states that a discrete periodic signal

x̂N [n] with a frequency domain representation of X̂M [µ] can be derived by multiplying with

iµ2π 1
N

in the frequency domain, see Equation 3.18.

x̂N [n] ⇐⇒ X̂M [µ] (3.17)

x̂′
N [n] ⇐⇒ iµ2π

1

N
X̂M [µ] (3.18)

3.6 Windowing

If a signal is sampled below the Nyquist frequency the replicas of the fundamental period in

the frequency domain overlap. Thus the perfect reconstruction of the original function is not

possible. For more details see Section 2.1.2. The errors introduced when reconstructing a signal

sampled below the Nyquist frequency are called aliasing. Unfortunately in practice it is often

the case that signals are not band limited and therefore the Nyquist frequency is infinite. Every

discrete sampling of such a not band limited signal introduces aliasing artifacts by definition.

One possible appearance of these aliasing artifacts is the Gibbs phenomenon [27]. The Gibbs

phenomenon is an overshooting of the reconstructed function which appears around disconti-

nuities of the sampled function. It is also referred to as ringing. The appearance of the Gibbs

phenomenon can be decreased through a multiplication of the Fourier series representation of

the signal with a weighting window function.

Some commonly used windows are:

Rectangular

ŴN [ν] =

{

1 0 ≤ ν ≤ M

0 otherwise
(3.19)

Bartlett(triangular)

ŴN [ν] =











2ν
M

0 ≤ ν ≤ M
2

2 − 2ν
M

M
2

< ν ≤ M

0 otherwise

(3.20)
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Hanning

ŴN [ν] =

{

0.5 − 0.5 cos(2πν
M

) 0 ≤ ν ≤ M

0 otherwise
(3.21)

Hamming

ŴN [ν] =

{

0.54 − 0.46 cos(2πν
M

) 0 ≤ ν ≤ M

0 otherwise
(3.22)

(a) (b)

Figure 3.1: (a) The Stanford Bunny rendered with the new Fourier based rendering algorithm.
Ringing artifacts are especially visible parallel to the hind leg. An application of the Hamming
window in all three dimensions in the frequency domain representation of the dataset before
starting the rendering process smooths these effects. (b) demonstrates the obtained rendering
result after windowing. The images of the first row were rendered with a zoom factor of 4 and
the enlarged sections with a zoom factor of 20.

Figure 3.1 displays two images which where rendered with the rendering algorithm intro-

duced in this work. Figure 3.1(a) shows the rendering result obtained by direct application of
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the proposed algorithm. Strong ringing artifacts are visible parallel to the hind leg. The image

in Figure 3.1(b) was rendered after an application of the Hamming window in all three space

directions in the frequency domain representation of the dataset. The ringing artifacts are very

much reduced, but also some detail in the image is smoothed out. This new volume rendering

algorithm is presented in detail in the following section. The Fourier transforms, theories and

methods introduced in this section are put together to perform important parts of this new

method.



Chapter 4

Shear-Warp Factorization in the

Fourier Domain

Do not worry about your difficulties

in Mathematics.

I can assure you mine are still

greater.

Albert Einstein

Displaying data sampled on a three-dimensional grid is the general purpose of a volume

rendering algorithm. Other requirements can vary depending on a given application. Some

application might favor high frame rates over very accurate images rendered from the input

volumes.

The focus of the algorithm presented in this chapter is to provide very high rendering quality

by using theorems of the Fourier transform that are widely used in 1D and 2D signal processing.

4.1 Introduction

Our method is conceptually based on the shear-warp factorization introduced by Lacroute and

Levoy [14]. This algorithm factorizes the viewing transformation of the volume from the object

space into the image space into a permutation, a shear, and a warp transformation. The shear

transformation, where most of the critical interpolation takes place, only uses translation of

volume slices along the coordinate axes. In this work we propose a new method performing

the shear transformation in the frequency domain. To further improve the quality of the

resulting images, two modifications of the standard shear-warp approach are introduced. First,

a method is proposed for calculating intermediate slices before the shear operation is applied.

25
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This ensures that we obtain a steerable and viewing direction independent sampling distance

along the viewing rays. Second, we introduce a technique to perform zooming in the standard

object coordinate system as compared to zooming in the warping stage, which improves image

quality significantly. Additionally a high quality gradient estimation scheme based on the

derivative theorem of the Fourier transform is presented.

The advantage of performing these operations in the frequency domain is that the Fourier

transform offers theorems that allow to shift, scale and differentiate signals with very high

precision. This section builds the mathematical background for the shear-warp factorization

and introduces the modified rendering pipeline. It describes each rendering stage and explains

which theorems of the Fourier transform are applied.

4.2 Coordinate Systems

The naming conventions for the coordinate systems and axes used in this work correspond with

the original mathematical groundwork done by Lacroute [13]. Figure 4.1 displays the coordinate

systems used during the derivation of the shear-warp factorization. All four coordinate systems

are right handed.

x
o

y
o

volume

z
o

k

ij

voxel slices

w

u
v

intermediate
image

standard object sheared object image

y
i

z
i

x
i

object coordinates
coordinates coordinates coordinates

Figure 4.1: Coordinate systems used when deriving the shear-warp factorization.

The object coordinate system is the initial coordinate system of the volume. The origin of

the coordinate system is located at the corner of the volume. The unit distance on each axis

equals one voxel length along the corresponding axis. The three axes are labeled xo, yo and zo.

The standard object coordinate system is created by permuting the axes of the object

coordinate system, in such a way that the principal viewing axis becomes the third coordinate

axis, which is the axis that is the closest to be parallel to the viewing direction. The axes are

labeled i, j and k whereas k is the principal viewing axis.

We construct the sheared object coordinate system by shearing the standard object co-

ordinate system with the shear coefficients obtained from the shear-warp factorization, see
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Section 4.3.3. This coordinate system is also the coordinate system of the intermediate image,

and its origin is located at the upper left corner. The axes are labeled u, v and w.

The image coordinate system is created by transforming the sheared object coordinate

system with the warp matrix from the shear-warp factorization, see Section 4.3.5. This is the

coordinate system of the final image. The origin of the image coordinate system is located

at the upper-left corner of the final image. The axes names are xi, yi and zi, whereas zi is

perpendicular to the image plane.

4.3 Mathematics of the Shear-Warp Factorization

In this section a summary of the equations needed to perform the shear-warp factorization is

provided. For derivation and more detailed introduction see Lacroute’s thesis [13].

4.3.1 The Viewing Transformation Matrix

The viewing transformation matrix Mview is a four-by-four matrix that transforms homogeneous

points from object space to image space:













xi

yi

zi

wi













= Mview ·













xo

yo

zo

wo













The standard shear-warp factorization supports affine and perspective factorization. Exact

scaling of volume slices by arbitrary factors is necessary for perspective projection. Our method

uses zero padding to perform zooming of volume slices. Therefore the size of slices can only

be increased in discrete steps (see Section 3.4). This limitation is the reason that at the

current state our rendering method only supports parallel projection. However, we can do

perspective projection if we accept the introduction of small errors. A computational very

expensive combination of the shifting theorem and an inverse Fourier transform for each grid

row and column would allow it to achieve arbitrary scaling factors. This solution has not been

investigated yet and is referred to Section 8 for future research.

4.3.2 Finding the principal viewing axis

The principal viewing axis is the axis that is closest to be parallel to the viewing direction. Let

~vo be the viewing direction vector transformed to object space, and let mij be the elements of
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the viewing transform matrix Mview. Then ~vo is calculated from Mview in the following way:

~vo =







m12m23 − m22m13

m21m13 − m11m23

m11m22 − m21m12







Each line computes one component of the viewing vector ~vo. The component with the

biggest absolute value indicates the principal viewing axis. After the principal viewing axis is

found a permutation matrix P is selected from one of the following:

Pxo
=













0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1













Pyo
=













0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1













Pzo
=













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1













The subscript t of Pt (with t ∈ {xo, yo, zo}) indicates for which principal viewing axis a

permutation matrix is intended. After a Pt is selected it is referred to as P .













i

j

k

0













= P ·













xo

yo

zo

wo













The matrix P transforms object coordinates into standard object coordinates. The viewing

vector ~vo transformed by P is called ~vso. The actual volume data (that should be displayed

during the rendering process) is transformed from the object coordinate system to the standard

object coordinate system by moving each voxel from its position (xo,yo,zo) in object coordinates,

to the target position (i,j,k) in standard object coordinates. This rearrangement of data is a

time consuming process. Therefore, in the standard shear-warp factorization three copies of

the input volume are stored, each one of them rotated with one of the permutation matrices.

After finding the principal viewing axis and selecting a permutation matrix, the corresponding

volume is used for further processing. This alleviates the burden of computation at the expense

of extra storage space.

4.3.3 The Shear Coefficients

The next step in the rendering process is to perform a shear in the I and J direction. The shear

operation transforms the volume into the sheared object space where the viewing direction is

perpendicular to the (u,v) plane.
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Therefore let M ′
view be a permuted viewing transformation matrix that transforms standard

object coordinates to image space coordinates:

M ′
view = MviewP−1

The shearing coefficients si and sj for the I and J axis are calculated from M ′
view, where m′

ij

are the elements of M ′
view, in the following manner:

si =
m′

22
m′

13
−m′

12
m′

23

m′

11
m′

22
−m′

21
m′

12

sj =
m′

11
m′

23
−m′

21
m′

13

m′

11
m′

22
−m′

21
m′

12

This shear operation transforms the standard object coordinate system into a “sheared”

coordinate system. The resulting coordinate system is not advantageous because the origin

is not located at a corner of the intermediate image. The origin of this sheared coordinate

system is therefore translated to the upper-left corner of the intermediate image. There are

four different cases for this translation depending on the signs of the shear coefficients si and

sj, see Table 4.1.

si sj ti tj
si ≥ 0 sj ≥ 0 ti = 0 tj = 0
si ≥ 0 sj < 0 ti = 0 tj = −sjkmax

si < 0 sj ≥ 0 ti = −sikmax tj = 0
si < 0 sj < 0 ti = −sikmax tj = −sjkmax

Table 4.1: The translation (ti,tj) gives the displacement from the origin of the standard object
coordinate system to the origin of the sheared object coordinate system. The signs of si and sj

distinguish four different cases, in order to position the origin of the sheared object coordinate
system at the upper-left corner of the intermediate image. kmax is the highest coordinate value
of a slice in K direction in the standard object space.

The slices of the volume in standard object space are displaced by cksi + ti in I direction

and cksj + tj in J direction, where ck is the k coordinate of each slice in standard object space.

The shear transformation followed by the translation, transforms standard object coordinates

to sheared object coordinates.

4.3.4 Projection onto the Intermediate Image

The voxel slices in the sheared object space are composited along the w axis, which is the

viewing direction as well, into the slice located at w = 0. The slices are sorted by their K

coordinate in standard object space before compositing. The sign of the k component of the
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viewing direction vector ~vso (vso,k) in the standard object coordinate system determines the

stacking order. If vso,k is positive then the slice with the coordinate k = 0 is the front slice;

otherwise the slice at the other end of the stack, with the coordinate k = kmax is the front slice.

4.3.5 Warping Matrix

The matrix Mwarp2D is calculated from M ′
view (m′

ij are elements of M ′
view), and the translators

ti and tj:

Mwarp2D =







m′
11 m′

12 (m′
14 − tim

′
11 − tjm

′
12)

m′
21 m′

22 (m′
24 − tim

′
21 − tjm

′
22)

0 0 1







The warping matrix Mwarp2D finally converts the 2D intermediate image from the sheared

object space to the image space. Linear interpolation or higher order filtering is used in this

step to resample the intermediate image into the warped final image.

4.4 The Rendering Pipeline

As already mentioned the algorithm proposed in this thesis is based on the shear-warp factor-

ization introduced by Lacroute and Levoy [14]. The shear-warp factorization was created to

be one of the fastest software based rendering algorithms. It gains its performance by factor-

ing the projection matrix, that transforms the volume from the object space into the image

space, into several submatrices. The transformation described by each of these submatrices

can be computed very effectively and through that an immanent increase in rendering speed is

possible.

In our method we use the same submatrices as in the shear-warp factorization, the main

focus however is to aim for highest possible quality. The shear-warp factorization has four

rendering stages: permutation, shearing, compositing and warping. The permutation stage is

a movement of voxels from one position to another according to a certain permutation matrix.

This procedure creates no loss in quality of the representation of the data. In the shearing

stage the volume is dismantled into slices which are resampled on a sheared grid. The quality

of this resampling process depends very much on the filter used for the reconstruction of the

signal. In the proposed method we present a way of how to perform the shear with frequency

domain methods, which leads to an interpolation result in the theoretically best, sinc-filtered,

quality. The next stage, i.e., the compositing, is equal to a numeric integration along the

viewing rays. A major drawback of the standard shear-warp is that in this stage the numeric

integration can only be calculated with one certain sampling distance. This sampling distance
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is very coarse (> 1.0) and additionally viewing direction dependent. In our rendering pipeline

we propose a resampling step that allows to perform the numerical integration along the rays

with an arbitrary sampling distance, independent of the viewing direction. The last stage, i.e.,

the warping, transforms the intermediate image of the compositing stage into the final image.

The warping in our method remains similar to the standard shear-warp warping. To maintain

the high quality requirements a higher order spatial domain filer is used. The warping could

be performed in the frequency domain by decomposing the warping matrix into three shear

transformations [10]. One shear transformation would consist of a one-dimensional forward

Fourier transformation of the intermediate image in the direction of the shear. Then each

scan line of the image would be moved to its final position by exploiting the shifting theorem

of the Fourier transform. Finally an inverse Fourier transform in the direction of the shear

would complete one shear transformation. The quality loss caused by the resampling in this

stage is small enough to not create visible artifacts in the final image, therefore spatial domain

resampling provides sufficient accuracy.

The adapted rendering pipeline for the new frequency domain based method is presented

in Figure 4.2. During this section a detailed explanation of every stage of this pipeline and its

contribution to the rendering process is given. The first stage of the rendering pipeline starts

from the standard object coordinate system, that means the volume is already permuted such

that the K axis is the main viewing axis.

4.4.1 Multi-Dimensional Fourier Transform

The Fourier transform is a separable transformation. That means every M -dimensional Fourier

transform can be composed from M one-dimensional transforms in every dimension respectively.

To transform the volume f̂IJK [i, j, k] in K direction, it is fragmented into i · j 1D signals f̂Kij
[k]

with a period of length K. The discrete Fourier transform (Equation 3.6) transforms f̂Kij
[k]

into F̂Kij
[κ]. The volume transformed in K direction ĝIJK [i, j, κ] is obtained by reassembling

the Fourier transformed signals F̂Kij
[κ]:

ĝIJK [i, j, κ] = F̂Kij
[κ] ∀i, j, κ

To transform the volume in all three space dimensions, a consecutive application of 1D

Fourier transform in every dimension is performed. Through this transform the next pipeline

stage, see Figure 4.2(b), is reached.
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Figure 4.2: Rendering pipeline of the shear-warp factorization in the frequency domain.

4.4.2 Resampling in the Principal Viewing Axis

In the standard shear-warp factorization the number of volume slices along the principal viewing

axis K is kept constant for performance reasons. Therefore the distance of the sampling points

along the rays varies with the viewing direction, compare s1 and s2 in Figure 4.3.

This variation creates artifacts that are especially visible in animations. Resampling of the

volume in K direction allows to select an arbitrary sampling distance along the rays independent

of the viewing direction. Resampling creates additional volume slices and is done by exploiting

the packing theorem (see Section 3.4).

To compute the amount of zero padding, necessary to obtain a certain sampling distance

s′, the sampling distance s along the viewing ray before resampling is calculated. The viewing

vector ~vso, with its components vso,i, vso,j and vso,k and the distance between the volume slices

along the K axis dk are necessary. We normalize ~vso in K direction by dividing every component

through vso,k and receive ~v′
so, with its components v′

so,i, v′
so,j and v′

so,k (v′
so,k = 1.0). |~v′

so| the



CHAPTER 4. SHEAR-WARP FACTORIZATION IN THE FOURIER DOMAIN 33

s
1

d1

Slice 2Slice 1

kdk

(a)

s 2
d2

Slice 2Slice 1

k

dk

(b)

Figure 4.3: The shear transform of the shear-warp factorization from two different viewing
directions. Viewing rays are cast from the left, through the samples of the first slice, to the
right. The second sample on each ray is interpolated within the second plane (black circles).
Therefore only a two dimensional interpolation scheme is required, but an angle dependency
of the sampling distance along the rays (s1, s2) and the distance between the rays (d1, d2) is
introduced. dk indicates the distance between two slices in K direction.

absolute length of the vector ~v′
so is the sample distance if the volume slices are 1.0 apart. A

multiplication with dk, the real distance between the volume slices, gives the final result. This

setting is illustrated by Figure 4.4. The following equations summarize the computational

procedure.

l =
√

(v′
so,i)

2 + (v′
so,j)

2 (4.1)

s = dk

√

(v′
so,i)

2 + (v′
so,j)

2 + (v′
so,k)

2 (4.2)

s′

s
=

K

K ′
(4.3)

K ′ =
sK

s′
(4.4)

l (see Figure 4.4) is the sum of the i and j component of ~v′
so. s is the distance between

two consecutive samples along the ray without resampling. s′ is the desired sampling distance

after zero padding. K is the number of volume slices in K direction which is increased to K ′

through zero padding. The ratio of s to s′ is inverse proportional to the ratio of K to K ′, see

Equation 4.3. This gives Equation 4.4, to compute the number of samples K ′ that are necessary
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in K direction. The difference between K ′ and K is the amount of zero pad necessary for the

selected sampling distance s′.

Slice 2

Slice 1

s

1.0
dk

l

vso

vso,k

k

Figure 4.4: The viewing vector ~vso intersects two slices. The distance of these two intersection
points is calculated by normalizing ~vso in K direction to get ~v′

so. |~v′
so| the absolute length of the

vector ~v′
so is the distance of the intersection points if the slices are 1.0 apart. Scaling of |~v ′

so|
with dk, the real distance between the slices, gives the final result.

As zero padding can only be applied in discrete amounts, K ′ has to be rounded to an

integer number K ′
pad ∈ N. The obtained sampling distance s′pad after zero padding is related to

s′ through ϕk with

ϕk =
K ′

K ′
pad

(4.5)

K ′

K ′ + 0.5
< ϕk <

K ′

K ′ − 0.5
(4.6)

for sizes of K ′
pad > 50, the error introduced to the sampling distance is already below ±1.0%

of K ′.

The application of the zero pad brings us to the pipeline stage Figure 4.2(c). An inverse

Fourier transform in K direction moves it further to Figure 4.2(d), the I and J direction of the

volume remain in the frequency domain.

It is important to remember that this resampling in K direction changes the distance dk

between the slices to dkpad, with

d′
kpad = dk

K

K ′
pad

(4.7)

This is especially relevant in the shearing stage (see Section 4.4.4).
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4.4.3 Resampling of Volume Slices in I and J Direction

In the standard shear-warp factorization zooming is performed by scaling the intermediate

image. This approach leads to considerable blurring artifacts, especially for zoom factors greater

than 2, as pointed out by Sweeney and Mueller [32]. In the proposed method zooming is

performed earlier in the standard object space where the rescaling is applied to the volume

slices. A volume slice F̂IJK
[ι, κ] contains all the voxels of the volume that have the same k

coordinate value. A desired zoom factor of zij is achieved by increasing the signal periods of

each slice F̂IJK
[ι, κ] to FI′J ′

K
[ι, κ] with

I ′ = zij · I (4.8)

J ′ = zij · J (4.9)

This is accomplished by applying the packing theorem, see Section 3.4. As adding samples

is only possible in discrete steps, zoom factors zij can only be achieved with limited precision.

If I ′
pad and J ′

pad are the dimensions of the slice after the zero padding, then the error factors ϕi

and ϕj are given through:

ϕi =
I ′

I ′
pad

(4.10)

ϕj =
J ′

J ′
pad

(4.11)

If I ′
pad > 50 and J ′

pad > 50 then the scaling error that is introduced is bellow ±1.0% of I ′

and J ′. This error, if required, can be compensated by additional scaling in the warping step

by ϕi and ϕj, see Section 4.4.6.

After the application of the zero pad the render process reaches the stage Figure 4.2(e).

Figure 4.5 demonstrates the scaling of a slice on a 2D gray scale image of Lenna [16]. First

the image information is stored into f̂NM [n,m]. Then a 2D Fourier transform is applied to get

F̂NM [ν, µ]. The packing theorem is used to increase the period length to get to F̂N ′M ′ [ν ′, µ′].

After a 2D inverse Fourier transform the scaled slice is available in f̂N ′M ′ [n′,m′]. In this stage

of the rendering pipeline only zero padding is performed, which corresponds to the step from

Figure 4.5(b) to Figure 4.5(c). The zero pad is added in the middle of the image due to an

asymmetric indexing scheme used in standard Fourier transform implementations [9]. The

details about this indexing scheme are explained in Section 5.1.

An example of the difference in image quality of zooming in the standard object space, as

compared to zooming at the level of the intermediate image can be seen in Section 6.2.5.



CHAPTER 4. SHEAR-WARP FACTORIZATION IN THE FOURIER DOMAIN 36

(a) (b)

(c) (d)

Figure 4.5: Process of zooming by zero padding in the frequency domain. (a) Start with
a gray scale image of Lenna. The image information is stored in the real component of the
spatial domain representation. (b) After 2D Fourier Transform a hermitian spectrum is obtained
(displaying magnitude of the spectrum in logarithmic scale). (c) Zero pad in the high frequency
area is added. (d) Resampled result image after the inverse Fourier transform.

4.4.4 Shearing

In this stage of the shear-warp factorization the volume is transformed from the standard

object coordinate system to the sheared object space. This causes the viewing direction to

be perpendicular to the slices of the volume, respectively the (v,u) plane. Performing the

calculations explained in detail in Section 4.3.3, we acquire the shear coefficients (si, sj) and

the translation values (ti, tj). The displacements of the kth slice in I and J direction are

computed as follows:

aik = cksi + ti (4.12)

ajk = cksj + tj (4.13)
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axk

axkFDaxkSD

Figure 4.6: The shift of the signal by axk is split into axkSD, the multiple of whole voxel lengths
and the remainder axkFD. The shift by axkFD is performed in the frequency domain, and the
shift by axkSD in the spatial domain.

ck indicates the coordinate value of the slice in K direction.

For both directions the shifts by axk (x ∈ {i, j}) are split into a multiple of the voxel lengths,

axkSD and the remainder, which is then a fraction of a voxel step axkFD, see Figure 4.6. As the

subscripts already indicate the shift for axkFD is performed in the frequency domain, and the

step for axkSD in spatial domain. The shift in spatial domain is actually only a movement of the

slice in full voxel steps. The actual interpolation part is performed in the frequency domain.

The reason for this split of the shift is to avoid wrap around effects as presented in Figure 4.7.

For the Fourier transform the volume slices are assumed to be periodic in i and j dimension.

If the whole shift axk would be performed in the frequency domain more than one voxel of the

neighboring period gets into the visible window area, which could lead to artifacts in the final

image. To further limit the appearance of voxels from one side of the slice at the other end a

spatial domain border around the volume of one voxel thickness can be added. This separates

the periodic replicas in spatial domain.

When we apply the shifting theorem to perform the axkFD shift, the i and j dimensions

are still in the frequency domain. After that we proceed to the rendering stage indicated in

Figure 4.2(f). An inverse Fourier transform in I and J direction brings us to Figure 4.2(g). The

axkSD step of the displacement is applied in spatial domain, completing the transformation of

the volume to the sheared object space, see Figure 4.2(h).

4.4.5 Compositing

During this step the resampled slices are composited, along the w axis, into a 2D intermediate

image. Transfer functions can be applied to the volume, as all kinds of algorithms to influence

the appearance of the final image (i.e., shading, non-photorealistic effects, . . . ). In Section 4.4.7

the computation of high-quality gradients is explained, to obtain surface normals for lighting

calculations.
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Figure 4.7: The image of Lenna is the fundamental period of a 2D discrete periodic signal
f̂NM [n,m]. The time shifting theorem of the Fourier transform applied to the frequency spec-
trum F̂NM [ν, µ] moves f̂NM [n,m] over the periodic domain. The black frame indicates a ’viewing
window’ or the data f̂NM [n,m] holds after the shift. If one part of Lenna leaves the frame on
one side, the next period of the signal moves in from the other end. This wrapping effect is
especially visible when the displacement is bigger than one pixel.

The compositing of the slices along the w axis is one approach of calculating the integral

along each viewing ray. During this process the density information of each slice f̂UV [u, v] is

transformed into an image iUV [u, v]. Each pixel in iUV [u, v] has a color c and a transparency

coefficient α. These images are then composited into the slice located at w = 0, by using the

“over” operator [28]. The “over” operator states that if a pixel a with color ca and transparency

αa is composited over a pixel b with color cb and transparency αb, the resulting pixel values cc

and αc are given by:

cc = caαa + cb(1 − αa) (4.14)

αc = αa + (1 − αa)αb (4.15)

The order in which the slices are composited is determined by their w coordinate value. The
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sign of the k component of the viewing vector ~vso (vso,k) in standard object space determines

from which side of the stack the processing starts. If vso,k is positive then the slice with the

coordinate k = 0 is the front slice; otherwise the slice at the other end of the stack, with the

coordinate k = kmax is the front slice. Compositing all slices using the “over” operator results

into the non-warped intermediate image (see Figure 4.2(i)).

4.4.6 Warping

The 2D warping transformation applied to the intermediate image leads to the result image.

The derivation of the necessary transformation matrix Mwarp2D can be found in Section 4.3.5.

This 3 × 3 matrix transforms data points from the sheared object space into the final image

space. This transformation compensates the viewing-direction dependent scaling of the dis-

tances between the viewing rays (compare d1 and d2 in Figure 4.3), and performs the rotation

component around the K axis.

If a compensation to the error in scaling in standard object space (Section 4.4.3) is required,

a scaling matrix can be added to the warping matrix, with su = ϕi and sv = ϕj:
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The combination of Mwarp2D with the compensating scaling matrix is called Mwarp2Dscale.

M ′
warp2Dscale is the inverse matrix of this Mwarp2Dscale matrix. If M is the maximal volume

extension (maximum of I, J and K in standard object space), and zij (see Section 4.4.3) is

the scale factor applied to the volume, then an image buffer fNN [yi, zi] with N =
√

3 · zij · M
holds the result image. This calculation is based on the assumption that each side of the

volume is M long and the main diagonal of this cube is visible in its full length. Every pixel

of fNN [yi, zi] in the image coordinate space is transformed to the sheared object space with

M ′
warp2Dscale. The image values at the obtained coordinates are interpolated from the pixel

values of the intermediate image. In order to maintain high quality in this step as well, we use

a higher order spatial domain filter for the resampling which is comparable to a Catmull-Rom

spline [26] (D0 C3 4EF).

4.4.7 Gradients

Since the gradient is the partial derivative of the original function f̂IJK [i, j, k] and ideal inter-

polation with the sinc will reconstruct that function, the gradient can be reconstructed exactly

by using the derivate of the sinc as a reconstruction kernel [2]. This function is denoted as

the cosc function [33]. The Fourier transform of the cosc function is a ramp in the frequency
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domain. Applying the derivative theorem of the DFT in the three space dimensions gives the

following equations:

d

dl
f̂LMN [l,m, n] ⇐⇒ iλ2π

1

L
F̂LMN [λ, µ, ν] (4.17)

d

dm
f̂LMN [l,m, n] ⇐⇒ iµ2π

1

M
F̂LMN [λ, µ, ν] (4.18)

d

dn
f̂LMN [l,m, n] ⇐⇒ iν2π

1

N
F̂LMN [λ, µ, ν] (4.19)

Three copies of the Fourier transformed original dataset are created, one for each dimension

of the gradient. One of the three forms of the derivative theorem, see Equations 4.17, 4.18 and

4.19, is applied to each volume, in order to differentiate that volume in the direction of the

gradient dimension it represents. Afterwards these gradient volumes are processed through the

same rendering pipeline, as the density volume. At the compositing stage they are combined

to a volume of gradient vectors. These gradient vectors are used with the processed original

data to compute the intermediate image, see Section 4.4.5.

Figure 4.8 demonstrates how the derivative theorem is applied to a 2D slice. Figure 4.8(a)

shows a 2D Gauß function. Figure 4.8(b) is the frequency domain representation obtained

through a discrete Fourier transformation in x and y direction. The derivative theorem of the

Fourier transform is applied in x direction to create Figure 4.8(c). After an inverse Fourier

transform a x differentiated version of the 2D Gauß function is presented in Figure 4.8(d),

where yellow indicates the negative sign.



CHAPTER 4. SHEAR-WARP FACTORIZATION IN THE FOURIER DOMAIN 41

(a) (b)

(c) (d)

Figure 4.8: Derivative reconstruction in the frequency domain. (a) Displays the image of a 2D
Gauß function. (b) shows the function after a Fourier transform in 2 dimensions (displaying
magnitude in logarithmic scale). (c) the application of the derivative theorem in X direction
and (d) an inverse Fourier transform gives the derivative of the Gauß function in X direction
(yellow indicates negative sign).



Chapter 5

Implementation

Machines take me by surprise with

great frequency.

Alan Turing

The general idea of the algorithm introduced in this work is based on the standard shear-

warp factorization. Therefore incorporating the new approach in an existing implementation

does not create too many problems. But there are some issues concerning the Fourier transform,

that are not straightforward. This section focuses on these problems that can arise when dealing

with data in the frequency domain.

5.1 The Origin Problem

The definition of the discrete Fourier transform (DFT) creates an origin problem in the fre-

quency and in the spatial domain. The fundamental period of the spectrum is located sym-

metrical around the origin. But most FFT libraries, like the FFTW [9] implementation, use a

version of the DFT, see Equation 5.1 and Equation 5.2,

F̂N [µ] =
N−1
∑

n=0

f̂N [n]e−in 2πµ

N (5.1)

f̂N [n] =
1

N

N−1
∑

µ=0

F̂N [µ]eiµ 2πn
N (5.2)

where the data is managed asymmetrically.

The origin of the spectrum, the constant component of the signal, is located at the index

0 of the sample array. Then with increasing index the higher frequencies are captured. Up to

42



CHAPTER 5. IMPLEMENTATION 43

index k for N = 2n
0 +1 +n+(n-1)...-1-n -(n-1)

0 +1 -1+n+(n-1) -(n-1)... ...

...
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...... ...

t

F [m]N

(a)

0 +1 -1+(n-1) -(n-1)+n -n... ... index k for N = 2n + 1
0 +1 +(n-1) +n...-1-(n-1)-n ...

... ... ... ...

t

F [m]N

(b)

Figure 5.1: Asymmetric indexing scheme for an even (a) and an odd (b) number of samples.

half of the array where through the periodicity of the spectrum the negative edge of the first

replica starts. The values for k are used when applying the shifting theorem and the derivative

theorem. This situation is illustrated by Figure 5.1(a) for an even and by Figure 5.1(b) for an

odd number of samples. In both figures the dotted line indicates the fundamental period, of the

periodic spectrum, which is symmetric around the origin. The additional samples on the right

represent the replicas of the fundamental period in the frequency domain, see Figure 2.6. The

blue scheme displays the symmetric indexing of the fundamental period. The second scheme

starts with the constant value at the first index position, and is used by most implementations.

The reason for distinguishing an even and an odd case is that in the even case the two replicas

share one sample in the middle of the array. This overlapping index of the replicas creates

problems when applying Fourier transform theorems, like the shifting theorem, the derivative

theorem or the packing theorem in the frequency domain. These problems are addressed in

detail in Section 5.2.
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5.2 Maintaining the Hermitian Property

The input signal in the Fourier transform in general is complex. In this application the volume

data in spatial domain is stored only in the real component and the imaginary component is

set to zero. This, so called real function, is a Fourier transform pair to a Hermitian function.

Therefore a Fourier transform of this spatial domain representation of the volume leads to

a frequency domain representation which is Hermitian. The following equations clarify the

meaning of the Hermitian property.

X̂N [κ] = X̂N [−κ] ∗ (5.3)

Re{X̂N [κ]} = Re{X̂N [−κ]} (5.4)

Im{X̂N [κ]} = −Im{X̂N [−κ]} (5.5)

Corresponding sample values, with index κ and −κ, are conjugate complex to each other, the

real components are equal (Equation 5.4), and the imaginary components have inverse sign

(Equation 5.5). Another way to look at the Hermitian property is to explore the real and

Im X(s)

Re X(s)

s

(a)

Im X(s)

Re X(s)

s

(b)

Figure 5.2: (a) A real function in spatial domain is transformed to a (b) Hermitian function
in the frequency domain. If the real and the imaginary component of the Hermitian function
are explored independently, then the real component forms an even function and the imaginary
component an odd function.

imaginary component independently (see Figure 5.2). The complex function in Figure 5.2(b)

consists of an even function in the real component, and an odd function in the imaginary

component.

How the Hermitian relation applies to the indexing scheme in the discrete case is presented

in Figure 5.3, there are two different patterns for even and odd number of samples.
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0 +1 -1+n+(n-1) -(n-1)... ... index k for N = 2n
0 +1 +n+(n-1)...-1-n -(n-1) ...

(a)

index k for N = 2n + 1
0 +1 +(n-1) +n...-1-(n-1)-n ...

... ... ... ...

F [m]N

t

0 +1 -1+(n-1) -(n-1)+n -n... ...

(b)

Figure 5.3: Hermitian relation of functions with an even (a) and an odd (b) number of samples.
The arrows indicate which samples have to be conjugate complex to each other to maintain the
Hermitian property.

The reason for going into details about Hermitian functions is that they are dual to the real

function by the Fourier transform. That means all operations applied in the frequency domain

have to preserve the Hermitian property in order to obtain a real function after the inverse

Fourier transform. The indices which need special attention are listed in Table 5.1. The first

issue treats sample points that are conjugate complex to itself, and therefore the imaginary

component has to be zero. That is taken care of by the Fourier transform itself, the result

after the transformation to the frequency domain contains zeros at the correct positions. Some

available packets like FFTW [9] have special real Fourier transforms that exploit the symmetry

in the data to save roughly a factor of two in both time and storage. The interface for this

special transform does not allocate memory for these zero indices, to save storage space.

The second issue has an effect when calculating the derivative, Section 4.4.7. If the length
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N of the signal X̂N [µ] is even with N = 2β then X̂N [β] has to be conjugate complex to itself to

maintain Hermitianity (see Figure 5.3(a)). The multiplication with iµ2π 1
N

essentially switches

the real and imaginary component. As the result still has to be Hermitian, iµ2π 1
N

X̂N [β] again

has to be conjugate complex to itself. This forces Re{X̂N [β]} and Im{X̂N [β]} to be zero.

Another way of getting around this problem is to add one zero valued sample at the end of

the signal in spatial domain, in order to create an odd number of samples (spatial domain zero

padding).

index problem counter measure

function
κ = 0
κ = n if N is even

X̂N [κ] = X̂N [κ]∗ Im{X̂N [κ]} = 0

derivative κ = n if N is even iX̂N [κ] = (iX̂N [κ])∗ Re{X̂N [κ]} = 0

Im{X̂N [κ]} = 0

Table 5.1: Problematic indices for the Hermitian property

5.3 Shift Effect

The shift effect is not only noticeable in resampling by zero padding. It is based on the fact that

the spatial domain is assumed to be periodic. Therefore the first and the last sample of a signal

are neighboring. If we interpolate between the samples to zoom the signal, new sample points

are also introduced between these two border samples. As the sample at the origin remains on

its position, and the new samples are appended, it creates the effect of shifting the function

sideways. Figure 5.4 shows a schematic of how the shift effect is generated. It becomes more

visible with increasing zoom factor. In Figure 5.5 an 3 × 3 pixel example image is zoomed to

258 × 258 pixel. The high zoom factor of 86 makes the shifting effect visible.

The presented rendering algorithm supports at the current state only parallel projection.

Therefore every volume slice is scaled with the same scaling factor. As a counter measure to

the shifting effect d pixel rows and collumns are removed at the top and the right border of the

slice. With

d = zij − 1.0 (5.6)

where zij is the zoom factor applied to a certain slice. This procedure at least removes eventual

artifacts created at the border region.

5.4 Memory Optimization

The method introduced in this work has a high demand on available memory and needs to

access it in a non-linear fashion. This creates two starting points for possible optimizations,
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Original Image

Replicas

(a)

Scaled Image

(b)

Figure 5.4: The spatial domain is considered as periodic in both dimensions. (a) shows a a
2 by 2 samples image. The black box indicates the fundamental period of the signal. New
samples are inserted between the original sampling points through a scaling operation (b). As
the sample at the origin remains at its position, an apparent effect of shifting of the image to
the lower left corner is created.

(a) (b)

Figure 5.5: A 3 × 3 pixel image with a white pixel in the center and black pixel at the border
is zoomed to a 258 × 258 pixel image by zero padding in the frequency domain. The resulting
image (a) shows the shift effect to the lower left corner. In (b) the position of the pixel of the
original image are highlighted.

the use and the overall demand of storage space.
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5.4.1 Access Localization

The interfaces of the library used to calculate the Fourier transform, FFTW [9], expects the

data to be passed in row-major format.

i(n1, n2, n3) = n3 + N3(n2 + N2n1) (5.7)

That means the linear memory index for three dimensions N1, N2 and N3 with values n1,

n2 and n3 is calculated with Equation 5.7. If the input data volume is oriented such that

(i, j, k) corresponds to (n1, n2, n3), data points that belong to one slice are stored in one block

of memory. In order to get the volume memory aligned for each main viewing direction, it has

to be permutated in memory. The performance increases because the main computations are

performed on a per slice basis.

5.4.2 Memory Consumption

The shear-warp factorization has high memory consumption because of the three volume stacks

that are stored, one for each main coordinate axis. The demand in this application is even higher

because every sample is represented through two floating point values.

The rendering times with this method are usually in the range of minutes, therefore it

introduces only negligible overhead to store just one volume and permutate it for each frame

according to the view vector. This leads to just one volume for the density information.

For the gradients usually three volumes are necessary, one for each dimension. If the deriva-

tive in I and J direction are calculated on the fly from the density slices, just before compositing,

the overall number of volumes needed decreases to two copies, one to store the density infor-

mation, and one for the derivative in K direction.

5.5 Shifting, Deriving, Windowing

The shifting theorem, the derivative theorem and windowing to smooth the data are defined

as separable one-dimensional operations. That means to perform one of these operations to

the volume X̂IJK [λ, µ, ν] in J direction a linear array F̂J [µ] is computed, prepared with factors

according to Section 3.2, Section 3.5 or Section 3.6. It is then applied to the volume with

Equation 5.8.

X̂ ′
IJK [λ, µ, ν] = X̂IJK [λ, µ, ν] · F̂J [µ] ∀λ, µ, ν (5.8)

To increase efficiency, especially for combinations of operations that have to be performed on

several slices, these linear transformation arrays can be combined to two-dimensional transfor-

mation arrays as indicated in Table 5.2.
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F̂I [0] F̂I [1] . . . F̂I [I − 1]

F̂J [0] F̂IJ [0, 0] F̂IJ [1, 0] . . . F̂IJ [I − 1, 0]

F̂J [1] F̂IJ [0, 1] F̂IJ [1, 1] . . . F̂IJ [I − 1, 1]
...

...
...

. . .
...

F̂J [J − 1] F̂IJ [0, J − 1] F̂IJ [1, J − 1] . . . F̂IJ [I − 1, J − 1]

Table 5.2: The combination of two one-dimensional transformation arrays, FI [λ] in I direction
and FJ [µ] in K direction, into a two-dimensional transformation array FIJ [λ, µ] by multiplica-
tion of the corresponding entries.

Equation 5.9 displays how to combine the entries of two one-dimensional tranformation

arrays into one two-dimensional transformation array.

F̂IJ [λ, µ] = F̂I [λ] · F̂J [µ] ∀λ, µ (5.9)

This combination and reuse of transform arrays is exploited in the current implementation

especially for the shift operation. The expensive calculation of the exponential coefficient is

performed only once, and the resulting transformation array is used to displace the density

slice, and all three derivative slices.

5.6 Rendering Speed

Sometimes, especially for data exploration, fast rendering times are favored over high accuracy

of the reconstruction. Even though the design of this algorithm, was not intended for speed,

there are several methods to speed-up the rendering process. Most of the ideas are often used

in ray casting and can be applied to this method.

5.6.1 Down Scaling in I, J Direction

The dimension of the volume is reduced in I and J direction by deletion of high frequency

components in the frequency domain, eventual zooming is done in the warping step. In ray

casting this is equal to a reduced number of rays cast through the scene.

5.6.2 Less, Constant Slices in K Direction

If a fine sampling distance along the rays is not necessary, then the resampling step in K

direction (see Figure 4.2(c)) can be omitted. Therefore no new slices are created and the

computation is less expensive. It is even possible to create a coarser sampling distance by

removing high frequency components in the resampling stage which equals to a reduction of

the resolution of the volume in K direction.
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5.6.3 Multithreading

After the inverse Fourier transformation in K direction, Figure 4.2(d), the volume is dismantled

into slices that are further processed independently. This independence is a good condition for

parallel processing. The data of each slice is assigned to a single thread that can be executed

in parallel. At the end, synchronization has to be done in a way that the threads project their

results into the intermediate image according to the K coordinate of the slice they compute.

Measurements of the speed gain are available in Section 6.2.3.



Chapter 6

Results

I may not have gone where I intended

to go, but I think I have ended up

where I intended to be.

Douglas Adams

In this section results and experiences with the application of the introduced technique in

practice are presented. The reconstruction quality is compared to standard spatial domain

filters. The filter kernels used in our implementation have been developed by Möller et al. [26].

Table 6.1 shows some of the used filters and their common names in literature.

D0 C0 1EF Linear Interpolation
D0 C1 3EF Catmull-Rom Spline
DN C2 2EF B Spline

Table 6.1: Filter kernel used for comparison.

The naming conventions are the following, DN identifies an approximation filter, D0 is an

interpolation filter and D1 gives the first derivative. The C value indicates how many times

the reconstructed function can be derived and still remain continuous. A N -EF filter will

reconstruct a polynomial function of (N − 1)th or lower degree without errors.

6.1 Test datasets

Several 3D volume datasets are used to compare the reconstruction quality of the frequency

domain method to standard spatial domain filtering. Two different kinds of datasets are used,

synthetic datasets and CT-scans. The synthetic datasets are based on a continuous function

that is sampled on a regular grid. The continuous function can be rendered by evaluating

51
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the function at the sample points along the viewing rays. In this way creating a reference

image to the images rendered from the sampled data. CT-scans are samples on a regular 3D

grid, representing the sampled density function of a certain object. The scanner data is often

provided in this format for volume rendering. Therefore comparison of the resulting images of

the frequency domain based method to standard spatial domain rendering can give interesting

insights.

6.1.1 Synthetic Test Datasets

To test the quality of the new interpolation method, the test function introduced by Marschner

and Lobb [22] is used. This function, ρml in Equation 6.1, is defined in three-dimensional

space and sampled at 20 samples per unit distance in each dimension. The range for x, y, z is

−1 < x, y, z < 1, with the constant values fM = 6 and α = 0.25. This continuous volume is

discretized with 41 by 41 by 41 samples, which captures 99.8% of the signals energy.

ρml(x, y, z) =
1 − sin(1

2
πz) + α(1 + ρr(

√

x2 + y2))

2(1 + α)
(6.1)

with

ρr(r) = cos(2πfM cos(
1

2
πr)) (6.2)

Figure 6.1 displays an image of the ρml function, rendered with an iso-value of 0.5, a 10.0 times

zoom and a sampling distance along the viewing rays of 0.05. The function ρml was evaluated

for every sample point during the rendering of this image. A standard test to judge the quality

of a reconstruction filter is to render the sampled ρml function and compare it to this reference

image.

The ρml dataset is sampled almost with Nyquist frequency. The conduct of the function in

Z direction, with x and y set to the constant values c1 and c2, is a sine wave with low frequency

(see Equation 6.3), only shifted by a constant value c3 (depending on the values of x and y).

ρ(c1, c2, z) =
1 − sin(1

2
πz) + α(1 + cos(2πfMcos(1

2
π
√

c2
1 + c2

2))

2(1 + α)
(6.3)

= −sin(1
2
πz)

2(1 + α)
+ c3 (6.4)

The assumption when using the discrete Fourier transform (DFT) (Section 3.1) is that the

signal is periodic and discrete in spatial and frequency domain. Through the sampling of ρml we

get one period of this signal, which is half the period of a sine wave. In the zone between two

of these periods (see Figure 6.2(a)), a jump in the signal is present. This discontinuity leads to
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Description:
Synthetic test function introduced by
Marschner and Lobb [22].
With a sampling of 41 × 41 × 41
99.8% of the signals energy is captured.

Dimension Original:
41 × 41 × 41 double precision

Dimension Mirrored Version:
41 × 41 × 80 double precision

Figure 6.1: Characteristics of the synthetic datasets.

high frequency components and a not band-limited behavior. In order to avoid this problem,

and to maintain compatibility with the original signal ρml, the sample points are mirrored along

the z = −1 plane (see Figure 6.2(b)). The samples at z = −1 are not copied, because they

are positioned at the plane of reflection. Further the samples at z = +1 are not copied as well

to create smooth transitions in the periodic sequence of sine waves. This creates a extended

version of the test dataset with the dimensions of 41 × 41 × 80 samples. This extended test

dataset is used for the render benchmarks and is referred to as ρmlext.

6.1.2 Real-World Test Datasets

Three real-world dataset are used to demonstrate the reconstruction quality of the frequency

domain based rendering method compared to standard spatial domain filtering. The first two

datasets introduced in Figure 6.3 and Figure 6.4 were originally created by Marc Levoy and

are provided for research purposes by “The Stanford volume data archive” [30].

The dataset introduced in Figure 6.5 is used in a visualization lab at the Vienna University

of Technology [29].

The datasets from Figure 6.3 and Figure 6.4 where resampled to a size of 128×128×N to get

volumes with more manageable memory consumption and to amplify the interpolation artifacts
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Figure 6.2: Density characteristic of the test function in Z direction, (a) in the original version
ρml and (b) after mirroring the signal ρmlext.

introduced by the different reconstruction filters. The downsampling was done by removing of

high frequency components in the frequency domain representation of the datasets. The Skewed

Head dataset (Figure 6.5) was only used for one demonstration image and was not resampled.

6.2 Quality Comparison to Spatial Domain Filters

This section presents several experiments to show the advantages and disadvantages of the

frequency domain based techniques compared to spatial domain filtering. The following sub-

sections address issues that arise in volume rendering.

6.2.1 Super Sampling

The purpose of this experiment is to compare the quality of zooming by zero padding in the

frequency domain to interpolation with spatial domain filters.

As the newly introduced rendering algorithm is based on the shear-warp factorization, most

of the rendering steps that are quality critical are performed on volume slices. Therefore this

scaling experiment is performed on a volume slice of the ρmlext function.

Initially a 41× 41 slice of the ρmlext function (see Section 6.1), at the position of z = 0 was

taken. This slice was then zoomed by a factor f with f ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}, in X and

Y direction. The zooming of the volume slices by the factor f was done by zero padding in

the frequency domain and by resampling with standard spatial domain filters. The synthetic

function ρmlext with z = 0, was evaluated on an f times denser grid, to create a reference

solution for this zooming operation. The reference solution was subtracted from the resampled

slices. The spatial domain filters used in this experiment have a maximum filter extent of six

samples. Samples outside of the 41 × 41 initial slices were assumed to be 0. These 0 valued

samples influence the resampling in the border area of the resulting slices. To avoid too strong
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Description:
CT scan of the Stanford terra-cotta bunny.
The Stanford Bunny is famous as a
3D polygon mesh model, but also a CT scanned
dataset is available.

Dimension Original:
512 × 512 × 360 12 Bit

Dimension Resampled:
128 × 128 × 133 12 Bit

Figure 6.3: Characteristics of the Stanford Bunny dataset.

Description:
CT study of a cadaver head

Dimension Original:
256 × 256 × 113 12 Bit

Dimension Resampled:
128 × 128 × 113 12 Bit

Figure 6.4: Characteristics of the Stanford Head dataset.
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Description:
CT scan of a Skewed Head

Dimension Original:
184 × 256 × 170 12 Bit

Figure 6.5: Characteristics of the Skewed Head dataset.

influences, after scaling and subtraction of the reference image, a frame of 15 samples was

set to 0 in the resulting slices. Finally the root-mean-square of these slices was used to draw

Figure 6.6. It is possible to observe that the frequency domain based method has the lowest

error. If the ρmlext dataset would have been sampled exactly according to the Nyquist criteria,

a perfect scaling with the frequency domain based method would be possible. The difference

to the synthetic reference image would be zero. The error we can observe in this experiment is

referred to as aliasing.
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Figure 6.6: A 41×41 slice of the ρmlext function (z = 0) was zoomed with several spatial domain
filters and by zero padding in the frequency domain. The root-mean-square of the difference
image to the reevaluated ρmlext function (z = 0) was used to draw this diagram.
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To visually demonstrate the quality of zooming with these methods, a slice (x = 0) of the

ρml and the ρmlext dataset was zoomed by a factor of 10.0 in Y and Z direction. To emulate

the iso-surface extraction used by Marschner and Lobb [22], every data point with a value

f(x, y, z) < 0.5 was set to black. The remaining values were rendered to a gray scale image

(1.0 is white, 0.0 is black).

The ρml dataset has a resolution of 41 × 41 × 41, and the ρmlext dataset has a resolution

of 41 × 41 × 80. Therefore a slice taken at x = 0 from ρml has a resolution of 41 × 41, a

slice taken at x = 0 form ρmlext a resolution of 41 × 80. The lower half of the ρmlext slice is

just a mirror of the upper one, as explained in Section 6.1. To create slices of the same size,

for easier comparison, the lower half of the slices created from ρmlext was removed after the

zooming process of the images in Figure 6.7 and Figure 6.8. The spatial domain filters where

only applied to the ρmlext dataset.

The slices of the first row in Figure 6.7, Figure 6.7(a), Figure 6.7(b) and Figure 6.7(c) were

scaled with standard spatial domain filters. The reconstruction of the signal differs significantly

form the synthetic reference image Figure 6.8(a).

The second row in Figure 6.7, is based on the standard ρml test dataset. The slices where

scaled by zero padding in the frequency domain. Each of the images shows strong ringing

artifacts in Z direction (vertically). The reason for the strong ringing is a discontinuity in the

dataset if periodicity in all three space dimension is assumed. For more details see Section 6.1.1.

On top of the slices in the second row, the shifting effect described in Section 5.3 can be observed.

The reason for this effect is, that during zooming new samples are created between existing

ones. This happens between the last sample of the volume and the first sample of the next

period as well (the dataset is assumed to be periodic in all three dimensions). This new samples

are added at the end of the sample arrays (right and top).

The third row in Figure 6.7, is based on the modified ρml test dataset. Again the slices where

scaled by zero padding in the frequency domain. There are no observable ringing artifacts. The

shift effect is present again, but the additional samples have values below 0.5 therefore they are

colored black.

As already mentioned the slices of the second and third row in Figure 6.7 were zoomed

by zero padding in the frequency domain. Before zooming the slices in Figure 6.7(e) and

Figure 6.7(h) a symmetric zero pad of one voxel was added at each end of the dataset in Y

direction (left and right). This spatial domain zero pad is used to separate the spatial domain

periods of the periodic signal. Spatial domain zero padding can be used to create an odd

number of samples in one signal direction, this can give advantages explained in Section 5.2.

The slices zoomed without spatial domain zero padding have a peak present at the very right

side of the resulting image (see Figure 6.7(d) and Figure 6.7(g)). The most noticeable influence

of the spatial domain zero padding is the shrinking of this peak.
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A common way of dealing with ringing artifacts is to apply a windowing filter in the fre-

quency domain, as introduced in Section 3.6. The impact of windowing is demonstrated in

Figure 6.7(f) and Figure 6.7(i) with a Hamming-Window filter. Some of the ringing in Fig-

ure 6.7(f) is smoothed out, but the conduct of the border edge is smoothed significantly too.

The smoothing effect of the Hamming-Window is noticeable in an arched shortening of the

peaks in the resulting image.
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(a) D0 C0 1EF (Linear) (b) DN C2 2EF (B-Spline) (c) D0 C1 3EF (CR-Spline)

(d) FD based method, no zero
pad in spatial domain, ρml

(e) FD based method, zero pad
in spatial domain, ρml

(f) FD based method, no zero
pad in spatial domain, ρml,
Hamming-Window

(g) FD based method, no zero
pad in spatial domain, ρmlext

(h) FD based method, zero pad
in spatial domain, ρmlext

(i) FD based method, zero
pad in spatial domain, ρmlext,
Hamming-Window

Figure 6.7: Resampled center slices (x = 0) of the ρml and ρmlext dataset. The interpolation
was done with different filters and zero padding in the frequency domain.
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In Figure 6.8 the synthetic reference ρmlext (Figure 6.8(a)) is compared to the solutions of

the frequency domain based resampling. The image in Figure 6.8(b) is obtained after zero

padding in the frequency domain. This would be the optimal solution if the ρmlext function

would have been sampled exactly according to the Nyquist criteria. In Figure 6.8(c) one voxel

symmetric spatial domain zero padding was added to the slice taken from ρmlext before scaling

it by zero padding in the frequency domain.

(a) Synthetic ρmlext (b) FD based method, no zero
pad in spatial domain, ρmlext

(c) FD based method, zero pad
in spatial domain, ρmlext

Figure 6.8: Comparison of the synthetic function ρmlext to the slices resampled with frequency
domain based methods.

6.2.2 Shifting

As mentioned earlier the quality critical operations of the introduced rendering algorithm are

performed on volume slices. During the rendering process volume slices have to be resampled on

a displaced grid. This process is simulated in this experiment while a comparison of the quality

of the shifting with frequency domain techniques to spatial domain filtering is performed.

Initially a 41 × 41 slice of the ρmlext function, Section 6.1, with z = 0 was extracted. Sub-

pixel shifts where applied in both X and Y direction. As a reference the function ρmlext was

evaluated shifted by the same amount. All computed slices were compared to this reference

solution. To avoid disturbing influences of the border regions, a 7 samples wide border area

was set to 0. This size was chosen because it is the biggest used spatial domain filter kernel

size (6) plus one additional sample. Therefore no sample that was influenced by information

outside the 41×41 samples affects the result. The root-mean-square of these final error images

was then used to draw Figure 6.9. It is easy to see that the frequency domain based method

has the smallest deviation of the synthetic reference result. If ρmlext would have been sampled

exactly according to the Nyquist criteria this difference would shrink to zero.
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Figure 6.9: A 41 × 41 slice extracted from ρmlext with z = 0 image was shifted for sub-pixel
steps with several spatial domain filters and phase shifts in the frequency domain. The result
was compared to the ρmlext function evaluated on a grid shifted by the same amount. The
root-mean-square of the difference image is shown in this diagram.

6.2.3 Rendering Speed

Even though speed was not the primary concern when developing this technique, a few timings

should be provided.

The specification of the machines used for the measurements can be found in Table 6.2. For

convenience they have been given the names Riga, Tallinn and Icarus.

Riga Tallinn Icarus

CPUs 2 2 64
Intel
Xeon(TM) 2.80 GHz

Intel
Xeon(TM) 2.80 GHz
hyper threading

Intel
Itanium 2 1.50 GHz

Memory 2 GB 2 GB 60 GB

Table 6.2: Characteristics of the machines used for the performance measurements.

The dataset used for all the timing measurements was the ρmlext dataset with a resolution

of 41 × 41 × 80 voxels, as introduced in Section 6.1. The viewing vector was set to the main

diagonal (x = y = z = 1.0), very close to a stack flip event. The coordinate axes (X,Y,Z) of

the test dataset are directly related to the coordinate axes in standard object space (I,J,K). So

the resolution in K direction NK is 80 voxels. Further the sampling distance along the viewing

rays was set to 0.1. It requires a
√

3 ∗ 10.0 times resampling in K direction. This can be done

by adding a
√

3 ∗ 10.0 ∗ (NK − 1) zero pad in frequency domain in K direction. For more detail

on the resampling in the principal viewing axis see Section 4.4.2. The zoom factor for the scene

was set to 10.0 in both directions I and J.
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Riga Tallinn Icarus

One K zero pad 0.087 0.069 0.029
Volume K derive 0.003 0.003 0.005

K inverse FT 7.292 7.334 6.336

One I/J zero pad 0.006 0.005 0.002
Voxel I/J phase shift 0.038 0.037 0.029
Slice I/J derive 0.004 0.003 0.006

I/J inverse FT 0.106 0.104 0.078
Compositing 0.006 0.005 0.015

Warping 1.652 1.729 2.774

Entire Preprocessing 8.952 8.721 7.570
Process Rendering 888.225 854.540 773.294

Table 6.3: Timing of the rendering stages on three different machines. The time unit is seconds
for each entry. The standard setup was rendered with one thread on each of the three machines.

Table 6.3 shows the timings of this setup rendered with one thread on each of the three

machines Riga, Tallinn and Icarus. Every line in the table displays the timing of one stage of

the rendering pipeline introduced in Section 4.4.

The timings in the first block are operations in K direction that are performed on the

entire volume. In this rendering setup two volumes have to be processed, one for the density

information, and another one for the derivative in K direction. The timing for calculating the

derivative in K direction only counts for the second volume.

The second block of operations in I and J direction plus the compositing was timed on a

per-slice basis. The number of slices that are processed depends on the resolution of the volume

in K direction after the zero padding. As gradients are calculated this number of slices has to

be multiplied by 4, one slice for the density information and one slice for the derivative in I, J

and K direction. The resampling of the test dataset in K direction created a resolution of 1386

(80∗
√

3∗10.0) slices. Taking the slices necessary for the gradient calculation into account, this

adds up to 5544 slices for the entire rendering process.

In the third block the rendering process is split into preprocessing and actual rendering.

The decision of where to split the rendering pipeline into preprocessing and actual rendering

depends very much on which features are necessary for a certain rendering setup. If resampling

in the K direction is required then the computation until rendering pipeline stage Figure 4.2(b),

the three-dimensional Fourier transform, can be computed offline. If the resampling in K

direction is set to a certain number of slices which should not change for different viewing

directions, then all computation until rendering pipeline stage Figure 4.2(d) can be considered

as preprocessing. This includes the three-dimensional Fourier transform, resampling by zero

padding in K direction and the inverse transform in K direction. In Table 6.3 this second option

for splitting the rendering pipeline was chosen.
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Filter Kernel Extent 2 4 6 FD based
Derivative Filter Kernel Extent 2 4 6 method

Preprocessing 0.024 0.024 0.0236 8.951
Rendering 1883.693 2639.742 4553.953 888.225

Table 6.4: Timing comparison of the frequency domain based method to standard spatial
domain filters with different kernel extents.

In Table 6.4 rendering times of the evaluation setup with standard spatial domain filters

using several different kernel extents are compared to the frequency domain based method.

In this comparative timing measurements the rendering pipeline introduced in this thesis was

emulated with spatial domain filters. The filters were used for resampling of sample sequences.

And the analytic derivatives of the interpolation filters were used to calculate derivatives.

Therefore only the performance of the filtering is compared, not the performance of the new

method to other algorithms (e.g., ray casting).

The spatial domain filtering was done with a moderately optimized C++ implementation,

as compared to the high-performance FFTW [9] library, which is likely to influence the timing

results in favor of the frequency domain based method. But the timings demonstrate that

frequency domain methods are comparable in computational effort to spatial domain filtering.

This is especially true when higher order filtering is used in spatial domain.

One drawback of the new method is that gradients are calculated for the whole volume,

even if they are just used on a small portion of the voxels, like an iso surface, this leads to a

considerable computational overhead that is not contributing to the final resulting image.

Multithreading

To demonstrate that the new method is suitable for parallel processing, a multithreaded im-

plementation of the algorithm was executed on three multiprocessor machines. For their char-

acteristics see Table 6.2. The standard setup for timing measurements with the ρmlext dataset

was used, to maintain compatibility with Table 6.3 and Table 6.4. The scene was rendered by

spawning p threads with p ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For more details on the parallelization

of the rendering process see Section 5.6.3. The trend of the rendering times can be seen in

Figure 6.10.

The rendering time of the dual CPU machine Riga remains at the same level for two or

more threads.

The term hyperthreading refers to a second computation core on the CPU which enables

the processor to compute two threads in parallel. Therefore the dual CPU hyperthreading

machine Tallinn can process up to 4 threads in parallel. That is the reason why the speed up of

the computation stagnates at the time level of 4 threads. The lower speed of Tallinn compared
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Figure 6.10: Test dataset rendered on three machines with an increasing number of parallel
threads.

to Riga for two threads is probably caused by the scheduler who sometimes during the render

process assigned both threads to the same CPU. As hyperthreading is not a perfect parallel

computation this could impact the rendering speed in a negative way.

The timing of the 64 CPU mainframe Icarus behaves as expected. If the number of threads

doubles, the rendering time is cut in half. It would be possible to use it up to 64 threads, but

the concept is demonstrated.

6.2.4 Gradient Estimation

In the rendering algorithm introduced in this work the gradients are calculated by exploiting

the derivative theorem of the Fourier transform (see Section 4.4.7). In order to compare the

quality of this gradient estimation scheme, to standard methods that use analytic derivatives

of interpolation filters in spatial domain, the ρml and the ρmlext dataset were rendered as a

benchmark. In Figure 6.11 the resulting images of the rendering with a sampling distance of

0.05 and a zoom factor of 10.0 are demonstrated. Figure 6.11(a), Figure 6.11(b), Figure 6.11(c)

and Figure 6.11(d) demonstrate the result of spatial domain filters known from Marschner and

Lobb [22].
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Figure 6.11(e) and Figure 6.11(f) show the rendering result of the original ρml dataset.

Strong ringing artifacts are visible in these images. The source of the ringing is a discontinuity

in the dataset addressed in Section 6.1.1. These two images are a good example that the recon-

struction with the sinc filter kernel can result in visually lower quality images than numerically

less accurate interpolation methods.

Figure 6.11(g) and Figure 6.11(h) display the reconstruction quality of the frequency domain

based method when the discontinuity of ρml is resolved. These resulting images would be exactly

the same as in the reference image (see Figure 6.1) if the synthetic dataset would have been

sampled exactly according to the Nyquist criteria.

In Figure 6.11(f) and Figure 6.11(h) one voxel symmetric spatial domain zero pad was

added in I and J direction, which apparently smooths the borders of the dataset (compare to

Figure 6.7).

For better comparison of the accuracy of the gradient estimation, parallel to the normal

rendering process a synthetic gradient vector was calculated by evaluating the derivatives of

the analytic function. The angular discrepancy between the calculated and the analytic gradient

was used to draw the images in Figure 6.12. The gray value of 255 represents an angular error

of twenty degrees. The rendering setup for Figure 6.12 was exactly the same as in Figure 6.11.

The gradient estimation of the frequency domain method in Figure 6.12(g) and Figure 6.12(h)

is apparently more accurate than the results of the spatial domain methods. Perfect reconstruc-

tion would be possible if the dataset is sampled according to the Nyquist criteria.
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(a) D0 C0 1EF
(Linear)

(b) D0 C2 2EF
(B-Spline)

(c) D0 C1 3EF
(CR-Spline)

(d) D0 C3 4EF

(e) FD based
method, no zero
pad in spatial
domain, ρml

(f) FD based
method, zero
pad in spatial
domain, ρml

(g) FD based
method, no zero
pad in spatial
domain, ρmlext

(h) FD based
method, zero
pad in spatial
domain, ρmlext

Figure 6.11: Iso surface extraction on the ρml and the ρmlext dataset using spatial domain filters
and the new frequency domain based method.
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(a) D0 C0 1EF
(Linear)

(b) DN C2 2EF
(B-Spline)

(c) D0 C1 3EF
(CR-Spline)

(d) D0 C3 4EF

(e) FD based
method, no zero
pad in spatial
domain, ρml

(f) FD based
method, zero
pad in spatial
domain, ρml]

(g) FD based
method, no zero
pad in spatial
domain, ρmlext

(h) FD based
method, zero
pad in spatial
domain, ρmlext

Figure 6.12: Divergence images of the estimated gradient direction to the analytic reference
gradient. The gray value of 255 represents an angular error of twenty degrees.
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6.2.5 Zooming

In the standard shear-warp factorization as introduced by Lacroute [14] the voxels in the dataset

and the pixel on the intermediate image have the same scale, and zooming is done only in the

warping step. As mentioned by Sweeney and Mueller [32], this leads to considerable blurring

artifacts at zoom factors greater than 2.0.

To achieve zooming with higher quality, in our approach every volume slice is resampled

before the projection onto the intermediate image. This creates a noticeable impact on the

rendering speed, but leads to significant quality improvements in the resulting images. In

Figure 6.13 the ρmlext dataset was rendered with a considerable high zoom factor of 10.0. The

strong bluring when this zoom is performed in the warping stage of the rendering pipeline

can be observed in Figure 6.13(a). In contrast zooming of the volume slices does create much

sharper images, see Figure 6.13(b). A drawback is that the superior image quality is bought

by a computational effort that is proportional to the number of volume slices higher.

(a) (b)

Figure 6.13: (a) Zooming at the warping stage or (b) before compositing influences the quality
of the resulting image but also the rendering speed.

6.2.6 Resulting Pictures

The intention of this thesis is to introduce a new high quality rendering method. Therefore one

of the most interesting aspects is how it behaves when rendering real-world datasets. In this

section some real dataset common in volume rendering are displayed with the new frequency

domain based method, and compared to renderings done with traditional spatial domain filter-

ing.

The images in Figure 6.14, Figure 6.15 and Figure 6.16 are rendering results of the Stanford

Bunny dataset introduced in Section 6.1.2. The dataset is displayed with a 4.0 times, a 10.0
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times and a 20.0 times zoom, with the sampling distance in K direction set to 0.05 It is visible in

all three figures that the rendering quality of the frequency domain based method is superior to

the standard spatial domain filtering. Especially in the 20.0 times zoomed images of Figure 6.16

the frequency domain based result has apparently less reconstruction artifacts around the eye

area.

The images in Figure 6.17 are based on the Stanford Head dataset introduced in Sec-

tion 6.1.2. The dataset is displayed with a zoom factor of 4.0 and a sampling distance in K

direction of 0.05

The image in Figure 6.18 is based on the Skewed Head dataset presented in Section 6.1.2. It

was added to demonstrate that the new frequency domain base method is capable of supporting

transfer functions with translucent volume parts.
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(a) D0 C0 1EF (Linear) (b) DN C2 2EF (B-Spline)

(c) D0 C1 3EF (CR-Spline) (d) D0 C3 4EF

(e) DN C3 4EF (f) FD based method

Figure 6.14: The Stanford Bunny with resolution 128×128×133, rendered with different filters
and the new frequency domain based method. With a step length in Z direction of 0.05 and a
zoom factor in X and Y direction of 4.0.
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(a) D0 C0 1EF (Linear) (b) DN C2 2EF (B-Spline)

(c) D0 C1 3EF (CR-Spline) (d) D0 C3 4EF

(e) DN C3 4EF (f) FD based method

Figure 6.15: The Stanford Bunny with the render setup of Figure 6.14 but with a zoom factor
in X and Y direction of 10.0.
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(a) D0 C0 1EF (Linear) (b) DN C2 2EF (B-Spline)

(c) D0 C1 3EF (CR-Spline) (d) D0 C3 4EF

(e) DN C3 4EF (f) FD based method

Figure 6.16: The Stanford Bunny with the render setup of Figure 6.14 but with a zoom factor
in X and Y of 20.0.
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(a) D0 C0 1EF (Linear) (b) DN C2 2EF (B-Spline)

(c) D0 C1 3EF (CR-Spline) (d) D0 C3 4EF

(e) DN C3 4EF (f) FD based method

Figure 6.17: The Stanford Head dataset with resolution 128×128×113, rendered with different
filters and the new frequency domain based method. With a step length in Z direction of 0.05
and a zoom factor in X and Y direction of 4.0.
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Figure 6.18: The Skewed Head dataset with resolution 184× 256× 170, rendered with the new
frequency domain based method. With a step length in Z direction of 0.05 and a zoom factor
in X and Y direction of 2.0.



Chapter 7

Summary

All that we are is the result of what

we have thought.

Buddha

The resampling of discrete signals is an important part of volume rendering algorithms that

follow the ray casting approach introduced by Levoy [17]. For every pixel in the final image a

viewing ray is cast into the scene. A numeric integration of the volume along the viewing rays

is performed, which requires the computation of equidistant sample points along each viewing

ray. The quality of the resulting image depends directly on the resampling filter used in this

stage of the rendering process. Research has been done to improve the design of these spatial

domain filters [26], and to evaluate and compare the quality of reconstruction filters [22].

As a basic principle all of these filtering methods are approximations of the sinc filter, which

provides the perfect signal reconstruction. Unfortunately the sinc filter has infinite extent in the

spatial domain, therefore it is usually dismissed as a theoretical solution. However the frequency

domain representation of the sinc filter is a simple box filter. This leads to the assumption that

volume rendering with sinc filter quality is possible if the resampling is done in the frequency

domain. The Fourier transform was introduced for volume rendering by Dunne et al. [7].

The proposed algorithm, later referred to as frequency domain volume rendering (FDVR),

or Fourier volume rendering (FVR), was further established by Malzbender [21], Levoy [19]

and Totsuka and Levoy [34]. The FVR method is based on the projection slice theorem of

the Fourier transform, which states that projection in the spatial domain is equivalent to

slicing in the frequency domain. Therefore a two-dimensional slice s, passing the origin of

the frequency domain representation of a three-dimensional volume, is resampled. An inverse

Fourier transform of this slice s, is equivalent to a projection of the whole volume along the

normal vector to s. If the size of the volume is N 3, then computational expense of this operation

75



CHAPTER 7. SUMMARY 76

is O(N 2logN) as compared to O(N 3) of the pure spatial domain equivalent. Therefore the

computational complexity of frequency domain volume rendering is lower than other traditional

volume rendering approaches.

Unfortunately even with the most recent improvements by Lee et al. [15], Westenberger and

Roederik [35] and Entezari et al. [8] which have added lighting effects, this method generates

only “x-ray” like images (see Figure 2.14). The lack of occlusion and support of transfer

functions are the major drawbacks of this method.

As the projection slice theorem does not provide the resampling quality required for high-

quality ray casting we have to focus on other theorems of the Fourier transform. From the rich

variety of theorems of the Fourier transform, the time shifting theorem, the packing theorem

better known as zero-padding in the frequency domain, and the derivative theorem, presented

by Oppenheim and Schafer [27], were selected and assembled to a volume rendering algorithm

that performs resampling with sinc filter quality. This new method is conceptually based

on the shear-warp factorization introduced by Lacroute and Levoy [14]. In the shear-warp

factorization the viewing transformation of the volume from the object space into the image

space is decomposed into a permutation, a shear, and a warp transformation. The shear

transformation, where most of the critical interpolation takes place, only uses translation of

volume slices along the coordinate axes. In this work we propose a new method performing the

shear transformation in the frequency domain. To further improve the quality of the resulting

images, two additional modifications of the standard shear-warp approach are introduced. First,

a method is proposed for resampling intermediate slices before the shear operation is applied.

This ensures that we obtain a steerable and viewing direction independent sampling distance

along the viewing rays. Second, we introduce a technique to perform zooming in the standard

object coordinate system as compared to zooming in the warping stage, which improves image

quality significantly. Additionally a high-quality gradient estimation scheme based on the

derivative theorem of the Fourier transform is presented.

During the work on this thesis a paper by Li et al. [20] was published that uses similar

principles to our method, to perform the resampling of the volume in the frequency domain.

Their approach is to decompose the transformation matrix into four shear operations. These

four shear operations are performed by exploiting various frequency domain techniques and

require multiple forward and backward Fourier transforms. In our approach the transformation

matrix is factored according to the shear-warp factorization which requires only one shear

operation to be executed in the frequency domain. Another issue is that if the volume is

resampled by the application of shear operations it is necessary to add sufficient spatial domain

zero-padding to fully accommodate the rotated volume. The problem, that arises if the spatial

domain zero-padding is too small, is that parts of the data volume pass over the border of

the volume and through the periodicity of the dataset enter from the other side. This error is
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amplified by the consecutive shears. To allow arbitrary positions of the viewpoint, a symmetric

spatial domain zero-pad of about
√

3
2

times the maximal volume resolution has to be applied.

This creates an up to three times higher memory consumption as compared to our method that

does not require spatial domain zero-padding of that amount. We further introduce a gradient

estimation scheme that takes advantage of the derivative theorem of the Fourier transform,

which could be also applied to their work.

7.1 The Rendering Pipeline

The algorithm proposed in this thesis is based on the shear-warp factorization introduced by

Lacroute and Levoy [14]. The shear-warp factorization was created to be one of the fastest soft-

ware based rendering algorithms. It gains its performance by factoring the projection matrix,

that transforms the volume from the object space into the image space, into several submatrices.

The transformation described by each of these submatrices can be computed very effectively

and through that an imminent increase in rendering speed is possible.

In our method we use the same submatrices as in the shear-warp factorization, the main

focus however is on high reconstruction quality in contrast to rendering speed. The shear-warp

factorization has four rendering stages: permutation, shearing, compositing and warping. The

permutation stage is a movement of voxels from one position in the volume to another, according

to a certain permutation matrix, which is a lossless transformation. In the shearing stage the

volume is dismantled into slices which are resampled on a sheared grid. The quality of this

resampling process depends very much on the filter used for the reconstruction of the signal. In

the proposed method we present a way of how to perform the shear by applying the time shifting

theorem in the frequency domain. The next stage, i.e., the compositing, is equal to a numeric

integration along the viewing rays. A major drawback of the standard shear-warp is that

the sampling distance for the numeric integration can not be changed. Further this sampling

distance is very coarse (≥ 1.0) and additionally viewing direction dependent. In our rendering

pipeline we propose a resampling step that allows to perform the numerical integration along

the rays with an arbitrary sampling distance, independent of the viewing direction. The last

stage, i.e., the warping, transforms the intermediate image of the compositing stage into the

final image. The warping in our method remains similar to the standard shear-warp warping,

but to maintain the high-quality requirements a higher-order spatial domain filter is used. The

quality loss through the resampling of the intermediate image in this stage does not create

visible artifacts in the final image.

The adapted rendering pipeline for the new frequency domain based method is presented

in Figure 4.2. During this section a detailed presentation of every stage of this pipeline and its

contribution to the rendering process is given. The first stage of the rendering pipeline starts
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from the standard object coordinate system, this means the volume is already permuted such

that the K axis is the main viewing axis.

Multi-Dimensional Fourier Transform

The Fourier transform is a separable transformation. Every M -dimensional Fourier transform

can be composed from M one-dimensional transforms in every dimension respectively. To

transform the volume in all three space dimensions, a consecutive application of a 1D Fourier

transform in each dimension is performed. Through the 3D Fourier transform the next pipeline

stage is reached (see Figure 4.2(b)).

Resampling in the Principal Viewing Axis

In the standard shear-warp factorization the number of volume slices along the principal viewing

axis K is kept constant for performance reasons. Therefore the distance of the sampling points

along the rays vary with the viewing direction. Figure 4.3 shows how the sampling distance (s1

vs. s2) varies according to the view point settings. This variation can create artifacts that are

especially visible in animations. Resampling of the volume in K direction allows to select an

arbitrary sampling distance along the rays independent of the viewing direction. Resampling

creates additional volume slices and is done by exploiting the packing theorem in the frequency

domain.

To compute the necessary size of the zero-pad area, the sampling distance s along the

viewing rays before resampling is calculated. The viewing vector ~vso, with its components vso,i,

vso,j and vso,k and the distance between the volume slices along the K axis dk are needed. ~vso

is normalized in K direction by dividing each component through vso,k this gives ~v′
so, with its

components v′
so,i, v′

so,j and v′
so,k (v′

so,k = 1.0). The absolute length |~v′
so| of the vector ~v′

so is the

sampling distance if the volume slices are 1.0 apart. A multiplication with dk, the real distance

between the volume slices, gives the sampling distance before resampling. The setup for this

calculation is illustrated by Figure 4.4.

The sampling distance before resampling s and the desired sampling distance s′ are inversely

proportional to the number of samples in K direction before resampling K, and the number of

samples in K direction after the resampling K ′. With Equation 4.4 the number of samples after

zero-padding K ′ is calculated. The difference between K ′ and K is the amount of zero-pad

necessary for the selected sampling distance s′. As zero-padding can only be applied in discrete

amounts, K ′ has to be rounded to the closest integer number K ′
pad ∈ N. For sizes of K ′

pad > 50,

the error introduced to the sampling distance is already below ±1.0% of K ′.

After the application of the zero-pad the pipeline stage Figure 4.2(c) is reached. The next

stage is an inverse Fourier transform in K direction, Figure 4.2(d), while the I and J direction of



CHAPTER 7. SUMMARY 79

the volume remain in the frequency domain. It is important to remember that this resampling

in K direction changes the distance between the slices which is especially relevant in the shearing

stage.

Resampling of Volume Slices in I and J Direction

In the standard shear-warp factorization zooming is performed by scaling of the intermediate

image. This approach leads to considerable blurring artifacts, especially for zoom factors greater

than 2.0, as pointed out by Sweeney and Mueller [32]. In the proposed method zooming is

performed earlier, in the standard object space where the rescaling is applied to the volume

slices. A desired zoom factor is achieved by increasing the signal periods of each slice by zero-

padding in the frequency domain. As adding samples is only possible in discrete steps a certain

zoom factor can only be achieved with limited precision. If I ′
pad > 50 and J ′

pad > 50 then

the deviation of the zoom factor is below ±1.0% of I ′ and J ′. This error, if required, can be

compensated by additional scaling in the warping step. After the application of the zero-pad

the render process reaches the next stage (see Figure 4.2(e)).

Shearing

In the shearing stage of the shear-warp factorization the volume is transformed from the stan-

dard object space to the sheared object space. This causes the viewing direction to be perpen-

dicular to the slices of the volume, respectively the (v,u) plane. Performing the calculations

explained in detail in the Section 4.3.3, we acquire the shear coefficients (si, sj) and the trans-

lation values (ti, tj). The values aik and ajk describe the displacement of the k-th slice in i

and j direction. For both directions the shifts by axk (x ∈ {i, j}) are split into a multiple of

the voxel lengths, axkSD and the remainder, which is then a fraction of a voxel step axkFD, see

Figure 4.6. As the subscripts already indicate the shift for axkFD is performed in the frequency

domain, and the shift for axkSD in spatial domain. The shift in the spatial domain is actually

only a movement of the slice in full voxel steps. The interpolation part is performed in the

frequency domain. The reason for this split is to keep the shift in the frequency domain as

small as possible to limit wrap around effects (see Figure 4.7). These effects appear because in

the Fourier transform the volume slices are assumed to be periodic in I and J direction. If the

whole shift axk would be performed in the frequency domain, a voxel leaving the visible window

area on one side enters from the opposite side. This cyclic shift would lead to artifacts in the

final image. To further limit the wrap-around effects a symmetric spatial domain zero-pad of

one voxel has to be added to separate the periodic replicas in the spatial domain.

With the application of the shifting theorem to perform the axkFD shift, the rendering stage

Figure 4.2(f) is reached. An inverse Fourier transform in I and J direction moves the rendering
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process to stage Figure 4.2(g). The axkSD part of the slice displacement is applied in the spatial

domain, which completes the transformation of the volume to the sheared object space, see

Figure 4.2(h).

Compositing

During the compositing stage the resampled slices are blended into a 2D intermediate image,

along the w axis. Transfer functions can be applied to the volume, as all kinds of algorithms

to influence the appearance of the final image (i.e., shading, non-photorealistic effects, . . . ). In

this work a high quality gradient estimation scheme is introduced, to obtain surface normals

for lighting calculations.

The compositing of the slices along the w axis is comparable to a numeric integration

along the viewing rays. During this process the density information of each slice f̂UV [u, v] is

transformed into an image iUV [u, v]. Each pixel in iUV [u, v] has a color c and a transparency

coefficient α. Every image is then composited into the slice located at w = 0, with the “over”

operator [28]. The “over” operator states for a pixel a with color ca and transparency αa how

it is composited over a pixel b with color cb and transparency αb. The resulting pixel values

cc and αc can be computed with Equation 4.14 and Equation 4.15. The order in which the

slices are composited is determined by their w coordinate value. The sign of the k component

of the viewing vector ~vso (vso,k) in standard object space determines from which side of the

stack the processing starts. If vso,k is positive then the slice with the coordinate k = 0 is the

front slice; otherwise the slice at the other end of the stack, with the coordinate k = kmax is

the first slice. Compositing all slices using the “over” operator results into the non-warped

intermediate image (see Figure 4.2(i)). This form of compositing is known as back to front

(B2F) compositing, because it starts with the volume slice most apart from the view point.

In standard ray casting the volume samples are composited in a reverse order, called front

to back (F2B). The F2B compositing allows to stop the compositing process for one pixel as

soon as the opacity of the allready composited volume samples along the ray reaches a certain

threshold. This avoids the interpolation of samples further along the ray and is called early ray

termination. The frequency domain based method perfoms a global resampling of the volume,

therefore all volume slices are computed as a whole. A switch from B2F to F2B compositing

would only create a negligible gain in rendering speed.

Warping

The 2D warping transformation applied to the intermediate image leads to the resulting image.

The warping matrix transforms data points from the sheared object space into the final image

space. This transformation compensates the viewing direction dependent scaling of the dis-



CHAPTER 7. SUMMARY 81

tances between the viewing rays (compare d1 and d2 in Figure 4.3), and performs the rotation

component around the K axis.

If M is the maximal volume extension (maximum of I, J and K in standard object space),

and zij is the scale factor applied to the volume, then an image buffer fNN [xi, yi] with N =√
3 · zij ·M can accommodate the resulting image. This calculation is based on the assumption

that each side of the volume has length M and the main diagonal of the volume data cuboid is

visible in its full length. Every pixel of fNN [xi, yi] in the image-coordinate space is transformed

to the sheared-object space with the inverse of the warping matrix. The pixel values at the

obtained coordinates are interpolated from the pixel values of the intermediate image. In order

to maintain high quality in this step as well, a higher-order spatial domain filter is used for the

resampling comparable to a Catmull-Rom spline [1].

Gradients

Since the gradient is the partial derivative of the original function and ideal interpolation with

the sinc filter will reconstruct that function, the gradient can be reconstructed exactly by using

the derivate of the sinc as a reconstruction kernel [2].

For the computation of the gradient vectors, three copies of the original dataset are created

and Fourier transformed in all three space dimensions. Each one of these volumes is used to

calculate one component of the gradient vector. Therefore each volume is derived in one of the

three space dimensions by the application of the derivative theorem of the Fourier transform.

Subsequently these gradient volumes are processed through the same rendering pipeline, as

the density volume. The gradient volumes are combined to a volume of gradient vectors at the

compositing stage. These gradient vectors are used with the processed original data to compute

the intermediate image.

7.2 Implementation

The input signal in the Fourier transform in general is complex. In this application the volume

data in the spatial domain is stored only in the real component and the imaginary component

is set to zero. The real function is a Fourier transform pair to a Hermitian function [27].

Therefore a Fourier transform of this spatial domain representation of the volume leads to a

frequency domain representation which is Hermitian. The Hermitian property signifies that

corresponding sample values, with index k and −k, are conjugate complex to each other. The

real components are equal, and the imaginary components have inverse sign. The reason for

going into details about Hermitian functions is that it is dual to the real function by the Fourier

transform. It means that all operations applied in the frequency domain have to preserve the
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Hermitian property in order to obtain a real function after the inverse Fourier transform. The

theorems of the Fourier transform that are used during the rendering process are symmetric

around the origin and therefore do not alter the Hermitian property of a signal. But because

of the periodicity of the signal there are certain indices in the discrete spectrum which need

special attention. First there are sample points that are conjugate complex to themselves, and

therefore the imaginary component has to be zero. This is the sample point at the origin, and

if the the signal has length N with N = 2k the sample point at index k. The second issue has

an effect when calculating the derivative. This is done by exploiting the derivative theorem of

the Fourier transform, which is a multiplication with iµ2π 1
N

in the frequency domain. This

multiplication with iµ2π 1
N

essentially switches the real and imaginary component. After this

switch, if the the signal has length N with N = 2k, the sample point at k still has to be

conjugate complex to itself. To ensure the Hermitian property if the signal length is even, the

real and imaginary component of the sample point at position k, has to be set to zero. Another

way of getting around this problem is to add one zero valued sample at the end of the signal in

the spatial domain, in order to create an odd number of samples (spatial domain zero-padding).

7.3 Results

In this section results and experiences with the application of the high quality resampling in the

Fourier domain are presented. The reconstruction quality of the frequency domain techniques

are compared to standard spatial domain filtering.

Test datasets

Several 3D datasets are used to compare the reconstruction quality of the frequency domain

method to standard spatial domain filtering. Two categories of datasets are used, synthetic

datasets and CT-scans.

Synthetic Test Datasets

To test the quality of the new interpolation method, the test function introduced by Marschner

and Lobb [22] is used. In this work we refer to it as ρml. This dataset is sampled almost

according to the Nyquist criteria, 99.8% of the signal energy is captured.

When using the discrete Fourier transform (DFT) the assumption is that the signal is

periodic and discrete in the spatial and the frequency domain. Through the sampling of ρml we

get one period of this signal, which is half the period of a sine wave in Z direction. In the zone

between two of these periods, in Z direction, a jump in the signal is present. This discontinuity

leads to high frequency components and a not band-limited behavior. In order to demonstrate
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the impact of this discontinuity, but to maintain compatibility with the original signal ρml a

second synthetic dataset was created. The sample points of ρml are mirrored along the z = −1

plane. The samples at z = −1 are not copied, because they are positioned at the plane of

reflection. Further the samples at z = +1 are not copied as well to create smooth transitions in

the periodic sequence of sine waves. This creates an extended version of the test dataset with

the dimensions of 41 × 41 × 80 samples. The extended test dataset is referred to as ρmlext.

Real-World Test Datasets

Three real-world datasets are used to demonstrate the reconstruction quality of the frequency

domain based rendering method as compared to standard spatial domain filtering. The first

two datasets introduced in Figure 6.3 and Figure 6.4 were originally created by Levoy and are

provided for research purposes by “The Stanford volume data archive” [30].

The dataset introduced in Figure 6.5 is used in a visualization lab at the Vienna University

of Technology [29].

Quality Comparison to Spatial Domain Filters

This section presents several experiments to show the advantages and disadvantages of the

frequency domain based techniques as compared to spatial domain filtering. The following

subsections address issues that arise in volume rendering.

Super Sampling

The purpose of this experiment is to compare the quality of zooming by zero-padding in the fre-

quency domain to interpolation with spatial domain filters. As the newly introduced rendering

algorithm is based on the shear-warp factorization, most of the rendering steps that are quality

critical are performed on volume slices. To visually demonstrate the quality of zooming with

these methods, a slice (x = 0) of the ρml and the ρmlext dataset was zoomed by a factor of 10.0

in Y and Z direction. To emulate the iso-surface extraction used by Marschner and Lobb [22],

the range of voxel values f(x, y, z) from 0.0 to 1.0 was mapped to the gray scale color range 0

to 255. Afterwards the color of the data points with a value of f(x, y, z) < 0.5 was set to black.

The ρml dataset has a resolution of 41 × 41 × 41, and the ρmlext dataset has a resolution of

41× 41× 80. Therefore a slice taken at x = 0 from ρml has a resolution of 41× 41, a slice taken

at x = 0 from ρmlext a resolution of 41 × 80. The lower half of the ρmlext slice is just a mirror

of the upper one. To create slices of the same size, for easier comparison, the lower half of the

slices created from ρmlext was removed after the zooming process of the images in Figure 6.7

and Figure 6.8.
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Rendering Speed

Even though speed was not the primary concern when developing this technique, the rendering

performance compared to standard spatial domain resampling was analyzed.

Table 6.3 shows the timings of the standard setup rendered with one thread on three dif-

ferent machines. Every line in the table displays the timing of one stage of the rendering

pipeline. The timings in the first block are operations in K direction that are performed on the

entire volume. In this rendering setup two volumes have to be processed, one for the density

information, and another one for the derivative in K direction. The timing for calculating the

derivative in K direction only counts for the second volume. The second block of operations in

I and J direction plus the compositing was timed on a per-slice basis. The number of slices that

are processed depends on the resolution of the volume in K direction after the zero-padding.

As gradients are calculated, the number of slices has to be multiplied by 4, i.e., one slice for

the density information and one slice for the derivative in each particular I, J, and K direction.

In the third block the rendering process is split into preprocessing and actual rendering. The

decision of where to split the rendering pipeline into preprocessing and actual rendering de-

pends very much on which features are necessary for the rendering setup. If resampling in the

K direction is required then the computation until rendering pipeline stage Figure 4.2(b), the

three-dimensional Fourier transform, can be computed offline. If the resampling in K direction

is set to a certain number of slices which should not change for different viewing directions,

then all computations until rendering pipeline stage Figure 4.2(d) can be considered as pre-

processing. This includes the three-dimensional Fourier transform, resampling by zero-padding

in K direction and the inverse transform in K direction. In Table 6.3 the second option for

splitting the rendering pipeline was chosen.

In Table 6.4 rendering timings of the evaluation setup with standard spatial domain filters

using several different kernel extents are compared to the frequency domain based method.

In this comparative timing measurements the rendering pipeline introduced in this thesis was

emulated with spatial domain filters. The filters were used for resampling of sample sequences.

And the analytic derivatives of the interpolation filters were used to calculate derivatives.

Therefore only the performance of the filtering is compared, not the performance of the new

method to other algorithms (e.g., traditional ray casting).

The spatial domain filtering was done with a moderately optimized C++ implementation,

as compared to the high-performance FFTW [9] library, which is likely to influence the timing

results in favor of the frequency domain based method. But the timings demonstrate that the

frequency domain methods are comparable in computational effort to spatial domain filtering.

This is especially true when higher order filtering is used in the spatial domain.

One drawback of the new method is that the gradients are calculated for the whole volume,

even if they are just used on a small portion of the voxels, like an iso-surface. This leads to a
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considerable computational overhead which is not contributing to the final resulting image.

Gradient Estimation

In the rendering algorithm introduced in this work the gradients are calculated by exploiting

the derivative theorem of the Fourier transform. In order to compare the quality of the fre-

quency domain gradient estimation scheme, to standard methods that use analytic derivatives

of interpolation filters in the spatial domain, the ρml and the ρmlext dataset were rendered as

a benchmark. In Figure 6.11 the resulting images of the rendering with a sampling distance

of 0.05 and a zoom factor of 10.0 are demonstrated. For better comparison of the accuracy of

the gradient estimation, parallel to the normal rendering process a synthetic gradient vector

was calculated by evaluating the derivatives of the analytic function. The angular discrepancy

between the calculated and the analytic gradient was used to draw the images in Figure 6.12.

The gray value of 255 represents an angular error of 20◦. The rendering setup for Figure 6.12

was exactly the same as in Figure 6.11.

The gradient estimation of the frequency domain method in Figure 6.12(g) and Figure 6.12(h)

is apparently more accurate than the results of the spatial domain methods. Perfect reconstruc-

tion would be possible if the dataset is sampled according to the Nyquist criteria.

Resulting Pictures

One of the most interesting aspects, when introducing a new rendering algorithm, is how it

behaves with real-world datasets. Some datasets common in volume rendering are displayed

with the new frequency domain based method. For comparison the same computation was

done with traditional spatial domain filtering.

The images in Figure 6.14, Figure 6.15 and Figure 6.16 are based on the Stanford Bunny

dataset. The dataset is displayed with a 4.0, 10.0, and 20.0 times zoom, with the sampling

distance in K direction set to 0.05. It is visible in all three figures that the rendering quality

of the frequency domain based method is superior to the standard spatial domain filtering.

Especially in the 20.0 times zoomed images of Figure 6.16 the frequency domain based result

has apparently less reconstruction artifacts around the eye area.

The images in Figure 6.17 are based on the Stanford Head dataset introduced in Sec-

tion 6.1.2. The dataset is displayed with zoom factor of 4.0 and sampling distance in K direction

of 0.05.

The image in Figure 6.18 is based on the Skewed Head dataset presented in Section 6.1.2.

It was added to demonstrate that the new frequency domain based method is capable of sup-

porting transfer functions with translucent volume parts.
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Conclusions and Future Work

The future belongs to those who

believe in the beauty of their dreams.

Eleanor Roosevelt

We have developed a volume rendering algorithm that performs high-quality resampling

in the frequency domain. We have demonstrated that this method can render well sampled

volume datasets with higher quality than standard spatial domain resampling. Further a high-

quality gradient estimation scheme, that provides very accurate surface normals for lighting

calculations, was introduced.

The resampling and derivative computations are performed with sinc filter quality. This

filter allows perfect reconstruction of the original signal if the sampling was done according to

the Nyquist criteria. The Nyquist criteria states that in order to perfectly capture a signal, the

sampling frequency has to be more than twice the highest frequency component of the original

signal. Unfortunately, signals often have an unlimited frequency spectrum. These signals can

only be captured with limited accuracy. Reconstruction from the samples of these signals

with the sinc filter does not produce the original signal. The difference between the original

signal and the reconstructed signal is called aliasing. Strong aliasing artifacts can cause such

strong visual distortions that filtering with a numerical less accurate filter can result in more

appealing resulting images. This effect was especially visible in the synthetic volume rendering

test dataset ρml introduced by Marschner and Lobb [22]. A standard test to judge the quality

of a reconstruction filter is to render the sampled ρml function and compare it to a reference

image rendered by reevaluating the synthetic function. The conduct of the standard ρml dataset

in Z direction is half a period of a sine wave. For the Fourier transform it is assumed that the

signal is periodic in all three space dimension. A discontinuity in Z direction is present in the

standard ρml dataset, through this periodicity, which creates very strong visual effects in the

86



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 87

resulting images. An alteration was applied to the dataset to remove this discontinuity. With

this new dataset the capabilities of the new rendering algorithm for well sampled datasets was

demonstrated.

Handling data in the frequency domain requires particular carefulness. Minor variation of

the frequency domain can cause surprising effects in the spatial domain. The input data for

the Fourier transform in general is complex. In our application the volume data in the spatial

domain is stored in the real component, while the imaginary component is set to zero. This form

of representation which has only non-zero values in the real component is called a real function.

The transform pair to a real function by the Fourier transform is a Hermitian function. A

function is Hermitian means that sample values at the index k are conjugate complex to the

sample values at the index −k. This Hermitian property in the frequency domain has to be

preserved to obtain a real function in the spatial domain. This is additionally complicated by

the fact that standard Fourier transform implementations use an asymmetric indexing scheme.

The basic concept of this scheme is that the origin of the data in the spatial and the frequency

domain respectively correlate with the zero index of the sample array.

In the presented method resampling is done by zero padding in the frequency domain.

Resampling to a higher resolution creates new sample points that are inserted between the

existing samples. The first and the last sample point of a signal are neighbors through the

periodicity in the spatial domain. During a resampling new sample points are inserted also

between these two samples. The sample at index zero remains at its position after resampling,

therefore the new samples introduced between the first and the last sample are appended to

the sampling array. This creates, especially visible for high scaling factors, an apparent shifting

effect toward the zero index. The counter measure against this shift effect, in the current

implementation, is to remove the samples introduced between the first and the last index.

As usual there are still aspects that are worthwhile to investigate in more detail but where

not completely addressed in this work.

• Reduction of memory consumption. This could be done by exploiting the fact that the

data is given as a real function which leads to a Hermitian spectrum. A Hermitian

spectrum has high symmetries so that up to halve of the memory could be conserved.

The impact on the separability of the Fourier transform on such a data structure has to

be investigated.

• Extension of the technique to perspective projection. Therefore scaling of the slices for

arbitrary factors has to be derived. One possible solution could be to align each volume

slice with the target grid through phase shifts in the frequency domain. For each inverse

Fourier transform a column and a line vector of the resampled voxel slice is obtained.

This would slow-down the render process considerably. A limitation of the viewing angle
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to certain values that blend well with the already existing scaling by zero padding is a

second approach to solve this issue.

• Improve rendering speed for zooming. At the moment, if images are zoomed, and only

a small section of interest is to be displayed, the whole image has to be calculated,

which obviously creates an unbearable slowdown. Partial inverse Fourier transforms could

improve the rendering speed in these occasions.
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