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Abstract

Frequency domain volume rendering (FVR) is a volume
rendering technique with lower computational complex-
ity as compared to other volume rendering techniques.
In this paper the original FVR algorithm is significantly
accelerated by performing the rendering stage compu-
tations on the GPU. The overall hardware-accelerated
pipeline is discussed and the changes according to pre-
vious work are pointed out. The three-dimensional
transformation into frequency domain is done in a pre-
processing step.

In the rendering step first the projection slice is ex-
tracted. The pre-computed frequency response of the
three-dimensional data is stored as a 3D texture. Four
different interpolation schemes for resampling the slice
out of a 3D texture are presented. The resampled slice is
then transformed back into the spatial domain using the
inverse Fast Fourier or Fast Hartley Transform. The ren-
dering step is implemented as a set of shader programs
and is executed on running on programmable graphics
hardware achieving highly interactive framerates.

CR Categories: I.3.1 [Computer Graphics]: Hard-
ware Architecture—Graphics Processors; I.3.3 [Com-
puter Graphics]: Picture/Image Generation—Viewing al-
gorithms; I.4.5 [Image Processing and Computer Vi-
sion]: Reconstruction—Transform Methods

Keywords: Fourier Volume Rendering, Interpolation,
Fourier Transform, Hartley Transform, Hardware Accel-
eration

1 Introduction

Volume rendering is a tool for visualizing three-
dimensional scalar data. According to the way of dealing
with data, volume rendering can be divided into several
categories. One group uses an intermediate representa-
tion (i.e., a polygonal surface) for rendering. The user
defines an iso-value and the surface corresponding to this
value is resampled from the data. Well known techniques
are Marching Tetrahedra and Marching Cubes [Lorensen
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and Cline 1987]. Extracted iso-surface is rendered us-
ing traditional surface rendering techniques exploiting
the graphics hardware. In contrast to surface rendering,
direct volume rendering (DVR) does not extract surfaces
before rendering, but directly renders images from given
three-dimensional samples. DVR techniques fall into
two main classes: image-order and object-order tech-
niques. Ray-casting [Levoy 1987] is a typical representa-
tive of an image-order approach, where rays are shooted
from the eye-point via the image plane through the vol-
ume data. On the other hand object-order techniques,
e.g., splatting [Westover 1990], traverse the volume sam-
ples and project the sample footprints onto the image
plane. These techniques are of computational complex-
ity O(N3) for an N ×N ×N data array, because all the
samples have to be processed to get the final image.

Frequency domain volume rendering (also known as
Fourier volume rendering (FVR) [Malzbender 1993]) is
a volume rendering technique based on a fundamentally
different idea, i.e., the projection slice theorem [Levoy
1992]. The goal is to compute projections of the volumet-
ric data (complexity O(N3)). Projections in the spatial
domain correspond to slicing in the frequency domain
(complexity O(M2) for a M × M reconstructed slice).
Therefore slicing is used in frequency domain volume
rendering to reduce the computational complexity of pro-
jections in spatial domain.

Three-dimensional data are first transformed from the
spatial domain into the frequency domain. This is done
by using a three-dimensional Fourier or Hartley Trans-
form. The discrete one-dimensional forward and in-
verse Fourier Transforms (DFT) are given by equations 1
and 2.

F [ω ] =
N−1

∑
x=0

f [x] · e−i2πωx/N (1)

f [x] =
1
N

N−1

∑
ω=0

F[ω ] · ei2πωx/N (2)

where f is the discrete function given by N samples and
F is its frequency spectrum.

After the pre-processing step of complexity
O(N3 logN), the slice is resampled along a plane
oriented perpendicular to the viewing direction and
positioned in the origin of the frequency volume.
Afterwards an inverse two-dimensional transform of
the resulting slice is performed. The method has a



theoretical computational complexity of O(M 2 logM),
which is lower as compared to other volume rendering
methods. The exact computational complexity is also
depending from the chosen interpolation scheme.

The method, however, has certain limitations: only
parallel projection is possible and hidden surface removal
is not included. The reason is the nature of the function
that FVR computes, which is an order independent linear
projection. This results in X-ray images. Currently ray-
casting is considered as the method that produces the best
image quality. Ray-casting gains performance by early-
ray termination, displaying only some surfaces from the
data. FVR displays the entire volumetric data set. Be-
cause of the computational complexity, FVR will gain
importance when the resolution of data sets will increase.

As described earlier, the performance of FVR does not
explicitly depend on the size of the input volume. The
factor that directly influences the rendering performance
is the number of samples contributing to the projection
slice (in the previous text M×M). The resolution of the
projection slice should be high enough to prevent alias-
ing. This shows as overlapping of copies of the rendered
data in the result image. Progressive refinement strate-
gies can be realized by adjusting the projection slice reso-
lution to achieve a desired performance. Also the resam-
pling area can be reduced to low frequencies around the
origin only. This will result in blurry preview images, but
no frequency overlapping artifacts will occur. Our im-
plementation does not include a progressive refinement
mode. Highly interactive framerates are achieved even
when slicing the entire data set with sufficient slice reso-
lution.

This paper presents mapping of FVR algorithm to
GPU in order to significantly accelerate the render-
ing performance. An overall pipeline of hardware-
accelerated frequency domain volume rendering is pre-
sented. The data set is transformed into frequency do-
main in a pre-processing step. Then the projection slice
is resampled using the following interpolation schemes:
nearest neighbor interpolation, tri-linear interpolation,
tri-cubic interpolation, and interpolation using windowed
sinc with window of width four. In addition we demon-
strate that current graphics hardware provides enough
precision to perform FVR at high quality. Furthermore
the GPU-based multi-dimensional Fast Hartley Trans-
form [Bracewell et al. 1986; Hao and Bracewell 1987]
is presented as an alternative to the wide spread Fourier
Transform. The rendering results are compared accord-
ing to image quality as well as performance. The perfor-
mance is compared to a software implementation using
the highly optimized FFTW library [Frigo and Johnson
1998].

Section 2 describes previous work related to FVR and
its mapping towards GPU. The overall rendering pipeline
is discussed in section 3. First, the stage performed on

the CPU is presented, followed by the on-the-fly render-
ing stage on the GPU. The slicing in the frequency do-
main is discussed in sub-section 3.1. The following part,
i.e., inverse transform to the spatial domain, is shown in
sub-section 3.2. Afterwards we show the results in sec-
tion 4 and discuss future work and conclusions in sec-
tions 5 and 6.

2 Related Work

Frequency domain volume rendering was introduced by
Levoy [1992] and Malzbender [1993]. Malzbender pro-
poses various filters for high-quality resampling in fre-
quency domain. Totsuka and Levoy [1993] extended this
work with depth cues and shading performing calcula-
tions in the frequency domain during slice extraction. Il-
lumination models for FVR were studied in the work of
Entezari et al. [2002]. They describe methods to inte-
grate diffuse lighting into FVR. One approach is based on
gamma corrected hemispherical shading and is suitable
for interactive rendering of fixed light sources. Another
technique uses spherical harmonic functions and allows
lighting using varying light sources. These shading tech-
niques, however, require a large amount of memory and
are not well suited for visualization of large data sets.

Another approach that produces images which are
similar to FVR is based on importance sampling and
Monte Carlo integration [Csébfalvi and Szirmay-Kalos
2003] thus the samples are not aligned on a regular grid.
This technique overcomes the limitation of parallel pro-
jection and the overall computational complexity O(N 2)
is better than in case of FVR.

A straightforward implementation of the Fourier trans-
form is not suitable for high-performance FVR. The in-
verse two-dimensional transform must be computed at
high speed to achieve interactive framerates. There-
fore fast variants of the Fourier Transform are used in
FVR implementations. The original idea of the Fast
Fourier Transform (FFT) was introduced by Cooley and
Tukey [1965]. Their algorithm decomposes the Discrete
Fourier Transform (DFT) into log2 N passes, where N is
the size of the input array. Each of these passes consists
of N/2 butterfly computations. Each butterfly operation
takes two complex numbers a and b and computes two
numbers, a+wb and a−wb, where w is a complex num-
ber, called principal Nth root of unity [Cooley and Tukey
1965]. The complex number w corresponds to the ex-
ponential term from equations 1 and 2. Butterfly oper-
ations are based on an efficient reordering of intermedi-
ate results, which are used multiple times. After log2 N
passes the butterfly operations result into the transformed
data. One of the fastest implementations available, is the
FFTW library [Frigo and Johnson 1998].

The Fast Hartley Transform (FHT) was proposed by
Bracewell [1986] as an alternative to FFT. The transform



produces real output for a real input, and is its own in-
verse. Therefore the FHT is more efficient for FVR in
terms of memory consumption. The one-dimensional
forward and inverse Hartley transform is described by
equation 3:

H[ω ] =
N−1

∑
x=0

h[x] ·
(

cos
2πωx

N
+ sin

2πωx
N

)
(3)

where h is the discrete function given by N samples and
H is its Hartley transform. The Multi-dimensional Hart-
ley Transform, in contrast to Fourier Transform, is not
separable, i.e., the N-dimensional transform cannot be
computed as a product of N one-dimensional transforms.
Bracewell and Hao propose a solution to this prob-
lem [Bracewell et al. 1986; Hao and Bracewell 1987].
They suggest to perform N one-dimensional transforma-
tions in each orthogonal direction followed by an addi-
tional pass that corrects the result to correspond to the
N-dimensional Hartley transform. The correction pass
for 2D and 3D respectively is described by equations 4
and 5.

H[u,v] = 1
2 (T [u,v]+T [L−u,v]+

T [u,M− v]−T [L−u,M− v])
(4)

H[u,v,w] = 1
2LMN (T [L−u,v,w]+

T [u,M− v,w]+T [u,v,N−w]
−T [L−u,M− v,N−w])

(5)

H is the multi-dimensional transform, T is the product
of one-dimensional transforms in two respectively three
orthogonal directions, and L, M, and N describe the size
in each particular direction.

Many approaches exist to exploit the capabilities of
modern graphics accelerators for volume rendering. Fast
processing and a large number of flexible features are the
main reasons that make current graphics hardware attrac-
tive. Texture-based volume rendering using one 3D tex-
ture or a stack of 2D textures for volumetric data repre-
sentation gained considerable interest [Cabral et al. 1994;
Rezk-Salama et al. 2000]. These techniques perform
very fast. They however, also compute a huge number
of operations that do not contribute to the final image.
A new approach was presented by Roettger et al. [2003]
and Krüger and Westermann [2003a]. They propose to
use front-to-back ray-casting with early ray termination.
The Z-buffer is used for opacity accumulation. An early
Z-test rejects fragments when the accumulated opacity
reaches a certain threshold. Besides the standard vol-
ume rendering approach based on transfer function spec-
ification, also other rendering modes like MIP, contour

enhancement or tone shading have been ported to GPU-
based implementations [Hadwiger et al. 2003].

Flexibility of the latest graphics hardware is also used
for various other general purpose computations [GPGPU
2003]. Moreland and Angel [2003] have implemented
a two-dimensional FFT running on NVidia GeForceFX
GPUs [NVIDIA 2003]. Their implementation is using
the Cg high-level shading language [Mark et al. 2003]
and is based on the Decimation in Time algorithm [Coo-
ley and Tukey 1965]. Unfortunately this implementation
performs slower than the software reference [Frigo and
Johnson 1998], which is running on a standard CPU.
Another FFT implementation was done by Hart [Engel
2003]. His implementation performs much faster than
the previously mentioned implementation and runs on
ATI GPUs [ATI 2003].

Recently, algorithms for numerical simulation exploit
the processing power of current GPUs. Bolz et al. [2003]
implemented sparse matrix conjugate gradient solver and
a regular-grid multi-grid solver. Similar work was pre-
sented by Krüger and Westermann [2003b]. Hillesland
et al. [2003] have turned the nonlinear optimization for
image-based modeling into a streaming process acceler-
ated on GPU.

An important aspect of FVR is interpolation, since the
samples in the projection slice, in general, do not coin-
cide with samples of the transformed input data. Current
graphics hardware natively supports nearest neighbor in-
terpolation for all texture formats. Linear interpolation
is supported only for fixed-point formats. Unfortunately
higher-order interpolation schemes are not natively sup-
ported at all. A general approach for GPU-based linear
filtering was presented by Hadwiger et al. [2002]. Their
work can be applied to arbitrary filter kernels, gaining
speed-ups from various kernel properties like symmetry
and separability. The filter kernel is sampled at high-
resolution and stored as a texture. A particular sample
that contributes to the new resampling point is convolved
with a kernel tile. Their framework implements various
higher-order reconstruction filters like cubic B-spline fil-
ters, Catmull-Rom spline filters or windowed sinc filters.
As Malzbender [1993] has shown, careful filter design
for reconstruction in the frequency domain is crucial for
good image quality.

3 Mapping FVR on GPU

Frequency domain volume rendering can be divided into
two stages. In the first stage the original scalar data is
transformed from the spatial domain into the frequency
domain. Before doing this, we have to rearrange the spa-
tial data to set the origin of the data from the corner [0,
0, 0] of the data cube to the center. This wrap-around
operation followed by a 3D FFT is usually done off-line
for each data set in a pre-processing step. Although a
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Figure 1: Frequency domain volume rendering pipeline. Instead of projecting the data in the spatial domain (O(N 3)),
slicing in frequency domain is performed on the GPU, followed by inverse transform (O(M 2 logM)) after an off-line
pre-processing step on the CPU.

GPU-based implementation of a three-dimensional trans-
form is currently possible, the performance cannot com-
pete with optimized software implementations. This is
due to limitations in handling 3D textures. Another as-
pect is that during the transform always two copies of the
data have to be present in the graphics hardware mem-
ory, i.e., one as source another as destination array. This
limits the size of the rendered data set to be half of the
available graphics memory resources. Since the three-
dimensional transform is done only once per data set, the
FFTW library [Frigo and Johnson 1998] is used to trans-
form the data on the CPU. The transformed data is rear-
ranged via wrap-around operation once again to set the
low frequencies to the center of the data set. After this
step the data is uploaded to the graphics hardware mem-
ory. All the following on-the-fly computation is done on
GPU. The uploaded array of complex numbers is repre-
sented as a two-channel 32-bit floating-point 3D texture.
Although FVR does not require the dimensions of the in-
put data to be a power of two, current hardware limits
dimensions of 3D textures to be a power of two. If the
volume resolution is not a power of two, zero-padding in
frequency domain is done. Without loss of generality we
use the OpenGL API [OpenGL 2003] in our implemen-
tation. Even though implementation details are related
to this API, porting the code to other APIs is straightfor-
ward.

After the data upload the algorithm proceeds to the
rendering stage. This stage can also be divided into two
parts, i.e., slicing in the frequency domain and the in-
verse Fourier transform. Slicing refers to resampling the
projection slice from the 3D frequency data. Transform-
ing the resampled frequency slice back to the spatial do-
main results in the projection of accumulated intensities.
These two parts will now be focused on and discussed in

more detail. The FVR pipeline is sketched in figure 1.

3.1 Slicing in Frequency Domain

In the first part of the rendering stage the resampling of
the projection slice is performed. The slice is perpendic-
ular to the viewing direction intersecting the frequency
volume in the origin of the frequency spectrum. This is
in fact the central sample of the 3D texture. The setup
of this rendering part maps the 3D texture onto a proxy
geometry, which is a single quad. Texture coordinates
are set to cover the entire 3D texture under any viewing
direction, i.e., slicing along the diagonal determines the
maximal coverage of the 3D texture. The proxy geom-
etry is stretched over the whole rendering target, i.e., a
buffer where the results of the rendering pass are stored.
When changing the viewing direction, the texture is ro-
tated around the frequency volume origin. The setup is
illustrated in figure 2.

3D TEXTURE MAPPED 
TO QUAD

QUAD STRETCHED OVER THE 
RENDERING TARGET

Figure 2: Setup for the resampling part shows relation-
ship between 3D texture, proxy slice geometry and ren-
dering target.

To avoid aliasing the resolution of the rendering target



must meet the Nyquist criterion. Also the reconstruction
quality of the projection slice strongly influences the fi-
nal rendering quality. Low resampling quality introduces
artifacts like ghosts or frequencies that are not present
in the original data. To avoid this, it is necessary to use
higher order interpolation schemes, or at least tri-linear
interpolation. The hardware does not natively support
higher order interpolation schemes, so floating-point tex-
tures can be fetched only using nearest neighbor interpo-
lation. We additionally support three other types of in-
terpolation. The first custom filter type is tri-linear inter-
polation. The second interpolation scheme is tri-cubic in-
terpolation using cardinal or BC-splines. The last scheme
is windowed sinc of width four. Tri-cubic interpolation
as well as windowed sinc interpolation are based on the
texture-based approach of Hadwiger et al. [2002]. The
following subsections describe in more detail the map-
ping of these custom filters onto GPU. After describing
the interpolation schemes various hardware implementa-
tion issues of slicing are presented.

3.1.1 Tri-linear interpolation

Our implementation of tri-linear interpolation is based on
the LRP instruction, where the abbreviation LRP refers
to linear interpolation. First the eight nearest neighbors
of a resampling point are fetched with nearest neighbor
interpolation. The addresses of the neighbors are pre-
computed in the per-vertex stage for each vertex of the
rendering pass. These are then stored in eight available
texture-coordinate vertex-attributes. The addresses be-
tween the vertices are interpolated ”for free” during the
rasterization. The values of the neighbors are fetched
using pre-computed addresses in the per-fragment stage
from the source 3D frequency texture.

The problem is how to estimate the blending factors
for all three directions. Although it is not explicitly given,
they can be retrieved from the three-dimensional texture
coordinates of the resampling point. These describe the
offset from a corner of the 3D texture in the range [0,1]
for each coordinate. Obviously the coordinates of the
opposite corner are [1.0,1.0,1.0]. The multiplication of
texture coordinates of a given resampling point with the
original texture resolution results in coordinates where
the distance between two texels is equal to 1.0. The frac-
tional parts of these new coordinates are the blending fac-
tors we are looking for. We illustrate the blending factor
estimation in figure 3.

3.1.2 Higher-order interpolation

Higher-order interpolation schemes in our implementa-
tion are using textures for storing a discretized recon-
struction kernel. The kernel is represented via a high
number of samples. All reconstruction filters, which are
used in our implementation, are separable. This allows

[0, 0]

[1, 1]

[X, Y] [8X, 8Y]

frac(8Y
)

frac(8X)

Figure 3: Blending factor estimation. The resolution of
the original texture is 8 × 8. The texture coordinates
are multiplied with the original resolution. The blend-
ing factors are equal to the fractional parts of these new
coordinates.

to store the kernel in a 1D texture instead of storing it
in 3D textures and multiplying the 3D kernel tile on-the-
fly. A tile corresponds to a part of the kernel in the in-
terval between two integral numbers. The width of the
kernel thus determines the number of tiles that cover the
whole reconstruction kernel. Our implementation sup-
ports kernels of width four, so the 1D kernel is divided
into four tiles similar to the method proposed by Had-
wiger et al. [2002]. But instead of storing the kernel in
several textures, we use a single four-channel 1D texture
using each channel to store one kernel tile. This reduces
the number of texture fetch instructions and increases the
resampling performance. Figure 4 shows how the kernel
tiles are stored in a four-channel 1D texture.

0 1

R

G

A

B

X

Figure 4: Filter kernel of width four and corresponding
1D floating-point RGBA texture storing the discretized
kernel. Each channel stores one kernel tile. A single
texture fetch at position X returns 4 weight values.

The filtering is divided into four passes, where each
pass is computing the contribution of sixteen neighbor-
ing samples. These intermediate results are summed to-
gether resulting in the value of the resampling point. The
straightforward method to sum-up intermediate results
would be to set the blending operation to addition. Un-
fortunately current hardware does not support blending
with floating-point precision. The blending is done af-
ter four intermediate passes in a separate pass in which
four sub-results are summed together. After the blending
pass the filtered slice is stored in a texture, ready to be
processed with the inverse FFT.



3.1.3 Hardware implementation strategies

This section deals with the current state of graphics hard-
ware. Recent interesting features are discussed, which
are relevant to resampling the data from a 3D texture onto
a slice.

Currently only ATI GPUs support floating-point 3D
textures, so our implementation is running on these type
of cards. Supporting available NVidia hardware would
require to store the floating-point value of every sample
in a four-channel fixed-point 3D texture. The slicing part
will then include an additional conversion in order to re-
construct the original floating-point value. This must be
done before interpolation for every sample contributing
to the resampling point on the projection slice. The rest
of the pipeline remains unchanged. Additionally the im-
plementation of texture-based higher-order interpolation
is divided into four passes. This is due to limitations of
the fragment program length on ATI hardware. NVidia
supports much longer fragment programs, i.e., the multi-
pass approach can be folded into a single pass.

The multi-pass approach discussed before, as well as
FVR in general, renders an intermediate image that is
used in the next pass as input. This is done by changing
the rendering target to a texture and vice versa. The ren-
dering target is any kind of buffer that can be bound as
a 2D texture, which is in current OpenGL specification
invisible rendering target called Pbuffer.

3.2 Inverse Two-Dimensional Fast
Fourier Transform

The second part of the rendering stage receives extracted
projection slice as 2D input texture. The inverse two-
dimensional Fourier transform transforms the data back
to the spatial domain and the final result is rendered into
the framebuffer. The transform used in our implementa-
tion is based on a method implemented by Hart et al. [En-
gel 2003].

Both transforms, i.e., forward and inverse, can exploit
the separability property in the multi-dimensional case.
In the case of a two-dimensional array first the rows
are transformed as stack of independent one-dimensional
arrays. These frequency arrays are then transformed
column-wise, where each column is also handled sepa-
rately. In case of the three-dimensional transform, the
third dimension is handled analogously.

The two-dimensional Fourier transform is split in two
almost identical parts. Each of these passes consists first
of reordering the input data, also called scrambling. This
pass prepares the data for log2 N butterfly passes where
N is the number of columns or rows respectively. Scram-
bling means swapping two samples, where one sample is
at position x and the other sample is at position y. The
relationship between x and y is that y is the reverse in
the bit order of x. For example a sample at position x=4

(bit pattern 100) is exchanged with the sample at position
y=1 (bit pattern 001). This reverse order function can be
efficiently done using a pre-computed scramble lookup
texture.

The scramble pass is followed by log2 N butterfly
passes. The butterfly passes are performed ping-pong-
wise. One buffer is bound as the source 2D texture, an-
other one as the rendering target. In the next pass the
first buffer changes to be bound as the rendering target
and the second buffer (the rendering target from the pre-
vious pass) is bound as the source texture. Each butterfly
pass first performs a texture fetch into a lookup texture,
which determines addresses of two samples a and b that
contribute to the currently processed fragment. The value
of the principal Nth root of unity w is also contained in
this fetch. Afterwards, a complex multiplication and two
additions are performed as described in section 2.

After performing one scramble pass and log2 N butter-
fly passes in one dimension, the algorithm analogously
performs the same operations to the other dimension. In
case of the inverse transform the values are finally scaled
down by the factor N−1 (see equation 2) in the last pass
and the output is written to the framebuffer. The pro-
cess of a two-dimensional FFT is illustrated in figure 5.
The interested reader is referred to Hart’s implementa-
tion [Engel 2003] for further details.

SCRAMBLE

HORIZONTAL DIRECTION

BUTTERFLY

BUTTERFLY

VERTICAL DIRECTION

SCRAMBLE

INPUT IMAGE

INVERSE 
TRANSFORM 

NORMALIZATION

Figure 5: State diagram of GPU-based FFT.

To reduce the memory requirements by one half, the
Hartley transform can be used instead of Fourier trans-
form. The GPU-based implementation of the Fast Hart-
ley Transform (FHT) is quite similar to the FFT. The
scrambling operation is done in exactly the same way
as in case of FFT. The difference is that instead of but-
terfly passes so called double butterfly passes have to be
performed. In case of the FFT the butterfly texture stores
the complex number w, addresses to values contributing
on the butterfly and a sign that determines which butterfly
result should be written to the current fragment. The FHT
needs to store five values, therefore it is necessary to have
two lookup textures instead of a single one. One possibil-
ity is to store three addresses of samples that contribute
to the final butterfly result in one three-channel (RGB)
texture. Precomputed weights of cos and sin terms are
stored in another two-channel (LUMINANCE ALPHA) tex-



ture. The cos and sin terms are then multiplied with the
corresponding input values and summed together. More
details on the FHT can be found in the referenced liter-
ature [Bracewell 1986]. In the multi-dimensional case,
the last pass corrects the product of one-dimensional
transforms for each direction to the multi-dimensional
transform. The shader performs four texture fetches,
sums them together and performs correction according
to equation 4.

4 Results

Our implementation was tested on the ATI Radeon 9800
XT [ATI 2003] with 256 MB of memory. The data set
used in the performance test was the X-mas Tree [Kan-
itsar et al. 2002] of size 2563. The rendering perfor-
mance was tested at two different projection slice reso-
lutions, i.e., 2562 and 5122 pixels. The slice was resam-
pled using four different interpolation schemes: nearest
neighbor interpolation, tri-linear interpolation, tri-cubic
interpolation, and interpolation using windowed sinc.
The window function was a Blackman window of width
four [Theußl et al. 2000]. The framerates are shown in
table 1 below. The tri-cubic and windowed sinc inter-
polation are using the same principle. Therefore they
achieve exactly the same performance. The discretized
kernel for the higher-order interpolation schemes has res-
olution of 64 samples per filter tile. The corresponding
images are shown in figure 6. Please note that all ren-
dered images are inverted and colored to increase the vis-
ibility of desired effects respectively unwanted artifacts.
It is clearly visible that the nearest neighbor interpola-
tion has similar performance to tri-linear interpolation,
however, the rendering quality using nearest neighbor re-
construction is rather poor. The results of tri-linear re-
construction seem to be of acceptable quality. The cubic
B-spline filter is an approximative filter, which can be
considered as a low pass filter. The image where the pro-
jection slice was reconstructed using this filter exhibits
less noise as compared to windowed sinc and other re-
construction schemes. All images clearly show copies of
the dataset. This is due to the absence of zero-padding in
the spatial domain [Levoy 1992].

Resolution NN TL TC IFFT 2D

256×256 1450 1050 180 153
512×512 500 350 45 35

Table 1: Framerates of GPU-based FVR: The first three
columns show framerates of three different interpolation
schemes in the slicing stage: Nearest Neighbor (NN), tri-
linear (TL), and tri-cubic (TC). The fourth column shows
the performance of the inverse transform. The rows de-
scribe the size of the projection slice.

(a) (b)

Figure 8: Quality comparison using the bonsai tree
dataset (2563). Projection slice resolution is 256 × 256
(a) and 512 × 512 (b). Low projection slice resolution
results in an image distorted by overlapping copies. This
effect is removed when using a sufficient resampling res-
olution.

Some images exhibit so called vignetting artifact.
This means that the central value of the final image
are overemphasized. Here the shape of the frequency
response of used interpolation filter comes into play.
This artifact can be suppressed by spatial premultiplica-
tion [Malzbender 1993] of the original volume with the
reciprocal of the interpolation filter frequency response.
Our implementation, however, does not contain this op-
eration, but it can be directly integrated into the pre-
processing stage. The reason is that spatial premultipli-
cation increases the effect of ghosting on other hand. The
vignetting artifact is noticable in figure 7. It might be
slightly disturbing in case of static images, but interac-
tive manipulation like rotation overcomes this problem.

The quality of the image is also strongly influenced by
the resolution of the projection slice. This is shown in fig-
ure 8. This dataset has resolution 2563, which means that
the resolution of the projection slice should be at least
512 × 512. If this condition is not fulfilled overlapping
artifacts appear.

In case of higher order filter kernels, which are in
our implementation filters of width four, the resolution
of the discretized kernel also influences the final image
quality. As mentioned earlier, only one-dimensional ker-
nel representation is stored in a texture and the three-
dimensional filter kernel is computed on-the-fly on the
rendering stage. Additionally each kernel is divided into
four tiles. In figure 9 we show the results of cubic inter-
polation using cubic B-spline, where for each tile of the
one-dimensional kernel we store 1, 4, and 16 samples re-
spectively. Increasing number of samples per-tile clearly
improves the image quality.



(a) (b) (c)

Figure 9: The engine block data set is resampled us-
ing the cubic B-spline reconstruction kernel. Images
show different number of samples per filter tile in one-
dimensional case: 1 sample per tile (a), 4 (b), and 16 (c)
respectively.

The software FVR using the highly optimized FFTW
library [Frigo and Johnson 1998] was running on an
AMD Athlon XP 2200+ processor with 1.0 GB of RAM
(2×512 DDR, 133 MHz, CL2) and VIA Apollo KT333
chipset. The software implementation is using tri-linear
interpolation, a projection slice of size of 256×256 and
the same test data set of size 2563. The performance of
slicing was 17 frames per second (fps). Wrap-around re-
ordering is running at 45 fps and inverse 2D transform at
26 fps. Note that wrap-around reordering does not take
additional time in the GPU implementation. Using the
algorithm mapped on the GPU, a speed-up factor of ap-
proximately 17 is achieved.

5 Future work

The depth cues and directional shading proposed by Tot-
suka and Levoy [1993] can be also integrated into our
framework to improve the spatial perception. Also ad-
ditional filters proposed by Malzbender [1993] will im-
prove the quality of the resulting images.

Future work also includes mapping to other platforms,
e.g., NVidia GPUs as well as a high level shading imple-
mentation using the Cg [NVIDIA 2003] respectively the
OpenGL Shading Language [OpenGL 2003].

6 Summary and Conclusions

The mapping of frequency domain volume rendering
onto GPU is presented. The GPU-based rendering
stage results in highly interactive framerates, achieving
a speed-up factor of 17 compared to the CPU-based ap-
proach. We discussed the overall hardware-accelerated
pipeline: The data set is first pre-processed on the CPU.
Then the frequency dataset is uploaded to graphics hard-
ware for the on-the-fly rendering stage. This consists of
two sub-stages slicing and inverse transform. The qual-
ity of the rendered results is strongly influenced by the

used interpolation scheme. Four different interpolation
schemes are presented. The difference between these
interpolation schemes is shown with respect to perfor-
mance and quality.

The performance of frequency domain volume render-
ing does not explicitly depend on the data set resolution.
It depends on the number of resampling points which are
given by the resolution of the projection slice. The data
set resolution influences the texture cache efficiency, i.e.,
the higher the resolution is, the higher is the number of
cache misses. This can lead to slight differences in ren-
dering performance, which is usually ± 2 fps in case of
a 512×512 projection slice resolution.
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Figure 6: Result of rendering the X-mas tree test data set. The images show the rendering quality according to the used
interpolation scheme. Nearest neighbor interpolation (a) exhibits noticeable artifacts, which are eliminated by tri-linear
interpolation (b), respectively by higher-order interpolation schemes like tri-cubic interpolation using a cubic B-spline
filter (c) or windowed sinc filter using a Blackman window of width four (d).

Figure 7: Other datasets rendered with projection slice resolution 512 × 512 using a tri-cubic B-spline reconstruction
filter.
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