
 1

Tangible Image Query
Kresimir Matkovic,

VRVis Research Center

Donau-City Strasse 1, A-1220 Vienna
Matkovic@VRVis.at

Thomas Psik, and Ina Wagner
Institute of Design and Assessment of Technology

Vienna University of Technology
Argentinierstrasse 8/187, A-1040 Vienna

{psik|iwagner}@pop.tuwien.ac.at

ABSTRACT
This paper introduces a tangible user interface for browsing
and retrieving images from an image database. The basis
for the query to the image database is a color layout sketch,
which is used by the underlying query algorithm to find the
best matches. The users are provided with colored cubes of
various sizes (1.5 to 4 cm) and colors (8 base colors). The
users can place and arrange the colored cubes on a small
table to create a color layout sketch. Multiple users can use
this interface to collaborate in an image query. To evaluate
the benefits of the interface, it is compared to a traditional
GUI application in which the users use a mouse to create a
color layout sketch.

Author Keywords
Tangible user interface, image retrieval.

ACM Classification Keywords
H.5.2 User Interfaces: Input devices and strategies. I.4.8
Scene Analysis: Color.

INTRODUCTION
The explosion of digital technology in the last decade led to
the enormous amount of digital images. Conventional ways
of data retrieval become just insufficient for large amounts
of visual material. Popular thumbnail view becomes useless
if we have thousands or tens of thousands of images.
Another approach, key wording, simple does not function
with most of us. It is easy to keyword few images, but it is
illusory to expect that average users will keyword their
whole collections. Eakins and Graham [8] claim that some
professional agencies need up to 40 minutes to keyword a
single image. It is clear that common user confronted with
hundreds and thousands of images cannot do such precise
key wording. Content based image retrieval which has been
a subject of extensive research in the last decade, tries to

offer a solution for retrieving images from large data bases.

The original and still the most often used idea is query by
the example method. This means that the user supplies an
image, and the system tries to find similar images. The only
problem is the definition of similarity in this case. As
humans themselves can not always agree on what is similar
and what is not (or what is more similar) the results of
image retrieval is often unexpected and sometimes
disappointing. Figure 1 shows an example where such a
system was used to search for images similar to the bird
image. If the user understands that the system tries to find
images with similar color layout, and not the content (bird
in this case) results are much more satisfactory. On the
other hand if the user expects birds he/she might be really
disappointed.

The next step in image retrieval was not to search only for
overall similarity, but rather to find images containing a
specific pattern. A company logo is a good example.
Imagine a company searching for images containing their
logo. The logo can be anywhere in the image, it can be
taken under various lighting conditions, it can be distorted
due to the perspective projection and so on. Clearly this is
not a trivial task. Furthermore, if we try to find all images
containing a bird, for example, the whole search becomes
practically impossible.

There are numerous systems capable of various kinds of
image queries available. Let us mention just a few best
known ones. IBM’s QBIC System [13] was one of the first
systems, and it can be tested online on [2] and [1]. The VIR
Image engine [15] from Virage, Inc. and Photobook Project
[24] developed in the MIT Media Lab are two also well
known examples. The work of Jacobs at al. [19] is
especially well known in the computer graphics
community. All of these as well as [10,16,20,27], represent
query by example approach. There are systems like
Blobworld [4,7] or ICONA [6,11,12] which represent
another group of systems that goes beyond simple query by
example, and try to find similar shapes, textures, and other
features.

 2

Some systems offer a possibility for the user to sketch the
query image. The idea is that the user might remember how
the image looked like (but cannot remember image’s
name), so the user sketches the image, and the system finds
matching images from the database. Another possible
scenario of use comes from the designers’ and architects’
perspective. In the concept design phase of a project it is
common practice to browse through the image collections
in order to be inspired, to see some unexpected connection
between images. Visual image query can be used for such a
browsing. The drawback of the method described above
(see Figure 1) suddenly becomes an advantage. Asking for
a parrot, and getting a flower can be either: frustrating or
inspiring, depending on user and context.

Our work is based on such a system, and we introduce a
new kind of user interface for sketching the images. Instead
of using a mouse to draw, users are provided with small
cubes of various sizes and colors, and they try to sketch the
image using the color cubes. Cubes are placed on a
semitransparent glass surface. Besides the cubes, users can
use any color objects. This kind of “sketching” using
currently available artifacts is particularly common among
designers and architects. We implemented the method,
made build a prototype and tested it with users. Finally we
compared the results with conventional sketching using a
mouse.

UNDERLYING ALGORITHM
Our system is based on the visual image query by Matkovic
et al. [23]. We’ll describe the underlying algorithm briefly.
Just like the most of image query methods, the method uses
descriptors to describe each image. Descriptors are created
for each image in the database during the a preprocessing
phase. When the user requests performs a query, a
descriptor is created for query image and compared to the
stored descriptors. Various query systems differ in the art

descriptors. Various query systems differ in the art way
how descriptors (sometimes called signatures) are created.
In tThe Visual Image Query (the system he have
used)which we used,calculates descriptors are created using
quasi-randomly distributed rectangles of various sizes in the
image. The rectangles partly overlap. The sizes of the
rectangle are chosen according to the contrast sensitivity
function of the human eye. Figure 2 illustrates rectangles’
distribution for 100, 250, 500 and 1000 rectangles. After the
rectangles are placed, the average color is computed for
each rectangle, and the Luv color triple for each of 1000
rectangles is stored in the signature. The signature contains
only color information for each rectangle, and the system
can not distinguish if, e.g. an orange spot in the middle is a
flower or a fish. The only information known is that there is
an orange spot in the middle. Exact shape of the spot is also
not known. It is sampled using the rectangles, and can never
be precisely reconstructed.

The method was used since it is particular convenient for
comparison of user sketches. The sketch is not precise, and
actually, only the color layout matters. Actually, the more
precise is the drawing is, the more unsatisfactory are the
results.

In order to make it suitable for the new interface, and in
order to compare it with conventional input, we have had to
change the original algorithm slightly.

Figure 2. Rectangle distribution for first 100, 250, 500 and 1000

rectangles in the algorithm we have used.

Figure 1. Query by Example can be disappointing if the user
does not understand underlying algorithm. Here the system

searches for similar color-layout, and not for birds.

 3

Changes in the original algorithm
The authors of the original algorithm use a reduced color
space, but they still have more than 50 colors. This was too
much for our approach, so we had to further reduced the
color space. There are only 7 colors (red, orange, yellow,
green, cyan, blue, and magenta) and black and white that
we use. Furthermore, in the original algorithm either the
whole image or a single area was compared. We had to
change this to allow multiple areas. Only the parts of the
image where the user sketches something will be used in
comparison. In this way user does not need to sketch the
background, but only significant places he/she remembers.
Furthermore, the query starts automatically if the user does
not change the sketch for a second, and results are
displayed. Figure 3 illustrates an example of simple sketch
and the subset of rectangles used in this case.

Of course, the support for the new interface had to be added
as well.

Sketching the query image
In our tests with the original system using conventional
mouse input, we found out that there are two groups of
users. The first group of users, forming a majority, are the
users who claim they can not draw (or paint, or sketch). It
was not easy to encourage them to try the system. They
were just saying “I can not draw”. Although we explained
that they do not need exact reproduction, but just a red spot
here, and a blue spot there... just a color layout sketch, it
was still not easy to get sketches from them.

The second group of users were users who can draw. The
problem with them was that they were not satisfied with the
sketch, they wanted to have it perfect.

It was clear to us that conventional sketching is a good
solution for very limited number of users. We realized soon
that we need another kind of interface. We need an
interface that is very suitable for sketching, but which is not
suitable for drawing. In this way, the users who can not
draw will not be disappointed with their drawing results. It
is impossible to draw with that interface anyhow, and for
the same reason the users who can draw will not try to draw
perfectly. We introduce such an interface in this paper, and
this is our main contribution.

NEW SKETCHING INTERFACE
The whole setup consists of a table with a semi-transparent
white glass plate. There is a set of color cubes, and the users
can arrange them on the table in order to make a sketch. A
simple web-cam is mounted under the plate, and images are
taken with the web cam and segmented in color areas. This
sketch image is used as a query image. Figure 4 shows a
part of the setup with the table used for sketching. It was
common practice during our experiments that users “draw”
together. They stood around the table, and instead of the
others instructing one main user what to do (which was
common with the mouse), the group could draw together.
The collaborationis another important quality of the cubes
interface. Furthermore, not only the cubes can be used to
sketch. As soon as we placed a bowl of fruits next to the
table, some users used oranges and apples as sketch tools.

VISION BASED COLOR SKETCH
The Crayon project [9] provides a good overview of the
current state of vision based interaction. In the project the
researchers use a camera for hand tracking and explored the
field of color calibration and machine learning. Our
approach is related to their work in the respect that we also
extract color information from a live video stream.

Although we had to face various problems, that are related
to color vision. First test showed that for certain colors
(especially cyan and gray) that were desirable, no stable
calibration was possible. As web cams use compressed
video information and optical sensors that are optimized to
capture images of faces. This is the main use in video
meetings and that is the main target. The red part of the
visual spectrum is covered quite well, but blue and contrast
are not of high concern.

Figure 3. The user draws three separate areas, and only
corresponding rectangles will be used for query.

Figure 4. Students trying the new interface.

 4

Hardware Setup
To reduce the problems that come with computer vision,
like changing ambient light and dynamic in-camera
adaption, we created a setup, where these external
interferences are reduced. The camera was mounted
underneath a semi transparent surface, on which the colored
cubes were placed. Also a light source was installed
underneath this surface to ensure proper lighting conditions.
The setup was surrounded by a non transparent casing
leaving only the surface visible to the users and exposed to
the ambient light in the room. With this setup we were able
to achieve good results with a static calibration of the color
detector. The output of the query was displayed by using a
projector to create a large screen right in front of the image
sketching surface.

The steps of the color detector
First a image is grabbed from the web cam, than a color
segmentation was performed and finially a color indexed
image is send to the search engine.

The color segmentation was implemented using the HSV
(hue, saturation, value) color space. For each color (white,
yellow, orange, red, green, blue, magenta, black) ranges for
the HSV values are specified. Using a simple filter, regions
in the grabbed image that have color values within these
ranges are copied to a color index image. The color index
range is from 1 to 8. Zero is being used to indicate that none
of the colors were detected. This indexed color image is
then sent over the network to the search algorithm.

A “change” parameter is extracted from the live stream as
well, measuring how much the image has changed between
two updates. A high value indicates that the users are
currently changing the sketch or just moving the hands
within the observed area (for example to point out certain
regions and compare them with the results). During this
period of vivid interaction no update is send to the search
algorithm, not even the color segmentation is evaluated.
Intermediate results will probably confuse the users and
also distract their concentration from the task of creating or
changing a sketch. When the “change” parameter drops
below a certain value the color segmentation is activated. If
the difference between the resulting sketch and the previous
query to the search algorithm is above a certain value
(indicating that the vivid change in the video stream was
not just moving the hand but also moving some objects),
the new sketch is send to the search algorithm. This allows
us to create fast update rates, as no unnecessary video
images and queries are evaluated.

Selection of Colors for the tangible interface
After our first tests with the color segmentation we had to
realize that not all desirable colors would be sensable with
the setup we have chosen [5]. In the previous
implementation of the color layout search, about 50
different colors were available for the users. For the web
cam and color cubes based interface we had to reduce the
colors to the basic primary color set. White and black as

representatives for the grey spectrum and red, green, blue as
the basic colors. As yellow, orange and magenta are also
remembered colors we provided them too. Cyan as a
mixture of green and blue seemed to us to bee also a very
important color. But because of the color dynamic of web
cams this particular color is hard to be extracted from a web
cam image. In sake of stability of the color detector we did
not provide this color. Our user tests have shown that cyan
was not requested by the users when they had to sketch the
images.

COMPARING MOUSE AND TANGIBLE INTERFACE
As discussed in [3] a user interface can be evaluated with
the terms: degree of indirection, degree of integration,
degree of compatibility. Although the original publication
focuses on widgets, it can also be adopted for tangible user
interfaces. The object that the interface operates on can be
interpreted in two ways. On the one hand the users
manipulate the color layout sketch, on the other hand they
do that because they want to change the results of the color
layout query.

The degree of indirection is a measure of the spatial and
temporal offsets generated by an interface. The spatial
offset is the distance between the input part of the interface
and the object it operates on. The temporal offset is the time
difference between the physical action on the interface and
the response of the object. The temporal offset is quite the
same for both interfaces, as the sketching of the color
layout is with both interfaces performed in real time,
without any time delay. And after a specific time without
manipulation the created sketch is send by both interfaces
to the search algorithm. The special offset is slightly better
with the mouse interface as the drawing area and the
display of the results are on the same screen and the
tangible interface needs two separate areas, one to sketch
the color layout and one to present the results.

The degree of compatibility measures the similarity
between the physical actions of the users on the interface
and the response of the object. The tangible user interface
provides a higher degree of compatibility as the users
directly manipulate the color layout sketch with the colored
cubes. The interface is a very direct approach without
abstract mapping between input and effect on the query.
With the mouse interface the users have to draw by
selecting a color from the palette and then move the mouse
to create a colored area in the sketching window.

Interface Mouse Tangible

indirection + +/-

compatibility -- ++

integration -- +/-

Table 1. Comparison of mouse and tangible interface.

 5

The degree of integration measures the ratio between the
degrees of freedom (DOF) provided by the logical part of
the instrument and the DOFs captured by the input device.
The term degree of integration was introduced in integral
tasks [18]. The degree of freedom can be evaluated in two
dimensions: the color dimension and the layout (2D)
dimension. The mouse interface provides only a 2D
interface. Therfore an indirect color selection method has to
be incorporated. The tangible interface in our current setup
allows direct access to all three dimensions (color and 2D),
but as one of our test users stated, the cubes can also be
stacked to create a three dimensional structure. So the
tangible interface has four dimensions that can be operated
on.

RESULTS
We have tested the system with several users. The users had
different drawing and computer usage skills. A collection of
approximately thousand images was presented to the users.
They observed a slideshow, and they were asked to
remember few images that had an impact on them.
Afterwards they tried to draw a sketch in order to retrieve
remembered images. First they made a sketch with the
mouse, and then using the new color cube interface. Results
and impressions of users were compared at the end. A brief
summary of most interesting users follows.

Our first tester was Mira. Mira is a painter, and she is not a
very skilled computer user. She found mouse interface OK,
but she stated one should learn how to use it. It is
interesting that she tried to draw structures all the time,
rather then doing a color-layout. She tried to “redraw” the
images using shapes that were present in the picture. It was
not so easy for her to remember the color layout of images.
The color she was missing in the interface was gray.
Unfortunately she did not have time enough to play with the
tangible image query, but the first impressions were
positive, and she definitely thinks it is much easier to sketch
color-layout and get away from structures using color
cubes. Figure 5 shows Mira’s sketch of a sitting person, and
result images (she was looking for the second best guess by
the system). Note that Mira would have sketched the image
much more precise, if she would be more experienced in
mouse drawing.

Another user was Andreas, an Architect. He uses computer
for his daily work, so he did not have any problems with
mouse interface. He was the only user who was used to
share the mouse with another user. So the mouse drawing
was not a single-user interface for him. Same as Mira, he
was concentrated on structures rather than on overall color
layout. It is just the way he remembers images, he said. He
was not satisfied with the results of mouse image query.
The color he was missing was brown. It is interesting that
he missed the color only with mouse interface, and although
there are fewer colors in the tangible query, they were
sufficient. Andreas finds the tangible interface better, but
complains about special role such a setup would have in his

office. He does not want to give a single tool such
importance, and special hardware setup.

The next tester was Yvonne, she is an Artist, primarily
active in Design. She is a very skilled PC user with the
superb use of mouse. She was missing dark-green & grey
color in the mouse interface. She was satisfied when
searching for photographs, but quite unsatisfactory when
she (unsuccessfully) tried to find some paintings. Yvonne
finds the tangible interface more usable than the mouse
input for sketching. Tangible interface reminds her of her
childhood, which she pointed out as a further positive
aspect of the cubes. Just as Andreas and Mira did, Yvonne
wanted to have feature detection as features are more easily
remembered.

Sylvia who is computer scientists specialized in AI and
InfoVis tested the setup. She uses computer daily, so she
had no problem with mouse interface. She was missing the
brown color. She perceived the tangible interface as more
“free” and “artistic” thus more convenient for dealing with
images. She connects mouse to “serious” work, and she
wants to be free and creative when dealing with images.
The multi-user aspect of the tangible interface was
disturbing for Sylvia. It was easy for other persons to alter
her “sketch”, and when they actually did it, Sylvia was a
little upset. She did not want other people to work on the
same sketch with her.

It can easily be seen from those characteristic users that the
most of users tried to “draw” the picture with the mouse,
and the tangible interface helped them to understand that a
sketch is better for the search than a “redraw” of the image
they searched. The results that were presented by the search
algorithm often did not fit their expectations when drawing
with mouse (and trying to draw structures).

It is interesting that users sometimes could remember the
shapes but not the color, but this can be subjective

Figure 5. Sketch done by a painter looking for the portrait of
the sitting person

 6

characteristic, or it can be correlated with some professions
like architects for example.

The general response was very good, and most of the users
liked tangible interface better than conventional one. As we
have some test users with visual arts background, we noted
that they were very pleased with the surprising component
of the tool. E.g., a user searched for a sun-set that was
instantly within the top 15, but mixed with images of red
flowers and a firework. These results were far from
disappointed, and the flowers and firework images fitted
well in the users expectations.

CONCLUSIONS
As many available examples prove the color layout search
is an interesting approach to image query. Our work
presents a new tangible user interface that allows creating
color layout sketches in an easy and straight forward
manner. Rather than improving the query algorithm itself,
we tried to find a new interface which suits the existing
algorithms better. The algorithm needs a certain level of
abstraction, which is often hard to achieve using common
interface. The new color cube interface makes it impossible
to draw precisely, and therefore helps the users achieve
needed level of abstraction.

Still many of the underlying problems of the underlying
methods persist. Tangible user interfaces enrich the
possibility of collaboration and multi user input, with all the
problems that come with it. For example there is no method
of helping the users with synchronization, as all users that
use the interface, actually shared this interface. They have
to sort out conflicts between them without a
(computational) help, for example: someone adding his
ideas to the sketch without asking. Furthermore a special
hardware setup is needed in addition to the existing system.
The method of color layout image retrieval also has its
laws. The users can not clearly identify the distinction
between shape and color layout. A good example is the
search for a sunset. A red shape placed in the middle of the
image is a good approach, but images where the sun is not
close to the center will not be found, even if it is a picture
of a sunset, and images of a red flower in the center of the
image will be found instead.

We observed that the use of a tangible user interface helps
the users to create color layouts rather than shapes. More
over the interface can be used in a more vivid way. It
allows direct access to the sketch rather than the indirect
method of using a mouse.

The color cubes interface fits very well with the underlying
visual image query, and helps the users to cope with the
limitations of the query algorithm. In this way the usability
of the whole system is significantly enhanced.

FUTURE WORK
We want to integrate this interface into the framework,
where designers are adding images to a repository. These

pictures are indexed (with words) and therefore we will be
able to do a filtering based on these keywords. This will
lead to an image query system that combines the unsharp
search based on color layout, as described in this article,
and the image search by keyword. In combining these two
approaches we hope to encourage the users of the
framework to make use of this interface even more. We
want to test whether the combination of indexing by words
and a color based image search will result in a better
interface or not. The surprise element of results will surely
decrease (in case the indexing is done properly), but also
the results could fit better to the expectations of the users.

Improvements on the color layout search engine will also
be investigated. As we will have access to a repository with
over 10.000 images, we can than test the scalability of the
algorithm and probably introduce new aspects in respect of
clustering the database and improving the response to the
query.

The vision system as described in this paper was realized
using a consumer web cam. If a high quality camera can be
used, surely the detection of the color sketch would
improve as the color dynamic will increase.

REFERENCES
1. Image Retrieval Service (IRS) of the EVlib

http://visinfo.zib.de/IRS/
2. The State Hermitage Museum, St. Petersburg, Russia,

QBIC Color and Layout Search,
http://www.hermitagemuseum.org/fcgi-
bin/db2www/qbicSearch.mac/qbic?selLang=English

3. Beaudouin-Lafon, M., Instrumental Interaction: An
Interaction Model for Designing Post-WIMP User
Interfaces, CHI 2000, p. 446-453

4. Belongie, S., Carson, C., Greenspan, H. and Malik, J.
“Color and texture-based image segmentation using EM
and its application to content-based image retrieval.” In
Proc. Int. Conf. Comp. Vis., 1998.

5. Benford, Steve et. al., Sensible, sensable and desirable: a
framework for designing physical interfaces, Technical
Report Equator-03-003, Equator, February 2003
http://www.equator.ac.uk/papers/Abstracts/2003-
benford.html

6. Boujemaa, N. Fauqueur, J. Ferecatu, M. Fleuret, F.
Gouet, V. Saux, B. Le Sahbi, H., "IKONA: Interactive
Generic and Specific Image Retrieval", International
workshop on Multimedia Content-Based Indexing and
Retrieval (MMCBIR'2001), Rocquencourt, France.

7. Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M.
and Malik, J. “Blobworld: A system for region-based
image indexing and retrieval.” In Proc. Int. Conf. Visual
Inf. Sys., 1999.

8. Eakins, J. P. and Graham, M. E., Content-based image
retrieval, a report to the jisc technology applications

 7

programme,
www.unn.ac.uk/iidr/research/cbir/report.html, 1999.

9. Fails, J. A. Olsen, D. R., A Design Tool for Camera-
based Interaction, CHI 2003, Vol5 Issue No.1 p.449-456

10. Faloutsos, C., Barber, R., Flickner, M., Niblack, W.,
Petkovic, D. and Equitz, W. “Efficient and effective
querying by image content.” Journal of Intelligent
Information Systems, 3(3/4): 231-262, July 1994.

11. Fauqueur, J. and Boujemaa, N. "Logical Query
Composition from Local Visual Feature Thesaurus"
Third International Workshop on Content-Based
Multimedia Indexing (CBMI'03) September 22 - 24,
2003

12. Fauqueur, J. and Boujemaa, N. "Region-based
Retrieval: Coarse Segmentation with Fine Signature"
IEEE International Conference on Image Processing
(ICIP'2002), Rochester, USA, September 2002

13. Flickner, M., et. al., Query by image and video content:
the qbic system. IEEE Computer, 28(9):23--32, 1995.

14. Freeman, W., Anderson, D., Beardsley, P., et al.
“Computer vision for interactive computer graphics.”
IEEE Computer Graphics and Applications, Vol. 18,
Num 3, pages 42-53, May-June 1998.

15. Gupta A. The Virage Image Search Engine: an Open
Framework for Image Management. In Storage and
Retrieval for Image and Video Databases IV, volume
2670 of SPIE proceedings series, pages 76-87, 1996.

16. Hirata, K. and Kato, T. “Query by Visual Example—
Content-Based Image Retrieval.” Advances in Database
Technology EDBT ‘92, 3rd International Conference on
Extending Database Technology, Vienna, Austria, A.
Pirotte, C. Delobel, and G. Gottlob, eds., Lecture Notes
in Computer Science, vol. 580, Springer-Verlag, Berlin,
1992, pp. 56-71.

17. Ishii, H., and Ullmer, B. “Tangible Bits: Towards
Seamless Interfaces between People, Bits and Atoms.”
Human Factors in Computing Systems (CHI ’97).
(March 1997).

18. [Jacob95] Jacob, I. & Oliver, J. (1995). Evaluation of
Techniques for Specifying 3D Rotations with a 2D Input
Device. Proc. HCI'95 Conference, People and
Computers X, p.63-76.

19. Jacobs, C.E., Finkelstein, A. and Salesin, David H., Fast
Multiresolution Image Querying. Computer Graphics
(Proceedings of Siggraph '95), 29(Annual Conference
Series):277--286, November 1995.

20. Kelly, P. M. and Cannon, M. “Query by Image
Example: the CANDID Approach.” Los Alamos
National Laboratory White Paper, (1995).

21. Klemmer, R.S., Thomsen, M., Phelps-Goodman, E.,
Lee, R. and Landay, J.A. Where do web sites come
from? Capturing and interacting with design history.
Proc. CHI 2002, CHI Letters 4(1), 1-8.

22. Mather, B.D. Making up titles for conference papers.
Ext. Abstracts CHI2000, ACM Press (2002), 1-2.

23. Matković, K. Neumann, L. Siegler, J. Kompast, M.
Purgathofer, W. , Visual image Query, Smart Graphics
2002, Hawthorn, NY, USA

24. Pentland, A. Picard, R. and Sclaroff, S., Photobook:
Tools for Content-Based Manipulation of Image
Databases. International Journal of Computer Vision,
18(3):233--254, 1996.

25. Schwartz, M., and Task Force on Bias-Free Language.
Guidelines for Bias-Free Writing. Indiana University
Press, Bloomington, IN, USA, 1995

26. Shneiderman, B. (1983). Direct Manipulation : a Step
Beyond Programming Languages. IEEE Computer,
16(8), pp 57-69.

27. Vailaya, A., Zhong, Y., and Jain, A. K. “A hierarchical
system for efficient image retrieval.” In Proc. Int. Conf.
on Patt. Recog. (August 1996).

