
Technische Universität Wien

Diplomarbeit

Practical Reconstruction Schemes
and

Hardware-Accelerated
Direct Volume Rendering

on Body-Centered Cubic Grids

unter der Leitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller,
Institut 186 für Computergraphik und Algorithmen,

und
Dipl.-Ing. Thomas Theußl

als verantwortlich mitwirkendem Universitätsassistenten,

eingereicht an
an der Technischen Universität Wien,

Fakultät für Technische Naturwissenschaften und Informatik,

von
Oliver Mattausch,

Matrikelnummer 9506124,
Neuklostergasse 3,

2700 Wiener Neustadt, Österreich,
geboren am 2. Dezember 1976 in Wiener Neustadt

Wien, im Dezember 2003

Oliver Mattausch

Practical Reconstruction Schemes
and

Hardware-Accelerated
Direct Volume Rendering

on Body-Centered Cubic Grids

mailto:
matt@cg.tuwien.ac.at

Abstract

It is well known in the signal-processing community that the Body-Centered Cubic grid is the
optimal sampling grid in 3D. In volume visualization, the Cartesian grid is by far the most pop-
ular type of grid because it is convenient to handle. But it requires 29.3% more samples than
the Body-Centered Cubic grid. In order to convince people used to Cartesian grids for years of
the advantages of Body-Centered Cubic grids, we must prove their usability in many different
volume rendering algorithms. Further we have to show that we get a performance gain without
or with only slight loss of image quality compared to Cartesian grids. Therefore we introduce
several practical reconstruction schemes on Body-Centered Cubic grids, which are very general
and can be used in a number of applications and tasks.

Together with the development of powerful and flexible consumer graphics hardware, in-
teractive hardware-accelerated volume rendering algorithms gain popularity. Rendering perfor-
mance becomes a big issue, which can be a strong argument in favour of Body-Centered Cubic
grids. We adapted some of the most popular volume rendering approaches exploiting hardware-
acceleration to Body-Centered Cubic grids: both 2D and 3D texture-based volume rendering
and the projected tetrahedra algorithm. At least partly we succeeded in achieving a performance
gain on our new grid and further produced some impressive rendering results comparable to the
Cartesian grid version.

I

Kurzfassung

Es ist lange bekannt in der Signalverarbeitungsgemeinde, daß das Body-Centered Cubic Gitter
das optimale Sampling Gitter in 3D ist. In der Volumsvisualisierung ist das Kartesische Git-
ter der bei weitem populärste Gittertyp, da es einfach zu behandeln ist. Allerdings braucht es
29.3% mehr Samples als das Body-Centered Cubic Gitter. Um Leute, die über Jahre hinweg an
Kartesische Gitter gewöhnt sind, von den Vorteilen der Body-Centered Cubic Gitter zu überzeu-
gen, müssen wir ihre Anwendbarkeit in vielen verschiedenen Volumsdarstellungsverfahrung be-
weisen. Weiters müssen wir zeigen, daß wir an Performance gewinnen ohne oder nur mit wenig
Verlust von Bildqualität. Darum stellen wir mehrere praktische Rekonstruktionsmethoden auf
Body-Centered Cubic Gittern vor, die sehr allgemein sind und in einer Reihe von Anwendungen
und Aufgaben verwendet werden können.

Gleichzeitig mit der Entwicklung von mächtiger und flexibler Consumer-Graphics Hardware
gewinnen interaktive Hardware-beschleunigte Algorithmen an Beliebtheit. Rendering Perfor-
mance wird zu einer wichtigen Größe, was ein starkes Argument für Body-Centered Cubic Git-
ter sein kann. Wir haben einige der populärsten Volumsdarstellungsmethoden, die Hardware-
Beschleunigung ausnutzen, auf das Body-Centered Cubic Gitter umgesetzt: sowohl 2D als auch
3D Textur basierte Volumsdarstellungsverfahren und Verfahren, die auf projizierte Tetraeder
beruhen. Zumindest teilweise waren wir erfolgreich einen Gewinn an Performance auf unserem
neuen Gitter zu erreichen und erzielten außerdem einige beeindruckende Rendering-Ergebnisse
vergleichbar zu der Version auf dem Kartesischen Gitter.

II

Contents

1 Introduction 1
1.1 Volume Rendering . 1
1.2 Graphics Hardware . 3
1.3 Regular Optimal Sampling . 3
1.4 The Body-Centered Cubic Grid: A formal definition 4
1.5 Thesis Outline . 6

2 Volume Rendering: State of the Art 8
2.1 Volume Rendering Algorithms . 8
2.2 Hardware-Accelerated Volume Rendering . 8

2.2.1 Texture-Based Volume Rendering . 9
2.2.2 Projected Tetrahedra Algorithm . 10

2.3 Data Structures for Splatting . 10
2.4 Volume Rendering on the BCC Grid . 11

2.4.1 Splatting . 11
2.4.2 Shear-Warp Algorithm . 11
2.4.3 Raycasting . 12
2.4.4 Iso-surface Reconstruction . 12

3 Practical Reconstruction Schemes 13
3.1 Bilinear Interpolation . 13
3.2 Bilinear plus Spatial Interpolation . 14
3.3 Barycentric Interpolation . 15
3.4 Trilinear Interpolation . 16
3.5 Sheared Trilinear Interpolation . 17
3.6 Alternative Sheared Trilinear Interpolation . 18
3.7 Gradient Reconstruction . 21

4 Texture-Based Volume Rendering 25
4.1 Basics . 25
4.2 2D Texture-Based Volume Rendering . 25
4.3 Multi-Texture Blending . 27
4.4 Pre-Integration . 28

III

4.5 3D Texture-Based Volume Rendering . 28

5 Projected Tetrahedra Algorithm 32
5.1 Algorithm Overview . 32
5.2 Tetrahedralization . 33
5.3 Back-to-Front Traversal . 33
5.4 Speeding up the Basic Algorithm . 35
5.5 A 3D Adjacency Structure . 36
5.6 The Adjacency Structure on a Tetrahedral Mesh 36
5.7 Correct Transparency Calculation . 37
5.8 Pre-Integration . 38
5.9 Shading Issues . 39

6 Implementation 42
6.1 The vuVolume Framework . 42
6.2 Practical Reconstruction Schemes . 43
6.3 Texture-Based Volume Rendering . 44

6.3.1 A Flexible Hardware-Rendering Framework 44
6.3.2 Fragment Program for 3D Texture-Based Rendering on a BCC grid . . . 45
6.3.3 Rendering Support for 3D Texture-Based Rendering on a BCC grid . . . 46

6.4 Projected Tetrahedra Algorithm . 47
6.4.1 Decomposition . 47
6.4.2 3D Adjacency Data Structure . 48
6.4.3 Data Traversal . 49
6.4.4 Triangle Decomposition . 50
6.4.5 Avoiding Redundant Calculations . 51
6.4.6 Pre-Integration . 51
6.4.7 Shading . 51
6.4.8 Normal Approximation . 52

7 Results and Comparisons 53
7.1 Strategy for Comparing the Rendering Quality 53
7.2 Datasets . 53
7.3 Practical Reconstruction Schemes . 54

7.3.1 Rendering Results . 55
7.3.2 Performance . 61

7.4 Texture-Based Volume Rendering . 63
7.4.1 Rendering Results . 63
7.4.2 Performance . 65
7.4.3 Memory Usage . 70

7.5 Projected Tetrahedra Algorithm . 72
7.5.1 Rendering Results . 72
7.5.2 Performance . 76

IV

7.5.3 Memory Usage . 77

8 Summary 80
8.1 Introduction . 80
8.2 Previous work . 81
8.3 Practical Reconstruction Schemes . 82

8.3.1 Bilinear Interpolation . 82
8.3.2 Bilinear plus Spatial Interpolation . 82
8.3.3 Barycentric Interpolation . 83
8.3.4 Trilinear Interpolation . 83
8.3.5 Sheared Trilinear Interpolation . 84

8.4 Texture-Based Volume Rendering . 84
8.5 Projected Tetrahedra Algorithm . 87
8.6 Conclusions . 91

9 Conclusions in general 92
9.1 Practical Reconstruction Schemes . 92
9.2 Texture-Based Volume Rendering . 93
9.3 Projected Tetrahedra Algorithm . 94

10 Future Perspectives 96
10.1 Open Questions . 96
10.2 Datasets . 97
10.3 Analysis of the Frequency Domain . 97
10.4 High-Quality Reconstruction . 98
10.5 Texture-Based Volume Rendering . 98
10.6 Cell Projection Algorithms . 100

Bibliography 108

APPENDIX A 109

V

Acknowledgments

I thank my parents and grandparents for their constant support, Jan Schödl, Fritz Dörfl, Markus
Reisenbauer, Stefan Haslinger, Markus Hecher, Ulli Schackl, Bernd Klauninger and Andi Beer
for being my closest friends over many years and trinking my ice tea (well, Andi Beer never
did), Michi B., Jürgen Lorenz and Gernot "The Body" Langer for being my fellow colleagues
and making the old "Fachschaft" a fun place to be, Meguro Rie, Yamada Fumikazu and the other
members of the Tokyo Gakugei Univerity Kendo Club, Kamemoto "Kame" Ryutaro and all my
other Kendo friends from Vienna, who prevented me from getting mad from only thinking of my
studies, Eduard Gröller, Thomas Theußl, Markus Hadwiger for support in my efforts to write
this thesis and their valueable advice, the VRVis center for allowing me to use their hardware
rendering framework, Christoph Berger and Markus Hadwiger, for being the authors of this cool
piece of software (and thanks for lending me your private ATI card, Markus!), Stephan Guthe
for giving me useful advice during his visit in Vienna, the makers of Thunderforce and Musha
Alestse, the games that changed my life, and finally Günter Schödl for being my teacher, choach,
neighbour and the father of my oldest friend.

VI

Chapter 1

Introduction

In this chapter we sketch the basics of volume rendering and the volume rendering pipeline.
Afterwards important issues of modern consumer graphics hardware are discussed. Then we
introduce optimal regular sampling with emphasis on the Body-Centered Cubic grid and it’s
properties. At last we give an overview of this thesis.

1.1 Volume Rendering

Volume rendering refers to the visualization of volumetric data given as a set of scalar or vectorial
samples. The data samples are arranged in a so called sampling grid, which assigns a position in
space to each sample. The sources for volume data can be classified into three main groups:

• Data sampled from analytical functions

• Data aquired from scanning real world objects

• Computational simulation data

The nature of the data also influences the type of the employed sample grid. For example,
volume data produced in computed tomography (CT) or magnetic resonance imaging (MRI) are
usually sampled on a rectilinear grid, whereas curvilinear grids are often used in the simulation
of fluid dynamics.

Direct versus Indirect Volume Rendering

Deriving an intermediate representation of the volume data, usually in form of a polygonal ap-
proximation of contour surfaces, is called indirect volume rendering. Direct volume rendering
refers to computing an image directly from the volume data. In indirect volume rendering, we
have the advantage that we can use surface rendering techniques which have been extensively
studied and refined for quite some time in computer graphics. Moreover, consumer graphics

1

hardware is highly specialized to fulfill this task. Unfortunately much of the information con-
tained in the data is thrown away in this approach. Furthermore, the complexity of the intermedi-
ate representation is hard to predict and can go out of bounds in terms of memory requirements.

On the contrary, direct volume rendering produces semi-transparent cloud or smog like im-
ages. This is a representation of the whole volume, because all samples contribute to the final
image to a certain extent, yielding a better insight into the data. Unlike indirect volume render-
ing, the algorithm complexity is independent from the geometry of objects. The main drawback
of direct volume rendering is the amount of data that have to be processed. Therefore direct
volume rendering methods are traditionally considered to be relatively slow.

Reconstruction

We assume that the volume data is sampled from a continuous scalar density function f �x�y� z�
defined for all points of the volume. To reconstruct the original scalar field, we have to interpolate
density values between samples. Theoretically, ideal reconstruction is possible with the sinc
filter, but it cannot be used in practice because of it’s infinite extend. On rectilinear grids, the
trilinear interpolation is commonly applied, because it is a good tradeoff between reconstruction
quality and performance.

Classification

Next color and opacity values are assigned as a function of interpolated density f �x�y� z�, usually
referred as the transfer function. Using an emmision-absorption model [71, 36], we get atten-
uated colors (i.e., emission) c� f �x�y� z�� and extinction factors (i.e., absorption) τ� f �x�y� z�� as
output. This process is called post-classification, as opposed to pre-classification, where color
and opacity are assigned to the vertices only in a preprocessing step and are interpolated after-
wards. Both approaches have some advantages, but we consider post-classification to be superior
to pre-classification. In the latter approach colors not represented in the transfer function may
appear in the final image, and further small details in the scalar field can be lost.

Ray integration

When rendering an image we cast viewing rays through the volume. Along the ray we integrate
the color and opacities in order to compute the final image. We refer to a ray parameterized by t
as r�t�. The output color C of a ray with maximum length l is given by the well known volume
rendering integral:

C �
� l

0
c� f �r�t��exp

�
�
� t

0
τ� f �r�t ����dt �

�
dt (1.1)

Solving this integral analytically is generally not possible. Instead it is discretizised using the
Riemann sums over a number of n samples:

C �
n

∑
i�0

Ci

i�1

∏
j�0

�1�A j� (1.2)

2

Compositing is the process of iteratively evaluating this formula in either front-to-back or back-
to-front order. This is the well known formula of back-to-front compositing, for instance:

C�
i � Ci��1�Ai�C

�
i�1 (1.3)

1.2 Graphics Hardware

Consumer graphics hardware undergoes rapid developments. Not only in the direction of higher
throughput rates and more texture memory, but also regarding flexibility and programmability.
Formerly hard-wired stages of the rendering pipeline can be now manipulated with vertex and
pixel shaders. This makes consumer graphics hardware, usually optimized for computer games,
suitable for other applications like volume rendering. Volume rendering with its enormous data
rates still poses some problems even for hardware of the newest generation.

A few years ago pixel shading abilities were quite limited. An important improvement to
standard texture mapping was the multitexture extension, which allow us to combine the output
of multiple textures. It can be used for light maps, for example, but we will see that it is also of
importance for texture-based volume rendering. Another feature exploited for volume rendering
are dependent textures, where the output texels of one or more textures are assigned as texture
coordinates for another one. Early pixel shaders, like NVIDIA’s register combiners, only have
a limited range of available instructions. Today’s fragment programs are much more powerful
as they allow assembler style programming, and are supported by both big vendors ATI and
NVIDIA. Recent developments, like NVIDIA’s CG compilers, are going in the direction to
make platform independent code written in a high-level programming language possible.

In this work we used OpenGL and extensions as programming interface to the hardware. It
is a well designed, well documented graphics library, and therefore perfectly suited for scientific
research.

1.3 Regular Optimal Sampling

In volume rendering applications, usually Cartesian grids are used. They are convenient to handle
because the indices of a sample are equivalent to the position in space. But it is well known that
they are not optimal in terms of sampling efficency. If the number of samples needed for lossless
reconstruction of a signal is minimal, we speak about optimal sampling. This is the case if the
replicated spectra in frequency domain are packed as closely as possible without overlapping.

We assume the sampled function to be band-limited and isotropic, Such a function has a
spherical frequency support. The task of the closest possible packing of (hyper-) spheres is
known as the famous sphere packing problem [55], which has attracted the attention of mathe-
maticians over centuries, and is still not solved for the general case. Fortunately, among regular
sampling grids several optimal solutions have been found. In the 2D case the Hexagonal Close
Packing (HCP) was proven to be the optimal packing scheme (refer figure 1.1). For every pack-
ing scheme in frequency domain, there exists a dual sampling grid in spatial domain, and the
dual of a HCP grid is also a HCP grid.

3

y

x

yw

xw

Figure 1.1: 2D Cartesian (left image) and Hexagonal packing (right image) of replicated spheri-
cal spectra in the frequency domain.

In the 3D case, again the Hexagonal Close Packing grid and the Face-Centered Cubic (FCC)
grid are both optimal packing schemes. The FCC grid looks like a Cartesian (CC) grid with an
additional sample point in the center of each cubic cell face. Like in the 2D case, the HCP grid
is it’s own dual, whereas the FCC grid corresponds to the Body-Centered Cubic (BCC) grid. A
BCC grid is a Cartesian grid with an additional sample point in the center of each cubic cell, as
shown in figure 1.2. Hence the HCP and the BCC grid are optimal grids for sampling. It has
been proven [60] that they need 29.3% less samples than a Cartesian grid for equal resampling
quality. We concentrate our work on the Body-Centered Cubic grid because it is much easier
to index than the Hexagonal Close Packing grid and has some convenient properties. We will
exploit these properties for our methods in the following chapters. The BCC grid can be seen as

• a stack of 2D CC grids were odd-numbered planes are translated by half a unit in both
dimensions with respect to even-numbered planes.

• two interleaved 3D CC grids, where one grid (usually denoted as secondary grid) is trans-
lated by half a cell spacing in all three axes relatively to the other grid (denoted as primary
grid). Two penetrating cells from each grid are shown in figure 1.3.

• a sheared and scaled CC grid, where the transformation matrix is given by the sampling
matrix (explained in section 1.4).

• a tetrahedral mesh which is simple and uniquely defined by the Delauney complex [6].

1.4 The Body-Centered Cubic Grid: A formal definition

We formally describe sampling as a mapping from indices to actual sampling positions [17]. In
the following we restrict our explanations to grids where this mapping can be defined by three
basis vectors and an origin, which is the case for the Cartesian and the Body-Centered Cubic
grid. Such grids are also referred as lattices in literature. The basic vectors can be written as a
matrix V , called the sampling matrix:�

� x
y
z

�
� �V �

�
� i

j
k

�
� (1.4)

4

2
CC grid BCC grid

2.0

3/2

1

Figure 1.2: CC and BCC cells in relative proportions image redrawn from [59]) A BCC grid
requires less samples to represent the same volume, hence the sample points are wider apart.

For a 3D Cartesian grid with cell spacing T � 1, V is the identity matrix:

VCC �

�
� 1 0 0

0 1 0
0 0 1

�
� (1.5)

The locations of the replicated spectra in the frequency domain are described by the dual
matrix U of V , called the periodicity matrix. They have the following relationship, where I
refers to the identity, and T to the transpose:

UTV � 2πI (1.6)

The Hexagonal Close Packing grid is an optimal grid for sphere packing in 2D:

Vhex2D �

�
T 1

2

�
3

2 T

0
�

3
2 T

�
(1.7)

It is easy to verify that the corresponding sampling matrix in spatial domain also describes
a Hexagonal Close Packing grid. Among the optimal sampling schemes in 3D, we again find
the HCP grid. But it is difficult to use in practice, because it cannot be described by a sampling
matrix. On the contrary, we can define the equally optimal Body-Centered Cubic grid using the
following matrix:

VBCC �

�
� T 0 1

2T
0 T 1

2T
0 0 1

2T

�
� (1.8)

This sampling matrix is a shear matrix, where the samples are sheared in the direction of
the positive x and y axis. Other shear axes and directions would also result a sampling matrix
describing a BCC grid. This scheme is still not very practical, and thus we want to fit the sample
points into a rectangular scheme. By introducing a modulo operation we get a more compact
memory layout. k denotes the third index component:

VBCC �

�
� T 0 1

2k T �k mod 2�
0 T 1

2k T �k mod 2�
0 0 1

2T

�
� (1.9)

5

Figure 1.3: Two interleaved cubic cells, one from the primary (denoted as A) and one from the
secondary (denoted as B) CC grid in a BCC grid. Image taken from [16].

In figure 1.4, we show both storage schemes in 2D. As the Body-Centered Cubic grid is only
defined in the spatial, such 2D visualizations can be seen as an orthogonal projection along the y
axis.

1.5 Thesis Outline

The Cartesian Grid is the standard grid in volume rendering, although it is rather inefficient.
From signal theory we know that the Body-Centered Cubic grid is optimal for the purpose of
sampling, saving 29.3% sample points. One way to to show the superiority of BCC grids in
practice is to adapt existing rendering methods. A performance gain should be achieved com-
pared to the original CC grid algorithm, while providing similar rendering quality. By exploiting
powerful graphics hardware, interactive or near interactive volume rendering is possible even for
larger volumes. This makes the potential performance gain with BCC grids even more desirable.
Volume rendering methods may rise in popularity and find use in time critical applications as
well, like in the gaming industry.

We give an overview of the most popular volume rendering algorithms in chapter 2. Special
emphasis is on hardware-accelerated methods and the developments in the field of texture-based
rendering and tetrahedral cell projection. In the same chapter we discuss the approaches which
have been proposed on the BCC grid so far.

Chapter 3 is about general and practical reconstruction schemes. We used a raycasting system
to test them. But they are applicable in other BCC grid rendering methods as well. Furthermore
we present several gradient estimation schemes.

Afterwards, we discuss how we can exploit our knowledge of BCC grids for the adaption
of concrete hardware-accelerated approaches. In chapter 4, we sketch the basics of 2D and
3D texture-based volume rendering, then describe how every particular rendering mode can be
used on a BCC grid. Another popular hardware-accelerated technique is the projected tetrahedra

6

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(2,2)(1,2)(0,2)

(0,3) (1,3) (2,3) (3,3)

(3,2)

(0,3)

(0,2)

(0,1)

(1,2)

(1,3)

(1,1)

(2,2)

(2,0)

(2,1)

(3,0)

(3,1)

(3,2)

(2,3) (3,3)

(0,0) (1,0) xx

z z

Figure 1.4: BCC storage schemes corresponding to equation 1.8 (left) and equation 1.9 (right)
shown in 2D.

approach. We give an overview of the ideas behind the original projected tetrahedra algorithm
in chapter 5. Furthermore we discuss the adaption of the algorithm to a tetrahedral mesh defined
by a BCC grid. Several performance optimizations and some improvements regarding image
quality and shading are introduced. We propose an adjacency structure for storing the tetrahedra
information, which allows a fast traversal of the visible tetrahedra.

Chapter 6 deals with implementation issues. We will describe our general design concepts
and discuss the most important code sections. In chapter 7 we present the results we achieved in
our experiments. We tested rendering quality, performance and, if necessary, memory usage.

In chapter 8 we give a summary of the important points made in this thesis. Conclusions are
drawn in chapter 9. We show directions about future work on BCC grids in chapter 10.

7

Chapter 2

Volume Rendering: State of the Art

First we discuss the most important volume rendering methods which have been proposed so far.
Furthermore we give an overview of hardware-accelerated volume rendering. Literature about
texture-based algorithms and tetrahedral cell projection is discussed in more details, because it
directly concerns our work. We also present some data structures introduced to speed up splat-
ting, as we can use some of them to accelerate the projected tetrahedra algorithm on BCC grids
as well. At the end we shortly describe several volume rendering algorithms already proposed
on BCC grids.

2.1 Volume Rendering Algorithms

Volume rendering algorithms are classified into image- and object-order algorithms, also re-
ferred as backward and forward mapping algorithms in literature. Image-order algorithms tra-
verse through all image pixels and compute the color of the actual pixel by shooting rays into
the volume, whereas object-order algorithms loop through the data samples and project their
contribution to the output image. Typical image-order algorithms are raycasting [32] and ray-
tracing [27]. Object-order algorithms are splatting [67], cell projection [54, 38, 68, 69, 53],
and texture-based volume rendering [4]. The speed-optimized shear-warp algorithm proposed
by Lacroute and Levoy [30] is considered to be a hybrid method (see figure 2.1). Fourier Do-
main Volume Rendering (FDVR) by Malzbender [34] follows a completely different concept. A
comprehensive study of popular rendering algorithms was proposed by Meißner et al. [40].

2.2 Hardware-Accelerated Volume Rendering

In volume rendering enormous amount of data that must be processed. Therefore direct volume
rendering algorithms have been traditionally either rather slow, or there is a tradeoff between ren-
dering speed and quality, like for the fast shear-warp algorithm (refer figure 2.1). This drawback
has limited the popularity of direct volume rendering over the years. Interactive volume rendering
with high-quality required special hardware, like the VolumePro board [45]. Although consumer
graphics hardware is not specialized for this task, a number of approaches have been proposed

8

Figure 2.1: The shear-warp transformation allows fast reconstruction in the planes. It is the
software equivalent to 2D texture-based volume rendering using object-aligned slices. Image
taken from [30].

that exploit hardware-acceleration for volume rendering. Until recently, interactive rendering
times were reported, but the quality was no match for the best software algorithms. The increas-
ing power, accuracy and flexibility of consumer graphics hardware leads to a fast quality im-
provement of hardware-based volume rendering. Among the most popular hardware-accelerated
approaches are texture-based volume rendering and the projected tetrahedra algorithm.

2.2.1 Texture-Based Volume Rendering

After the SGI reality engine was introduced [1], exploiting the power of 3D texture mapping
hardware for interactive volume rendering was proposed by Cabral et al. [4]. They rendered 512
� 512� 64 volumes in 0�1 seconds on a four Raster Manager SGI Reality Engine Onyx with one
150 MHZ CPU. Similar rendering rates were achieved by Cullip and Neumann [13]. Although
impressive frame rates were reached, shading was still not supported. Gelder and Kim [21]
introduced directional lighting using a lookup of 3 or 4 parameters. Unfortunately, hardware
support for the lookup was not possible. Therefore a new 3D texture had to be generated for
each classification or viewpoint change. Westermann and Ertl [66] proposed shading with a fast
multi-pass algorithm, which was restricted to iso-surface rendering. Meißner et al. [40] extended
this approach for diffusely shaded semi-transparent volume rendering. High-quality shading was
achieved by Dachille et al. [14] at the expense of losing interactivity. They used a combination of
hardware trilinear interpolation and blending, and software classification and lighting calculation.

Another approach is 2D texture-based volume rendering using object-aligned slices, which
is closely related to the shear-warp algorithm(figure 2.1). Rezk-Salama et al. [48] significantly
improved quality and performance of 2D texture-based volume rendering by the use of multi-
texture blending. The image quality can be enhanced with the generation of intermediate slices.
Alternatively, the slice number can be reduced by blending several textures to a single polygon.
Engel et al. [19] rendered pre-integrated slabs instead of slices, achieving high accuracy with-
out super-sampling for arbitrary transfer functions. Because of the very flexible and accurate
per vertex and per pixel shading abilities of modern consumer graphics hardware, the gaps in
rendering quality and accuracy between software and hardware volume rendering are vanish-

9

ing. Shaded pre-classification, post-classification, pre-integration as well as non photo-realistic
rendering (NPR) can be done entirely on the GPU in interactive frame rates with impressively
high quality [18, 3]. With the introduction of floating point precision textures [28], a rendering
accuracy equal to high-quality software algorithms can be achieved.

2.2.2 Projected Tetrahedra Algorithm

The projected tetrahedra algorithm (PT) was introduced by Shirley and Tuchman in 1990 [54]. It
became very popular because of it’s flexibility and ability to exploit graphics hardware to speed
up rendering. Therefore it is still considered as one of the main approaches for the rendering of
unstructured grids [65], among sweep plane algorithms [20] and slicing [47].

Improving accuracy of the original algorithm by use of exponential transparency textures was
proposed by Stein et al. [56] and Max et al. [37]. Other improvements were achieved in making
depth sorting of polyhedral cells more efficient, for example by Stein et al. [56] and Comba et
al. [10]. Cignoni et al. [9] introduced means to enhance the performance of the original algorithm
with both simplification of the data and the rendering process. Data simplification using multi-
resolution tetrahedral meshes was also proposed [8, 74].

In recent years the algorithm had a revival as subject of intensive research, because new fea-
tures of modern consumer graphics hardware can be exploited to improve both rendering quality
and performance of the original approach. Wittenbrink [72] suggested some general enhance-
ments like rendering triangle fans instead of single triangles. Accurate renderings for arbitrary
transfer functions can be achieved using pre-integration, which was introduced by Röttger et
al. [51] and is still a topic of research [50, 23, 18]. Wylie et al. [73] and Weiler et al. [64] used
vertex and fragment shaders to load the entire cell projection step on the hardware, making it
possible to use OpenGL optimizations like vertex arrays. Wylie et al. [73] also suggested their
work to be used for a new OpenGL extension GL_TETRA_EXT. King et al. [29] introduced
a new architecture which allows order-independent transparency and discussed new primitives:
tetrahedral fan and tetrahedral strip. The order-independent transparency is achieved with a re-
circulating frame buffer (R-buffer). Unfortunately, this architecture does not yet exist physically.

2.3 Data Structures for Splatting

There are similarities between the projected tetrahedra algorithm and splatting to a certain extent.
Both are forward projection algorithms. In case of splatting the algorithm is centered around vox-
els projected to the screen in the form of spherical Gaussian kernels, as opposed to an algorithm
centered around tetrahedral cells. Similar to zero opacity splats, tetrahedra with an irrelevant
contribution to the final image can be skipped completely during the traversal process. Thus we
scanned literature about data structures used for accelerating splatting on rectangular grids, in
order to make data traversal in projected tetrahedra techniques more efficient.

Fast splatting with texture mapping hardware was proposed by Crawfis et al. [12]. Using a
special data structure, Crawfis [11] further accelerated splatting by rendering only certain splats
belonging to an iso-surface. Laur et al. [31] introduced hierarchical splatting with a progressive

10

Figure 2.2: The cell structures used for the marching octahedra (left image) and marching hexa-
hedra (right image) algorithms in a BCC grid. Image taken from [6].

refinement of the grid using an octree partition of the space. Another approach is a 3D adjacency
structure suggested by Orchard et al. [44] for splatting on rectangular grids.

2.4 Volume Rendering on the BCC Grid

Several popular rendering algorithms have already been adapted to the BCC grid, among them
splatting, the shear-warp approach, and raycasting. Most recently, Röber et al. [49] proposed
3D texture-based volume rendering on the BCC grid (see chapter 4.5 for further details), and
Dornhofer [16] introduced an adaption of Fourier Domain Volume Rendering in his diploma
thesis. Interestingly, most BCC grid rendering algorithms achieve an image quality comparable
to the CC grid, but the BCC grid version generally appears blurrier than it’s CC grid counterpart.

2.4.1 Splatting

Theußl et al. [60] presented the BCC version of splatting [67]. The implementation is straight-
forward, because just the calculation of the sample positions is slightly more complex. Westover
style splatting uses Gaussian spherical reconstruction kernels, which have spherical support in
frequency domain. Therefore splatting seems to be perfectly suited for BCC grid rendering.
As pure object-order algorithm, the complexity is proportional to the volume size. Hence the
lower number of samples fully contribute to a performance gain of up to 47%. The reason why
this ratio even exceeds 29.3% may be due to better memory cache behavior. Neophytou and
Mueller [43] extended splatting for BCC to the 4 th dimension, stating that they get savings from
approximately 50% to 80% for time varying data sets.

2.4.2 Shear-Warp Algorithm

Lacroute and Levoy’s [30] speed-optimized shear-warp algorithm was extended by Sweeney and
Mueller [57] to support BCC grid rendering as part of their shear-warp deluxe project. They
exploited the fact that a BCC grid can be divided into two separate CC grids and run-length-
encoded both volumes separately. During traversal of the object-aligned slices the algorithm

11

Figure 2.3: "Girders" are artifacts that occur on iso-surfaces in a BCC grid. Image taken from [5].

switches between both CC grids, while taking the offset of half a unit for the secondary grid into
account.

2.4.3 Raycasting

Ibáñez et al. [26] used a generalization of the Bresenham algorithm for raycasting in a BCC
grid. They suggested linear interpolation inside a tetrahedral cell, but they give no further details
nor do they present any experimental results about this interpolation in their work. Strategies
for resampling in a BCC grid were proposed by Theußl et al. [59]. They investigated several
reconstruction scheme for use in a high-quality raycasting system and compared them to corre-
sponding CC grid interpolators. In detail we will discuss their work in chapter 3.

2.4.4 Iso-surface Reconstruction

Iso-surface reconstruction on CC is usually based on cubic cells, like in the popular marching
cubes algorithm by Lorensen and Cline [33]. Chan and Purisma [7] suggested a tessellation
of space into tetrahedra based on a BCC grid for iso-surface reconstruction. Besides the better
sampling efficency of BCC there are no ambiguities in the mesh, unlike tetrahedralizations based
on Cartesian grids. Treece et al. [61] extended this approach. The main problem of tetrahedral
grids is the large number of created triangles. To reduce the number of triangles required in BCC
grids, Carr et al. [6] investigated not only marching tetrahedra, but also marching octahedra and
marching hexahedra for BCC grid iso-surface reconstruction. In figure 2.2, we show where these
geometric structures are located in a BCC grid.

However, in most cases the iso-surfaces were significantly rougher on BCC grids than on
CC grids using marching cubes. Carr et al. [6] suggested that cubes could be better suited for
the reconstruction of a function with spherical support than tetrahedra. Marching hexahedra
produces less triangles than marching tetrahedra and marching octahedra, and achieves better
rendering results. But it still performs worse than marching cubes in terms of rendered triangles
and image quality. In a different paper, Carr et al. [5] identified a special kind of artifact occurring
when BCC grids are used as subdivision of cubic grids, which they referred to as "girders" (see
figure 2.3). Such artifacts can also be observed in their BCC iso-surface renderings, and they
always show up if certain conditions are met.

Iso-surfacing on BCC and FCC grids was also proposed by Ibáñez et al. [25]. They use BCC
grids because of their spectral properties and operate directly on the Voronoi regions.

12

Chapter 3

Practical Reconstruction Schemes

In this chapter we present several practical resampling strategies on BCC grids first proposed
in [59], and extended with some new methods. We implemented and tested them in a ray-
casting system for getting the best possible rendering quality without the unwanted side effects
introduced by other rendering methods. They can find application in many other rendering algo-
rithms which need an interpolation in a BCC grid. We exploited all of the BCC properties listed
in chapter 1. The reconstruction schemes range from fast methods with reasonable quality (e.g.,
bilinear interpolation) to more complex methods comparable to trilinear interpolation in terms of
rendering quality and performance. In the last part of this chapter we introduce several schemes
for gradient reconstruction in BCC grids.

Some of the reconstruction methods on the BCC grid have parameters which are depending
on the current view direction. Interpolation is used in many applications where we initially do
not have a view direction (e.g., segmentation). For such applications we must define a virtual
view direction. Nevertheless we consider this as a drawback which limits the usability of some
of the reconstruction schemes.

3.1 Bilinear Interpolation

The bilinear interpolation scheme exploits the fact that a 3D CC grid can be seen as stack of
2D CC grids. Thus a faster bilinear interpolation in the planes suffices, which was extensively
used to speed up calculation for the shear-warp algorithm [30] and for raycasting on Cartesian
grids [62]. To use this scheme for raycasting, we must assure that the first resampling location
of the ray entering a volume is located on such a plane. The planes are chosen so that they are
most perpendicular to the current view direction.

We already know that a BCC grid can be seen as stack of CC grid planes as well, and thus the
scheme can be easily extended to BCC grids. The step size used for resampling is determined
by the distance between the planes (see figure 3.1). Depending on the current view direction, it
varies between 1 and

�
3 in the CC grid. In the BCC grid, we generally have a smaller distance

between the planes for all possible view directions. It has a variation between
�

2�2 and
�

3�2.
In a common assumption, step size should be less than 1 for accurate resampling [62]. This

13

planes
(2D CC grids)

resample points

ray

Figure 3.1: Bilinear interpolation in the planes most perpendicular to the viewing direction. The
planes are comprised of 2D CC grids.

is never the case in the CC grid. In the BCC grid the step size is sufficient to meet this constraint,
if the planes are relatively perpendicular to the actual view direction. On the other hand, the 2D
CC planes consist of half of the sample points in the BCC grid, and the points are

�
2 times wider

apart. Hence we lose details in the planes.
In order to halve the step size, Wan et al. [62] suggested an intermediate sample step exactly

in between two planes. The required trilinear interpolation is still less complex than standard
trilinear interpolation. This is similar to the insertion of intermediate slices proposed by Sweeney
et al. [57] for the shear-warp algorithm. Simplified trilinear interpolation on the BCC grid can be
achieved with a specialized version of the sheared trilinear interpolator from chapter 3.5.

Wan et al. [62] also suggested that the scheme is perfectly suited for adaptive resampling,
halving the step size as long as the density difference between two adjacent sample locations
exceeds a certain threshold.

3.2 Bilinear plus Spatial Interpolation

The bilinear interpolation scheme can be extended into the spatial dimension. As a consequence,
the resample points are not restricted to lie on a plane like in the bilinear reconstruction scheme.
A resample point can be located anywhere between two adjacent planes. We first use bilinear
interpolation on both planes. Then the bilinearly interpolated density values are linearly interpo-
lated with an interpolation factor corresponding to the spatial position between the planes. Hence
we denote this reconstruction method as bilinear plus spatial interpolation. In the 2D visualiza-
tion from figure 3.2, we denote the interpolated density values from the planes as S i and Si�1, and
α refers to the spatial position between the planes. Then the resulting density value S α denotes
to:

Sα � �

�
2

2
�α�Si �αSi�1 for 0 � α �

�
2

2
(3.1)

Similar to the bilinear approach, we employ the stack of planes which is most perpendicular

14

Si+1

Si

2/2

(2D CC grids)

resample points

planes
S

plane i+1

plane i
α

ray

α

Figure 3.2: Bilinear plus spatial interpolation shown in 2D. After we bilinearly interpolate the
values from the planes (Si and Si�1), a linear interpolation using the spatial position α as weight
yields the final scalar value Sα (according to equation 3.1).

to the current viewing ray direction. Our experiments showed that the best results are achieved
if the planes are chosen in that way. This reconstruction is a trilinear interpolation in a sheared
cubic cell. The shear direction of the current cell (e.g., towards the positive or negative axes)
depends on the actual location of the resampling point. In figure 3.2, we can see that the first cell
containing a resampling point is sheared into the positive direction. The second resampling point
is located slightly more to the left, and accordingly the cell is sheared into the negative direction.

3.3 Barycentric Interpolation

The barycentric interpolation exploits the fact that a BCC grid can be seen as uniquely defined
tetrahedral mesh. We use the barycentric coordinates of the resampling point inside the current
tetrahedron as weights and interpolate between the vertex values. This results in a piece-wise
linear interpolation, and is not expected to be equal in quality to a trilinear interpolation. On
the other hand, we expected it to perform better than any kind of trilinear reconstruction. Only
the four vertices of the tetrahedron must be processed, as opposed to eight samples for trilinear
interpolation in a hexahedral cell. However, it is not trivial to find the actual tetrahedral cell and
the barycentric coordinates. Thus we did not achieve a performance gain over trilinear methods
on our architecture (there is still the possibility of a performance gain on other architectures). In
addition to the linear interpolation, the following computational steps are required:

1. Find the tetrahedron where the resampling point is located in. First we determine the
corresponding octant of the cell in the primary (secondary) grid using three comparisons.
We need some more comparisons (x greater or smaller y, x greater or smaller z, and y
greater or smaller z) to find the current tetrahedron. The tetrahedralization is visualized in
figure 3.3.

2. Compute the barycentric coordinates. This is done by transforming the resampling point
into a coordinate system where one vertex of the tetrahedron is in the origin and the other

15

Figure 3.3: The Delaunay tetrahedralization of the BCC grid. Two adjacent points (white dots)
together with the two points of the spine (black dots) in x, y, and z direction (from left to right)
make up a tetrahedron.

vertices lie in unit distance on the x, y and z axis. The barycentric coordinates are equiv-
alent to the new location of the resampling point. In figure 3.3, we can see that there
are twelve sets of different tetrahedra in the BCC grid after translation to the origin. The
transformation matrices can therefore be precomputed and stored in a table.

3.4 Trilinear Interpolation

In order to apply standard trilinear interpolation in a BCC grid, we could resample the grid
into a larger CC grid in a preprocessing step. This step would completely destroy the storage
advantage of the BCC grid. Hence we rather find and resample a Cartesian grid cell on the fly.
The largest cubic cell that has no other sample points inside is given by the intersection of the
primary and secondary grid cell that both contain the resampling point (the grey cube in right
part of figure 3.4). This is the same octant of a cubic cell we used to find the tetrahedron in
barycentric interpolation (section 3.3). A 2D visualization (left image in figure 3.4) will help
in understanding the more complicated spatial case (right image in figure 3.4). Two corners of
this cubic cell are given by the BCC grid. We have two choices to interpolate the density values
from each of the other six cubic cell corners (also shown in figure 3.5), considering either 2 or 6
samples in the calculation:

• A linear interpolation between the 2 sample points a and b as shown in the left image of
figure 3.5. a and b are from the same (either primary or secondary) CC grid. They are
the sample points closest to the corner of the cubic cell which we want to resample. This
method is prone to quite visible artifacts.

• A linear combination of a and b from one (primary or secondary) CC grid and the samples
c, d, e, and f from the other CC grid (see right image of figure 3.5). The weights are
proportional to the distance to the corner of the cubic cell. This is a linear interpolation in
the octahedron defined by the 6 samples. We get better results with this approach, with the
expense of much higher complexity.

16

2D visualization 3D visualization

Figure 3.4: Trilinear interpolation in the BCC grid (right image) and the situation in 2D (left
image). To interpolate at a position in the shaded box, first the missing corners of the box (square
dots) are interpolated.

As a third choice we could consider just the four samples c,d,e, and f for resampling of the
cubic cell corner. However, with this approach we do not take the spatially closest samples a
and b into account. Accordingly, the results are not very good. It is easy to see that trilinear
interpolation on the BCC grid is a continuous, piecewise cubic reconstruction of the resampling
point. But it requires more computations than trilinear interpolation on the CC grid. In the
following chapters we will refer to this interpolator as trilinear with 2 samples or trilinear with 6
samples, depending on the number of samples used for resampling of the cubic cell corners.

3.5 Sheared Trilinear Interpolation

We already know that a BCC grid can be seen as sheared and scaled CC grid [60]. The cubic
cells are transformed into sheared cubic cells in the BCC grid. The cells consists of four short
edges and eight long edges. The long edges are aligned to the 2D CC grid planes. In the sheared
cubic cells we use a trilinear interpolation, which we denote as sheared trilinear interpolation. A
2D visualization of sheared trilinear interpolation is shown in figure 3.6.

First we apply linear interpolations along the four short edges of the sheared cubic cell. The
resulting interpolated values are referred as a, b, c, and d in figure 3.6. In the figure we can also

see that the weights used in this interpolation are determined by the distances α and
�

2
2 �α from

the neighboring 2D CC grid planes. This is similar to the spatial interpolation in the bilinear plus
spatial reconstruction scheme. The scalar values a, b, c, and d can then be used for a bilinear
interpolation of the final density value.

We can choose from three stacks of 2D CC grid planes, like in the bilinear interpolation
and bilinear plus spatial interpolation. The cells are sheared along the two axes that span the
planes, hence we denote them as shear planes. There is an additional degree of freedom in
sheared trilinear interpolation, because the shear directions of the cells must also be specified.
We made the following considerations about the proper selection of the shear planes and the
shear directions of the cells:

• We choose the shear planes so that they are most perpendicular to the viewing ray direction,

17

S: Scalar value of the cubic cell corner

a

b

a
c d

e
f

S

2 samples 6 samples

S
b

Figure 3.5: Trilinear interpolation in the BCC grid. To interpolate the corner value S of the cubic
cell, we can either consider only two samples (a and b in the left image) or six samples (a- f in
the right image).

similar to choosing the proper resampling planes in the bilinear interpolation approach
from section 3.1. Figure 3.6 illustrates this approach in a 2D visualization.

• We made the observation that choosing the shear directions is less important than choosing
the shear planes properly, but nevertheless slightly influences image quality. We choose
the shear directions (either positive or negative) of the cells so that the cell borders are
as parallel as possible to the viewing ray. This assures that the ray will pass through the
sheared cell as similar as possible to how it would pass through the original cubic cells.
The shear directions are equal for all cells and only change if there is a change of the view
direction. If the viewing ray pointed slightly to in the right (right image from figure 3.6), a
shear towards the positive axis would be chosen.

3.6 Alternative Sheared Trilinear Interpolation

For sheared trilinear interpolation we used the fact that the BCC grid can be seen as sheared and
scaled CC grid. The idea behind the alternative calculation is to apply the inverse shear and a
scale in the z axis to the volume and to each resample location (for the storage schemes from
equation 1.8 and equation 1.9). Then we can apply standard trilinear interpolation in the cubic
cells of a CC grid. This alternative calculation of the sheared trilinear interpolation in a BCC
grid can be done with the following steps:

1. Interpret the BCC grid as CC grid, where the index values are used as sample positions.

2. Apply the inverse transformation (a shear and a scale in z axis) to each resample location.

3. Use trilinear interpolation in a CC cell for the reconstruction of the new resample location.

The inverse transformation matrix for the first BCC storage scheme (equation 1.8) is given by:

18

α

c, dc, d

2/2

resample point

interpolated values: a, b
ray

resample point

interpolated values: a, b
ray

2D CC grid planes

α

Figure 3.6: 2D visualization of sheared trilinear interpolation in the BCC grid. The interpolated
values a, b, c, d are used in a bilinear interpolation. The planes and shear direction of the cells
are chosen so that they are as closely as possible aligned to the ray direction.

VINV �

�
� 1

T 0 � 1
T

0 1
T � 1

T
0 0 2

T

�
� (3.2)

There are some restrictions to the alternative sheared trilinear approach. The shear planes and
shear directions are implicitly determined by the sample indices and cannot be chosen freely. For
the first storage scheme, the shear planes must be the planes spanned by the x and the y axis, and
the shear directions of the cells are towards the positive x and y axis. For a BCC grid stored
in memory with the second scheme (equation 1.9), there is a different inverse transformation
matrix:

VINV �

�
� 1

T 0 �1
k

1
T �k mod 2�

0 1
T �1

k
1
T �k mod 2�

0 0 2
T

�
� (3.3)

However, this matrix is only suited for transforming index values, but is not applicable for
floating point resampling locations. In the following calculations we use a cell spacing unit
T � 1. The indices i and j are equal to their spatial positions x and y in the BCC grid for all
indices where k is even. Whereas each resampling point that is located on a plane with odd k
must be shifted by 0�5 in negative direction of the x and y axis. Between slice planes, we must
linearly interpolate between 0�0 and 0�5. As we have spacing 0�5 between the planes in the z
direction, the actual z position at a plane with index k is k

2 . The offset o�z� that is subtracted from
the x and y component of each resample location must therefore be a piecewise linear function
of the z position, that is, a tent function:

o�z� � min�z��z��1� �z��z��� (3.4)

A 2D visualization of the alternative sheared trilinear interpolation is shown in figure 3.7.
The inverse shear transforms the BCC grid in the leftmost image into the rectilinear grid from the

19

−o(z)

z * 2

old resample pointresample point

CC grid

new resample point

Rectilinear gridBCC grid

trilinear interpolation

Figure 3.7: Alternative sheared trilinear interpolation shown in 2D. The inverse shear according
to o�z� is applied to the resample point and the BCC grid. After a scale in z direction is applied
to the new resample point and the rectilinear grid, we can use trilinear interpolation in a CC grid.

middle image. o�z� only produces positive values, which are subtracted from the x and y positions
of the resample point. It can be verified that o�z� defines an alternating positive-negative shear
of the cells. o�z� is zero at the first plane. Between the first and the second plane of the volume,
we (inverse) shear the resample location and the volume towards the negative x and y axes. This
means that the shear direction of the cells in the BCC grid is towards the positive axes. At the
second plane, the offset o�z� reaches the maximum. From the second plane to the third plane, we
(inverse) shear the resample location and the volume towards the positive x and y axes, until the
offset o�z� is zero. Hence the shear direction of the cells in the BCC grid is towards the negative
axes. From the third plane to the fourth plane, the resample location is again (inverse) sheared
towards the negative x and y axis, and so forth.

As a final step we must scale the z position of the resample location and the volume by 2�0.
In figure 3.7, this step transforms the rectilinear grid from the middle image into the CC grid
from the right image. The new resample point can be trilinearly interpolated in a CC grid where
the sample positions are equal to the indices. The matrix V r for transforming a resample location
into a new one is given by:

Vr �

�
� 1 0 �o�z�

0 1 �o�z�
0 0 2

�
� (3.5)

It is not possible to define the shear directions of the cells in any other way, because the
samples that span a cell are determined by the index values. The indices χ c�i� j�k� of a Cartesian
grid cell c with a smallest index �i� j�k� of a corner point are given by

χc�i� j�k� � �i�u� j� v�k�w� for u�v�w� 0�1. (3.6)

20

It can be verified that this equation must also be true for the indices of our sheared cubic cells.
Assume a positive shear direction for all cells. Then we have following indices:

χc�i� j�k� �

	
�i�u� j� v�k�w� if odd�k�
�i�u�w� j� v�w�k�w� if even�k�

for u�v�w� 0�1 (3.7)

But this is a contradiction to equation 3.6. The same can be stated for a negative only shear
direction. Fortunately, our results show that choosing the shear planes appropriately is much
more important for the visual appearance than the shear directions. To change the shear planes
when the principal viewing axis changes to x (y), we must rearrange the indices of the volume
so that the indices are aligned with the volume planes along the x (y) axis instead of the z axis.
The computational overhead of the reordering can be avoided by keeping keep the volume in
memory three times, which results in a large memory overhead (i.e., three BCC grid volumes
need 2�12 times more storage than one equivalent CC grid volume). Nevertheless this method
has a big advantage. We are able to compute a sheared trilinear interpolation in environments that
are otherwise restricted to standard trilinear interpolation in a CC grid, like 3D texture mapping
hardware.

3.7 Gradient Reconstruction

Gradient calculation is an important issue in computer graphics, as they give valuable informa-
tion regarding the shape of surfaces. In volume rendering, they are used for classification and
directional shading. Two gradient estimation schemes on the BCC grid were proposed by Theußl
et al. [60].

The most commonly used gradient estimator on Cartesian grids is the central differences
operator. BCC grids are comprised of two CC grids (the primary and secondary grid). Hence the
implementation of central differences on the BCC grids is straightforward. As a consequence of
the used indexing scheme, just the z direction must to be handled differently. We must take the
next sample from the same CC grid (either the primary or the secondary grid) for calculation,
i.e., the second sample in the BCC grid:

g1x�x�y� z� �
1

2T
� f �x�1�y� z�� f �x�1�y� z��

g1y �x�y� z� �
1

2T
� f �x�y�1� z�� f �x�y�1� z�� (3.8)

g1z�x�y� z� �
1

2T
� f �x�y� z�2�� f �x�y�z�2��

In the following chapters we will refer to this approach as central differences 1. This scheme
does not consider the closest samples for gradient calculation. Theußl et al. [60] developed a
second scheme. This approach uses the fact that a BCC grid can be seen as CC grid with a
sample point in the center of each cubic cell (see figure 1.2). They compute the average of the
central differences at each edge of the cubic cell the sample point is located in. The eight samples
on the corners of the cubic cell are used in the computation, which are the actual closest samples:

21

g2x�x�y� z� �
1

4T ∑
i� j�0�1
k��1�1

h�i� f �x� i�y� j� z� k�

g2y �x�y� z� �
1

4T ∑
i� j�0�1
k��1�1

h� j� f �x� i�y� j� z� k� (3.9)

g2z �x�y�z� �
1

4T ∑
i� j�0�1
k��1�1

h�k� f �x� i�y� j� z� k�

where x and y refer to

x � x��z mod 2�

y � y��z mod 2�

and h�x� denotes

h�x� �

	 �1 if x � 0
1 if x� 0

(3.10)

We will refer to this method as central differences 2 in the following chapters. The calculation
is more complex in this approach, but gradient calculation is usually done in a preprocessing step,
and thus not time-critical. Even computational demanding methods can be used in practice.

We suggest to take the average of the results of both central differences 1 (g 1 from equa-
tion 3.8) and 2 (g2 from equation 3.9) as the gradient. In the vicinity of the current sample are
points from both the primary and the secondary grid. The central differences 1 method is com-
puted only with samples from the same CC grid, the second only with samples from the other
CC grid. Instead we assume that a linear combination of both methods yields a more balanced
gradient calculation:

g3x �x�y� z� �
g1x �x�y� z��g2x�x�y� z�

2

g3y�x�y� z� �
g1y �x�y� z��g2y�x�y� z�

2
(3.11)

g3z �x�y� z� �
g1z �x�y� z��g2z�x�y� z�

2

Note that the spatial distances are already taken into account in the weight factors used for
calculating central differences 1 and central differences 2, hence simply averaging the results
of the first two methods suffices. We will refer to this method as central differences 3 in the
following chapters. A comparison of the central differences methods is shown in the figure 3.8.

The same approach that we used to adapt central differences 1, i.e., operating on the primary
(secondary) grid, can be employed for a simple adaption of other CC grid gradient estimations

22

Figure 3.8: Raycasting on Melon dataset (closeup) using different gradient estimators: Barycen-
tric interpolator with central differences 1, 2 and 3 (left to right). Artifacts on the skin are reduced
in the rightmost image.

Gradient Estimation scheme Operates on (CC grid) # samples Closest samples

Central differences 1 same (primary or secondary) 6 no
Central differences 2 other (primary or secondary) 8 yes
Central differences 3 both (primary and secondary) 14 yes
Sobel filter same (primary or secondary) 27 no
Adaptive grey level same (primary or secondary) 3 - 6 no

Table 3.1: Gradient estimation schemes on the BCC grid. The terms "same", "other", and "both"
indicate if we consider samples from the the same, the other or both (primary / secondary) CC
grids when calculating the gradient of a sample position. "# samples" refers to the number of
samples considered in the calculation.

as well, like the more sophisticated 3�3 sobel filter or the adaptive grey level estimation scheme
proposed by Yagel et al. [46], for instance.

We will shortly sketch the idea of the latter approach. In the primary (secondary) CC grid
there are six samples which are adjacent to the current voxel in the x, y, and z axis. The adaptive
gray level estimation scheme considers either three or six from these samples, depending on the
object thickness. To estimate the object thickness, we compare the scalar values of both adjacent
samples in each of the three axes to the current voxel value. If the voxel value is higher (or lower)
than both adjacent samples, we consider only one of the two samples in the gradient calculation,
i.e., the sample with the higher data difference to the current voxel value. We use this sample in
the calculation of either forward or backward differences. If the voxel value is between the scalar
values of the adjacent samples, both samples are taken for the calculation of central differences.

In all of our gradient estimation methods on the BCC grid we either do not take the closest
sample points (e.g., central differences 1) or average over many samples (e.g., central differences
2 and 3) grid. This is shown in table 3.1, where we summarized all gradient estimation schemes
that we implemented and tested for use on BCC grids. Hence the danger of unwanted smoothing

23

effects is given [2].
We still do not take the closest samples in the adaptive grey level estimation approach on

the BCC grid. However, this approach is known to preserve high frequencies better than central
differences. Our experiments showed that the adaptive grey level estimation scheme slightly
compensates the tendencies towards smoothing on the BCC grid. This can be observed in the
rendering results from section 7.3.1.

24

Chapter 4

Texture-Based Volume Rendering

In this chapter we explain the idea behind texture-based volume rendering. Then we discuss 2D
texture-based rendering, two of the most important extensions, (i.e. multitexture blending, pre-
integration), and 3D texture-based volume rendering. For all approaches, we describe how they
can be modified to support BCC rendering.

4.1 Basics

The idea behind texture-based volume rendering is to represent the volume as a set of tex-
tured semi-transparent quadrilaterals. The advantage of this approach is that the volume ren-
dering pipeline [32] can be entirely loaded on the hardware, achieving interactive frame rates
for medium sized volumes. Bilinear or trilinear interpolation is efficiently computed by special-
ized texture hardware, and the compositing step is done by the alpha blending functionality of
the hardware. There are two main approaches to use texture-mapping for volume rendering, 2D
texture-based volume rendering using object aligned slices and 3D texture-based volume render-
ing using view-aligned slices (refer to figure 4.1).

4.2 2D Texture-Based Volume Rendering

For 2D texture-based volume rendering, the volume is downloaded to 2D textures as stack of 2D
CC slices. The result is a bilinear reconstruction in the planes. In principle, this approach is the
hardware-accelerated equivalent to the shear-warp algorithm. The image quality is best when
the slices are as parallel as possible to the view plane (rotated by 90°, they would be completely
invisible). Therefore three stacks of texture slices are stored, which represent the principal view
axes. The slice stack that is most perpendicular to the actual viewing direction is processed.
The main advantage of 2D textures over 3D textures is that they are not only available, but also
performance-optimized on virtually every graphics hardware. The drawbacks of the approach are
reduced image quality and slicing artifacts, mostly visible on the sides of the volume. Because of
the missing spatial interpolation, super-sampling is not possible. Furthermore, popping artifacts

25

Figure 4.1: 2D texture-based rendering using object-aligned slices and 3D texture-based render-
ing using view-aligned slices. Image taken from [18].

occur when the slice stack is changed. Because of a varying slice distance depending on the
current view axis, we also must correct the resulting opacity values.

2D Texture-Based Volume Rendering on BCC grids

Following the bilinear approach from chapter 3.1, we are using the fact that the BCC grid is also
comprised of 2D CC grid slices. If the BCC grid is stored with the second scheme from Theußl et
al. [60] (described in chapter 1.4), a reordering of the samples is necessary before downloading
the slices to the 2D textures in the principal view axis x (y). This is because in the principal
view axis x (y), the sample points with an equal i (j) index do not belong to the same slice of the
volume (refer to figure 1.4). We must consider the offset of half a unit for the position of every
second slice. There are two choices to implement this offset. We can

1. set the proxy polygon positions accordingly.

2. assign texture coordinates which are translated by minus half a unit.

In our implementation we used the second approach, where we have to consider that texture
coordinates are usually normalized in the range �0��1�. In the following we denote the spatial
extent of our volume in x, y and z direction as s x, sy, and sz (using cell spacing T � 1). In texture
space, the offset of half a unit is given by � 1

2sx
� 1

2sy
� for the principal view axis z. For principal

view axis x it is given by � 1
2sy

� 1
2sz

�, and for the principal view axis y it is given by � 1
2sx

� 1
2sz

�.

26

1

CC grid slice stack

d

view direction

1 2

BCC grid sliceCC grid sliceBCC grid slice stack

d

2

2/2

view direction

Figure 4.2: The corresponding slice stacks and slices used for 2D texture-based rendering in the
CC and BCC grid. The sampling distance d is smaller on BCC grids, whereas the slices contain
more information on CC grids.

We have
�

2 times more planes in the BCC grid. Therefore we also need
�

2 more textured
slices in the BCC grid to match all planes in the volume. This also means that we constantly
have a higher sample frequency in the BCC grid. On the other hand, the size of a single texture
is two times smaller than a texture for the CC grid. As a consequence, less information is stored
in a single BCC grid slice. The situation is shown in figure 4.2.

4.3 Multi-Texture Blending

We can cope with the major shortcomings of 2D texture-based rendering with the multi-texture
blending approach proposed by Rezk-Salama et al. [48]. Intermediate slices are rendered by
blending the textures of the two neighboring slices on the intermediate proxy polygon with a fac-
tor that matches it’s spatial position between the slices. This substitutes the bilinear interpolation
with a trilinear one, making super-sampling possible. If α is the distance from the front slice S i,
then the blending equation for intermediate slice S i�α is given by:

Si�α � �1�α�Si �αSi�1 (4.1)

Multi-Texture Blending on BCC grids

In order to adapt multi-texture blending to BCC grids, we only have to consider that either the
front or the back slice in the blending step belongs to the secondary grid. Like we explained
in section 4.2, texture coordinates moved by an offset of minus half a unit with respect to the
primary grid must be assigned to secondary grid slices. The resulting interpolation is equivalent
to the bilinear plus spatial interpolation in a sheared cubic cell, which is introduced in chapter 3.2.

27

4.4 Pre-Integration

To use pre-integration for texture-based volume rendering, we render pre-integrated slabs instead
of slices. A slab consists of the volume between two adjacent slices. The transfer function is
integrated in a pre-processing step for all possible combinations of scalar values s f and sb on the
front and back slice of a slab. The slab thickness is usually assumed to be constant (neglecting the
varying slice distance). The resulting pre-integration table can be downloaded to a (dependent)
2D texture. The scalar value s f and sb on front and back slice of a slab are employed as texture
coordinates for a dependent texture lookup of the pre-integrated color and opacity values.

With the use of pre-integration, accurate renderings for arbitrary transfer functions are possi-
ble without super-sampling. Hence this is another approach to overcome some of the limitations
of 2D texture-based volume rendering. Although we discuss only pre-integration for rendering
object-aligned slabs in this work, it must be mentioned that pre-integration can also be exploited
for rendering view-aligned slabs using 3D textures. Furthermore, we introduce pre-integration
for tetrahedral cells in chapter 5.8.

It is difficult to use correct directional shading together with pre-integration, because we are
restricted to maximal three different parameters in order to exploit hardware-acceleration (i.e., to
use 2D or 3D textures).

Pre-Integration on BCC grids

Adapting the pre-integration approach for object-aligned slabs to BCC grids is similar to the
adaption of multi-texture blending to BCC grids. We must assign texture coordinates translated
by minus half a unit to either the front or the back slice, in order to get the correct density values
of the back and front slice for the dependent texture lookup. The thickness of a single slab is�

2�2. Accordingly, we have
�

2 times more slabs in the BCC grid than in the CC grid.

4.5 3D Texture-Based Volume Rendering

If the GPU supports 3D textures, we can download the volume to a single 3D texture and render
the slices parallel to the view plane. 3D texture-based volume rendering has several advantages
over 2D texture-based approaches, first of all the "natural" trilinear interpolation, but also con-
stant slice distance for all view angles, no popping artifacts and possible super-sampling.

3D Texture-Based Volume Rendering on BCC grids

Adapting 3D texture-based rendering to the BCC lattice seems to be difficult at first sight because
of the hard-wired CC grid trilinear interpolation. As a brute force approach, we could resample
a Cartesian grid from the BCC grid. This would yield a texture six times as large as the original
one, so this is not practicable.

Röber et al. [49] downloaded the primary and secondary grid to two separate 3D textures,
translating the secondary grid by half a unit and blending the resulting fragments with a factor

28

s sf bray

Figure 4.3: A slab consists of the volume between two slices. Back and front scalar value of
the slab (s f , sb) are used for a lookup into a dependent texture storing the pre-integration table.
Image redrawn from [18].

of 0�5 in the register combiners. This method has the drawback that the interpolations in the
primary and secondary grid do not take the spatially closest samples into account.

Fortunately, we already introduced a sheared trilinear interpolation approach in chapter 3.5.
The BCC grid can be seen as sheared and scaled CC grid. This interpolation can therefore be
alternatively calculated by applying the inverse transformation to a resample point and to the
volume. Then we can employ trilinear interpolation in a cubic cell of a CC grid (see chapter 3.6).
Using the second storage scheme from Theußl et al. [60], this inverse shear must be an alternating
positive-negative one. The idea becomes intuitively clear when looking at figure 4.4. The inverse
shear can be calculated by subtracting an offset from the current resampling point. The offset
is a (tent) function of z position (refer to figure 3.7). Because we are using view-aligned slices,
the offset cannot be applied per vertex. Instead we must compute the offset and subtract it
from the actual texture coordinates per fragment, which is the equivalent to a resampling point
in hardware rendering. Fortunately today’s fragment programs are very powerful, and provide
all means necessary for this calculations. After the transformations in the pixel shaders, the
hardware does standard trilinear interpolation in a rectangular volume during the rasterization
step. This reconstruction is equivalent to a sheared trilinear interpolation in a sheared cubic cell.

When the texture coordinates have been updated, it makes no difference whether the data was
originally given on a BCC or CC grid, and we can use any rendering mode that was originally
developed for CC grid rendering. Examples are pre-classification, post-classification, shaded
post-classification, to mention just a few. This is another advantage of our method over the
approach from Röber et al. [49], which is quite inflexible in that regard.

Given the texture coordinates �xt �yt� zt�, we will sketch the procedure for the principal view
axis z. For convenience, the offset function from equation 3.4 was given by

o�z� � min�z��z��1� �z��z���.

Note that the texture coordinates �x t�yt� zt� are given in the range �0��1�. To use the offset
function o�z� for 3D texture-based volume rendering, we must do the following:

29

Figure 4.4: The BCC grid as rectangular volume where an alternating shear is applied per volume
slab. We do the reverse process: Apply the inverse shear and interpolate in the rectangular box.
Image taken from [16].

• Transform zt from texture space to world space.

• Compute the offset function o�z�

• Transform the offset back to texture space.

• Subtract the offset in texture space from texture coordinates x t and yt .

Like in section 4.2, we denote the spatial extent of our volume in x, y and z direction as s x, sy,
and sz (using cell spacing T � 1). The mapping from texture space to world space is given by:

z � ztsz� 1
4

(4.2)

Because of the way how the hardware maps indices to texture coordinates, the subtraction of
1
4 is necessary in above equation for the correct calculation of the current z value. Now the actual
texture coordinates xt and yt are updated with the proper offset value:

xt � xt � o�z�
sx

yt � yt � o�z�
sy

(4.3)

In figure 4.5 we show the Cube dataset that is rendered with (left image) and without (right
image) applying the inverse shear to the fragments. The offset values o�z� are color coded in red
and green, indicating the positive-negative shear of the cells. Note that the pike-shaped artifacts
on the sides of the cube in the left image disappear in the right image.

In chapter 3.5 we stated that we get the best visual quality when the shear planes are cho-
sen most perpendicular to the current view direction. To achieve this in hardware, we have to

30

Figure 4.5: 3D texture-based (iso-surface) rendering of a cube without (left image) and with
(right image) application of the inverse shear.

rearrange the sample points for the remaining two principal view axes x and y. The resulting
volumes for all principal view axes must be stored in three separate 3D textures. This is also the
main drawback of the method, as memory consumption is much higher, and popping artifacts
are introduced if the principal view axis changes. The offset is always a function of the current
principal view axis, respectively.

31

Chapter 5

Projected Tetrahedra Algorithm

In this chapter we will first outline the original algorithm by Shirley and Tuchman [54]. In more
details we discuss the steps of the algorithm that are implemented differently depending on the
type of grid, i.e., the tetrahedralization and the depth sort (which effectively is a back-to-front
traversal in both CC and BCC grids). Then we introduce a couple of improvements to enhance
rendering performance. Further we describe an adjacency structure which allows fast traversal
and show how it can be used on a tetrahedral mesh. Afterwards we present powerful techniques
to increase rendering quality. At last we suggest some approaches to enable directional shading.

5.1 Algorithm Overview

We approximate the volume rendering integral by projecting semi-transparent tetrahedral cells
to the screen in back-to-front manner. The algorithm consists of following basic steps:

1. Decompose the volume into a tetrahedral mesh. Density values are stored at each vertex.
The scalar function is assumed to be a linear combination of the vertex values.

2. Depth sort the tetrahedra.

3. Classify tetrahedra and decomposite into triangles according to the projected profile. The
4 different cases are shown in figure 5.1.

4. Determine color and opacity values at the triangle vertices using ray integration at the
"thick" vertex.

5. Rasterize the triangles.

The idea behind this algorithm is that explicit ray integration must be done only once per
tetrahedron because of the properties of a tetrahedral cell. The rasterization step can completely
be left to the graphics hardware. Although the algorithm works on any kind of tetrahedral mesh,
our intention was to find a version specialized for BCC grids. For comparison reasons, we im-
plemented an equally optimized CC version. The algorithm differs only in step 1 and 2 between

32

class 3b

class 1a

class 3a

class 1b

class 4

class 2

Figure 5.1: In the top row we see the two basic decomposition classes, in the bottom row the
degenerate cases. The circle refers to the "thick" vertex that has non zero length. Ray integration
is only done along this vertex.

BCC grids and CC grids. We restrict the algorithm to orthogonal projection in order to exploit
the regular grid structures for performance optimizations. The algorithm is very well suited to
render data given on a BCC grid for two reasons:

1. According to Carr et al [6], tetrahedra defined with the Delauney complex are the natural
cells on the BCC grid, like cubic cells are on the CC grid.

2. We have less tetrahedra on a BCC grid than on an equivalent CC grid, hence there is a
potential performance gain.

5.2 Tetrahedralization

On the CC grid several possible tetrahedralizations exist, yielding different numbers of tetrahe-
dra per cell. In the original projected tetrahedra algorithm the cell is decomposed into 5 tetrahe-
dra [54] (see figure 5.2). We also used this decomposition in our CC version, because it yields
the smallest possible number of tetrahedra. This tetrahedralization has two different rotational
states, and we must alternate between the states in a checkerboard manner, in order to avoid
ambiguities in the mesh [54] which leads to Mach band effects.

We already know that we have a uniquely defined Delauney tetrahedralization on a BCC grid,
where we have six times more tetrahedra than sample points [6]. Given that we have 29.3% less
samples in the BCC grid, it can easily be verified that the BCC grid still consists of about 15%
less tetrahedra overall.

5.3 Back-to-Front Traversal

It is not necessary to use one of the more general depth-sorting algorithms [70, 38, 10] for CC
or BCC grid rendering. Instead, we break up the tetrahedral mesh into cells where depth-sorting
can be done implicitly by traversing them in back-to-front manner. The cells are given by cubes

33

Figure 5.2: Decomposition of a cubic cell into 5 tetrahedra. Image taken from [54].

on CC grids and octahedra on BCC grids. Inside these cells, depth sorting is trivial. Further,
there is no need to store the tetrahedra explicitly as a mesh, instead we generate them on the fly
during traversal.

Whereas we simply visit the cubic cells one by one on the CC grid, the situation is slightly
more complicated on the BCC grid. A sample point shares one octahedron with each of the six
adjacent samples from the same grid (either primary or secondary) and 4 samples from the other
grid. These octahedra further consist of 4 tetrahedra. The situation is shown for barycentric
interpolation in figure 3.3. Each sample point is a vertex in 6 different octahedra and further 24
tetrahedra. Hence we cover all octahedra twice if we traverse only the sample points from the
primary (secondary) grid and generate all possible octahedra with the current sample. Thus we
process just the three octahedra sharing the currently traversed sample and the adjacent sample
in positive (negative) x, y and z direction. Now all octahedra and at the same time all tetrahedra
are processed exactly once. A 2D visualization of a traversal step is shown in figure 5.3. Correct
BCC rendering is sketched by the following pseudo-code fragment:

traverse all samples of primary (secondary) grid front-to-back {
for each sample do {

compute octahedra with adjacent samples in
positive (negative) x,y,z direction
depth sort octahedra
split up the octahedra into tetrahedra
depth sort tetrahedra
render tehahedra

}
}

The back-to-front traversal is done with nested loops. Following Orchard et al. [44], we call
the axis that is most collinear to the view vector the "slow" axis, because it corresponds to the
outmost loop. Similar, we have a "medium" axis and a "fast" axis that corresponds to the inner

34

x

z

traversed sample

primary grid

secondary grid

Figure 5.3: Traversal step of the projected tetrahedra algorithm on the BCC grid shown in 2D. In
each step three octahedra (shown in grey, the one in the y axis outlined with dotted lines) are cre-
ated with adjacent samples in the directions of the positive x, y, and z axes, then tetrahedralized.

loop. The algorithm yields a the correct depth order for orthogonal projection. For perspective
projection, one can verify that our method introduces minor errors because of the interleaved
octahedra.

5.4 Speeding up the Basic Algorithm

We describe some simple, but effective optimizations in our system in order to accelerate the
Projected Tetrahedra algorithms:

• Wittenbrink [72] suggested to use triangle fans instead of single triangles as OpenGL prim-
itives. This approach effectively reduces rasterization complexity, because it avoids unnec-
essary multiple renderings of the same vertices.

• The restriction to orthogonal projection, together with a regular grid structure, allows us
to exploit coherency among the cells. Except for a translation, there are only 10 different
types of tetrahedra in the CC grid (five tetrahedra per cell for two rotational states) and 12
in the BCC grid. Hence depth order, classification and the interpolation factors used for
thick vertex computation can be preprocessed and reused during traversal.

• For the triangle decomposition we must apply a view transformation and it’s inverse on the
tetrahedra vertices. A vertex (i.e., a sample point) is shared by up to 10 tetrahedra on the
CC and up to 24 tetrahedra on the BCC grid. To avoid a huge amount of unnecessary com-
putations, we have to assure that an already calculated view transformation is reused when
revisiting a sample point as vertex of another tetrahedron. For this reason we use a binary
flag for each sample point that indicates whether the sample point has been already visited
and transformed. We must keep in mind that all flags are switched after one traversal, and
likewise the meaning of the flag values are reversed in the next traversal.

35

5.5 A 3D Adjacency Structure

To improve the efficency of volume data traversal, we concentrated on modifying the 3D adja-
cency structure by Orchard et al. [44] for splatting on rectangular grids. It allows fast traversal of
non zero voxels in depth order with minimal overhead, skipping all transparent voxels. Accord-
ing to the authors, it performs better than some comparable acceleration data structures like the
octree approach from Laur et al. [31] on realistic datasets.

The visible voxels (i.e., opacity exceeds a certain threshold) are organized in linked lists,
where together with each voxel six pointers to the adjacent voxels in all directions are stored. Two
voxels are called adjacent if and only if they are visible and there is no other visible voxel between
them. In addition to voxels representing an actual data sample, the structure is encapsulated by
a box of virtual voxels. There are different types of virtual voxels, referred as box face voxels,
box edge voxels and box corner voxels. The introduction of virtual voxels allows us to skip a
number of empty voxel scan lines or even voxel slices. A scanline of visible voxels is capped by
a box face voxel on both ends, scanlines of box face voxels are again encapsulated by two box
edge voxels, and 8 box corner voxels are placed in the volume corners. It can be stated that a
box face voxel represents a non transparent voxel scanline, a box edge voxel represents a volume
slice and a box corner voxel represents the whole volume.

To build up the structure first of all the 8 box corner voxels are installed (because there is at
least one visible voxel, they must always exist). The rest of the structure is created in a bottom-
up approach, virtual voxels are allocated only on demand, i.e., if the represented area contains a
visible voxel. If a new voxel is inserted into the structure, we recursively insert new virtual voxels
(box face, box edge) if they do not exist yet (see figure 5.4). Traversal of the data structure begins
with the corner farthest away and proceeds like the following:

1. Go through the list of edge voxels back-to-front (the outmost loop of the slow axis).

2. For each edge voxel, traverse the box face list (the middle loop of the medium axis).

3. For each edge face, traverse the visible voxel list (the innermost loop of the fast axis).

5.6 The Adjacency Structure on a Tetrahedral Mesh

The adjacency structure was originally proposed for a rectangular grid structure, but it can be
adapted to the tetrahedral mesh defined by a BCC grid as well, because we already know from
section 5.3 that we operate on the rectangular primary (secondary) grid during traversal.

The place of a voxel as lowest element in the hierarchy is taken by the geometric complex
we are processing in a traversal step. This is a cubic cell in the CC grid and three octahedral
cells perpendicular to each other in the BCC grid. Let us denote such a complex as "traversal
complex". Likewise, we refer to a virtual voxel as "virtual complex". Such a traversal complex
is further decomposed into tetrahedra, which are the new lowest elements in the hierarchy. The
adjacency structure is shown in figure 5.5.

36

visible voxel

invisible voxel

virtual voxel

Figure 5.4: A 2D image of the adjacency structure (image redrawn from [44]).

Following the implicit logic of the structure, we define a traversal complex to be visible if
at least one of it’s tetrahedra is visible. As an underlying rectangular grid structure is not given
inside a traversal complex, we must explicitly test each tetrahedron for zero opacity in order to
be able to discard transparent tetrahedra. But this is not much of a drawback, considering that
we can skip large volume regions without any opacity testing.

Zero opacity testing inside a traversal complex is most efficiently done by storing an addi-
tional checksum per complex. As we already know, using orthogonal projection enables us to
preprocess and store the tetrahedra information as entry in a table, ordered by tetrahedral depth.
A unique ID number is given to each tetrahedron in the table, which is a power of two. The
checksum is now calculated as the sum of the ID numbers of all tetrahedra identified as non
transparent during creation of the structure. During traversal the checksum is masked with the
ID of the actual tetrahedron. If the result is zero, the tetrahedron is transparent and discarded,
else rendered.

5.7 Correct Transparency Calculation

The advantage of the original projected algorithm is the great simplicity. It works on almost all
available consumer graphics boards. But it is prone to artifacts, most visible as Mach band effects
for view directions nearly parallel to a coordinate axis. This is caused by errors introduced by
linearly interpolating the color and transparency between the vertices, which should rather be
an exponential variation. Instead it can be verified that, assuming a linear transfer function, the
extinction factor τ varies linearly inside a tetrahedron. Stein et al. [56] (also in [37]) compute
the correct transparency 1� exp��τl� without giving up hardware-acceleration by storing the
exponential transparency values in a 2D textures. Then τ and the segment length l are used as
texture coordinates. Color values still vary linearly inside a tetrahedron. In order to achieve
accurate color and opacity for arbitrary transfer functions, it is inevitable to use pre-integration.

37

virtual complex

visible complex (primary grid)

invisible complex (primary grid)

invisible complex (secondary grid)

Figure 5.5: 2D visualization of the adjacency structure on a tetrahedral mesh defined by a BCC
grid. A traversal complex consists of three octahedra that are split up into four tetrahedra each.
Compare this to the original structure in figure 5.4.

5.8 Pre-Integration

Pre-integration is another approach to further increase rendering accuracy without sacrificing
hardware-acceleration. Because of high frequencies in the transfer functions, generally a sample
frequency above the Nyquist rate of the scalar field must be used. In this approach the integra-
tion of the scalar field is done separately from the integration of the transfer function, which is
precomputed and stored in a lookup table. As a consequence, accurate renderings can be done
with the projected tetrahedra algorithm regardless of high frequencies in the transfer function.
The lookup table stores pre-integrated color and opacity for each combination of front and back
face scalar values s f and sb of a viewing ray entering and exiting a tetrahedron, and the segment
length l (see figure 5.6). In order to exploit hardware-acceleration, the table is downloaded to
a 3D texture. Because we use orthogonal projection, all parameters have linear variation and it
is correct to use sb, s f and l as texture coordinates. We introduce minor errors using perspec-
tive projection, where we have a non linear variation of segment length l. Following Röttger
et al. [51], we will now show the compositing formula with respect to pre-integration. In this
formula RGBt3D (i.e., the pre-integrated color entry of the 3D texture) and 1�α t3D (i.e., the
pre-integrated opacity entry of the 3D texture) denote the part of the equation which is calculated
in a preprocessing step. An existing color I is updated to a new color I � according to following
equation:

I � �
� l

0
exp

�
�
� t

0
τ�sl�u��du

�
c�sl�t��τ�sl�t��dt
 ��

RGBt3D

�exp

�
�
� l

0
τ�sl�t��dt

�

 ��

1�αt3D

I (5.1)

where sl�x� is linearly interpolated between s f to sb:

38

ray
l

fs sb

Figure 5.6: A ray piercing through a tetrahedron. The parameters s f , sb and l are used for
pre-integration. Image redrawn from [51].

sl�x� � s f �
x
l
�sb� s f � for 0� x� l

We have to consider that we always calculate associated colors with pre-integration, (i.e.,
colors are already multiplied with the opacity) and set the alpha blend function accordingly in
order to compute correct compositing. The maximal segment length l of a tetrahedron given by
our tetrahedralizations of CC and BCC grids is

�
3 on CC grids and

�
2 on BCC grids.

5.9 Shading Issues

Directional shading is a natural way to give important clues about the shape of objects and the
spatial relationships inside a volume. Shading can be easily inserted into the original projected
tetrahedra algorithm by Shirley et al. [54] by storing the gradient data in the normals’ portion of
the tetrahedra vertices and let the hardware compute standard Gouraud shading.

As stated in section 5.8, pre-integration is a very powerful technique and produces accurate
renderings. Hence we would like to use shading in combination with pre-integration. Unfortu-
nately we are restricted to three different parameters because we have only three texture coor-
dinates, thus additional shading information cannot simply be inserted into the pre-integration
process.

We developed three different shading schemes for pre-integrated volumes. In two of the three
methods, we apply shading separate from the color and opacity pre-integration. The drawback of
this approach is that the accuracy of the shading calculation is not equivalent to the pre-integrated
color and opacity accuracy.

Pre-integration and Gouraud Shading

In this approach, we set the vertex color to white. Then we let the hardware compute the standard
Gouraud shading, resulting in a shaded grey value for each fragment of the tetrahedra. The grey
value is modulated with the texel resulting from the pre-integration lookup. As the highlight
would be destroyed by this modulation, we must ensure that it is added afterwards, either by
applying the appropriate OpenGL extension or in the pixel shaders.

39

Pre-integration and Phong Shading

In the second approach we store the gradients in the color portion of the vertices. This results in
an interpolation of the gradients instead of the colors. In the pixel shaders we can operate with
the interpolated gradient vector and the actual pre-integrated texel output. These parameters are
used as input for the Phong shading equation.

For correct shading we must normalize the gradient vectors in the pixel shaders. This can
be done by either employing a cube map or by normalizing the gradient directly in the pixel
shaders, which is considered to be faster. If we are using NVIDIA’s register combiners, there is
no square root operation available, forcing us to employ an approximation formula. Fortunately
it was proven that the formula is reasonable accurate for the conditions given in a normal mesh.
In the fragment- and vertex shaders of newer graphics hardware the gradients can be calculated
using the analytic normalization formula.

Pre-Integrated Gouraud Shading

An alternative approach is the implementation of real pre-integrated Gouraud shading, sacrificing
a correct opacity calculation for the diffuse and specular term. For Gouraud shading, we calculate
the lighting on each vertex and linearly interpolate the shaded colors in between. The per vertex
lighting is calculated with the approximate Phong equation

I � ka
��

ambient

�kd��n ��l�
 ��

diffuse

�ks��n ��h�n
 ��

specular

(5.2)

where �n denotes the vertex normal, �l the light vector, �h the half way vector (calculated be-
tween view vector�v and light vector �l) and n the shininess coefficient. ��n��h� serves as approxima-
tion for ��v ��r�, the dot product between view vector�v and reflection vector�r. The idea is to split
up the pre-integration for the ambient, diffuse and specular term [22]. A separate lookup table
is calculated for the pre-integration of the transfer function (this table is used for the direction-
independent ambient term), for diffuse lighting and for specular lighting. The tables are then
downloaded to three different 3D textures. The parameters used for pre-integration of the three
terms in the Gouraud shading equation differ as follows:

Ambient term: This term does not contain directional information, hence we do standard pre-
integration and take the usual values s f , sb and l as parameters.

Diffuse term: For this term we take ��n ��l� f , ��n ��l�b, the dot products on front and back face and
the segment length l as parameters.

Specular term: We use the parameters ��n ��h�n
f on the front and ��n ��h�n

b on the back face, and
again the segment length l.

The situation is also shown in figure 5.7. In the lookup tables we store the pre-integrated
output color and opacity values for every combination of these values, where ��n � �l� and ��n ��h�n

40

l

ray s s

l

f b n
n

n
h h

n

specular

l

(n.h) f
n (n.h)

n
b

l l

ambient diffuse

(n.l)(n.l)f b

Figure 5.7: The three parameters for the ambient, diffuse and specular term of Gouraud shaded
pre-integration.

are in the interval �0��1�, and l lies in �0��l max�. These parameters are linearly interpolated over
the polygon, thus correct Gouraud shading is calculated. At last we must sum up the terms in the
pixel shaders. As we compute diffuse and specular term independently from the actual transfer
function, we have to set kd , ks, extinction factor τ and shininess n to a constant value manually.

41

Chapter 6

Implementation

In this chapter, we will first give an overview of the framework that we used for two of the
three major parts of this work (i.e., the reconstruction schemes using a raycasting system and
the projected tetrahedra algorithm), then we discuss implementation issues of our approaches.
We give an overview of the rendering systems, present important features, and provide some
implementation details that are of particular interest.

6.1 The vuVolume Framework

The raycasting system and the projected tetrahedra algorithm for rendering data given on CC
and BCC grids were implemented as part of the vuVolume framework [15]. The framework is
implemented in C++ and exploits a deep tree structure of inheritance for providing flexibility in
adding new rendering methods. The tree structure is represented in the directory tree, i.e., the
descendants of a class are written into subdirectories. The root of the tree is the abstract class
Volume. The next tree levels further specify the volume, e.g., the branch Regular refers to
a CC volume and the branch BCC to a volume given on a BCC grid. New volume rendering
methods are added as a leaf of the tree. The different abstraction levels are listed in table 6.1.
For example, we added the the projected tetrahedra algorithm as a leaf ProjTetr to the branch
Volume - BCC - Unimodal - 3d - 1B - Intensity. The algorithms are strictly separated

Level Description

Volume The base class
Geometry The type of the sampling grid
Modality single or multiple datasets over geometry
Dimension 1d, 2d or 3d
Data implementation Refers to number of bytes per sample
Transfer function Intensity (1d), gradient (2d), curvature (3d)
Algorithm The implementation of the rendering algorithm

Table 6.1: Different levels of abstraction in the vuVolume tree.

42

from their user interfaces, which are realized with the platform independent wxWindows toolkit.

6.2 Practical Reconstruction Schemes

The emphasis in the implementation of the reconstruction schemes was on providing an envi-
ronment that is equally fair for all interpolators regardless of the used grid (i.e., a CC or BCC
grid). The reconstruction schemes were integrated into a raycasting system. As absolute ren-
dering speed is not the main issue, we exploit full float precision for optimal rendering accuracy
in this system. From all possible optimizations we only implemented early ray termination in
combination with front-to-back compositing. The system supports post classification and two
types of transfer functions, a one dimensional function of intensity only, and a two dimensional
function of intensity and gradient magnitude (i.e., gradient weighted opacity following Levoy et
al. [32], also see figure 6.1). We provide an interface that makes it very easy to extend the system
and add new interpolation schemes. To be more specific, all reconstruction schemes are inherited
from the abstract superclass interpolator:

class interpolator
{
public:

interpolator();
interpolator(volData *voldata);
virtual ~interpolator();
virtual void interp(float *rgba, float x,

float y, float z) = 0;
virtual float interpData(float *norm, float x,

float y, float z) = 0;
void setVolData(volData *voldata) {

m_VolData = voldata;
}

protected:
volData *m_VolData;

};

The volData object encapsulates the access to the volume data and volume gradients. To
create a new interpolation scheme, only the two methods interp and interpData must be
implemented. The first method interp interpolates color and opacity in the array rgba for a
spatial position given by float values x,y,z. Hence it is used for pre-classification. The method
interpData serves the purpose of post-classification, as it returns an interpolated data value,
while the interpolated normal and it’s length is returned in the the array norm.

For the reconstruction methods bilinear, bilinear plus spatial interpolation and sheared trilin-
ear which depend on the current principal view axis, there is an additional level of inheritage.
A child class is derived to implement each of the three principal view axes, in order to avoid an

43

Figure 6.1: Gradient weighted opacity function (left image, taken from [32]) used in our raycast-
ing system to emphasize interesting parts of the surfaces (right image).

additional if statement and thus preserve better readability of the code. The implementation
scheme of our interpolators is sketched in figure 6.3.1 as a tree view. The class bilinear, for
instance, is the superclass for classes bilinearXY (where XY refers to the axes that span up
the resampling planes), bilinearXZ and bilinearYZ. For trilinear interpolation on BCC
grids, there exists an abstract class bccTrilinear and child classes bccTrilinear6S and
bccTrilinear2S, which refer to the type of intermediate cubic cell construction with either
2 or 6 samples, respectively.

6.3 Texture-Based Volume Rendering

We integrated the BCC grid rendering extensions into the hardware-accelerated volume rendering
framework proposed by Berger [3] and written by Hadwiger and Berger for the VRVis Research
Center [63]. First we will give an overview of the framework, then present our fragment program
for 3D texture-based BCC grid rendering. Afterwards we describe how the fragment program
can be inserted into the framework in order to provide BCC grid support for almost all rendering
modes.

6.3.1 A Flexible Hardware-Rendering Framework

In addition to texture-based volume rendering, hardware-accelerated ray casting was recently
included into the system. There is also support for higher-order filtering proposed by Hadwiger
et al. [24]. Rendering algorithms and GUI are both implemented in C++, using OpenGL and
extensions as graphics library. The framework supports most of the currently available consumer
graphic chips from the vendors NVIDIA and ATI. On startup, the underlying graphics hardware
and the supported extensions are detected.

44

interpolator

bccTrilinear

. . . 2S . . . 6S

. . . trilinear bilinear

. . . XY . . . XZ . . . YZ

Figure 6.2: All reconstruction schemes are derived from the abstract class interpolator. View
dependent interpolators are declared abstract and have non-abstract child classes that refer to the
main view planes.

It is one major design goal to encapsulate the calls to the graphics hardware into a very
general API, in a way that the actual rendering algorithms are kept as independent as possible
from the underlying graphics processor. This is not an easy task, as different types of hardware
must be handled very differently in order to provide the same rendering results. Not all of the
rendering modes can be used on every graphics board. For example, pre-classification is not
available on ATI cards because the necessary extension GL_EXT_shared_texture_palette is not
supported. With the powerful fragment- and vertex-program functionality of new generation
hardware, the interface to the hardware is becoming more uniform for graphics chips from both
vendors. This is exploited by the framework for an increasingly flexible handling of the different
rendering modes.

Several rendering modes are included into the system. 2D texture-based rendering and 3D
texture-based volume rendering are both supported. Multi-texture blending can be turned on
and off on demand for any 2D texture rendering technique. 2D texture-based rendering and
3D texture-based rendering can be combined with pre- and post-classification, as well as pre-
integrated slab rendering. Additional rendering modes include iso-surface rendering (using the
alpha test), maximum intensity projection (MIP) and nonphotorealistic (NPR) rendering modes
like tone shading, for example.

6.3.2 Fragment Program for 3D Texture-Based Rendering on a BCC grid

Any available rendering mode running on the current hardware can also be used for BCC grid
rendering without additional requirements. The only exception is 3D texture-based rendering on
a BCC grid, which requires a special fragment program. The fragment program that provides
correct 3D BCC grid rendering for the principle view axis z is given by:

TEMP tmp, offs;
MAD offs, program.env[6], tex, {0.25,0.25,0.25,0};
FRC tmp, offs;
ADD offs, {1.0,1.0,1.0,0.0}, -tmp;
MIN offs, tmp, offs;

45

MOV tmp, offs.zzww;
MAD tex.xyz, tmp, program.env[7], tex;

Let us shortly analyze the program with respect to the formulas from chapter 4.5:

• The environment vector program.env[6] is loaded with the spatial extent of the vol-
ume in x, y and z axis (using cell spacing T � 1), program.env[7]with the reciprocals
of the these values. In the first line, temporary variables offs and tmp are created.

• In line 2, we apply a multiplication and addition (MAD), which is a mapping from texture
to index space similar to equation 4.2. Adding a vector �0�25�0�25�0�25�0� in line 2 and
applying a positive offset in the last line is equivalent to subtracting the same vector like in
equation 4.2 and adding a negative offset.

• The FRC operation in line 3 does a truncation of variableoffs, and together with the ADD
and MIN operations they compute equation 3.4, storing the result back into variable offs.

• The MOV and MAD operations in the last two lines update the texture coordinates according
to equation 4.3.

If the principal view direction is the x axis, only line 7 changes to:

MOV tmp, offs.wxxw;

Likewise, for principal view direction y:

MOV tmp, offs.ywyw;

6.3.3 Rendering Support for 3D Texture-Based Rendering on a BCC grid

The authors of the framework implemented a flexible system of fragment program strings that
handles most rendering modes in a single uniform interface. Each fragment program is given an
unique ID, which is determined by the features that are turned on (off). For example, the fragment
program responsible for post shaded slices is given a different ID whether multi-texture blending
is turned on or off. If turned on, just the piece of fragment program string that enables the spatial
interpolation is inserted into the proper position in the main fragment program string. A table is
used to keep track of the currently active fragment programs, which are created and bound on
demand. In OpenGL, fragment programs must be bound to the hardware before usage similar to
texture objects.

This system makes it possible for us to implement BCC grid support quite elegantly. In case
that 3D texture mapping and on the same time BCC grid rendering is enabled, all that has to be
done is to insert the fragment program string responsible for 3D BCC grid rendering into the
main fragment program string, To be more specific, one out of three slightly different fragment
program strings is constructed and used, i.e. the one that corresponds to the current principal
view axis.

46

For any of the main rendering modes (for example post-classified shaded slices), a function
exists that creates the corresponding fragment program string ps. If the current rendering mode
uses 3D texture-based rendering on BCC grids, a function is invoked in it’s body which inserts
the fragment program from section 6.3.2 into ps. Given that the principal view direction is stored
in axis, this function is written as:

void PSFragmentProgramBCCOffs(GLProgramString &ps, int axis)
{

ps+=" TEMP tmp, offs;"
ps+=" MAD offs program.env[6],tex,{0.25,0.25,0.25,0};";
ps+=" FRC tmp, offs;";
ps+=" ADD offs, {1.0,1.0,1.0,0.0},-tmp;";
ps+=" MIN offs, tmp, offs;";

switch (axis){
case 0:
ps+=" MOV tmp, offs.wxxw;";
break;
case 1:
ps+=" MOV tmp, offs.ywyw;";
break;
case 2:
ps+=" MOV tmp, offs.zzww;";
brak;
}
ps+=" MAD tex.xyz, tmp, program.env[7], tex;";

}

6.4 Projected Tetrahedra Algorithm

The projected tetrahedra algorithm is also implemented as part of vuVolume. As graphics library
OpenGL and extensions are used. In this section, we will sketch the general concept and also list
some code fragments that provide important details of the implementation.

6.4.1 Decomposition

The decomposition and traversal step is the only difference in the implementations of the CC grid
and BCC grid versions of the Projected Tetrahedra algorithm, encapsulated in the very general
abstract superclassdecompositor. The equally abstract child classstructDecompositor
operates on structured grids (which includes the CC grid and the BCC grid). It provides an in-
terface for the specialized classes ccDecompositor and bccDecompositor. All classes
inherited from decompositor implement the two abstract methods

47

virtual void init();
virtual bool next(tetrahedron &tetr);

where function init() handles the initialization process, i.e., it encapsulates the creation
of the data structure storing the tetrahedral mesh and does some pre-processing (regarding the
tetrahedral ordering, for example). Function next() returns the next tetrahedron in view order
and sets the pointer to the next element. If there is no more element, it returns false, else true.
Class structDecompositor implements both the init() and the next() function. It is
highly specialized for orthogonal projection, in order to exploit coherence and repeating patterns
among the tetrahedra. The central method init() has the following principal structure:

void structDecompositor::init()
{

orderTetr();
...
if(m_IsUpdTetr)
{

...
buildTetrStruct();
...

}
preclassify();
...

}

In this code fragment, we can see that first function orderTetr() is invoked, which deter-
mines the depth order of the tetrahedra inside a traversal complex according to the current view
direction. The depth ordering information is stored in a table and used during traversal. For
storing the tetrahedra, method buildTetrStruct() creates the adjacency structure from
chapter 5.6. After a transfer function change this adjacency structure is rebuild from scratch, al-
though this structure would be flexible enough to be modified by adding and removing elements
afterwards. In function preclassify(), we classify the tetrahedra of a traversal complex
according to the projected outline and compute the interpolation factors used for decomposition
into triangles. Again this information is stored in a table for usage during traversal. The func-
tions orderTetr() and buildTetrStruct() are abstract, because they differ in their
implementation depending on the type of grid.

6.4.2 3D Adjacency Data Structure

The functionality of the 3D data structure is encapsulated in the class extData. It builds up
a linked list structure of traversal complexes. For indices (x, y, z), a new traversal complex is
inserted into the structure using the method

void insert(byte info, int t_id, int x, int y, int z, int di);

48

where the byte value info refers to the rotational state of the tetrahedralization on the CC grid
(refer to chapter 5.2), di to the actual index into the volume data array, and t_id to the unique
index of a tetrahedron inside a traversal complex. After insertion, the virtual complexes are
updated recursively. Class tComplex implements a traversal complex:

class tComplex
{
public:

tComplex();
tComplex(int info);

int m_Next[6];
byte m_Info;
int m_Checksum;
int m_Index;

};

The attributes have the following purposes:

• An array of integers m_Next stores 6 pointers to the adjacent elements in all directions.

• m_Info is a container for some type of additional information, e.g., it indicates the traver-
sal complex type (box face, box edge, or box corner). If the traversal complex is non vir-
tual, it refers to the rotational state of the decomposition on the CC grid (see chapter 5.2).

• The integer m_Checksum stores the checksum responsible for tetrahedron visibility in-
side a traversal complex (refer to chapter 5.6).

• m_Index represents the original data index of one of the data samples that span the com-
plex. This attribute could actually be derived from other values, but it is stored to provide
fast access to the data indices of the tetrahedra vertices.

6.4.3 Data Traversal

We traverse through the adjacency structure by using three nested loops:

tetrahedron tetr;
vertex *v[7];
extData *ext_d = m_Decomp.getExtData();

while(ext_d->nextSlice())
while(ext_d->nextScan())

while(ext_d->nextTComplex())
{

m_Decomp.initTComplex();

49

while(m_Decomp.next(tetr))
{

vertex_num = tetr.triangulate(v,invview,
m_Decomp.getDecInfo());

...
}

}

In the outmost loop we traverse the box edges (function nextSlice()), then the box faces
(function nextScan()) and at last the traversal complexes (function nextTComplex()). In
the innermost loop, function next() returns all visible tetrahedra inside a traversal complex
for rendering, where the tetrahedra are instances of class tetrahedron. The decompositor
m_Decomp is either an instance of bccDecompositor or ccDecompositor.

6.4.4 Triangle Decomposition

The method triangulate of class tetrahedron is responsible for the decomposition into
triangles. It returns an array of triangle vertices v, which are ordered so that the first 2 vertices
are start and end point of the thick vertex and can otherwise by directly inserted into an OpenGL
triangle fan.

int tetrahedron::triangulate(vertex **v, matrix3x3 &invm,
DECOMP_INFO &info)

{
v1_index = m_ClassTbl[info.tblIdx].m_VInfo[0];
v2_index = m_ClassTbl[info.tblIdx].m_VInfo[1];
v3_index = m_ClassTbl[info.tblIdx].m_VInfo[2];
v4_index = m_ClassTbl[info.tblIdx].m_VInfo[3];

switch(m_ClassTbl[info.tblIdx].m_Class)
{
case 1:

return case1Dec(v, invm, 0, info.slope,info.slope2);
case 2:

return case1Dec(v, invm, 1, info.slope,info.slope2);
case 3:

return case2Dec(v, invm, info.slope,info.slope2);
case 4:

return case3Dec(v, invm, 0, info.slope);
case 5:

return case3Dec(v, invm, 1, info.slope);
case 6:

return case4Dec(v);

50

default:
return 0;

}
}

Dependent of the current tetrahedron classification, the corresponding decomposition function is
invoked. A pointer into the decomposition class table derived from the tetrahedra face normals
is given by info.tblIdx. The interpolation factors (info.slope, info.slope2), tetra-
hedron thickness at the thick vertex and info.tblIdx are precomputed and stored in a table
as variables of the type DECOMP_INFO. The variable invm is the inverse view matrix used to
transform the tetrahedron vertices back to world space.

6.4.5 Avoiding Redundant Calculations

In order to avoid a massive amount of redundant calculations, the following structure is allocated
to each sample point that belongs to a traversal complex:

struct VTX_INFO
{

bool visited;
float pos[3];
float transfPos[3];

};

This structure stores the original position in world space pos, the transformed position in view
space transfPos and a boolean flag visited, which is switched after the first view trans-
formation has been applied to this vertex. This structure requires 25 byte. As up to 24 tetrahedra
share a vertex, we avoid up to 23 unnecessary transformations of the same vertex.

6.4.6 Pre-Integration

The OpenGL parameters used for back-to-front compositing in the original projected tetrahedra
algorithm are GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA. Care must be taken that
pre-integration always produces associated colors, that is, colors premultiplied with the opac-
ity. We do not want to multiple associated colors with the opacity again. Instead we must
use GL_ONE together with GL_ONE_MINUS_SRC_ALPHA during alpha blending for the pre-
integration approach.

6.4.7 Shading

We presented three schemes for shading pre-integrated volumes in chapter 5.9. The Phong shad-
ing approach (chapter 5.9) and the pre-integrated Gouraud shading (chapter 5.9) need shading
calculations in the pixel shaders. For the latter approach, the output texels from the ambient,
diffuse and specular pre-integration textures must be combined per pixel. We used NVIDIA’s

51

register combiners (i.e., extension GL_NV_register_combiners [28]) for our implementation.
Register combiners are quite inflexible as they have a fixed number of general combiner stages,
but have the advantage that they also work for many of the slightly older graphic chips. We also
used register combiners to add the highlight after modulating the texture with the shaded grey
value in the Gouraud shading approach (chapter 5.9).

6.4.8 Normal Approximation

The main drawback in using register combiners for our approach is the missing square root
operation. Fortunately, there exists an approximation formula for normalization of a gradient
that is reasonable accurate if certain conditions are given and can be calculated in two general
combiner stages. With a Taylor series expansion it can be shown [52] that the normalized vector
�vn of a vector�v can be approximated with formula

�vn
	� �v

2
�3��v ��v� ��v�0�5�v�1��v ��v� (6.1)

if�v is derived from the interpolation of unit-length vectors and the angle between all pairs of the
original per-vertex vectors is not very big. This method is considered to be faster than the usage
of a cube map.

52

Chapter 7

Results and Comparisons

In this chapter we will first make some general comments about the used comparison strategy
and the used datasets. Then we will present the experimental results we achieved from testing the
different approaches on BCC grids and CC grids regarding rendering quality and performance.
We first show the results we achieved from testing the practical reconstruction schemes, then
the results from texture-based rendering and at the end the results from the projected tetrahedra
algorithm.

7.1 Strategy for Comparing the Rendering Quality

Let us first make some principal comments about the way how we tested and compared the ren-
dering quality. Measuring the quality in a quantitative manner is not an easy task. Several error
metrics exists, but sometimes they do not reflect the human perception. The human visual sys-
tem is less sensitive to errors like stochastic noise, whereas it is very sensitive to regular patterns.
Following the well known comparison study for volume rendering algorithms from Meißner et
al. [41], we employ visual quality assessment only to test the different methods on BCC grids and
compare them to equivalent schemes on CC grids. This thesis is about the application of BCC
grids for practical usage in various volume rendering systems, and for the end user the visual
quality is the most important issue.

For all figures showing comparison images of different methods on CC and BCC grids we
used the same transfer function and view direction. For raycasting and texture-based volume
rendering, we applied the same sample (slice) distance. Except for those methods where this
parameter is fixed, because (bilinear) interpolation in the planes is used.

7.2 Datasets

The datasets that we used in our experiments include real world datasets (Tooth, Skull, Uncbrain),
simulation results (Hipiph, Fuel), and artificial datasets which are sampled from a mathematical
formula (e.g., the Marschner-Lobb and the Cube dataset). Most of the real world and simulation
datasets do not allow a fair comparison between CC and BCC grids, because they are resampled

53

Dataset Type Resampled CC Dimension BCC Dimension

Cube Artificial no 40 � 40 � 40 28 � 28 � 56
Fuel Simulation yes 64 � 64 � 64 45 � 45 � 90
Hipiph Simulation yes 64 � 64 � 64 45 � 45 � 90
Marschner-Lobb Artificial no - 49 � 49 � 98
Lobster Real world no 120 � 120 � 34 -
Device Real world no 128 � 128 � 64 91 � 91 � 91
Melon Real world no 128 � 128 � 64 91 � 91 � 91
Engine Real world yes - 129 � 129 � 129
Uncbrain Real world yes - 129 � 129 � 146
Tooth Real world yes - 181 � 181 � 227
Skull Real world yes - 181 � 181 � 362

Table 7.1: Description of all datasets used in our experiments. The "Resampled" column indi-
cates whether the BCC grid volume was resampled from the CC grid volume.

versions of the original CC grid dataset. A possible solution would be the use of artificial datasets
that can be easily sampled on both grids. Artifical datasets have the benefit that their regular
and predictable structure give a good hint of the artifacts produced by a specific reconstruction
method. Unfortunately, most of our artificial datasets like the cube are too simple to be a real test.
Usually, the Marschner-Lobb dataset [35] dataset is taken for quality evaluation of reconstruction
schemes, because it is a challenge for any interpolator. It contains very high frequencies and is
and therefore it is very sensitive to any resampling error.

Unfortunately the Marschner-Lobb is not suited for comparing CC grid schemes to BCC
grids schemes. It has a cubic frequency support (as was shown by Neophytou et al. [43]), and we
implicitly assumed a spherical frequency support for the BCC theory to make sense. Therefore
we use the Marschner-Lobb dataset only to compare BCC grid methods with other BCC grid
methods. Equally important are real world datasets that allow a fair comparison. We aquired two
datasets of this type, the Device and Melon dataset. These volumes are MR scanned and sampled
separately into the BCC grid and CC grid format and therefore should be free of errors that are
caused by an additional resampling step. All datasets we used in our experiments are listed in
table 7.1.

7.3 Practical Reconstruction Schemes

We used a raycasting system to implement and compare the different reconstruction schemes in
terms of quality and speed. Raycasting is the volume rendering algorithm with the least side
effects which could negatively influence rendering accuracy. The main focus was to provide an
environment for comparison of all reconstruction schemes on both CC grids and BCC grids, and
to achieve the best possible rendering accuracy. We employ only post-classification for rendering.
It produces much sharper results than pre-classification, which tends to produce blurry and fog
like images. By using post-classification, it is easier to detect artifacts and differences between

54

Figure 7.1: Raycasting of the Marschner-Lobb dataset. If the shear planes for the sheared trilinear
interpolator are chosen dependent on the viewing direction (middle image), artifacts are removed
which can occur otherwise (left and right image).

the reconstruction schemes. As stated before, one and two dimensional transfer functions are
supported. We used an Athlon Pentium 2.2 GHZ with 512 MB and a GeForce4 TI graphics chip
on a Suse Linux 8.0 platform. Image size is 512 � 512 pixel.

7.3.1 Rendering Results

The effects of a properly chosen shear plane for the sheared trilinear interpolation are shown in
figure 7.1. The sheared cells are visible as saw tooth shaped artifacts in the leftmost and rightmost
image, whereas they disappear if the shear parameters are chosen depending on the current view
direction (middle image).

Figure 7.2 shows renderings of different reconstruction schemes of the Fuel dataset on BCC
grids and CC grids. The bilinear interpolator on the CC grid suffers from heavy under-sampling
artifacts, even in combination with a simplified trilinear interpolation (left image in top row).
The bilinear interpolation on the BCC grid (right image in top row) reveals some slicing plane
artifacts. These artifacts vanish nearly completely when halving the sample distance by employ-
ing a simplified trilinear interpolation (left image in middle row). Despite the limited quality
of barycentric interpolation (right image in middle row), no major artifacts can be detected in
this image. It even seems to be the sharpest image among the BCC grid interpolators. The al-
ternative sheared trilinear interpolation (left image in bottom row) looks slightly blurrier than
the barycentric interpolation. Except for a slightly blurrier appearance on BCC grids no major
quality differences to trilinear interpolation on a CC grid (right image in bottom row) are visible.

Zooming into the teeth region of the Skull dataset (figure 7.3) shows that the BCC renderings
with the bilinear interpolator (middle image) and sheared trilinear interpolator (right image) are
smoother that the trilinear interpolation on the CC grid (left image). In this case the smooth
curves of a tooth seems to be better approximated by the BCC grid renderings.

Results of the different reconstruction schemes for the Device dataset on the BCC grid are
shown in figure 7.4. Central differences 1 was used as gradient estimation scheme in all BCC
grid renderings, and central differences was applied for the CC grid renderings. The second and

55

Figure 7.2: Raycasting on the Fuel dataset. Top row: bilinear plus simplified trilinear on the CC
grid (left), bilinear on the BCC grid (right). Middle row: bilinear plus simplified trilinear on the
BCC grid (left), barycentric (right). Bottom row: alternative sheared trilinear (left), trilinear on
the CC grid (right). 56

Figure 7.3: Raycasting on the Skull dataset. From left to right: trilinear interpolation on the CC
grid, bilinear interpolation on the BCC grid, and sheared trilinear interpolation on the BCC grid.

the last row shows magnifications of a region in the above image. The barycentric interpolation
(left image in the top row) produces artifacts that are clearly visible in the magnification image
below (left image in the second row). The trilinear interpolation on the BCC grid with 2 sam-
ples (middle image in the top row) shows very similar artifacts in the closeup (middle image in
the second row). These artifacts are partly, but not fully removed by employing trilinear inter-
polation on the BCC grid with 6 samples (rightmost image in the top row). The artifacts are
fully smoothed out using the bilinear plus spatial interpolation (left image in the third row) and
sheared trilinear interpolation (middle image in the third row). This can be seen more clearly in
the zoomed regions for the bilinear plus spatial (left image in the bottom row) and sheared trilin-
ear interpolation (middle image in bottom row). The trilinear interpolation on the CC grid (right
image in the third row) also reveals slight artifacts which can be observed in the magnification
(right image in the bottom row). On the same time much more details of the surface material are
visible.

Unfortunately, the Device datasets are sampled slightly differently on CC grids and BCC
grids, e.g., visible as noise in the lower right corner of the CC grid dataset that cannot be seen
for any settings on the BCC grid. Therefore we must handle the achieved results with some care.
The same can be stated for the Melon dataset.

In figure 7.5, we show renderings of the Melon dataset. Central differences 1 was used for
gradient reconstruction on the BCC grid, and central differences on the CC grid. Bilinear inter-
polation on the BCC grid (left image in the top row) washes out some of the details, whereas the
image produced with the barycentric interpolation (right image in the top row) preserves many
details but looks very rough. The trilinear interpolation on BCC grids with 6 samples (left image
in the middle row) appears to be much smoother. This trend is further continued for bilinear
plus spatial interpolation (right image in the middle row) and sheared trilinear interpolation (left
image in the bottom row). Sheared trilinear interpolation looks quite smooth, but also slightly
flat and blurry. The rendering produced with trilinear interpolation on the CC grid (right image
in the bottom row) is the most detailed one.

A comparison of the gradient calculation schemes on the BCC grid are shown in figure 7.6.

57

Figure 7.4: Raycasting on the Device dataset. A zoomed region is shown below each image. Top
two rows (left to right): barycentric, trilinear on the BCC grid with 2 and with 6 samples. Bottom
two rows (left to right): bilinear plus spatial, sheared trilinear and trilinear on the CC grid.

58

Figure 7.5: Raycasting on the Melon dataset using different interpolators. Top row: bilinear on
the BCC grid (left) and barycentric (right). Middle row: trilinear on the BCC grid with 6 samples
(left), bilinear plus spatial (right). Bottom row: Sheared trilinear (left), trilinear on the CC grid
(right). 59

Figure 7.6: Raycasting on the Melon dataset raycasting using different gradient reconstruction
schemes. Tow row: adaptive grey level estimation on the BCC grid (left) and central differences
1 on the BCC grid (right). Middle row: central differences 2 (left) and 3 (right) on the BCC grid.
Bottom row: sobel filter on the BCC grid (left) and central differences on the CC grid (right).

60

Interpolator Abbreviation Grid Cube Fuel Device

trilinear tril CC 1.520 sec 5.803 sec 7.501 sec
bilinear bil BCC 1.269 sec 4.446 sec 5.596 sec
barycentric bary BCC 1.924 sec 7.246 sec 8.930 sec
alternative sheared trilinear alt shtril BCC 1.735 sec 6.648 sec 8.320 sec
sheared trilinear shtril BCC 1.776 sec 6.787 sec 8.462 sec
bilinear plus spatial bil � spat BCC 1.766 sec 6.696 sec 8.233 sec
trilinear 2 samples tril 2s BCC 2.507 sec 10.351 sec 12.469 sec
trilinear 6 samples tril 6s BCC 3.926 sec 17.592 sec 20.900 sec

trilinear tril CC 2.650 sec 10.670 sec 12.723 sec
simplified trilinear simp tril BCC 2.339 sec 9.675 sec 12.176 sec
barycentric bary BCC 3.586 sec 13.721 sec 17.129 sec
alternative sheared trilinear alt stril BCC 3.089 sec 12.318 sec 15.491 sec
sheared trilinear shtril BCC 3.146 sec 12.575 sec 15.877 sec
bilinear plus spatial bil � spat BCC 3.141 sec 12.418 sec 15.597 sec
trilinear 2 samples tril 2s BCC 4.726 sec 20.100 sec 24.235 sec
trilinear 6 samples tril 6s BCC 7.694 sec 34.662 sec 40.951 sec

Table 7.2: Raycasting timings for different interpolators and the datasets Cube, Fuel and Device.
The sample distance in the upper (lower) half of the table is determined by the bilinear (simplified
trilinear) interpolator. The abbreviations are used in the graphical charts from figure 7.7.

From the renderings we can state that the adaptive grey level estimation scheme (left image in
the top row) seems to preserve most details among the BCC grid schemes, but does not filter
out much of the noise. Central differences 1 (right image in the top row) and central differences
2 (left image in the middle row) appear to smooth out some of the higher frequencies. Central
differences 3 (right image in the middle row) is obviously smoother, but also less blurry than
central differences 1 and central differences 2. Furthermore, it seems to pronounce the highlights.
The sobel filter on the BCC grid (left image in the bottom row) produces the smoothest results,
but the skin of the melon is given a quite unnatural appearance. Trilinear interpolation on the CC
grid using central differences (right image in the bottom row) produces by far the most detailed
rendering.

7.3.2 Performance

We tested the performance of the interpolators on three datasets with different characteristics (re-
fer to table 7.2). We used an artificial dataset (Cube), a computational simulation dataset (Fuel),
and a real world dataset (Device). The results are shown more comprehensively in the graphi-
cal charts of figure 7.7. Because of their inflexible sampling rate, we do not directly compare
the performance of the bilinear interpolation on the CC grid and the BCC grid. The sampling
distances are determined by the bilinear interpolator and the simplified trilinear interpolation on
the BCC grid. For this interpolators, we must match the planes of the volume in each resam-

61

0

2

4

6

8

10

12

14

16

18

20

22

CC tril BCC bil BCC bary BCC alt shtril BCC shtril BCC bil + spat BCC tril 2s BCC tril 6s

se
co

nd
s

Interpolators

Raycasting Timings for Sample Distance 0.943

Device

Fuel

Cube

0

5

10

15

20

25

30

35

40

45

CC tril BCC simp tril BCC bary BCC alt shtril BCC shtril BCC bil + spat BCC tril 2s BCC tril 6s

se
co

nd
s

Interpolators

Raycasting Timings for Sample Distance 0,471

Device

Fuel

Cube

Figure 7.7: Reconstruction scheme timings from table 7.2 for sample distances 0,943 (0,471) in
order to align the resampling points with the planes for the bilinear (simplified trilinear) interpo-
lation. The used abbreviations are also explained in the table.

62

pling step at a given view angle. The timings from all datasets show the same characteristics.
The bilinear interpolation is clearly the fastest method. Even the bilinear interpolation combined
with the simplified trilinear interpolation is still well ahead of other methods. The three types of
interpolators that operate on sheared cubic cells, i.e., bilinear plus spatial, sheared trilinear and
the alternative sheared trilinear interpolation have nearly equal rendering times. The alternative
sheared trilinear interpolation performs slightly better than the sheared trilinear interpolation,
because the task of finding the actual sheared cubic cell is less complex. These methods are not
much slower than trilinear interpolation on the CC grid and even faster than the lower quality
barycentric interpolation. The reason is the additional overhead that is needed for finding the
actual tetrahedron and the calculation of the barycentric coordinates. Trilinear interpolation on
the BCC grid is by far the slowest method, the more so if using 6 samples for the resampling of
the cubic cell. Trilinear interpolation on the CC grid is only beaten by the bilinear interpolation
on the BCC grid. This had to be expected, because raycasting is an image-order algorithm, hence
the smaller size of the volume on the BCC grid does not result in any performance gain.

7.4 Texture-Based Volume Rendering

The hardware rendering system was tested on an Athlon Pentium 2.2 GHZ with 512 MB RAM
on a Windows XP platform. We used an ATI 9700 Pro graphics chip. The image size is 512 �
512 pixels.

7.4.1 Rendering Results

In the following comparisons, 2D texture-based rendering refers to the standard approach as ex-
plained in section 4.2. The benefits of pre-integration can be observed in figure 7.8, which shows
images of semi-transparent unshaded volume renderings. The 2D texture-based renderings (us-
ing post-classification) are prone to slicing artifacts on the CC grid (left image in the top row)
and BCC grid (right image in the top row). The artifacts are less visible on the BCC grid, as an
effect of the higher number of slices. By applying pre-integration, the slicing artifacts disappear
in the renderings of both the CC grid (left image in the bottom row) and the BCC grid (right
image in the bottom row).

We employ iso-surface rendering to identify a unique kind of artifact on the BCC grid in
figure 7.9. The artifacts are clearly visible in the highlights on the cube edges that are most
perpendicular to the image plane. For 2D texture-based rendering (leftmost image), they appear
as slicing artifacts. With the additional spatial interpolation of multi-texture blending (middle
image) and 3D texture-based rendering (rightmost image), the artifacts are smoothed out to some
extent. But they still show up as bumps.

In figure 7.10 we can observe semi-transparent images of the Hipiph dataset rendered with
the use of post-classified shading and gradient weighted opacity. Slicing artifacts occur for 2D
texture-based rendering (left image in the top row), clearly visible in the magnification (right
image in the top row). These artifacts disappear for multi-texture blending (left and right image
in the middle row) and 3D texture-based rendering (left and right image in the the bottom row).

63

Figure 7.8: Texture-based volume rendering on the Fuel dataset. Top row: 2D texture-based
rendering on the CC grid (left) and the BCC grid (right) using post-classification. Bottom row:
pre-integration on the CC grid (left) and the BCC grid (right).

Figure 7.9: Texture-based (iso-surface) rendering of the Cube dataset on the BCC grid. From left
to right: 2D texture-based rendering, multi-texture blending, and 3D texture-based rendering.

64

Figure 7.11 shows a closeup of a highlighted region in renderings of the Fuel dataset. High-
lights are extremely sensitive to shading artifacts, especially in combination with the used iso-
surface rendering. We can clearly see the limitations of 2D texture-based rendering on the CC
grid (left image in the top row) and the BCC grid (right image in the top row). The middle
row shows multi-texture blending on the CC grid (left image) and on the BCC grid (right image).
Very soft highlights are produced by multi-texture blending on the BCC grid that surpasses multi-
texture blending on the CC grid in terms of smoothness. Virtually no differences can be found
between multi-texture blending on the CC grid and 3D texture-based rendering on the CC grid
(left image in the bottom row). Sharp edges are revealed in the highlights of the 3D texture-based
rendering on the BCC grid (right image in the bottom row). They are caused by the alternating
positive-negative shear direction of the cells, which is not optimal for the rendering quality (refer
to section 3.5).

BCC grid rendering support is implemented for most of the rendering modes in the frame-
work, even for NPR rendering modes like tone shading. Tone shading produces results that are
similar to technical drawings. The technique is shown in figure 7.12 for the engine block ren-
dered with multi-texture blending (left image) and the Uncbrain rendered with 3D texture-based
rendering (right image).

A comparison of several gradient estimation schemes for texture-based rendering is shown
in figure 7.13. Interestingly, the differences between the estimators are even more visible than in
the raycasting approach (refer to figure 7.6). Similar to raycasting, the CC grid rendering with
central differences (left image in the top row) provides the most detailed renderings, but is not
free of artifacts. Noise is reduced by using the sobel filter on the CC grid (right image in the top
row). Central differences 1 (left image in the middle row) is prone to strong artifacts on the BCC
grid. These artifacts are slightly reduced with central differences 2 on the BCC grid (right image
in the middle row). A major improvement to image quality is achieved with central differences
3 (left image in bottom row). Additional smoothing is introduced when applying the sobel filter
on the BCC grid (right image in bottom row).

7.4.2 Performance

Although a corresponding OpenGL extension is already listed in the extension specification [28],
non power of two textures are still not supported in our environment. Therefore a performance
comparison of CC and BCC grid renderings turns out to be very difficult. We must either blow
up the BCC or CC grid volume to the next power of two, always treating one of the two grids in
an unfair way. For 2D texture-based techniques, a fair comparison would be possible with the
texture rectangle extension from NVIDIA. But this could still not solve the problem in case of
3D texture-based volume rendering, because a similar extension does not exist for 3D textures.

In table 7.3 (refer to figure 7.14 for a graphical chart of the timings), we are are able to
present a fair comparison of the rendering methods by using the following approach: The CC
grid timings are measured on the original data size, e.g., 64 3 (1283). The corresponding BCC data
size is 45 � 45 � 91 (91 � 91 � 181). As stated above, direct measurement is not possible, but
we are able to estimate the performance by finding a lower and an upper boundary of the actual
rendering time. This is done by employing the next smaller and the next greater power of two data

65

Figure 7.10: Texture-based volume rendering of the Hipiph dataset on the BCC grid using post-
classification and gradient weighted opacity. Magnifications of a region are shown in the right
column. From top to bottom row: 2D texture-based rendering, multi-texture blending, and 3D
texture-based rendering. 66

Figure 7.11: Texture-based (iso-surface) rendering of the Fuel dataset on the CC grid (left col-
umn) and the BCC grid (right column). From top to bottom row: 2D texture-based rendering,
multi-texture blending, and 3D texture-based rendering.

67

Figure 7.12: Texture-based rendering (tone shading) on the BCC grid. Multi-texture blending
(left) on the Engine dataset and 3D texture-based rendering (right) on the Uncbrain dataset using.

CC data size 64 � 64 �64 128 � 128 � 128
Type BCC 32 BCC 64 CC BCC 64 BCC 128 CC

2D tex 50 ms 51 ms 36 ms 76 ms 80 ms 57 ms
pre-integration 66 ms 66 ms 58 ms 115 ms 119 ms 93 ms
multi-tex 61 ms 63 ms 64 ms 108 ms 113 ms 109 ms
3D tex 218 ms 220 ms 86 ms 418 ms 422 ms 175 ms
shaded 2D tex 197 ms 213 ms 144 ms 389 ms 388 ms 269 ms
shaded multi-tex 214 ms 213 ms 207 ms 383 ms 441 ms 410 ms
shaded 3D tex 415 ms 412 ms 262 ms 826 ms 840 ms 498 ms

Table 7.3: Texture-based rendering timings. Post-classification was used for all methods except
for pre-integration. "BCC 32" ("BCC 64", "BCC 128") correspond to a BCC grid power of two
dataset (e.g. "BCC 64" means data size 64� 64� 128). "2D tex" refers to 2D texture-based and
"3D tex" to 3D texture-based rendering. "multi-tex" refers to multi-texture blending.

68

Figure 7.13: Texture-based rendering of the Melon dataset using different gradient estimators.
Top row: central differences (left) and the sobel filter (right) on the CC grid. Middle row: central
differences 1 (left) and 2 (right) on the BCC grid. Bottom row: central differences 3 (left) and
the sobel filter (right) on the BCC grid.

69

size, e.g. 32� 32� 64 and 64� 64� 128 for the BCC grid datasets corresponding to the 64 3 CC
grid dataset, respectively 64 � 64 � 128 and 128 � 128 � 256 for the datasets corresponding
to the 1283 CC grid dataset. We provide timings for 2D texture-based volume rendering, 3D
texture-based volume rendering, and multi-texture blending. Post-classification is used for all
these methods. Furthermore, we present timings for the pre-integration approach. Considering
the restrictions regarding the number of slices for 2D texture-based volume rendering and the
pre-integration method, we applied 64 (128) slices for CC and 91 (181) slices for the BCC grid.
We can freely choose the slice number in the other rendering modes, and we decided to use
the realistic number of 91 (181) slices for a reasonable resampling quality on both grids. The
situation in an environment that supports non power of two textures can be estimated with the
help of this comparison scheme.

The smaller texture size on BCC was expected to result in a smaller rasterization time per
texture, especially for 3D textures. Unfortunately, the difference turned out to be hardly notice-
able. Studying the table and the graphical charts in figure 7.14, we identified three different
characteristics for the main approaches of texture-based volume rendering:

2D texture-based rendering, pre-integration: Although we have a slight performance gain
from smaller texture sized on the BCC grid, the required

�
2 times larger number of texture

slices result in a significantly higher rendering time. On the other hand, this pays off in
form of a higher sample frequency on the BCC grid.

Multi-texture blending: In principle, there is no additional overhead on BCC grids. The only
difference to the CC grid is the assignment of other texture coordinates. Considering the
smaller texture sizes, computational load is equal or smaller. This is also reflected in the
rendering times, which are nearly equal on both grids.

3D texture-based rendering: The texture size had little to no influence on the rendering time
in our experiments. On the contrary, the seven per fragment instructions necessary on
the BCC grid heavily affect rendering time, especially for unshaded post-classification.
Shaded post-classification also uses quite complex fragment programs. Hence the perfor-
mance loss caused by the instructions for BCC grid rendering is less noticeable for this
rendering mode.

7.4.3 Memory Usage

We sketch the situation for a scenario where non power of two textures already exist. Then we
can state that we save 29.3% texture memory for 2D texture-based rendering and pre-integration
on the BCC grid. This is because the slices must be aligned to the planes of the volume and
cover all volume samples exactly once. For multi-texture blending, we need half the memory
per slice stack on the BCC grid, because the textures are half the size and we are not required to
align the slices with the volume planes. In 3D texture-based volume rendering on the BCC grid,
the 3D textures are 29.3% smaller than on the CC grid. However, we already know that three
3D textures (one for each principal view axis) are needed to meet the requirements regarding the
shear planes of the cells (see section 3.5). But we can state that it is only required to have one 3D

70

0

50

100

150

200

250

300

350

400

450

2D tex pre-integration multi-tex 3D tex shaded 2D tex shaded multi-tex shaded 3D tex

m
ill

is
ec

on
ds

Methods

Timings for Texture-Based Rendering (datasize 64x64x64)

BCC 32

BCC 64

CC

0

100

200

300

400

500

600

700

800

900

2D tex pre-integration multi-tex 3D tex shaded 2D tex shaded multi-tex shaded 3D tex

m
ill

is
ec

on
ds

Methods

Timings for Texture-Based Rendering (datasize 128x128x128)

BCC 64

BCC 128

CC

Figure 7.14: Texture-based volume rendering timings corresponding to table 7.3. "2D tex" refers
to 2D texture-based and "3D tex" to 3D texture-based rendering. "multi-tex" refers to multi-
texture blending. 71

Figure 7.15: The projected tetrahedra algorithm on the Fuel dataset using pre-integration and
Phong Shading. From left to right: CC grid rendering and a zoom, BCC grid rendering and a
zoom.

texture in texture memory at once, and a new texture must be loaded into texture memory only
when the principal view direction changes.

7.5 Projected Tetrahedra Algorithm

The projected tetrahedra system exploits orthogonal projection on regular grid structures in order
to maximize rendering speed. At the same time we wanted provide a rendering quality that is
comparable to high quality rendering methods like splatting. We want to achieve this through
powerful extensions like pre-integration. We compared image quality and performance of the
projected tetrahedra algorithm and the implemented extensions on the CC and BCC grid. A
3D adjacency structure from chapter 5.5 is used to speed up traversal time. We used an Athlon
Pentium 1.4 GHZ with 512 MB RAM in combination with a GeForce4 TI graphics chip on a
Suse Linux 8.0 platform. Image size is 800 � 800 pixels for all images.

7.5.1 Rendering Results

Figure 7.15 reveals Mach band artifacts which can occur in renderings of the BCC grid version of
the Fuel dataset (leftmost image), clearly noticeable in the closeup (second image from the left).
Such artifacts are most visible at special view angles (e.g. 90°, 270°) and reveal the underlying
grid structure. The Mach band artifacts are reduced on the CC grid rendering (second image
from the right) and closeup (rightmost image) by applying a checkerboard style decomposition
of the cubic cells as stated in chapter 5.2.

Images of the Hipiph dataset are shown in figure 7.16. The right column shows a closeup
of the renderings from the left column. The images are rendered with the original projected
tetrahedra algorithm (top row), with the use of exponential transparency textures (middle row),
and with the use of pre-integration (bottom row). We can observe that there are only small
differences between the renderings produced with the original projected tetrahedra algorithm
to the renderings using exponential transparency textures. On the contrary, the application of
pre-integration provides a major improvement of rendering quality.

72

Figure 7.16: The projected tetrahedra algorithm for the Hipiph dataset on the BCC grid. Top
row: Original projected tetrahedra algorithm (left) and closeup (right). Middle row: exponential
transparency textures (left) and closeup (right). Bottom row: pre-integration (left) and closeup
(right). 73

Figure 7.17: The projected tetrahedra algorithm on the Fuel dataset. The CC grid is shown in left
column, the BCC grid in the right column. From top to bottom row: exponential transparency
textures, pre-integration and Gouraud shading, pre-integration and Phong shading.

74

Figure 7.18: The projected tetrahedra algorithm on the Device dataset using pre-integration and
Phong shading. The CC grid is shown in the left image and the BCC grid in the right image.

We present a comparison of projected tetrahedra renderings of the Fuel dataset on the BCC
grid and the CC grid in figure 7.17. The images in the top row were rendered using exponential
transparency textures on the CC grid (left image in the top row) and the BCC grid (right image in
the top row). Pre-integration and Gouraud shading on the CC grid (left image in the middle row)
and the BCC grid (right image in the middle row) provides much better rendering quality than the
exponential transparency textures. The images rendered with pre-integration and Phong shading
on the CC grid (left image in the bottom row) and on the BCC grid (right image in the bottom
row) look brighter than the Gouraud shaded images. For all images, no major quality difference
can be observed between CC grid and BCC grid renderings. Pre-integration contributes much to
the rendering quality. Interestingly, the highlights look shinier in the renderings using exponen-
tial transparency textures than in the renderings exploiting pre-integration. This is because pure
white highlights are applied for the exponential transparency textures. On the other hand, we
found out that highlights derived from the colors of the transfer function look nicer for shading
in combination with pre-integration.

A comparison of the CC grid (left image) and BCC grid (right image) renderings on the
Device dataset is shown in figure 7.18. There are some differences in the volume data represented
by the CC and BCC grid. Noise can be observed in the CC grid dataset which is missing in the
BCC grid dataset. Both renderings appear to be almost equally detailed, although shading quality
is better in the CC grid rendering.

Rather severe shading artifacts can occur for high frequencies datasets even with the use of
pre-integration. This is caused by the fact that the shading quality does not match the quality of
color and opacity calculation. Figure 7.19 shows images of the Lobster dataset on the CC grid,
where the unshaded rendering (image in the top row) looks clearly better than the shaded one (left
image in the bottom row). In such a case, the pre-integrated Gouraud shading approach (refer to
chapter 5.9) can yield nicer looking results (right image in the bottom row). Of course this is just
a subjective comparison. The method has the drawback that color and transparency of the diffuse

75

Figure 7.19: The projected tetrahedra algorithm for the lobster dataset on the CC grid using pre-
integration. Unshaded (top row), Phong shading (bottom row left), and pre-integrated Gouraud
shading (bottom row right).

and specular terms are constant during the pre-integration process and must be set to appropriate
values beforehand. Especially the transparency values need to be adjusted carefully in order to
produce good shading effects. However, the images rendered with this method generally have a
rather flat shaded appearance.

In figure 7.20 we can see rendering of the Uncbrain dataset on the BCC grid. By using the
simple central differences 1 method (leftmost image) we introduce artifacts, which are clearly
visible in the closeup (second image from the left). Replacing the central differences with a more
sophisticated 3 � 3 sobel filter (second image from the right) reduces shading artifacts, which
can be clearly seen in the rightmost image.

7.5.2 Performance

Some statistics about the projected tetrahedra algorithm on different datasets (Fuel dataset on the
CC and the BCC grid, Hipiph dataset on the CC and the BCC grid) can be observed in table 7.4.
The rendering times on these datasets are also visualized in the graphical chart of figure 7.21
for better comprehension. We can see from the tables that only 5% of all tetrahedra in the grid

76

Figure 7.20: The projected tetrahedra algorithm for the Uncbrain dataset on the BCC grid using
pre-integration. From left to right: central differences 1 and a closeup, sobel filter and a closeup.

are actually rendered for the Fuel and Hipiph dataset. In a traversal complex that is marked as
visible, statistically almost all tetrahedra are also of non-zero opacity: between 9 and 10 from
maximal 12 tetrahedra on the BCC grid and more than 4 from maximal 5 tetrahedra on the CC
grid. Considerably less tetrahedra must be rendered on the BCC grid. This results in a better
performance of the algorithm, as the overall tetrahedra number is of course the most significant
figure for rendering time. Most noticeable, when using pre-integration with Phong or Gouraud
shading we achieve better a performance than with the original algorithm. This despite the costly
3D texture mapping (using a 1283 texture) and shading calculation in the register combiners. The
reason is the relatively expensive software computations per tetrahedron. They are more com-
plex for the original projected tetrahedra algorithm and the exponential transparency textures.
Obviously the computations use up more rendering time than the 3D texture mapping. Much
slower is the pre-integrated Gouraud shading method, because processing three 3D textures in
the register combiners is quite demanding even for powerful graphics chips.

7.5.3 Memory Usage

As the system is a leaf in the 1B (1 byte) branch of the vuVolume framework (see section 6.1),
the data is stored as an array of bytes. The normals are stored as 3 float values (4 byte each),
hence we need 13 bytes per basic data sample. Every visible traversal complex structure stores
17 byte (refer to the implementation section 6.4.2). The information about several tetrahedra is
stored in a single complex. Still the memory consumption is less than the 28 byte per visible
voxel reported for the original data structure [44]. Let us denote the size of the volume as s, and
let t be the number of visible traversal complexes, plus the virtual traversal complexes. Then we
have a memory consumption m of 13s�17t.

For maximum rendering performance, we create a separate structure described in section 6.4.5
which stores all vertices belonging to a traversal complex. This structure needs 25 byte. If q
refers to the number of samples that are part of this additional structure, we have a new formula
for the extended memory consumption m e:

me � 13s�17t �25q (7.1)

The number t of visible traversal complexes is small compared to the number of data samples,

77

Dataset Fuel BCC Fuel CC Hipiph BCC Hipiph CC

Statistics

tetrahedra 1093500 1310720 1093500 1310720
data points 182250 262144 182250 262144
nz tetrahedra 51821 61469 40463 49804
nz traversal complex 5147 13015 4373 10966
nz tetrahedra / traversal complex 10.068 4.722 9.253 4.542
tetrahedra / nz tetrahedra 21.101 21.323 27.025 26.318

Timings

linear 62 ms 75 ms 53 ms 65 ms
exponential 64 ms 76 ms 52 ms 65 ms
pre-int and Gouraud 47 ms 57 ms 39 ms 51 ms
pre-int and Phong 55 ms 65 ms 44 ms 58 ms
pre-integrated Gouraud 80 ms 95 ms 64 ms 79 ms

Table 7.4: Statistics and timings of Projected Tetrahedra on different datasets. Some important
numbers and ratios are shown. "nz" refers to non-zero opacity. "Linear" refers to the linear
transparency variation in the original projected tetrahedra algorithm. "exponential" refers to the
exponential transparency textures, and "pre-int" to the pre-integration.

30

40

50

60

70

80

90

100

110

120

linear exponential pre-int and Gouraud pre-int and Phong pre-integrated Gouraud

m
ill

is
ec

on
ds

Rendering Type

Projected Tetrahedra Timings

Fuel BCC

Fuel CC

Hipiph BCC

Hipiph CC

Figure 7.21: Projected Tetrahedra Timings from table 7.2.

78

especially on the BCC grid. According to the Fuel dataset statistics in table 7.4, the ratio of
traversal complexes per data voxel is less that 3%. In our experiments we found out that the
number of sample points belonging to a traversal complex is usually about 2 times the overall
number of traversal complexes on the BCC grid. On the CC grid, the number of sample points
belonging to a traversal complex is slightly higher than the number of traversal complexes. Hence
t and q are small numbers compared to the datasize s. We can state that the memory consumption
of our adjacency structure is quite reasonable for most datasets that are used in practice. In
principle it would be possible to delete the original data array and store only the normals of the
tetrahedron vertices. As a consequence, the memory consumption could even drop under the
overall consumption of the basic storage scheme (i.e., 13 byte per sample).

79

Chapter 8

Summary

In this chapter we give a summary of the important points of this thesis, our BCC grid recon-
struction schemes and the proposed hardware-accelerated algorithms on the BCC grid.

8.1 Introduction

The Cartesian (CC) grid is the dominant type of sampling grid in volume visualization. Although
we known from signal theory [17] that it is not optimal in terms of storage efficiency. To find
the optimal sampling grid, we have to solve the dual problem of packing the replicated spectra
in frequency domain as closely as possible so that they do not overlap. In volume rendering, it is
assumed that we are dealing with isotropic, band-limited scalar functions which have spherical
spectra. Our problem is equivalent to the famous sphere packing problem [55]. There is no gen-
eral solution to this problem yet, but fortunately for our purpose some optimal packing schemes
among regular grids in 2D and 3D are known.

In 3D the Hexagonal Close Packing (HCP) grid and the Face-Centered Cubic (FCC) grid are
optimal sphere packings. The dual of the HCP grid in the spatial domain is again a HCP grid,
the dual of the FCC grid is the Body-Centered Cubic (BCC) grid. Both schemes require about
29.3% less samples than on the CC grid to store the same amount of information [60]. The BCC
grid is easier to handle than the HCP grid, because it can be described by a sampling matrix as
opposed to the HCP grid and has some convenient properties that can be exploited for volume
rendering. The BCC grid can be seen as

• stack of 2D CC grids, where the odd-numbered planes are translated by half a unit in both
dimensions with respect to the even-numbered planes.

• two interleaved 3D CC grids, where one grid (denoted as secondary grid) is translated by
half a cell spacing in all three axis relatively to the other grid (denoted as primary grid).

• sheared and scaled CC grid.

• tetrahedral mesh which is simple and uniquely defined by the Delauney complex [6].

80

Our goal is to show the the volume visualization community that the BCC grid is an alterna-
tive to the CC grid in the practice. Therefore we must first proof it’s usability in different types
of volume rendering algorithms. Furthermore, we have to achieve a performance gain over most
comparable rendering approaches on the CC grid due to the reduced memory requirements, with
equal or only slightly reduced image quality.

An evolving field of volume visualization deals with exploiting the power of flexible con-
sumer graphics hardware for interactive or near-interactive volume rendering. Hardware accel-
eration could increase the popularity of traditionally slow direct volume rendering for usage in
time-critical applications as well. The potential performance gain of BCC grids is therefore
even more desirable in such hardware-based approaches. We adapted two of the most popular
hardware-accelerated volume rendering methods to the BCC grid, texture-based volume render-
ing and the projected tetrahedra method, which we expected to be especially suited for BCC
grids.

8.2 Previous work

Volume rendering can be classified into image-order algorithms like raytracing [27] and raycast-
ing [32], and object-order algorithms like splatting [67], cell projection [54, 38, 68, 69, 53] and
texture-based volume rendering [4]. A hybrid method is the performance optimized shear-warp
algorithm proposed by Lacroute et al. [30], which can be considered as pure software predecessor
of 2D texture-based volume rendering.

Texture-based volume rendering was proposed by Cabral et al. [4] after introduction of the
first SGI Reality Engine [1]. Support for directional shading was introduced by Gelder et al. [21]
and Dachille et al. [14] at the expense of losing interactivity. Later shading was proposed for
fast iso-surface rendering by Westermann et al. [66] and semi-transparent diffuse shading by
Meißner et al. [40]. Limitations of 2D texture-based rendering were successfully reduced with
multi-texture blending proposed by Rezk-Salama et al. [48]. Accurate integration without super-
sampling using pre-integration was introduced by Engel et al. [19].

The projected tetrahedra algorithm was proposed by Shirley et al. [54]. Accuracy of the
opacity integration was improved by Stein et al. [56] and Max et al. [37]. Accurate integration
of arbitrary transfer functions is possible with the use of 3D pre-integration textures proposed by
Röttger et al. [51]. This technique was further refined in [50, 23, 18].

Theußl et al. [60] first proposed BCC grids for direct volume rendering. They implemented
Westover style splatting on the BCC grid, which was extended to the 4 th dimension for time-
varying data by Neophytou and Mueller [43]. The shear-warp algorithm was extended to support
BCC rendering by Sweeney et al. [57]. Ibáñez et al. [26] used a generalization of the Bresen-
ham algorithm for raycasting on the BCC grid, but they did not present any details about the
used interpolation. Strategies for reconstruction in a BCC grid for high-quality raycasting were
proposed by Theußl et al. [59]. In this work we present their methods in detail. Dornhofer
modified Fourier Domain Volume Rendering (FDVR) from Malzbender [34] for use on a BCC
grid [16]. 3D texture-based rendering on BCC grids was first introduced by Röber et al. [49].
Iso-surface reconstruction on the tetrahedral mesh defined by a BCC grid was proposed by Chan

81

and Purisma [7] and Treece et al. [61]. To cope with the large number of created triangles on
such a mesh, Carr al. [6] investigated and compared the marching cubes [33] variants marching
tetrahedra, octahedra and hexahedra for BCC grid iso-surface reconstruction.

8.3 Practical Reconstruction Schemes

We developed some general strategies for practical reconstruction on the BCC grid. We inserted
them into a raycasting system for high-quality rendering, but they can be used in several BCC
rendering algorithm needing an interpolation between sample positions. Some of them are opti-
mized for speed, others for rendering quality, while all preserve reasonable complexity.

Some methods are depending on the current view direction. This is a major drawback, be-
cause applications exist which initially do not have a view direction (segmentation, for example).
For such methods we must define a virtual shear direction.

8.3.1 Bilinear Interpolation

Bilinear interpolation operates directly on the 2D CC grid planes. Every second plane is trans-
lated by half a unit. In a raycaster we must ensure that the entry point of the ray is also on a
plane. The resampling plane most perpendicular to the current view direction is chosen. On the
BCC grid we get a higher sample frequency than on the CC grid, because the planes are closer
together by a factor of

�
2. However, we lose information in the planes, because they consist

of half the number of samples than on the CC grid. To further halve the sample distance, we
can apply simplified trilinear interpolation directly in between two planes. This interpolation is
a specialized version of the sheared trilinear interpolation (see section 8.3.5).

8.3.2 Bilinear plus Spatial Interpolation

Bilinear interpolation can be extended to a real trilinear interpolation on arbitrary resample posi-
tions. This can be achieved by using an additional spatial interpolation of two bilinearly interpo-
lation density values on the adjacent 2D CC grid planes. Therefore we refer to this reconstruction
scheme as bilinear plus spatial interpolation. We can see the situation in figure 8.1, where the
interpolated values from upper and lower plane are denoted as S i and Si�1, and α refers to the
spatial distance from the planes. We calculate the final density value S α like the following:

Sα � �

�
2

2
�α�Si �αSi�1 for 0 � α �

�
2

2
(8.1)

Like for bilinear interpolation, we choose the stack of CC grid planes that is most perpendic-
ular to the actual view direction. This method results in an interpolation in a sheared cubic cell,
where shear directions of the cells are determined by the resample location (shown in the right
image of figure 8.1).

82

Si+1

Si

2/2

(2D CC grids)

resample points

planes
Sα

ray

α

resample points

ray

Bilinear interpolation Bilinear plus spatial interpolation

Figure 8.1: Bilinear interpolation operates in the planes (left image). Using a spatial interpolation
of the interpolated values Si and Si�1, we can interpolate on arbitrary positions between the planes
(right image).

8.3.3 Barycentric Interpolation

Barycentric interpolation operates on the tetrahedral mesh that is defined by the BCC grid. The
barycentric coordinates are calculated and used for an interpolation between the tetrahedron ver-
tices. The interpolation between the vertices is piecewise linear and therefore fast but of limited
quality. Additional computations must be done to find the current tetrahedron that contains the
resampling point and to calculate the barycentric coordinates:

1. Find the tetrahedron where the resampling point is located in. First we determine the
corresponding octant of the cell in the primary (secondary) grid using three comparisons.
We need some more comparisons (x greater or smaller y, x greater or smaller z, and y
greater or smaller z) to find the current tetrahedron. The situation is visualized in figure 8.2.

2. Compute the barycentric coordinates. This is done by transforming the resampling point
into a coordinate system where one vertex of the tetrahedron is in the origin and the others
in unit distance on the x, y and z axis. The barycentric coordinates are equivalent to the new
location of the resampling point. After translation to the origin, only 12 different types of
tetrahedra exist, thus the transformation matrices can be precomputed and stored in a table.

8.3.4 Trilinear Interpolation

In order to use CC grid trilinear interpolation for BCC grid reconstruction, we could resample
a large CC grid. Instead, we resample the largest cubic cell that contains no other sample point
on the fly and trilinearly interpolate in this cell. The cell is defined by the octant of a primary
(secondary) grid CC cell. This octant is the intersection of the two cells from the primary and
the secondary grid which contain the current resampling point. Two sample points of this small
cubic cell already exist in the grid, the other six must be resampled. The resampling of a cubic
cell corner can be done by interpolating between either two or six adjacent sample points (taking
four samples is also possible, but yields bad results). Refer to figure 8.3.

83

Figure 8.2: The Delaunay tetrahedralization of the BCC grid. Two adjacent points (white dots)
together with the two points of the spine (black dots) in x, y, and z direction (from left to right)
make up a tetrahedron.

8.3.5 Sheared Trilinear Interpolation

The BCC grid can be seen as sheared and scaled CC grid, where we operate on sheared cubic
cells. We can use a special kind of trilinear interpolation in these cells, which we denote as
sheared trilinear interpolation. The shear is applied along the two axes that span the 2D CC grid
planes, which we refer as shear planes. First we apply linear interpolations along the four short
edges of the sheared cubic cell. The resulting interpolated values are referred as a, b, c, and d in
figure 8.4. In the figure we can also see that the weights used in this interpolation are determined

by the distances α and
�

2
2 �α from the adjacent 2D CC grid planes. The scalar values a, b, c,

and d can then be used for a bilinear interpolation of the final density value. The shear planes
and the shear directions of the cells can be chosen freely in this approach. We made following
considerations about these parameters:

Shear planes: First we choose the shear planes which are most perpendicular to the actual view
direction as shear planes. This is closely connected to the bilinear reconstruction scheme
from section 8.3.1. Figure 8.4 illustrates this approach in 2D.

Shear directions: Next, we also choose the shear directions depending on the viewing ray di-
rection. The cells are sheared either into positive or negative directions so that the sheared
cell borders are as parallel as possible to the ray. This assures that the ray will pass through
the sheared cell as similar as possible as it would pass through the original cubic cells.
If the viewing ray pointed slightly towards the right, the shear direction towards the the
positive axis would be chosen, as can be seen in figure 8.4.

8.4 Texture-Based Volume Rendering

Texture-based volume rendering is a pure hardware approach, as the entire volume rendering
pipeline is delegated to the graphics chip. The based idea is to download the volume to tex-
tures. Textured proxy polygons are then blended into the frame buffer back-to-front for semi-
transparent volume rendering. There are two main approaches in texture-based rendering, 2D

84

2D visualization 3D visualization

Figure 8.3: Trilinear interpolation in the BCC grid. To interpolate at a position in the shaded
box, first the missing corners of the box (square dots) are interpolated.

texture-based rendering using object-aligned slices and 3D texture-based rendering using view-
aligned slices (refer figure 8.5). We sketch the adaption of 2D texture-based rendering and 3D
texture-based rendering to the BCC grid. Likewise we show the adaption of two important ex-
tensions to overcome the limitations of standard 2D texture-based rendering, i.e., multi-texture
blending and pre-integration. For the BCC grid approaches we exploit the introduced reconstruc-
tion schemes (refer section 8.3).

2D Texture-Based Volume Rendering

2D texture-based rendering exploits 2D texture mapping for a bilinear reconstruction in the
planes. The adaption of the standard 2D texture-based rendering is straightforward. We can
exploit the fact that a BCC grid can be seen as stack of 2D CC slices. Texture coordinates which
are translated by half a negative unit (in texture space) must be assigned to every second slice.
On the BCC grid we need a higher number of textured slices than on the CC grid. Hence we get
a higher sample frequency in exchange for additional rasterization costs. The textures are only
half the size on the BCC grid, which means that details are lost in the slices.

Multi-Texture Blending

The use of multi-texture blending allows intermediate slices on arbitrary positions between the
volume planes. Two adjacent 2D textures are blended on a single intermediate slice. The blend
factors are equal to the spatial position between the back and front slice. In order to adapt the
multi-texture blending approach to BCC grids, we must consider that either front or back slice
is from the secondary grid. Therefore we assign texture coordinates which are translated by
minus half a unit (in texture space) to either front or back slice. After blending front and back
slice texture on the intermediate slice, we achieve a trilinear interpolation. This interpolation is
equivalent to the bilinear plus spatial interpolation in a sheared cubic cell (refer section 8.3.2).

Pre-Integration

Pre-integration allows accurate integration of the transfer function without super-sampling. Pre-
integrated slabs (i.e., the volume between two slices) are rendered instead of slices. The pre-

85

α

c, dc, d

2/2

resample point

interpolated values: a, b
ray

resample point

interpolated values: a, b
ray

2D CC grid planes

α

Figure 8.4: 2D visualization of sheared trilinear interpolation in the BCC grid. The interpolated
values a, b, c, d are used in a bilinear interpolation. The planes and shear direction of the cells
are chosen so that they are as closely as possible aligned to the ray direction.

integration table is downloaded to a 2D texture. The scalar values s f and sb on the front and back
slice are used for a dependent texture lookup. To employ this appoach on a BCC grid, we assign
texture-coordinates translated by minus half a unit to either the front or back slice. We have more
but thinner slabs on the BCC grid. This results in a higher sample frequency for the integration
of the scalar field.

3D Texture-Based Volume Rendering

Röber et al. [49] download the samples from the primary and secondary grid to separate textures
for 3D texture-based rendering. Then they trilinearly interpolate twice in each texture and blend
the resulting values. However, the interpolations in the primary and secondary grid do not take
into account the spatially closest samples.

The hardware uses a hard-wired CC trilinear interpolation inside a 3D texture. To exploit
this interpolation for reconstruction in a BCC grid, we can use an alternative calculation of the
sheared trilinear interpolation from section 8.3.5. We use the fact that a BCC grid can be seen
as sheared and scaled CC grid. The idea is to apply the inverse transformation to the volume
and to each resampling location. Then we can use trilinear interpolation in a CC grid. In this
approach the shear directions of the sheared cubic cells are determined by the applied indexing
scheme. Using the second storage scheme from Theußl et al. [60], it can be verified that we have
an alternating positive-negative shear of the cells. The shear direction is changing at each plane
of the volume. The inverse shear can be calculated by subtracting the following offset from the
x and y components of a resample location on a given z position:

o�z� � min�z��z��1� �z��z���.
The alternative sheared trilinear interpolation is shown in figure 8.6. In order to use this

approach for texture-based volume rendering, we update the given texture coordinates �x t �yt� zt�
per fragment. We denote the spatial extent of our volume in x, y and z direction as s x, sy, and

86

Figure 8.5: Object-aligned slices and view-aligned slices. Image taken from [48].

sz (using cell spacing T � 1). The mapping from texture space (range �0��1�) to world space is
given by:

z � ztsz� 1
4

(8.2)

A subtraction of 1
4 is necessary in above equation, because of the way how the hardware maps

indices to texture coordinates. Then the texture coordinates x t and yt are updated:

xt � xt� o�z�
sx

yt � yt� o�z�
sy

The shear directions of the cells are implicitly determined by the used storage scheme. We
can manage to set the shear planes so that they are most perpendicular to the current view direc-
tion. For this purpose we must rearrange the sample points and store them in three different 3D
textures, one for each principal view axis. This is also the main drawback of our approach, as
popping artifacts are introduced when the view direction changes.

8.5 Projected Tetrahedra Algorithm

The projected tetrahedra algorithm [54] is a simple and flexible algorithm which uses the prop-
erties of a tetrahedral cell. The graphics hardware is exploited to interpolate the scalar function
between the vertices. The method consists of the following steps:

1. Decompose the volume into a tetrahedral mesh. Density values are stored at each vertex.
The scalar function is assumed to be a linear combination of the vertex values.

2. Depth sort the tetrahedra.

3. Classify tetrahedra and decomposite into triangles according to the projected profile. The
two different cases are shown in figure 8.7.

4. Determine color and opacity values at the triangle vertices using ray integration at the
"thick" vertex.

5. Rasterize the triangles.

87

−o(z)

old resample pointresample point

BCC grid

new resample point

Rectilinear grid
trilinear interpolation

Figure 8.6: Alternative sheared trilinear interpolation in a BCC grid. The inverse shear according
to o�z� is applied to the resample point and the BCC grid. Then trilinear interpolation in a
rectilinear volume can be used (e.g., for reconstruction in a 3D texture).

Implementation on the BCC grid is straightforward. The tetrahedral mesh is defined by the
Delauney tetrahedralization on the BCC grid. We concentrated on the exploitation of the regular
grid structure to speed-optimize the projected tetrahedra method on the BCC grids.

Back-to-Front Traversal

On regular grid structures like the CC and BCC grid, we can do the depth-sort step implicitly
with a back-to-front traversal of the sample points. The tetrahedra are created on the fly. For this
purpose, we define a cell structure that contains all tetrahedra processed in one traversal step,
which we denote as traversal complex. This traversal complex is trivially given by a cube on the
CC grid. On the BCC grid, it can be verified that we cover all tetrahedra of the grid by traversing
only the primary (secondary) grid and tetrahedralizing the three octahedra spanned between the
current sample, the adjacent samples of the primary (secondary) grid in positive x, y, and z
axis and four samples from the secondary (primary) grid (see figure 8.2 for the location of the
tetrahedra). A traversal step is shown in figure 8.8). For depth-ordering octahedra, back-to-front
traversal suffices. Thus we process 12 tetrahedra per traversal step (4 per octahedron). Depth-
ordering the tetrahedra inside a traversal complex is trivial. It can be done in a pre-processing
step for orthogonal projection, because we have only 12 different types of tetrahedra on the BCC
grid.

Adjacency Structure for Tetrahedral Grids

To further speed up traversal, we adapted the adjacency data structure from Orchard et al. [44]
to store our tetrahedral mesh. This structure was originally proposed to speed up splatting in
rectangular grids. It stores only visible voxels (i.e. opacity exceeds a certain threshold). Together
with a voxel six pointers to the adjacent visible voxels in all axes are stored, allowing to skip
transparent voxels completely. To enable skipping of larger volume regions, a hierarchy of three

88

class 1a class 1b class 2

Figure 8.7: Basic tetrahedra decomposition classes. The circle refers to the "thick" vertex.

x

z

traversed sample

primary grid

secondary grid

Figure 8.8: Traversal step of the projected tetrahedra algorithm on the BCC grid shown in 2D. In
each step three octahedra (shown in grey, the one in the y axis outlined with dotted lines) are cre-
ated with adjacent samples in the directions of the positive x, y, and z axes, then tetrahedralized.

types of virtual voxels is introduced (box corner, box edge and box face voxels), which encapsu-
late the structure like a box. Box face voxels are stored on each end of visible voxel scanlines.
Box edge voxels are capping both ends of non-zero box face scanlines, and box edge scanlines
are capped with two box corner voxel (refer to the left image in figure 8.9).

To use the data structure for a tetrahedral mesh, we store traversal complexes instead of
voxels (refer to the right image in figure 8.9). A traversal complexes is marked as visible if
one of the 12 tetrahedra inside is non-zero. For each tetrahedra of a visible traversal complex,
we must explicitely check for visibility. Fortunately, the visibility information can be elegantly
stored together with a traversal complex as a checksum, which is the sum of the ID numbers of
all visible tetrahedra (i.e., each of the 12 tetrahedra is given an unique ID number). Visibility
testing is easily done during traversal by masking this checksum with the unique tetrahedron ID.

Improving the Rendering Quality

For linear transfer functions, we can calculate the correct transparency 1�exp��τl� by applying
2D exponential transparency textures [56]. The extinction coefficient τ and the segment length
l are taken as texture coordinates. The most important approach to increase rendering accuracy
without sacrificing hardware-acceleration is pre-integration [51]. A 3D texture is used to store
pre-integrated ray segments, taking the entry point s f , the exit point sb and the segment length l
of a ray as parameters. It can be seen as an integration of the transfer function separate from the
integration of the scalar field.

89

visible voxel

invisible voxel

virtual voxel virtual complex

visible complex (primary grid)

invisible complex (primary grid)

invisible complex (secondary grid)

Original Structure Structure for a BCC tetrahedral mesh

Figure 8.9: A 2D image of the adjacency structure. The structure is encapsulated by a box of
virtual voxels (traversal complexes) which are only created on demand.

Shading Issues

Directional shading is a very important issue in volume rendering, because it provides important
spatial information about the rendered object. For introducing directional shading into the origi-
nal projected tetrahedra algorithm, we simply store the normals with a vertex and apply standard
OpenGL Gouraud shading. It is difficult to use directional shading in combination with pre-
integration, because we only have 3 parameters left as indices into a 3D texture. We developed
three different techniques with individual strengths and drawbacks:

Pre-integration and Gouraud Shading: To achieve Gouraud shading, we set the vertex color
to white and apply the standard OpenGL Gouraud shading. The resulting grey value is
then modulated with the 3D pre-integration texture. To preserve the highlights, we must
assure that the specular output is added after the modulation.

Pre-integration and Phong Shading: For Phong shading we store the normals in the color por-
tion, in order to get the interpolated gradients in the pixel shaders. The gradient and the
output texel of the pre-integration texture can be used for the calculation of the Phong
shading equation. If there is no square root operation available in the pixel shaders, we
can either use a slow cube map for normalization, or use an approximation formula that is
reasonable accurate under the given conditions [52].

Pre-integrated Gouraud Shading [22]: An alternative approach is the implementation of real
pre-integrated Gouraud shading, sacrificing a correct opacity calculation for the diffuse
and specular term. The per vertex lighting in Gouraud shading is calculated with the
approximate Phong equation I � ka � kd��n ��l� � ks��n ��h�n. The idea is to split up the
pre-integration for the ambient, the diffuse and the specular term [22]. The tables are
downloaded to three different 3D textures. The three parameters used for pre-integration
of the Gouraud shading terms differ as follows:

90

l

ray s s

l

f b n
n

n
h h

n

specular

l

(n.h) f
n (n.h)

n
b

l l

ambient diffuse

(n.l)(n.l)f b

Figure 8.10: The parameters of the terms of Gouraud shaded pre-integration.

Ambient term: s f , sb and l.

Diffuse term: ��n ��l� f , ��n ��l�b (i.e dot products on front face f and back face b) and l.

Specular term: ��n ��h�n
f ,��n ��h�n

b and l.

The situation is shown in figure 8.10. These parameters are linearly interpolated over the
polygon, thus correct Gouraud shading is calculated. At the end we must sum up the terms
in the pixel shaders. As we compute diffuse and specular term independent from the actual
transfer function, we manually have to set k d, ks, extinction factor τ, and shininess n to a
constant value.

8.6 Conclusions

We presented several practical reconstruction strategies on the BCC grid and tested them in a
raycasting system. Among them are fast methods with reasonable quality (e.g., bilinear inter-
polation), and higher quality methods comparable to the CC grid trilinear interpolation (e.g.,
bilinear plus spatial, sheared trilinear interpolation).

We adapted the major approaches for texture-based volume rendering to the BCC grid, i.e.,
standard 2D texture-based rendering, 3D texture-texture based rendering, multi-texture blending,
and pre-integration.

Further we presented a speed-optimized version of the projected tetrahedra algorithm on the
BCC grid by exploiting the regular grid structure and orthogonal projection. We adapted a 3D
adjacency data structure originally used for splatting to store a tetrahedral mesh on the CC and
BCC grid, which allows fast traversal by skipping large regions of transparent tetrahedra.

We achieved some impressive rendering results. However, we observed a reduced rendering
quality on some of our datasets like the Melon dataset (regardless of the used method). The
renderings are either not equally sharp and detailed, or otherwise have a rather rough appearance.

The reconstruction schemes are slightly more complex on the BCC grid. We get different
measures regarding the performance of texture-based volume rendering, depending on the used
method. But we achieved no significant performance gain. The smaller data size contributes to
noticeable better rendering rates for the projected tetrahedra algorithm on the BCC grid. This is
caused by the fact that the algorithm is a pure object-order technique.

91

Chapter 9

Conclusions in general

In this chapter we first draw conclusions about the introduced practical reconstruction schemes
on the Body-Centered Cubic grid, then about the hardware-assisted methods modified for BCC
grid rendering.

9.1 Practical Reconstruction Schemes

We investigated several reconstruction schemes on BCC grids first proposed in [60] for raycast-
ing and extended this work with some new ideas. The implementation of the bilinear interpola-
tion approach on BCC grids is straightforward. This scheme directly interpolates on the slices,
and the sample rate has to be chosen accordingly. It is simple and fast, but sometimes prone
to artifacts. Caused by under-sampling, the slice planes are clearly visible especially on the
side of the volume. However, the sample frequency is still higher on BCC grids than on CC
grids, because the planes are closer together by a factor of

�
2. On the contrary, there is a loss

of details in the planes compared to bilinear interpolation on the CC grid. Much better results
are achieved by substituting the bilinear interpolation with a trilinear one using the bilinear plus
spatial interpolation scheme. Barycentric interpolation operates on the natural cell structure of
the BCC grids, the tetrahedral cell. As the barycentric coordinates have linear variation inside a
tetrahedron, the resulting interpolation is only a linear one, resulting in a bad approximation of
the ideal reconstruction filter. Sheared trilinear interpolation provides high quality reconstruction
with reasonable speed if the shear planes are chosen properly. Trilinear interpolation on the BCC
grid is slow because of the additional computations needed to resample a cubic cell on the fly.

As expected, the bilinear interpolation is by far the fastest reconstruction scheme. Although
the barycentric interpolation itself is fast, there is additional overhead of finding the actual tetra-
hedron and the barycentric coordinates. Both schemes suffer from artifacts. Bilinear plus spatial
and sheared trilinear interpolation both yield very similar results. We consider these two schemes
to provide the best quality renderings among BCC interpolation schemes. They are comparable
to CC grid trilinear interpolation in terms of image quality and rendering time is just a little
slower.

There is one additional drawback of all interpolators that operate on or between the 2D CC

92

grid planes, e.g., bilinear, bilinear plus spatial, and sheared trilinear interpolation. The planes
are not uniquely defined and must be chosen depending on the current principal view direction.
This leads to popping artifacts when the principal view axis changes. Furthermore, there are
applications where we initially do not have a direction (e.g., segmentation). For such methods,
we would have to define a virtual view direction. We even have an additional degree of freedom
in sheared trilinear interpolation, where we have to determine the shear direction of the cells.

Generally, most images rendered on BCC grids look slightly blurrier, and sometimes reveal
less details than the corresponding CC grid rendering. We found out in our experiments that
for each reconstruction scheme, we can make out a clear tendency regarding the amount of
blurriness it introduces. Barycentric interpolation produces very rough, but on the same time
the sharpest results. Next comes trilinear interpolation with 2 samples for resampling of the
cubic cell, then trilinear interpolation with 6 samples. Even smoother results are produced by
the bilinear plus spatial interpolation scheme. The surface details are least visible with sheared
trilinear and bilinear interpolation.

Further we investigated several gradient estimation schemes on BCC grids. Among them are
three different adaptions of the central differences approach, the adaptive grey level estimation
scheme proposed by Yagel et al. [46] for CC grids, and a version of the 3 � 3 sobel filter. The
central differences 1 and 2 were proposed by Theußl et al. [60]. Central differences 3 is a lin-
ear combination of the first two approaches. All presented methods except central differences 3
operate on either the primary or secondary grid. The latter approach also yields the best results
among the central differences variations, because the artifacts produced by the first two tech-
niques are smoothed out. As expected, the sobel filter is smoothest. The adaptive grey level
estimation produces the sharpest images and preserves most details.

9.2 Texture-Based Volume Rendering

We adapted both major paradigms for texture-based volume rendering to BCC grids: 3D texture-
based volume rendering using view-aligned slices and 2D texture-based volume rendering using
object-aligned slices textures. Further we modified multi-texture blending and pre-integration
for rendering on a BCC grid. Both methods are important extensions to overcome the limitations
of 2D texture-based rendering. In the pre-integration approach we render volume slabs instead
of slices. The transfer function is pre-integrated in a preprocessing step separately from the inte-
gration of the scalar field. This allows to improve the rendering quality without super-sampling.
Because of the flexibility of the rendering framework, practically all of the implemented render-
ing modes can be easily extended to support BCC grids, for example shaded post-classification,
using either standard 2D texture-based rendering, multi-texture blending, or 3D texture-based
rendering. Also some of the NPR rendering modes of the framework (e.g., tone shading) fully
support BCC grid rendering.

2D texture-based volume rendering uses an interpolation which is equivalent to the bilinear
reconstruction on BCC grids (explained in section 3.1). 2D texture-based rendering is slower on
BCC grids, because more slices must be rendered. We achieve a higher sample frequency on
BCC grids, whereas the textures are half the size of CC grid textures.

93

Similar considerations can be made for the pre-integration approach. On the BCC grid we
have more but thinner slabs. This can be considered as an advantage in terms of the rendering
accuracy, because the integration of the scalar field can be done with a higher sample frequency
than on CC grids.

Multi-texture blending on BCC grids uses a reconstruction which is equivalent to the intro-
duced bilinear plus spatial interpolation scheme from section 3.2. This is a trilinear interpolation
in a sheared cubic cell. The multi-texture blending approach produces the best results among
all of our BCC grid methods. For some datasets, the results seem to be smoother than the cor-
responding CC grid rendering. However, for some volumes like the Melon dataset we again
observed that details are lost. Although textures are only half of the size on BCC grids, we
achieved no significant performance gain.

In order to adapt 3D texture-based rendering using view-aligned slices we used an alternative
sheared trilinear interpolation, which applies an inverse shear to the resample point followed by
a CC trilinear interpolation. We achieved very good results, despite of the hard-wired trilinear
interpolation of the 3D texture hardware. Our method preserves many of the advantages of
the original 3D texture-based rendering on CC grids, like a valid trilinear interpolation in a
(sheared) cubic cell, a constant slice distance (because of the view-aligned slices) and the ability
for super-sampling. Furthermore, it can be implemented quite elegantly into the used framework
(section 6.3.1), and almost all rendering modes implemented for the CC grid version can also be
used for BCC grid rendering.

On the other hand, our approach has some drawbacks which have to be discussed. Because
of the used indexing scheme, an alternating shear direction of the cells is necessary. This can
cause some artifacts in form of a visible shear. We know that the shear planes most perpendicular
to the actual view direction must be chosen. To achieve this with the alternative sheared trilinear
interpolation scheme, three 3D textures must be stored at once (similar to the three slice stacks
in the 2D texture approach). This also introduces popping artifacts that otherwise do not happing
for view-aligned slices.

Unfortunately, the smaller 3D texture size of approximately 29.3% on BCC grids does not
speed up rendering rate as we expected, whereas the required per fragment instructions noticeable
slows down the rendering time. This slowdown is far less noticeable if rendering modes are used
which need equally or even more expensive fragment programs, like shaded post-classification.
As fragment programs will get faster in the next generations of graphic chips, we assume that
3D texture-based rendering on BCC grids will perform much better in the future.

Texture-based volume rendering does not achieve the desired performance gain on BCC grids
despite being an object-order algorithm. The reason is that the most significant factor for the per-
formance is the rasterization time. For rasterization, the hardware has to evaluate the contribution
to an output image pixel similar to raycasting, which is an image-order algorithm.

9.3 Projected Tetrahedra Algorithm

We did not restrict our work to a simple reimplementation of the original projected tetrahedra
algorithm on the BCC grid, which would have been straightforward. Instead, we proposed a

94

version of the algorithm that is highly specialized to our new grid for providing fast depth-order
rendering. To speed up the processing of the visible tetrahedra, we adapted a adjacency structure
that was originally proposed to improve performance of splatting on regular grids. The structure
contains only visible voxels that are connected by a system of linked list, allowing us to skip
large regions in the volume. To use this structure in the tetrahedral mesh derived from the CC
and the BCC grid, we defined a structure which we denoted as traversal complex. This is the
geometric structure that contains all tetrahedra processed in one traversal step, i.e., a cubic cell
on CC grids and three perpendicular octahedra on BCC grids.

Further we implemented and presented some important improvements to the original algo-
rithm regarding performance and rendering speed, like exponential transparency textures and
pre-integration. Although directional shading is a very important feature, not much has been
published before about shading in tetrahedral cell projection. Therefore we proposed several
schemes for introducing shading and combining it with pre-integration. We suggested three dif-
ferent approaches: pre-integration with Gouraud shading, pre-integration with Phong shading
and alternatively pre-integrated Gouraud shading. In the latter approach three textures cor-
responding to the ambient, diffuse, and the specular terms in the shading equation are pre-
integrated.

Using the adjacency structure for fast back-to-front traversal, the algorithm yields interactive
frame rates for small to medium datasets. Similar to splatting, the algorithm has it’s strength
when many tetrahedra are invisible and can be discarded. The performance may sometimes
exceed that of texture-based rendering if this requirement is met, like for the Fuel or Hipiph
dataset. For larger datasets where a tetrahedron covers only some pixels in the output image, the
projected tetrahedra algorithm loses much of it’s efficiency.

Rendering accuracy is brought to a higher level with the use of pre-integration, although some
shading artifacts are still visible. We achieved the best shading quality with the Phong shad-
ing approach, which is superior to the slightly duller Gouraud shading method. Pre-integrated
Gouraud shading needs careful adjustment of additional parameters, i.e., opacity and color for
the integration of the specular and the diffuse term. The shading quality can be greatly enhanced
by the application of more sophisticated gradient estimation schemes, like the 3� 3 sobel filter.
The rendering quality on the BCC grid is very similar to the quality on CC grid. Only slight dif-
ferences are visible, like stronger Mach band effects on BCC grids. On the other hand we always
have less tetrahedra to process on BCC grids, which makes the algorithm noticeable faster.

The one remaining question is: Is this algorithm, which is widely known as an algorithm for
the rendering of unstructured grids, an alternative for well established rendering algorithms on
regular grids, like splatting? Our answer is: Yes, if pre-integration and the other extensions are
implemented.

95

Chapter 10

Future Perspectives

In this chapter we give an overview of future perspectives concerning the BCC grid. This includes
a discussion of still open questions and a list of possible explanations. Afterwards we suggest
some future research about the acquisition of more datasets, analysis of the frequency support
and high-quality reconstruction. Finally we present some ideas about other methods that could
be used to exploit hardware for performance acceleration on BCC grids.

10.1 Open Questions

We already achieved some impressive results on the BCC grid. However, there is still the problem
of noticeable reduced rendering quality for some datasets. According to the BCC grid theory,
which is profound and well investigated, this should not happen. Rather we would expect equal
quality on both grids. For non analytical datasets, the reason could be errors introduced by
resampling of the CC volume. However, we made similar observations for datasets generated
and sampled directly on both grids, e.g., the Melon or the Device dataset. In fact, the results
from these datasets even emphasize the described tendencies, as the gap between BCC grids and
CC grids is higher than for most of the resampled volumes. We could not fully find the reasons
for this facts in the scope of this thesis , but we are able to give a list of possible explanations that
have to be verified in future works:

• We know not much about the process how the melon and device dataset were generated.
Some kind of resampling could have happened during the scanning process, causing re-
sampling errors as if the BCC grid datasets were resampled from CC grid datasets.

• Equal resampling quality can only be achieved with ideal reconstruction. We have to
investigate higher-order reconstruction schemes for a better approximation of the ideal
sinc filter to find out about this matter.

• For non analytic datasets, we implicitly assumed the scalar function to have spherical sup-
port, which may not be the case in practice.

96

• All gradient estimation schemes use either not the actual closest samples or otherwise an
average of the closest samples, introducing smoothing.

• Simple schemes like central differences are not able to exploit optimal resampling proper-
ties of the BCC grid.

• Interpolation in the natural cell (i.e., the tetrahedron) on the BCC grid has the potential to
yield equivalent quality to interpolation in the natural cell on the CC grid (i.e., the cube),
but barycentric (= linear) interpolation is not sufficient.

• Following Carr et al. [6], the cell primitives used for reconstruction on the BCC grid
(sheared cell, tetrahedron) do not approximate the shape of a sphere as good as a cube.
Hence they might not be suited for reconstruction of functions with spherical support.

• If ideal reconstruction is not used, we have errors on both grids. In this case, the BCC
grid has it’s strength when approximating round structures (Fuel, Hipiph dataset), whereas
straight or rough surfaces (Cube, Device dataset) are better approximated on the CC grid.

10.2 Datasets

Much more datasets of different types are required, which allow a fair comparison of rendering
methods on both grids without unwanted side effects:

• We need real world datasets directly sampled on the BCC grid, which show a variety of
different characteristics, for example regarding physical density.

• There should be an analytic dataset that is the equivalent to the Marschner-Lobb dataset
in the field of functions that have spherical support. More specific, the function should be
simple but challenging for any reconstruction scheme. The analytic shape of the function
must be well known and of a type so that resampling errors are intuitively recognized.

• It should impose no problems to sample simulation data directly on a BCC grid.

10.3 Analysis of the Frequency Domain

We should know more about the spectral properties of the proposed interpolation methods. An
evaluation may solve some unanswered questions about reconstruction on BCC grids. Further,
we do not have much knowledge about our datasets in frequency domain. We assumed a spherical
support, but this has yet to be proven. In case that the spectrum is different from a sphere, it
would be very interesting to investigate how the shape of the frequency support affects rendering
quality. Theußl [58] suggested the construction of a frequency support renderer for a graphical
display of the spectrum. Interestingly, this results in another volume rendering problem.

97

10.4 High-Quality Reconstruction

We have done much research on the topic of practical reconstruction schemes on BCC grids.
However, there is still much more work to do in the direction of higher-order reconstruction (i.e.,
truncated sinc, cubic filters). It lies in the nature of such schemes that they provide high quality
renderings but are impracticable slow. Nevertheless they are of interest in order to learn more
about BCC grids.

As we assume a spherical support in the BCC grid, the application of a rotational symmetric
filter is the logical choice. This filter takes the Cartesian distance function

�
x2 � y2 � z2 as

input weights for the samples (refer left image of figure 10.1). Unfortunately, this kind of filter
is not separable and therefore quite difficult to handle. Another issue is the filter design, as it
is challenging to make them interpolating due to the spatial position of the points in the BCC
grid. There is one further problem to solve: The spherical filter extend makes it computationally
inefficient to process all samples that fall into a rectangular cubic window, like it is usually done
for separable filters, because many tested samples would be outside of the filter range.

In a completely different approach, we can achieve high-quality reconstruction by raising the
quality of the interpolation in a tetrahedral cell, which seems to be better suited for implementa-
tion on BCC grids. It is well known that interpolation in a 4-node tetrahedron is only piece-wise
linear. Therefore Williams et al. [69] proposed a 10-node tetrahedral cell (see right image of
figure 10.1) in their high-accuracy renderer. This is also called quadratic tetrahedron, because in-
side of the cell there is a quadratic variation of the scalar field. They further extended the scheme
to a cubic tetrahedron. With the price of quickly growing computational expense, tetrahedra of
even higher order can be constructed.

More research must also be done in the field of gradient reconstruction. Higher-order derivate
reconstruction schemes like the cubic spline based gradient filter proposed by Bentum et al. [2]
have potential to enhance image quality in terms of visible details and sharpness on BCC grids.

10.5 Texture-Based Volume Rendering

After widening our basic knowledge about the application of higher-order filters on the BCC
grid, we can think of implementing these filters in hardware following the approach of Hadwiger
et al. [24].

We can observe from the texture-based timing tables from section 7.4.2 that we get no real
performance gain on BCC grids, and we have a significant slowdown for 2D texture-based vol-
ume rendering.

In order to cope with this problem, the principal view axes could be defined to be parallel to
the diagonals of the volume faces (instead of principal view axes parallel the volume edges). The
situation is sketched in figure 10.2. After the samples are downloaded to the textures accordingly,
we can use all techniques for object-aligned slices (and slabs), like 2D texture-based volume
rendering, multi-texture blending, or pre-integration. The new approach has several possible
advantages regarding performance and even rendering quality over the basic alignment of the
principal view axes:

98

filter footprint resample point

Rotational symmetric filter Quadratic tetrahedron

Figure 10.1: High-quality reconstruction: Convolving the samples inside the range of a rotational
symmetric filter on the left (image taken from [59]) and a quadratic (10-node) tetrahedron on the
right.

texture slices

3/2

3/2

slices
proxy polygons

diagonal

1

x

z y

x

Figure 10.2: Slice planes aligned to the diagonal of a volume face in a BCC grid. Viewed down
the y axis (left), and down the diagonal (right). Sample distance is reduced to

�
3�2 and slice

distance is increased to 1. The proxy polygon size is varying.

99

Figure 10.3: The projected tetrahedra algorithm for the the Fuel dataset on the BCC grid. From
left to right: Pre-integration without normal weight and a regional zoom, pre-integration with
pre-integrated normal weight and a zoom.

• The number of slices in the new principal view directions (defined by the diagonals) is
the same as in the equivalent CC volume, which is a reduction of factor

�
2 to the basic

approach. On the other hand, the slice distance is increased from 1�
�

2 to 1.

• The required 2D texture size is equal to the corresponding CC grid size (see right part of
figure 10.2). But if we set the size of each proxy polygon individually in order to tightly
fit the sample points into the quadrilaterals (figure 10.2), we could benefit from a much
reduced rasterization load for the hardware.

• Inside the slice planes, samples are
�

3�2 apart, as opposed to
�

2 in the original imple-
mentation, probably yielding a better resampling quality and an improvement in terms of
visible details.

• For four of the six samples needed for the calculation of the central differences, we are able
to use the spatially closest samples. This fact can result in a possible enhanced shading
quality.

10.6 Cell Projection Algorithms

There is still be potential to enhance rendering quality and shading of projected tetrahedra algo-
rithms without sacrificing performance, by exploiting new capabilities of the hardware. Meißner
et al. improved shading in combination with pre-integration for hardware-accelerated raycast-
ing [42] and texture-based volume rendering [39] by pre-integrating a normal weight. The
weight is used to interpolate between the back and front normal of a slab. The resulting nor-
mal is then applied in the shading equation. This normal much better represents the normal of
the pre-integrated slab than just taking the average between front and back normal, for instance.
This approach is suitable for the projected tetrahedra algorithm as well [22], using one 3D pre-
integration texture for the transfer function and one for the interpolation weight. In figure 10.3,
we see that artifacts can appear for a view direction relatively parallel to one of the principal

100

view axes (first and second image from the left). These artifacts are partly reduced by using a
pre-integrated normal weight (first and second image from the right).

As stated in section 2.4.4, Carr et al. [6] gets better performance and rendering quality for
the marching octahedra and marching hexahedra than for the marching tetrahedra algorithm.
Likewise, we could think of a cell projection algorithm that is centered around an octahedral
(hexahedral) cell.

101

Bibliography

[1] Kurt Akeley. Reality engine graphics. In Proceedings of SIGGRAPH ’93, pages 109–116,
1993.

[2] Mark J. Bentum, Barthold B. A. Lichtenbelt, and Tom Malzbender. Frequency analysis of
gradient estimators in volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 2(3):242–254, September 1996.

[3] Christoph Berger. A framework for flexible, hardware-accelerated, and high-quality volume
rendering. In Proceedings of the Central European Seminar on Computer Graphics, pages
205–214, 2003.

[4] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware. In Arie Kaufman and Wolfgang Krueger,
editors, Proceedings of the 1994 Symposium on Volume Visualization, pages 91–98. ACM
SIGGRAPH, October 1994.

[5] Hamish Carr, Torsten Möller, and Jack Snoeyink. Simplicial subdivisions and sampling
artifacts. In Proceedings of the IEEE Visualization ’01, pages 99–106. IEEE Computer
Society, 2001.

[6] Hamish Carr, Thomas Theussl, and Thorsten Möller. Isosurfaces on optimal regular sam-
ples. In Proceedings of the 2003 Joint Eurographics - IEEE TCVG Symposium on Visual-
ization (VisSym 2003), pages 39–48, 2003.

[7] S. L. Chan and E. O. Purisima. A new tetrahedral tesselation scheme for isosurface gener-
ation. In Computers & Graphics, volume 22(1), pages 83–90, February 1998.

[8] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Multiresolution representation and
visualization of volume data. IEEE Transactions on Visualization and Computer Graphics,
3(4):352–369, October/December 1997.

[9] P. Cignoni, C. Montani, D. Sarti, and R. Scopigno. On the optimization of projective volume
rendering. In Visualization in Scientific Computing ’95, pages 55–71. Sixth Eurographics
Workshop, Springer Computer Science, May 1995.

102

[10] João Comba, James T. Klosowski, Nelson Max, Joseph S. B. Mitchell, Claudio T. Silva,
and Peter L. Williams. Fast polyhedral cell sorting for interactive rendering of unstructured-
grids. In P. Brunet and R. Scopigno, editors, Computer Graphics Forum (Eurographics
’99), volume 18(3), pages 369–376. The Eurographics Association and Blackwell Publish-
ers, 1999.

[11] Roger Crawfis. Real-time slicing of data space. In Proceedings of the IEEE Visualiza-
tion ’96 (Vis ’96), pages 271–277. IEEE Computer Society, 1996.

[12] Roger Crawfis and N. Max. Texture splats for 3D scalar and vector field visualization.
In Proceedings of the IEEE Visualization ’93 (Vis ’93), pages 261–266. IEEE Computer
Society, 1993.

[13] T.J. Cullip and U. Neumann. Accelerating volume reconstruction with 3d texture hardware.
Technical Report TR93-027, University of North Carolina, 1993.

[14] Frank Dachille, Kevin Kreeger, Baoquan Chen, Ingmar Bitter, and Arie Kaufman. High-
quality volume rendering using texture mapping hardware. In Proceedings of the 1998 EU-
ROGRAPHICS/SIGGRAPH workshop on Graphics hardware, pages 69–76. ACM Press,
1998.

[15] vuVolume documentation. http://www.cs.sfu.ca/ torsten/volclass/documentation/, 2003.

[16] Alois Dornhofer. A discrete fourier transform pair for arbitrary sampling geometries with
applications to frequency domain volume rendering on the body-centered cubic lattice.
Master’s thesis, Vienna University of Technology, 2003.

[17] D. E. Dudgeon and R. M. Mersereau. Multidimensional Digital Signal Processing.
Prentice-Hall, Inc., Englewood-Cliffs, NJ, 1st edition, 1984.

[18] Klaus Engel and Thomas Ertl. Interactive high-quality volume rendering with flexible con-
sumer graphics hardware. Technical report, University of Stuttgart, February 2002. STAR.

[19] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-integrated volume ren-
dering using hardware-accelerated pixel shading. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 9–16, 2001.

[20] Ricardo Farias, Joseph S. B. Mitchell, and Claudio T. Silva. Zsweep: an efficient and exact
projection algorithm for unstructured volume rendering. In Proceedings of the 2000 IEEE
Symposium on Volume Visualization, pages 91–99. ACM Press, 2000.

[21] Allen Van Gelder and Kwansik Kim. Direct volume rendering with shading via three-
dimensional textures. In Proceedings of the 1996 IEEE Symposium on Volume Visualiza-
tion, pages 23–30, 1996.

[22] Stefan Guthe, 2003. Personal Communication.

103

[23] Stefan Guthe, Stefan Röttger, Andreas Schieber, Wolfgang Strasser, and Thomas Ertl.
High-quality unstructured volume rendering on the pc platform. In Proceedings of the
Conference on Graphics Hardware 2002, pages 119–125. Eurographics Association, 2002.

[24] Markus Hadwiger, Ivan Viola, Thomas Theußl, and Helwig Hauser. Fast and flexible high-
quality texture filtering with tiled high-resolution filters. In Proceedings of Vision, Model-
ing, and Visualization 2002, pages 155–162, 2002.

[25] L. Ibáñez, C.Hamitouche, and C.Roux. Determination of discrete sampling grids with opti-
mal topological and spectral properties. In Procceedings of the 6th International Workshop
in Discrete Geometry for Computer Imagery DGCI’96, pages 181–192, 1996.

[26] L. Ibáñez, C.Hamitouche, and C.Roux. Ray casting in the BCC grid applied to 3D medical
image visualization. Proceedings of the 20th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 20(2):548–551, 1998.

[27] James T. Kajiya and Brian P. Von Herzen. Ray tracing volume densities. In Proceedings of
SIGGRAPH ’84, pages 165–174, 1984.

[28] Mark J. Kilgard. NVIDIA OpenGL extension specifications. Technical report, NVIDIA
Corporation, June 2003.

[29] Davis King, Craig M. Wittenbrink, and Hans J. Wolters. An architecture for interactive
tetrahedral volume rendering. In Proceedings of the International Workshop on Volume
Graphics 2001, pages 163–180. Springer-Verlag, 2001.

[30] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp factorization
of the viewing transformation. In Andrew Glassner, editor, Proceedings of SIGGRAPH
’94, Computer Graphics Proceedings, Annual Conference Series, pages 451–458. ACM
SIGGRAPH, July 1994.

[31] David Laur and Pat Hanrahan. Hierarchical splatting: a progressive refinement algorithm
for volume rendering. In Proceedings of SIGGRAPH ’91, pages 285–288. ACM Press,
1991.

[32] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Appli-
cations, 8(3):29–37, May 1988.

[33] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In Proceedings of SIGGRAPH ’87, pages 163–169. ACM Press,
1987.

[34] Tom Malzbender. Fourier volume rendering. ACM Transactions on Graphics (TOG),
12(3):233–250, 1993.

104

[35] Stephen R. Marschner and Richard J. Lobb. An evaluation of reconstruction filters for
volume rendering. In R. Daniel Bergeron and Arie E. Kaufman, editors, Proceedings of the
IEEE Visualization ’94 (Vis ’94), pages 100–107, 1994.

[36] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics, 1(2):99–108, 1995.

[37] Nelson Max, B. Becker, and R. Crawfis. Flow volumes for interactive vector field visu-
alization. In Gregory M. Nielson and Dan Bergeron, editors, Proceedings of the IEEE
Visualization ’93 (Vis ’93), pages 19–24, San Jose, CA, October 1993. IEEE Computer
Society Press.

[38] Nelson Max, Pat Hanrahan, and Roger Crawfis. Area and volume coherence for efficient
visualization of 3d scalar functions. In Proceedings of the 1990 Workshop on Volume Visu-
alization, pages 27–33. ACM Press, 1990.

[39] Michael Meißner, Stefan Guthe, and Wolfgang Straßer. Interactive Lighting Models and
Pre-Integration for Volume Rendering on PC Graphics Accelerators. In Proceedings of the
Graphics Interface 2002, pages 209–218, May 2002.

[40] Michael Meißner, Ulrich Hoffmann, and Wolfgang Straßer. Enabling classification and
shading for 3D texture mapping based volume rendering using openGL and extensions. In
David Ebert, Markus Gross, and Bernd Hamann, editors, Proceedings of the IEEE Visual-
ization ’99 (Vis ‘99), pages 207–214, San Francisco, 1999. IEEE.

[41] Michael Meißner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A practical evaluation
of four popular volume rendering algorithms. In Proceedings of the 2000 IEEE Symposium
on Volume Visualization, pages 81–90, October 2000.

[42] Michael Meißner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. Straßer, M. Doggett,
P. Forthmann, and R. Proksa. Vizard ii: a reconfigurable interactive volume rendering
system. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
Hardware, pages 137–146. Eurographics Association, 2002.

[43] Neophytos Neophytou and Klaus Mueller. Space-time points: 4d splatting on efficient
grids. In Proceedings of the 2002 IEEE Symposium on Volume Visualization, pages 97–
106. IEEE Press, 2002.

[44] Jeff Orchard and Torsten Möller. Accelerated splatting using a 3d adjacency data structure.
In GI 2001, pages 191–200, June 2001.

[45] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer, and Larry Seiler. The vol-
umepro real-time ray-casting system. In Alyn Rockwood, editor, Proceedings of SIG-
GRAPH ’99, pages 251–260, 1999.

[46] D. Cohen R. Yagel and A. Kaufman. Normal estimation in 3D discrete space. The Visual
Computer, 8(5-6):278–291, 1992.

105

[47] David M. Reed, Roni Yagel, Asish Law, Po-Wen Shin, and Naeem Shareef. Hardware
assisted volume rendering of unstructured grids by incremental slicing. In Proceedings of
the 1996 Symposium on Volume Visualization, pages 55–62. IEEE Press, 1996.

[48] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive volume rendering
on standard PC graphics hardware using multi-textures and multi-stage rasterization. In
Stephan N. Spencer, editor, Proceedings of the 2000 SIGGRAPH/EUROGRAPHICS Work-
shop on Graphics Hardware, pages 109–118. ACM Press, August 2000.

[49] Niklas Röber, Markus Hadwiger, Alireza Entezari, and Torsten Möller. Texture based vol-
ume rendering of hexagonal data sets. Technical report, Graphics, Usability, and Visualiza-
tion (GrUVi) Lab Simon-Fraser University, 2003.

[50] Stefan Röttger and Thomas Ertl. A two-step approach for interactive pre-integrated volume
rendering of unstructured grids. In Proceedings of the 2002 IEEE symposium on Volume
visualization and graphics, pages 23–28. IEEE Press, 2002.

[51] Stefan Röttger, Martin Kraus, and Thomas Ertl. Hardware-accelerated volume and iso-
surface rendering based on cell-projection. In Proceedings of the IEEE Visualization ’00
(Vis ‘00), pages 109–116. IEEE Computer Society Press, 2000.

[52] Gerald Schröcker. Hardware accelerated per-pixel shading. In Proceedings of the Central
European Seminar on Computer Graphics, pages 233 – 246, 2002.

[53] Greg Schussman and Nelson Max. Hierarchichal perspective volume rendering using tri-
angle fans. In Arie Kaufman, Bill Lorensen, and Klaus Mueller, editors, Proceedings of the
International Workshop on Volume Graphics, pages 309–320. Springer-Verlag, 2001.

[54] Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume
rendering. In Computer Graphics (San Diego Workshop on Volume Visualization), pages
63–70, November 1990.

[55] N. J. A. Sloane. The sphere packing problem. In ICM: Proceedings of the International
Congress of Mathematicians, pages 387–396, 1998.

[56] Clifford M. Stein, Barry G. Becker, and Nelson L. Max. Sorting and hardware assisted
rendering for volume visualization. In Proceedings of the 1994 Symposium on Volume
Visualization, pages 83–89. ACM Press, 1994.

[57] J. Sweeney and K. Mueller. Shear-warp deluxe: The shear-warp algorithm revisited. In
Proceedings of the 2002 Joint Eurographics - IEEE TCVG Symposium on Visualization
(VisSym 2002), pages 95–104, Barcelona, Spain, May 2002.

[58] Thomas Theußl. Personal communication.

106

[59] Thomas Theussl, Oliver Mattausch, Torsten Möller, and Eduard Gröller. Reconstruction
schemes for high quality raycasting of the body-centered cubic grid. Technical Report
TR-186-2-02-11, Vienna University of Technology, Institute for Computer Graphics and
Algorithms, December 2002.

[60] Thomas Theußl, Torsten Möller, and Eduard Gröller. Optimal regular volume sampling. In
Thomas Ertl, Ken Joy, and Amitabh Varshney, editors, Proceedings of the IEEE Visualiza-
tion 2001 (Vis ’01), pages 91–98, 2001.

[61] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised marching tetrahedra: improved
iso-surface extraction. Computers & Graphics, 23(4):583–598, 1999.

[62] Ming Wan, Arie Kaufman, and Steve Bryson. Optimized interpolation for volume ray
casting. Journal of Graphics Tools: JGT, 4(1):11–24, 1999.

[63] VRVis webpage. http://www.vrvis.at/, 2003.

[64] Manfred Weiler, Martin Kraus, and Thomas Ertl. Hardware-based view-independent cell
projection. In Proceedings of the 2002 IEEE Symposium on Volume Visualization, pages
13–22. IEEE Press, 2002.

[65] Rüdiger Westermann. The rendering of unstructured grids revisited. In D. Ebert, J. M.
Favre, and R. Peikert, editors, Proceedings of the 2001 Joint Eurographics - IEEE TCVG
Symposium on Visualizatation (VisSym 2001), pages 65–74. Springer-Verlag, May 2001.

[66] Rüdiger Westermann and Thomas Ertl. Efficiently using graphics hardware in volume
rendering applications. In Michael Cohen, editor, Proceedings of SIGGRAPH ’98, pages
169–178. ACM SIGGRAPH, July 1998.

[67] Lee Westover. Footprint evaluation for volume rendering. In Proceedings of SIGGRAPH
’90, pages 367–376. ACM SIGGRAPH, August 1990.

[68] Jane Wilhelms and Allen Van Gelder. A coherent projection approach for direct volume
rendering. In Proceedings of SIGGRAPH ’91, pages 275–284. ACM SIGGRAPH, 1991.

[69] Peter Williams, Nelson Max, and Cliff Stein. A high accuracy volume renderer for un-
structured data. IEEE Transactions on Visualization and Computer Graphics, 4(1):37–54,
1998.

[70] Peter L. Williams. Visibility ordering meshed polyhedra. ACM Transactions on Graphics
(TOG), 11(2):103–126, April 1992.

[71] Peter L. Williams and Nelson Max. A volume density optical model. 1992 Workshop on
Volume Visualization, pages 61–68, 1992.

[72] Craig M. Wittenbrink. Cellfast: Interactive unstructured volume rendering. Technical
Report HPL-1999-81R1, Hewlett Packard Laboratories, September 1999.

107

[73] Brian Wylie, Kenneth Moreland, Lee Ann Fisk, and Patricia Crossno. Tetrahedral pro-
jection using vertex shaders. In Proceedings of the 2002 IEEE Symposium on Volume
Visualization and Graphics, pages 7–12. IEEE Press, 2002.

[74] Yong Zhou, Baoquan Chen, and A. Kaufman. Multiresolution tetrahedral framework for
visualizing regular volume data. In Proceedings of the IEEE Visualization ’97 (Vis 97),
pages 135–142. IEEE Computer Society, 1997.

108

APPENDIX A
List of Abbreviations

API: application programming interface.

BCC: Body-Centered Cubic grid.

CC: Cartesian Cubic grid.

CD: central difference gradient estimation method.

CG: high-Level C-like graphics programming language from NVIDIA.

CT: computed tomography.

FCC: Face-Centered Cubic grid.

FDVR: fourier domain volume rendering.

GPU: graphics processing unit.

GUI: graphical user interface.

HCP: Hexagonal Close Packing grid.

MIP: maximum intesity projection.

MRI: magnetic resonance imaging.

NPR: nonphotorealistic rendering.

PT: projected tetrahedra algorithm.

109

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

