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Abstract

Since the development of medical three dimensional imaging devices in the
1970s, volumetric data processing has tremendously gained in importance.
With the growing size of the data-sets, exhausting the capabilities of the
hardware of its time, methods for efficient volumetric data processing have
been always a hot topic. In this diploma thesis two approaches for pro-
cessing large volumetric data-sets are presented. Both approaches utilize a
block volume for storing the data. Further data compression and out-of-core
processing are incorporated. FEfficiency is achieved by processing only the
required portion of data while omitting the non-related data having no effect
on the intended result of the algorithm. This is supported by utilization of
the knowledge about access patterns of the algorithms. Also methods for op-
timizing the efficiency by exploiting architectural properties of the computer

hardware are presented.

Kurzfassung

Seit der Einfithrung von medizinischen dreidimensionalen bildgebenden Ver-
fahren in den 1970er Jahren gewann die Verarbeitung von volumetrischen
Daten massiv an Bedeutung. Mit der wachsenden Grofle der Daten, die die
Kapazititen der Hardware ihrer Zeit laufend auslastete, waren Methoden
fiir die effiziente Verarbeitung von volumetrischen Daten immer wichtig. In
dieser Diplomarbeit werden zwei Methoden fiir die Verarbeitung grof3er volu-
metrischer Daten vergestellt. Beide Methoden verwenden eine geblockte Da-
tenstruktur fiir die Verwaltung der Daten. Weiters werden Datenkompression
und Out-of-Core-Methoden integriert. Effizenz wird durch das Verarbeiten
von ausschliefllich fiir das Ergebnis eines Algorithmus relevanten Daten er-
reicht, wobei nicht relevante Daten, die keinen Effekt aus das zu erzielende
Ergbenis haben, von vornherein ausgeschlossen werden. Die Effizienz dieser
Methoden wird unter Beachtung der Zugriffsmuster von Algorithmen verbes-
sert. Weiters werden Methoden zur weiteren Effizienzsteigerung vorgestellt,

die die architekturiellen Eigenheiten der Computer Hardware ausniitzen.
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Chapter 1
Introduction

Since the introduction of the computer tomography scanner by G.N. Hounsfield
in the early 1970s processing of volumetric data tremendously gained in im-
portance. Computer tomography is the reconstruction of cross-sectional im-
ages from multiple one dimensional scans along lines from different angles on
a plane. The reconstruction of a series of such cross-sectional dimensional
images results in a three dimensional, i.e. volumetric, data-set. The essen-
tial steps contributing to the computer tomography technology as it is used
today had happened already in the decades before.

In 1895, the so-called X-rays were discovered by W.C. Rontgen. The X-rays,
high energetic electro-magnetic radiation with wave-lengths in the picometer
range, are able to permeate compact structures without being dispersed too
much. Depending on the material of the structures, the X-rays are absorbed
in varying intensity.

In the 1960s A.M. Cormack, physicist at the Groote Schuur Hospital in Cape
Town / South Africa, developed a mathematical model for the absorption dis-
tribution of X-rays in the human body.

A mathematical model of the reconstruction of cross-sectional images from
one dimensional transmission measurements was introduced by J.H. Radon
in 1917.

In the early 1970s, these three relevant contributions have been incorporated
and realized in hardware by G.N. Hounsfield. ITn 1972 the first clinical diag-
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nostics based on computer tomography images were made. A few years later
several thousand computer tomography scanners were in use worldwide. The
first scanners had a slice size of 80x80 pixel and a thickness of 13 millimeter.
Slice is a synonym for the reconstructed cross-sectional image. For example
scanning the human head would result in approximately 150 slices.

In the early days of computer tomography, it was sufficient to examine a
single slice, in order to conduct a medical diagnosis. At this time, scanning a
single slice took 300 seconds. Later, with the reduction of the scanning time
down to a few seconds, the acquisition of a series of slices at once became
common. It was sufficient to examine the scanned data slice by slice like
ordinary x-ray images.

With the up-come of personal workstations in the 1980s, digital processing
of the computer tomography data became more and more popular. Over
the years, the computer tomography technology improved: 1990 the spiral
computer tomography was introduced and the scanner resolution increased.
Now, the slice resolution of modern scanners is at 1024x1024 with a slice
thickness of 0.5 millimeter. A scan usually results in a series of several hun-
dred slices.

This is the point, where volumetric data processing becomes indispensable:
Examining hundreds of slices one by one is not feasible anymore. The in-
troduction of an additional processing step between the data acquisition and
the visualization for diagnostic purpose is necessary. This processing step is
referred to as volumetric data processing.

The past years have shown, that the size of the volumetric data-sets has in-
creased as fast as the CPU processing power and memory size. During this
time period the data density, i.e. the portion of data acquired for the same
volume, increased by 100, while the CPU processing power increased by a
factor of 1000, the memory bandwidth increased by a factor of 500 and the
mass storage interface bandwidth increased by a factor of 40. Thus efficient
data handling is an important issue of volumetric data processing. Today
the common silicon technology reached its physical limits, whereas in the
computer tomography area there is still much potential for further increase

of the data quantity: the recent introduction of 16-slice scanners, better de-
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tectors and the emergence of multi-modal data let expect a further increase
of the amount of data to be processed.

Common computer architecture is sufficient for average applications, how-
ever its complex architecture cannot optimally serve applications with ex-
ceptional resource requirements. Such exceptional requirements are needed
in the field of volumetric data processing, where very efficient data transfer
capabilities in all components, i.e. CPU, memory and mass storage devices,
are required. The memory requirements for this type of applications regu-
larly tend to exceed the available memory resources, so that the data often
must be processed directly from mass storage devices, which are very slow
compared to the memory or caches.

For optimally utilizing the data transfer capabilities of these components, the
development of specific algorithms exploiting the architectural advantages of

the common computer hardware is necessary.



Chapter 2

State of the Art

2.1 Introduction

The main focus of this diploma thesis is to present a generic approach to out-
of-core volume processing. A data processing approach is referred to as out-
of-core, if the data cannot completely be held in the available physical mem-
ory. Most approaches assume that the data is completely memory-resident
and directly accessible without any data initializing processes beforehand.

There are several publications which present out-of-core approaches for spe-
cific volumetric data processing applications, for example, direct volume ren-

dering or surface extraction algorithms.

2.2 General Volumetric Data Handling Ap-

proaches

2.2.1 Virtual Memory

A generic out-of-core approach, which is widely used by current operating
systems is the concept of wirtual memory. wirtual memory is a common
approach for providing a significantly larger memory space than physical
memory is available. This is achieved by utilizing the paging mechanism of

the CPU and the operating system.
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The virtual memory is split into pages, memory areas of the common size
of 4 kilobytes. In physical memory only the currently processed pages are
kept the others are stored on the hard-disk. The paging mechanism of the
CPU and additional processes in operating system load on store the pages
on the hard-disk when required. This mechanism is completely invisible to
the applications, so no special code for using virtual memory is required.

The virtual memory is more or less a generic out-of-core processing approach.
It is sufficient for common applications on common computer systems, but its
efficiency dramatically degrades when processing large amounts of data. This
is due to the relatively small pages an high latency of the paging mechanism.

Therefore, for large data processing more efficient approaches are required.

2.2.2 Application Controlled Paging Mechanism

There are only very few approaches for general volumetric data handling. For
example, Cox et al. [5] describe such an approach: It is stated that a complete
reliance on operating system virtual memory for out-of-core visualization
leads to poor performance due to the complexity of the paging mechanism of
the CPU and operating system as stated in the previous section. To overcome
this issue they developed a paged segment system, where application control
over several principles of memory management can significantly improve the
performance. This is achieved by sparse traversal, i.e. loading only required

data, usage of a blocked data storage layout and controlling the page size.

2.3 Specific Volumetric Data Handling Ap-

proaches

2.3.1 Iso-Surface Extraction Methods

Many approaches for iso-surface extraction algorithms have been developed.
Some of them also support out-of-core. For surface extraction methods,
auxiliary structures like tree-based search-structures are employed for sparse

traversal, i.e. processing of only required data while excluding non-relevant
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data. For example, the interval tree is an efficient search structure to retrieve
intervals (i.e. minimum and maximum data value of a 2x2x2 cube) contain-
ing a given query data value. Cignoni et al. [4] employ interval trees for fast
location of relevant cells, i.e. a cube of 8 adjacent voxels intersected by an
iso-surface. Further issues about storage requirements and other operations
affecting the iso-surface extraction are addressed.

It has been shown that the search space can be considerably reduced through
tree-based search-structures. They are very efficient for relatively small data-
sets, which fit easily into the memory of common computer systems. How-
ever, due to their additional memory requirements, their application for large
data-sets is difficult. Saupe et al. [14] states, that such search-structures can
use up more memory than the original data itself. An approach trading off
memory usage for extraction speed is presented: A hybrid algorithm com-
bining binary space partition (BSP) trees with fast search methods at leaf
nodes of the BSP tree and memory-free linear search at the remaining leaf
nodes.

Chiang et al. [3] extend the interval tree for out-of-core iso-surface extraction:
A novel application for the extraction of iso-surfaces from volumetric data
employing an I/O-optimal interval tree is presented. A search structure is
generated from the data-set in a preprocessing step and stored on disk beside
the volumetric data. The extraction algorithm efficiently processes the data
directly from disk and has very low memory requirements leaving most of

the memory for storing the iso-surface.

2.3.2 Volume Rendering

Yang et al. [17] have developed a data-driven execution model for ray-casting
that achieves a maximum overlap between rendering computation and disk
I/O. Modern hard-disk controllers are able to autonomously transfer data to
and from the memory without utilizing CPU resources. During the transfer,
the CPU can be used for data processing. Further an application-specific file

system maximizing the overlap between disk I/O and computation is intro-

duced.
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Bajaj et al. [1] propose a parallel/distributed ray-casting scheme for very
large volume data. This method, based on data compression, attempts to
enhance the rendering speedups by quickly reconstructing voxel data from
local memory rather than expensively fetching them from remote memory
spaces. This scheme minimizes the communication between the distributed
processing elements during rendering computation.

Guthe et al. [7] present an interactive exploration method for animated vol-
umetric data. The method employs video encoding methods, i.e. wavelet
transformation, motion compensation, quantization and various encoding
schemes for the resulting wavelet coefficients, which is optimized for good
visual impression of the reconstructed volume. Further the temporal co-
herency is exploited. It was possible to achieve interactive frame rates for
images with a resolution of 256x256 pixel.

In another work Guthe et al. [8] present an approach to interactive rendering
of large volume data at interactive frame rates. The volumetric data, stored
in wavelet representation, is decoded and rendered on the fly and rendered
utilizing graphics hardware.

These four previously presented rendering approaches [17, 1, 7, 8] employ a
blocked data structure for handling the volumetric data-sets. The volume
data-sets are divided into cubes with a width of 2™ voxels. These cubes,
called cells [1], blocks [8] or macro-vozels [17], are the smallest data entities
which the presented compression and rendering algorithms are applied on.
The methods presented in the papers are exclusively used in combination
with rendering using ray-casting.

An approach exploiting the memory architecture of an Intel Pentium III sys-
tem is presented by Knittel [9]. The data-set is stored and replicated in
such a way, that during accesses to the data-set cache misses are reduced
to a minimum. However, due to the specific storage method, the memory
requirements are four times the size of the data-set. For large data-sets this

method would be inadequate.
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2.4 Data Reduction by Wavelet-Transformation

and Compression

Rodler et al. [12] propose a wavelet based method for compressing volumet-
ric data with little loss in quality allowing fast random access to individual
voxels within the volume. It was possible to achieve very high compression
rates with fairly fast random access.

Bajaj et al. [1] use wavelet transformation, for entropy encoding they present
their own method. Guthe et al. [7, 8] use also wavelet transformation and
various entropy coding methods: LZ77 [18], arithmetic coding and zero tree
coding [15].

Many approaches [1, 12, 7, 8] employ a two stage compression method consist-
ing of signal transformation and an entropy compression step. Additionally
a quantization step is inserted between the two steps: For the transformation
step, the wavelet transformation is widely used. For the entropy compression
step, code-book based or tree based compression algorithms are used. Ex-
amples for code-book based algorithms are: LZW [16] and LZ77 [18]. Today
LZ77 descendants are widely used in many compression tools (for exam-
ple ZIP) and image formats (for example PNG). LZO [11], the compression
algorithm used in this diploma thesis, is also based on LZ77. Tree-based com-
pression algorithms are: zero trees [15] and its descendants like SPIHT [13].
The signal processing step combined with the quantization step is used for
controlling the quality of the compression. It is possible to reduce the amount
of required space for storing the data 1/100 with only a little loss of infor-

mation.



Chapter 3

Computer System Issues

3.1 Introduction

In the past years the discrepancy between processor and memory perfor-
mance has significantly increased, even more, the discrepancy between CPU
performance and mass storage access speed has dramatically diverged. This
issue turns out to be a potential bottleneck for applications which require
very fast access to large amounts of data. Volumetric data processing is
prone to cause problems, since several algorithms require fast processing of
large amounts of data.

Besides the discrepancy between the CPU and mass storage devices, another
important issue arises with the complex design of current computer hard-
ware: The hardware is highly optimized for sequential contiguous accesses to
large chunks of data, which does not fit the way of processing of volumetric
data requiring arbitrary accesses to data.

For many algorithms in the field of computer science, the device whereon
the algorithm is implemented is not important. In contrast, since volumetric
data processing requires efficient data transfer capabilities of all hardware
components, it is of particular importance to investigate the properties of
the computer hardware. In this chapter, each hardware component in the

data processing path affecting the efficiency of it in some way, is surveyed.
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ATA or SCSI
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Figure 3.1: A computer system consists of three major components dealing
with data: The CPU as data processing unit, the Main-Memory for volatile
temporary data storage and the Hard-Disk for permanent data storage. Be-
sides that, there is also some interconnect logic required, i.e. the Main-Board
Chip-Set and the Hard-disk Controller, interconnecting these main compo-
nents. The arrows denote a bidirectional communication interface between
these components.

3.2 Data Processing Components

A computer system consists of three major components inherently dealing
with data: The CPU as data processing unit, the main-memory for volatile
temporary data storage and the hard-disk for permanent data storage. These

three components are depicted in Figure 3.1

1. CPU: The CPU is the Central Processing Unit of a computer, consist-
ing of the processing units, the level 1 and level 2 cache and external
interfaces (see Figure 3.2). The processing units perform various op-
erations on a set of registers, controlled by instructions. The level 1
cache, separated for data and instructions holds the data respective in-
structions which are actually processed. The level 2 cache holds copies

of recently processed data of the main-memory.
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2. Main-Memory: The main-memory is a volatile temporary data storage
holding the data which is processed during the runtime of the computer

system. The main-memory is accessed by the CPU through its caches.

3. Mass storage device: A common mass storage device is the so-called
hard-disk drive. All storage devices have in common, that data can be

permanently stored.

Beside these three main components, there is also some interconnecting logic,
i.e. the main-board chip-set containing auxiliary system components like
a real time clock and interfaces implementing several communication bus
standards. Further additional components, like a hard-disk controller for
controlling the communication between a device interconnect bus and the

hard-disk drive, are required.

3.3 Memory Hierarchy

The memory of contemporary computers is structured in a hierarchy of suc-
cessively larger, slower, and also cheaper memory levels (see Figure 3.3). The
complexity of the hardware architecture incurs a penalty for programs which
do not take optimal advantage of this hardware architecture. Disregarding
the architectural peculiarities of the hardware results in an increased latency
and reduced efficiency of data transfers. When developing efficient data pro-
cessing algorithms it is very important to take a close look at the memory
hierarchy. The hierarchy consists of successively larger but slower memory
technology. Table 3.1 shows the memory specifications of a commodity com-

puter.

3.3.1 Hierarchy Properties

The registers are the topmost level of the memory hierarchy which can hold
data (see Figure 3.3). The data for the registers is transferred from the level 1
cache. The level 1 cache is used as temporary storage for instructions and

data, making sure the processor has a steady supply of instructions and data
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Figure 3.2: Structure of a modern CPU (AMD Opteron) : Level 1 Cache
(Data and Instructions), Level 2 Cache, Processing Units and external inter-
faces, i.e. the Memory Interface and the Main-Board Chip-Set Interface, are
integrated on a single die. (The CPU image is taken from the AMD Digital
Media Library)

Level Latency Size | Bandwidth

Register 1-3ns 1KB
Level 1 cache 2 - 8 ns 8- 128KB | 20GB/sec
Level 2 cache | 5-12ns 0.5- 8MB | 10GB/sec
Main-memory | 10 - 60 ns 256 - 2GB 2GB/sec
Hard-disk cache 50 ns 2 - 8MB | 200MB/sec
Hard-disk | 8 - 20 ms | 100 - 300GB | 50MB/sec

Table 3.1: Memory hierarchy of modern computer systems. The memory
hierarchy is structured top-down in successively larger but slower storage
technology.

to process while new data is transferred from the main memory. As listed

in Table 3.1 the common size of the level 1 cache is in the kilobyte range
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Figure 3.3: The memory hierarchy is mapped onto the three data processing
components (yellow boxes). The CPU contains the upmost three levels:
Registers, Level 1 Cache and Level 2 Cache. The next level below is the
Main-Memory, placed physically close to the CPU. The Hard-Disk is at the
bottom level. Tt communicates through interconnect logic with the CPU. It
can also have a cache.

with an access-time of few nanoseconds. The level 2 cache is the high speed
memory caching the data of the main-memory. The size of the level 2 cache
is several megabytes with an access-time around 10ns. The next level is the
main-memory holding the actual data being processed. Its size is roughly
1000 times the size of the level 2 cache and is usually in the gigabyte range.
The next level below is the mass storage device, usually a hard-disk drive.
It also has a cache with a size in the megabyte range for faster access. The
size of the hard-disk can be several hundred gigabytes.

Current operating systems support a virtual address space with paging which
allows to extend the memory space onto the hard-disk. The file on the hard-
disk holding the pages is called swap file.

Going up the cache hierarchy towards the CPU, caches get smaller and faster.
In general, if the CPU issues an operation on a data item, the request is
propagated down the memory hierarchy until the requested data is found.

It is very time consuming if the data is often found in lower levels. This
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is due to the propagation delay itself as well as to the back propagation of
data through the complete hierarchy. For good performance, the number
of accesses to the lower levels has to be reduced to an inevitable minimum.
Therefore emphasis is put on efficient accessing strategies to the lower levels,
like hard-disk and main-memory. Thus, the main focus lies in optimizing

main-memory and hard-disk accesses in the following way:
e Loading data from lower levels only if required.
e Sequentially accessing data in memory and on hard-disk.

e Processing of data blocks smaller than the cache size.

3.3.2 CPU

The memory of the CPU consists of: registers, level 1 cache and level 2
cache. In recent years, the level 1 cache and the level 2 cache are integrated
together with the CPU on a single die as depicted in Figure 3.2. The short
connections between the processing units and the caches dramatically reduces
the propagation delay (the speed of signal propagation in silicon is around
20 centimeter per nanosecond), which results in very fast access times in the

nanosecond range (see table 3.1.) to the level 1 cache and level 2 cache.

Registers

The registers hold single data words for immediate processing and are ad-
dressed directly by the CPU. The registers being accessed are encoded in the

instructions. Registers are the fastest cache.

Level 1 Cache and Level 2 Cache

A cache is a highly efficient memory storage device. It holds copies of data
blocks stored on its associated storage device in a lower memory hierarchy
level.

In general, caches are hidden structures and therefore not directly control-

lable by software. Caches serve as a temporary storage for fast data accesses.
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Two issues are addressed with a cache at once: First, repeated direct accesses
to its relatively slow associated storage device holding the actual data are
avoided. Second, the efficiency of repeated access to the data is increased
because of the short access latency of the cache. It is ensured that the data
in the caches is always consistent with the data in the storage device. The
only way to optimally utilize caches is accessing them in a pattern that the
number of updates of the data in the cache from the actual storage device is
reduced to a minimum. A situation, wherein a significant fraction of time is
constantly used up by data replacements in the cache, is referred to as cache
thrashing.

A cache is a relatively small memory holding temporary data. The memory
is split up into small units, called cache lines, usually 32 or 64 bytes long.
A cache line is synchronized only as a whole with the main-memory. Thus
a cache consists usually of 2™ cache lines with a cache line length of 2. In
direct mapped caches a location in main-memory of the size of the cache line
is mapped exactly to a single cache line. The bits 0 to n — 1 of the memory
address are used as offset into the cache line, the bits n to n+m — 1 are used
to address the cache line itself. The remaining bits are stored as so-called
tag bits in the cache. In a fully associative cache a memory location can
be mapped to any cache line. This type of cache is seldom used because it
is very complex to implement in hardware. A good compromise is a n-way
set associative cache. The cache is organized in s sets of n cache lines. A
memory location is mapped to one set. A direct mapped cache is an one-way
set associative cache.

Since a cache line is updated only as a whole, even when one single byte is
accessed, the whole cache line with a length of 32 or 64 bytes is updated.
This is the reason for the degrading efficiency during cache thrashing.

The simple test code in Figure 3.4 shows, that the performance dramatically
decreases if the memory is not sequentially accessed. Both triple nested loops
do exactly the same: incrementing each field of the array by one. Theoreti-
cally the speed must be the same, but practically it is not. Experiments on a
AMD 1.2 GHz CPU with 133 megahertz SDRAM with 64bit interface width

(resulting in a theoretical bandwidth of 1 gigabyte per second) have shown,
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that the sequential access is roughly 50 times faster than the non-sequential

access.

int x,vy,z;

// array size 16MB
char array[256] [256] [256] ;

// traversal in x,y,z order = total sequential access
for (z=0; z<256; z++)
for (y=0; y<256; y++)
for (x=0; x<256; x++)
array [z] [yl [x]++;

// traversal in z,y,x order = non-sequential access
for (x=0; x<256; x++)
for (y=0; y<256; y++)
for (z=0; z<256; z++)
array [z] [yl [x]++;

Figure 3.4: This simple code shows the runtime behavior of a cache by ac-
cessing a three dimensional array in two different ways.

Figure 3.5 shows the results of the following test: A memory block of
a certain size (block size in kilobytes) is allocated. Then single bytes are
subsequently read from the memory block. After each byte-read an offset
is added (distance) to the address. This scheme is depicted in Figure 3.6
It can be concluded, that as long the processed data fits into the L1 cache,
the performance is not degraded regardless of the offset. The results for 64,
128 and 256 bytes distance are identical because the transfer capacity of the
main-memory is exceeded: At each access a cache line of 64 bytes is updated.
Since for each byte access a cache line of 64 bytes is updated, theoretically
a maximum speed of 17 megabytes per second is possible, practically it was

around 12 megabytes per second.
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Figure 3.5: Sequential non-contiguous read access of single bytes with varying
distance. The distances (offset added to the address after each byte read)
are shown in the box at the bottom. The distance of 1 corresponds to a
sequential contiguous access. This Figure clearly shows that the efficiency of
accesses within the L1 cache, i.e. block size 64KB or smaller, is not degraded
in any case. Results of an AMD CPU with 64KB level 1 cache and 256KB
level 2 cache. The cache line length is 64 bytes. A graphical scheme of this
test is depicted in Figure 3.6

3.3.3 Main-Memory

The history of memory is closely related to the history of the computer.
From the beginning on a device storing bits over a longer period of time was
required. Early random access memory (RAM) consisted of electron tubes or
a wire grid with ferrite rings at the cross-overs. The development of modern
memory started with the introduction of integrated circuits. The most com-
mon used memory type is the Dynamic Random Access Memory (DRAM).
A simplified model of the DRAM architecture is depicted in Figure 3.7.

DRAM is organized in the following way: A bit is stored in a memory cell.
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Figure 3.6: Read test scheme. A memory block of a specific size is allocated
and single bytes are read. After each read a specific distance is added to the
address.

A memory cell consists of a small capacitor connected to a transistor. The
memory cells are organized on a grid, also called storage array. The array is
structured in rows and columns. The address supplied to the array by the
memory controller is split up into two parts. the one part is used for row ad-
dressing and the other part for column addressing. A data word has a length
of one bit. First the Row Address is send to the Row Decoder. Tt selects the
desired row. Then each bit in the row is send to the Column Decoder. After
that, the Column Address is supplied to the Column Decoder to select the
desired bit, which can be read from the Data I/0 interface (see Figure 3.8,
Random Access).

For word lengths greater than one, multiple memory arrays are operating
simultaneously.

Beside the structures storing the actual bits, additionally a refresh circuit,
control and addressing unit is integrated on a single chip.

Since the charges volatilize over time, the charges have to be refreshed every
few milliseconds. This is autonomously done by the memory controller. Also
after reading, which destroys the contents of the memory cell, the affected
charges are restored.

In the following paragraphs, several DRAM types are described in a chrono-
logical order, which is also an order with increasing performance.

Ordinary DRAM is the simplest and also one of the oldest types of DRAM.

Sequential accesses are supported by keeping the currently addressed row,
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while supplying only different column addresses to the column decoder, which
avoids extra row addressing (see Figure 3.8, Row Address Re-Use). This can
be used to access a complete row by increasing the column address after each
access.

Increasing the column address is automatically performed by the FPM-
DRAM (Fast Page Mode DRAM). The DRAM automatically increments
the column address, allowing the controller to access the next location with-
out having to supply a new address. This allows a very efficient sequential
access of a complete row, also called page. In consumer hardware the typical
clock rates are 16 to 50 megahertz, with a word length of 16 or 32 bits yield-
ing into a theoretical transfer bandwidth of 32 to 200 megabytes per second.
The access latency time is around 60 to 100 nanoseconds.

EDO-DRAM (Extended Data Out DRAM) is similar to FPM-DRAM with
the additional feature that a new access cycle can be started while keeping
the data output of the previous cycle active. This allows a certain amount of
overlap in operation, which improves the speed by roughly 5% (see Figure 3.8,
Overlapping Addressing). Typical ratings are 50 to 66 megahertz with a word
length of 32 bits yielding in a theoretical bandwidth of up-to 266 megabytes
per second. The access latency time is around 40 to 60 nanoseconds.
Synchronous DRAM (SDRAM) is an improved type of DRAM. While DRAM
reacts immediately to changes in its control inputs, SDRAM has a syn-
chronous interface, meaning that its signal 1/O is synchronized with a clock
signal. This allows the SDRAM to have a more complex pattern of operation
than plain DRAM. Accesses to the SDRAM are controlled by sequences of
commands allowing pipelining, i.e. overlapping of read or write sequences.
Typical ratings are 66 to 133 megahertz with a word length of 64 bits yield-
ing in a theoretical bandwidth of up-to 1 gigabyte per second. The access
latency time is 10 nanoseconds.

Doubled Data Rate SDRAM (DDR-SDRAM) is a later development of SDRAM.
Plain SDRAM acts on rising edge of the clock signal. DDR-SDRAM acts
on the rising and the falling edge thereby halving the required clock rate for
a given data transfer. Common configurations support a 128bit data word

width with 266 to 400 million words per second, resulting in a theoretical
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bandwidth up to 6.4 gigabytes per second.

Memory
Grid

Row Address

Column Address

L )] Column Decoder

T U

Address and Control Data In/Out

Memory Controller

Figure 3.7: Basic memory architecture: The input data is the address and
control (read or write access) and the output (read access) respective input
(write access) is the data for the specified address. The bits are stored in
memory cells organized in a Memory Grid. The Address is split into a Row
Address and a Column Address. First the Row Address is sent to the Memory
Grid, then the whole row, also called page, is sent to the Column Decoder
which selects the desired column.

3.3.4 Mass Storage Device: Hard-Disk Drive

The most commonly used mass storage device is the so-called hard-disk drive.
It consists of a rotating stack of platters made of aluminium or ceramics
coated with a magnetic material. A moveable lever called actuator arm
holds the heads which perform write and read actions on the platters (see
Figure 3.9). The rotation speed was initially 3600 rpm in the early days,
later 4500 rpm and 5400 rpm, and nowadays consumer hard-disk drives have

a rotation speed of 7200 rpm. High-end hard-disk drives have a speed from
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Random Access
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Row Address Re-Use (FPM-DRAM)
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Address COL. COL. COoL. COL.

Data

Overlapping Addressing (EDO-DRAM)
—————>>Time

Address

Data

Figure 3.8: Memory read sequences: For reading data words randomly, first
the row and subsequently only column addresses have to be send for each
word (first sequence). Sequential reads: With FPM-DRAM the sequential
reads have been optimized by reusing the column address, for example auto-
matic column address increment (second sequence). Later, overlapping the
requests (third sequence) was introduced with EDO-DRAM.

10000 rpm up-to 15000 rpm. At the time of writing this diploma thesis the
common size is around 200 gigabytes. The data density is around 600000
bits per inch on a track, and 100000 tracks per inch on a platter. this results
roughly in a data density of 60 gigabits per square inch: In a 200 gigabyte
disk drive, the stack holds two platters (in total 4 sides), each of them hold-

ing 50 gigabytes. Reading and writing is performed by accessing the bits
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on a track surpassing the head. The theoretical maximum transfer speed is
calculated as follows: A track has an average length of 16 cm (depending on
its radius the length ranges from 7 to 25 ecm). Therefore it holds roughly 4
megabits of data. The maximum transfer speed at 7200 rpm (120 rounds per
second) is about 480 megabits per second or 60 megabytes per second. The
track to track seek time is around 1ms, a random track seek is 9ms average.
These properties of a hard-disk lead to the conclusion, that only sequential
contiguous accesses can utilize the hard-disk architecture optimally. There-
fore, for out-of-core approaches it is desirable to sequentially access the hard-

disk by the way of contiguous data blocks.

Platters

Actuator Arm

Read/Write Heads

Figure 3.9: Hard-disk drive scheme: A moveable lever called Actuator Arm
holds the Read/Write Heads which perform write and read actions on the
Platters. The Platters are made of aluminium or ceramics coated with a
magnetic material. Several Platters are mounted on a rotating spindle.
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3.4 Summary

Many common memory architectures have one feature in common: they are
optimized for sequential contiguous accesses. Fach memory level, starting
at the top with the level 1 cache down to the hard-disk is designed so that
sequential accesses are the most optimal way to access the data. A sequen-
tial access is simply an access to a contiguous block of data with specific
starting address and length. A reading access results in a data transfer from
one memory hierarchy level to the levels above. The propagation of the data
bottom up through the hierarchy is crucial. In volumetric data processing
fast read accesses are very important to be efficient. Most memory hardware
support sequential contiguous accesses by so-called burst transfers. After the
starting address, and optionally if supported by the architecture the length
of the desired block, has been sent to the memory, a whole sequence of words
is transferred at once instead of a single word. A word is the smallest trans-
ferable element in a memory. Thus it is important to exploit this behavior
when accessing the main-memory or any mass storage device. This issue is
discussed later in detail in the section about the optimal brick size.

Irregular accesses cause a significant degradation of performance if memory
hierarchy levels are affected which are sensitive to non sequential accesses.
The affected levels are usually the main-memory and the mass storage de-
vices. As long as no update of the caches through those levels is constantly

required, no significant performance decrease occurs.



Chapter 4
Block Volume Memory Layout

This chapter addresses the issue, that if an algorithm accesses a memory
or mass storage device in an irregular pattern or, more simply speaking,
not in a sequential contiguous fashion, the performance drastically degrades.
Methods overcoming this issue by exploiting the advantages of the current
computer architecture hierarchy are presented. The intention of these meth-
ods is to allow irregular accesses while maintaining sequential accesses for
performance reasons.

First, volumetric data in general and its properties are reviewed. Second,
the sequential volume, a commonly used layout for volumetric data, is intro-
duced and discussed. Further, the block volume concept remedying several
deficiencies of the sequential volume and taking concepts from the previous
section into account is presented. Finally, the volume processing hierarchy,

a high-level concept for accessing the block volume is introduced.

4.1 Volumetric Data Properties

In this section, several characteristics of volumetric data, which can be ex-
ploited by various algorithms, are discussed. The focus is put on computer
tomography data, but it does not preclude that these characteristics apply
also to other types of volumetric data, such as magnetic resonance imaging

data, simulation data, etc.

24
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Many algorithms access only a fraction of the volumetric data-set. This frac-
tion can be bounded in the spacial domain or in value domain. For example
such a fraction in spacial domain is a block shaped sub-set of the whole
volume data-set. In value domain such a fraction consists of all voxels in a

certain value range.

4.1.1 Non-Relevant Data

Non-relevant data is, as its term denotes, not relevant for the result of an
algorithm. It often degrades the performance of an algorithm due to unneces-
sary processing. Additional data structures to reduce accesses to non-relevant
data can considerably increase the performance of an algorithm.

An example of an algorithm requiring just a fraction of data in value domain
is the marching cubes [10] surface extraction method. It only requires the
voxels close to the surface, represented by a fixed predefined value, to con-
struct the polygonal mesh of the surface. Figure 4.1 shows the classification
of blocks into relevant and non-relevant blocks for surface extraction. If an
implementation of this algorithm uses a sequential layout in a slice-by-slice
manner, many voxels would be read from the mass-storage device, which do
not contribute to the surface construction.

Typical data-structures to determine relevant voxels are tree-based search
structures forming a hierarchical search space with increasing granularity.
Large partitions of the search space can be omitted in the higher levels which
significantly reduces the size of the search space. With these structures it is
possible to efficiently exclude non-relevant data. Time-expensive memory or
mass-storage accesses are avoided and the efficiency of the algorithms signif-
icantly improves.

As shown in Figure 4.2 volume data-sets acquired from computer tomog-
raphy imaging devices contain large regions of voxels with similar values,
representing homogeneous material in the scanned objects. For example,
soft tissue or air. In many cases these regions are likely to be non-relevant
data. Therefore search structures mentioned above can be used to identify

these regions. For example, a simple octree structure can be used: Fach
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node contains the minimum and maximum density value of its sub-nodes.
Assume an algorithm processing density values in a certain predefined range.
If the algorithm encounters a node whose minimum-maximum range does
not overlap with the range of the algorithm then the whole sub-tree can be

omitted.

Figure 4.1: Classification of blocks into relevant (red) and non-relevant (cyan)
blocks for surface extraction. The intended surface is highlighted (blue).

4.1.2 Memory Access

All memory architectures have one feature in common: they are optimized
for sequential contiguous access. Each memory level, starting at the top with

the level 1 cache down to the hard-disk is designed so that sequential accesses
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Homogeneous
Regions

Inhomogeneous
Regions

Figure 4.2: Types of regions in a data-set. Homogeneous Regions contain
less information and Inhomogeneous Regions contain more information.

are the most optimal pattern to access the data. A sequential access is sim-
ply an access to a contiguous block of data with specific starting address and
length. A read-access results in a data transfer from one memory hierarchy
level to the levels above. The propagation of the data bottom up through
the hierarchy is crucial. In volumetric data processing fast read access is very
important in order to achieve high performance.

Contiguous sequential accesses are supported by most of the memory hard-
ware by so-called burst transfers. After the starting address, and optionally,
if supported by the architecture, the length of the desired block in words, has
been sent to the memory controller, a whole sequence of words is transferred
at once instead of a single word per addressing action.

Irregular accesses constantly trigger cache updates. This leads to a degrada-

tion of performance if memory hierarchy levels are affected which are sensitive
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to non-sequential accesses. The affected levels are usually the main-memory
and the mass storage devices. As long no update of the caches through those
levels is constantly required, no significant performance decrease occurs.

Thus it is important to exploit this sequential access behavior when accessing

the main-memory or any mass storage device.

4.1.3 Out-of-Core Processing

Assume a 4 gigabyte data-set to be processed and the following system avail-
able: 1 gigabyte of physical memory available for storing volumetric data,
and a hard-disk holding the data with an interface speed of 100 megabytes
per second. Other limiting factors (i.e. memory speed, CPU speed) are ne-
glected. In this case it is impossible to keep the complete data-set in memory,
therefore the complete data-set has to be loaded piecewise from the hard-disk
during processing. In the theoretically best case the data-set can be processed
in 40 seconds (neglecting all latencies and limiting factors, except the hard-
disk interface speed). The processing time and memory requirements can be

reduced.

Processing of relevant data. Most algorithms require only a fraction of
the volumetric data-set. It is favorable to retrieve only the required
data from the storage device which is relevant for the result of the
algorithm. Auxiliary search structures are used to efficiently locate the
needed data in spacial and value domain. This approach is similar to

the sparse traversal in [7].

Compressed data. Effectively more information can be transferred over an
interface in compressed form in the same time compared to uncom-
pressed data. Ideally the sum of the transfer time of the compressed
data and its decompression time should be smaller than the trans-
fer time of uncompressed data to achieve a speed increase. Prelimi-
nary tests of compressing computer tomography data with the LZO-
compression [11] showed that the data can be reduced by 30 to 50
percent and decompressed with a speed roughly twice the hard-disk

interface speed.
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Efficient resource usage. If a data-set does not fit into the main-memory as
a whole, the memory must be reused for other portions of the data-set.
An efficient way to achieve that is to partition the data-set into small
entities which can be retrieved from the storage device as contiguous
chunks of data. Ideally such a partition should consist of spatially
bounded data. Such partitions can be slices (i.e. data in a plane) or
small sub-volumes (i.e. data in cubically regions). In the following
such a partition will be referred to as smallest available entity. This

approach is similar to the segments, pages and replacement policy in

[5]

4.1.4 Application Examples

The sequential volume allows an effective sequential line-by-line respective
slice-by-slice processing of the data. Therefore this layout is very efficient for
algorithms which process volumetric data in this manner.

An example for an algorithm processing volumetric data slice by slice is the
well-known surface extraction method called Marching Cubes [10]. Algo-
rithms processing single voxels like thresholding or windowing-functions also
benefit from the sequential layout, because thy process the data sequentially.
The most profoundly disadvantage of this layout is, that the effectiveness
degrades dramatically when an algorithm requires a random access pattern
to the data or, more simply, requires access in a different order than in a
slice-by-slice or line-by-line manner. For example, accessing slices in the
xz-plane requires processing of single lines across the entire data-set. Even
worse, accesses to slices in the yz-plane require processing of single voxels,
which totally compromise the caching mechanisms of the hardware, resulting
in massive cache thrashing.

Many algorithms require accesses not only to single voxels but additionally to
their neighborhood, i.e. a three-dimensional region around a voxel. These al-
gorithms are also affected by cache thrashing. For example, such algorithms
are gradient-calculations and general three dimensional signal processing op-

erations, like filters and transformations.
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4.2 Block Volume

4.2.1 Sequential Volume

The sequential volume has arisen in the 1970s with the upcoming of three
dimensional medical imaging systems. The data acquired by such an imaging
device is stored as a sequence of two dimensional images. These images itself
consist of a sequence of lines which are itself sequences of single data values.
The sequence of images can be interpreted as a three dimensional volume
block where the values are stored sequentially starting with the first line of
the first slice going to the last line of the last slice.

The sequential volume is structured as follows: The smallest data element
in a sequential volume is a wvoxel. A sequence of voxels forms a line. A
sequence of lines constitute a slice. A stack of slices constitute a volume.

These structures and its relations are shown in Figure 4.3:

Grid. A volume grid is a discrete three dimensional structure of a predefined
size in a three dimensional regular orthogonal coordinate system. For
each voxel it establishes a relation to a position in space represented

by the a grid point.

Voxel. A voxel consists of a vector, a sequence of values assigned to a
position in a volume grid. For example, in CT data-sets this vector

contains a single unsigned 12 bit value.

Line. A line is a sequence of voxels along an axis of the volume grid. If not
identified otherwise a line is parallel to z-axis of a slice parallel to the

xy-plane.

Slice. A slice consists of a number of lines. If not identified otherwise a slice

is parallel to the xy-plane.

Block. A volume block consists of a stack of slices along the z-axis of the

volume grid.
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Figure 4.3: The sequential volume layout. A Block is a set of Vozels stored
according to a Grid. A Block consists of a stack of Slices. A Slice consists
of a Line of Vozels.

4.2.2 Motivation of the Block Volume

In Figure 4.4 images of a large volumetric data-set (1.6 gigabyte Visible Male
data-set) are shown. On common computers, data-sets of this size can be
easily stored on the hard-disk, but they often exceed their physical memory
resources. Even larger data-sets can exceed the capabilities of all components
of the computer system. For example, the address space of a CPU can be
easily exceeded: If a CPU has a 32 bit address space it is not possible to
directly address more than 4 gigabytes of memory.

Simply dividing the data-set into smaller manageable independent sub-sets

is the most straight-forward way to circumvent this issue. Only one sub-set
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Figure 4.4: Three images of the Visible Male. A 1.6 gigabytes volumetric
data-set.

is held in memory while the others are remaining on the hard-disk. This
would be a reasonable solution if the algorithm can be applied on manage-
able sub-sets such that the results of each processed sub-set can be merged
together easily to get the same result as processing the data-set as a whole.
Especially for algorithms relying on common global properties, for example a
minimum cost for the region growing algorithm, this is not easily achievable.
Another way would be the compression of the data-set to reduce its memory
requirements. This requires methods to directly operate on compressed data.
However, the additional processing overhead, especially if random access is
required, can be considerably high.

A good method would be a trade-off between speed and memory require-
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ments. The data-set is divided into sub-sets that can be easily accessed
through an interface that hides the actual data management from the algo-
rithm by providing a clear generic interface for data access. The interface
should allow random access to the data in a simple and efficient way. Addi-
tionally it should support fast compression to reduce memory requirements
and better utilization of the hard-disk interface. The subdivision combined
with compression allows storing the data-set in compressed form on a hard-
disk and in uncompressed form in memory for processing.

Based on this concept an approach for managing large volumetric data-sets
is introduced.

Based on these concepts, a data structure for storing volumetric data, the

block volume is introduced.

4.2.3 Contiguous Block Volume

A block volume is a two level application of the sequential layout. The volu-
metric data-set is sub-divided in sequentially organized fixed-size data blocks.
Also the data blocks are internally organized according to the sequential lay-
out (see Figure 4.5).

A contiguous block volume provides a different way to store volumetric data.
It has a higher processing overhead than a sequential volume, but its effi-
cient cache usage easily compensates this overhead. Actually according to
Grimm et al. [6] the data can be processed multiple times faster than in a
sequential volume. The memory requirements are similar to the sequential
volume.

The contiguous block volume demands a more complex addressing scheme
compared to a simple sequential volume. The addressing scheme is described
in one of the following sections. The intended purpose of the contiguous block
volume is to provide an efficient data access. This is achieved by a data block
size allowing efficient cache usage and an efficient addressing scheme. The
concept of the contiguous block volume and its addressing scheme has been

introduced by Grimm et al. [6].
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Figure 4.5: The volume data-set is organized in a two level sequential layout:
The volume consists of sequentially ordered blocks, which themselves consist
of sequentially ordered voxels.

Optimal Data Block Size

The data block size should be selected in favor of fast address calculation for
data access and optimal cache usage. If the width of the data block is a power
of 2, the address calculation can be efficiently done with bit-manipulating and
shifting operations only.

The data block size is determined in such a way, that at least one, or even
better, several data blocks should fit into the level 2 cache. Since solely 16 bit
data is processed, the formula for the size calculation is: DataBlockSize :=
2 x (2")3bytes. Thus meaningful sizes are: 1 kilobyte (n = 3), 8 kilobytes
(n = 4), 64 kilobytes (n = 5), 512 kilobytes (n = 6) and 4096 kilobytes
(n = 7). It was found out by Grimm et al. [6], that on a CPU with a level
2 cache size in the 0.5 megabyte to 1 megabyte range a data block size of
64 kilobytes is the most efficient size. Therefore a data block of 32%(n = 5)
voxels is used in the implementation. Each voxel consists of a 16 bit, unsigned
value. Thus each data block has the size of 64 kilobytes.
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Addressing Scheme

For accessing a voxel in a volumetric data-set, its location in memory, the
address, has to be calculated. The address is derived from the position of
the voxel in the three dimensional space. In the sequential layout the voxel
address is simply a linear combination of the components of the position of
the voxel. For the block volume a two step addressing scheme is introduced,
which is described in the next section.

Since address calculations are performed very frequently, therefore the most
important issue is simply speed. All steps in the address calculation follow
this requirement. The calculations are done in a way that time-consuming
CPU instructions like branching instructions (jumps, loops) and instructions
associated with time consuming pipeline flushes are avoided. Also complex
mathematical calculations (divisions, multiplications) are avoided. The cal-
culations are designed to exploit the fastest instructions like simple arithmetic
(addition, subtraction), bit-manipulation and shifting operations. Also no
look-up tables are used to minimize the number of relatively slow memory

accesses.

Absolute Addressing The absolute address is the address directly derived
from the voxel position in the three dimensional space. For the block volume
a two step addressing scheme is introduced: In the first step (see Figure 4.6)
the block index and the voxel offset are calculated from the position. In the
second step (see Figure 4.7) the voxel address is calculated. Since in the
contiguous block volume the data blocks are sequentially stored in a large
contiguous memory area (see Figure 4.8), the data block address can be

directly derived from the block index by a simple shift operation.

Relative Addressing Once if the absolute address for accessing a specific
voxel, the active voxel, is calculated, it is advantageous to have an efficient
method to access the neighboring voxels. In this section an approach to effi-
ciently access the 26-neighborhood around a voxel is presented. The neigh-
borhood is the 3x3x3 cube of voxels with the active vozel in the center. The

3x3x3 cube, where the active vozel lies in, is called the active cube.
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Blockindex = (X>>5) + (Y>>5)*Wx + (Z>>5)*Wx*Wy

VoxelOffset = (X & 31) + (Y &31)<<5 + (Z & 31)<<10

Figure 4.6: block index and voxel offset calculation. For the voxel offset, only
the 5 lowest bits are used, for the block index the bits above the 5 lowest
bits are used.

| Blockindex = (X>>5) + (Y>>5)*Wx + (Z>>5)*Wx*Wy |

VoxelOffset = (X & 31) + (Y &31)<<5 + (Z &31)<<10

- ContiguousData+Blockindex<<15

| VoxelAddress _VoerOffset

Figure 4.7: Absolute voxel address calculation for contiguous memory.

For each voxel in a block there are 26 neighbors. The absolute addresses of
the neighbors are calculated by simply adding an offset to the address of the
active voxel. This offset is called the relative address. The relative address is
the difference between the the absolute address of the active voxel and one
of its 26 neighbors.

Storing a list, the so-called neighbor-list, containing 26 relative addresses to
the neighboring voxels, for each voxel is not desirable. It would result in a
look-up table with 322 x 26 = 851968 entries.

Fortunately the neighbor-lists can be classified into 27 different neighbor
cases: The trivial case is, that all neighboring voxels are in the same block.

This applies for the inner voxels of a block. For the border voxels, the re-
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Figure 4.8: Data organization in contiguous memory. The blocks are ordered
sequentially. The block index can be directly used for data block address
calculation. The thick box denotes the memory areas allocated through the
memory manager.

maining 26 cases apply. In each case the 26 relative addresses are identical
for each voxel within the case. Ultimately the neighbor look-up table consists
of 27 lists with 26 entries each, in total 702 entries. Storing the entries as
4 byte integers results in a neighbor look-up table of the size of 2808 bytes.
This list fits and remains in the cache all the time due to frequent accesses.
Therefore the access is very fast. In the contiguous block volume the data
blocks are sequentially stored in a large contiguous memory block. Due to
this layout the relative distances between a data block and its 26 neighbors
are the same for each data block, so only one global neighbor look-up table is

necessary.

Neighbor Case Determination FEach neighbor case is denoted by a case
index. The case index is derived from the position within the data block.
For the one dimensional space there are only 3 cases: most left voxel, inner
voxels and most right voxel. For the inner voxels addressing neighboring
voxels is straightforward: each neighbor voxel lies within the same block
as the active voxel. But for the left most voxel, its left neighbor lies in a
completely different block, i.e. the left neighboring block of the active block.
Analogous is this case for the right most voxel: The right neighbor voxel of

this voxel lies in the right neighbor block.
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Formula (4.1) depicts the case index function. In the calculation only simple
arithmetic, bit-manipulation and shifting operations are used. All possible

function values are shown in Table 4.1

Caselndexgiy, = ((((((Positiong;,&31) — 1)&63)|1) + 1) >>5)  (4.1)

The position value is first masked with 31 to get the position within the
data block. Then the index is calculated from this local position. Table 4.1

shows all possible function values.

Positiong, | CaseIndexgim
0 2
1..30 0
31 1

Table 4.1: All possible values of the case index function for a data block
width of 32 voxels.

The case determination can be extended for n dimensions, resulting in
3™ cases. The case index for the three dimensional space are calculated as
follows: for each axis (i.e. z,y and z) the one dimensional case index is
calculated (data block size 323) from the absolute position in the volume
data-set. Since the range of function values of the one dimensional case
index function is limited to 0..2, the three dimensional case index is simply
derived as depicted in formula (4.2). Figure 4.9 shows all indices assigned
to their position on a cube. In Figure 4.10 the cases and two entries of the

neighbor-list are depicted for the two dimensional case.

Caselndexr = Caselndex, * 9+ Caselndex, * 3+ Caselndex,  (4.2)
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26| 24 [25
20| 18 [19]
8| 6 |7 23| 21 |22
17| 15 |16 21 0|1 5/ 3 |4
11 9 [10
14| 12 [13

Figure 4.9: The 27 case indices calculated from the case index formula (4.2).

0 1 5 case 8
o111
g 6 |7 3 X
3 5 0 1 4 ol x | x
5 3 y) case 3
X X X
5 6 7 X X
6 6 6

Figure 4.10: 9 different cases in two dimensional space. Fach case has 8
entries (one for each neighbor). On the right there are sample tables of cases
8 and 3. The tables show in which neighbor block the neighboring voxel can
be found. x denotes that the neighbor is in the same block.
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Border Issue

With the relative neighbor addressing scheme a new issue is introduced,
which affects the voxels at the volume border (see Figure 4.11). The relative
address is calculated based on the addresses of the neighboring blocks, but
at the border for some of the cases (see Figure 4.10) some neighboring blocks
are missing.

This issue is solved by adding extra border blocks. This increases the size
of the volume of the original size of X x Y x Z blocks to a minimum size of
(X+1) x (Y+1) x (Z+1) blocks and a maximum size of (X+42) x (Y+2) x
(Z+2) blocks as depicted in Figure 4.12 and Figure 4.13.

In general only adding border blocks at three sides of the volume block is
sufficient, because the volume data does not fill up all blocks at the border
(see Figure 4.12). In certain cases, i.e. the width of the volume is a multiple
of 32 voxels (block width), which in the volumetric data-sets completely fills
up blocks at the border, border blocks at up to additional 3 sides of the

volume block are required as depicted in Figure 4.13.

—-_-_-'"‘"-—-..
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] i
Z

Voxel and its Neighborhood Blocks

Figure 4.11: The voxel (red) is located at the border of a block which is also
at the border of the volume. Also for such border voxels a relative neighbor
addressing is required. It this case some of the neighboring voxels (denoted
by 77} are located in a non-existing neighbor block.

Impact on the absolute addressing. The calculation of the block ad-

dress is only affected marginaly by adding border blocks: The width variables
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(holding the width of the volume in blocks) W,, W,, W, are replaced by the
width variables W, W, W] which contain the original values W, W,, W,
increased by 1 or 2 (the additional borders). Further to the block index an
offset W, W, + W, +1 (i.e. the relative address of the first block containing
volume data) is added. The voxel offset calculation is not modified because
the bits which are relevant for the voxel offset are not affected by the border
blocks.

Impact on the relative addressing. The adding of the border has no

effect on the relative addressing scheme since it operates only locally within
a block.

o o
—>

Figure 4.12: If the volume data does not fill up the data blocks completely
on the right and/or bottom border, then only border data blocks at the left
and top have to be added. The red dot denotes the origin of the coordinate
system.

4.2.4 Fragmented Block Volume

In many cases during runtime the memory manager of an operating system
is not able to allocate a contiguous memory block for storing the volumetric
data, even though enough memory would be available. This is due to the

fragmentation of the virtual address space during runtime. A solution to
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. B
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Figure 4.13: If the volume data fills up the data blocks completely on the
right and/or bottom border, then border data blocks at all borders have to
be added. The red dot denotes the origin of the coordinate system.

that problem is to split up the block volume in smaller pieces. To achieve
that the data blocks are allowed to be irregularly ordered in virtual memory.

The type of block volume is called fragmented block volume.

Absolute Addressing Instead of directly deriving the data block address
from the block index, the data block address is looked up in a data block
address list, see Figure 4.14 in the second calculation step. The organization

of the data blocks in virtual memory is depicted in Figure 4.15.

Relative Addressing Basically the relative addressing scheme stays un-
modified. Since in the fragmented block volume the data blocks are irregularly
ordered, a single global neighbor look-up table is not sufficient because the
relative position of the neighboring data blocks differs for each data block.
Thus for each data block an own neighbor look-up table has to be maintained.
This increases the overall memory requirement by 4.3% (64 kilobytes data
+ 2.8 kilobytes look-up table). As discussed later, this additional memory

requirement can be quite large for large data-sets.
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Blockindex = (X>>5) + (Y>>5)*Wx + (Z>>5)*Wx*Wy

VoxelOffset = (X & 31) + (Y & 31)<<5+ (Z & 31)<<10

_ BlockAddressList[Blockindex]

| VoxelAddress _VoerOffset |

Figure 4.14: Absolute voxel address calculation for fragmented memory.

Blocked|0[1]2]3
Volume| 4|5 |6

819 (1011

Fragmented Memory
61141011 ]2 415 318 |12]10]11 131151917

Figure 4.15: Data organization in fragmented memory. The blocks are ir-
regularly ordered. The block index is used as index into a list containing
the actual data block addresses. The thick border denotes the memory areas
allocated through the memory manager.

4.2.5 Shared Block Volume

In the previous sections the contiguous and the fragmented block volume have
been introduced. They provide an efficient access to the data and utilize
memory space efficiently, but their memory requirements are not reduced,
although it is an important issue for handling large data-sets.

Many data-sets contain large homogeneous regions, i.e. the border blocks
or homogeneous regions (for example air) around a scanned object. These
blocks contain the same data. Also when creating an large empty block vol-

ume filled with zero, all blocks contain the same value. Storing ”empty” space
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Blocks Data Blocks

Shared Block Volume

Figure 4.16: The shared block volume. In the shared block volume the map-
ping between the Blocks and the Data Blocks is a many-to-one mapping.

is not feasible, so actually the data of only one block is stored and is shared
among the blocks containing the same data.

A step towards lower memory demands is the shared block volume. A shared
block volume is an extension of the fragmented block volume.

In this concept a data block is extended in the following way: The block
volume consists of blocks, which are references of data blocks: A block ref-
erences exactly one data block, whereas a data block can be referenced, i.e.
shared, by several blocks (see Figure 4.16). A fragmented block volume can
be interpreted as a special case of a shared block volume: Each data block is

referenced by exactly one block (see Figure 4.17).

Data Handling

At creation time, a shared block volume is empty: All voxels contain the
density value zero, therefore each block contains the same values, thus only
one data block is necessary for representing the data of all blocks so one data
block is shared by all blocks (see Figure 4.18).
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Blocks Data Blocks

T

Block Volume

Figure 4.17: The block volume. In the contiguous or fragmented block vol-
ume there is a one-to-one mapping between Blocks and Data Blocks.

Shared Block
in Memory

Block Volume

Figure 4.18: A shared block volume at initialization time. A single data block
is shared by all blocks.
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before split after split

Block Volume E

Shared Blocks

Figure 4.19: A shared block volume at split. A block is modified (thick
border). A new block is created holding the modified block (yellow block).

Data Block Split If a new value is written to a data block, which differs
from the value at the current location, then a replica of this data block is
generated. To this replicated data block the new value is written at the
desired location. First the data block is shared by n blocks, after this step
the data block is shared by n — 1 blocks, and the modified data held by the
replicated data block is shared by one block (see Figure 4.19).

Block Data Merge If a set of m blocks are sharing a data block and
a set of n blocks are sharing another data block, both sets are disjunct,
but the data blocks contain identical data, both sets can be merged. One
memory location containing one data block can be freed and the other data
block is shared then by n 4+ m blocks. A merge requires comparing one data
block with all other data blocks on voxel basis, which is computationally
expensive, therefore it should be applied when no time-critical access to the

volume occurs.

Addressing Issues

The shared block volume is basically a fragmented block volume, therefore
each block has a neighbor look-up table. In a shared block volume where the

addresses of the neighboring data blocks change during runtime, the neighbor
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look-up tables of the affected blocks have to be updated to ensure consistent
addressing of the data blocks. This achieved by using an update look-up table
containing for each neighbor the fields of the neighbor look-up table to be
updated.

If the address to a data block is changed by a data block split or a data block
merge, then the neighbor look-up table of the block (i.e. the center block
of a 3x3x3 cube of blocks) itself and its 26 neighbors have to be updated
according to the changed address. For the center block the offset between
the addresses of the old data block and the new data block is added to each
entry in the neighbor look-up table. For each neighboring block, only those
cases are updated, which in the center block is addressed.

Figure 4.20 shows the relation between the addressing and the update look-up
table for updating the neighbor look-up table. For 2D the update look-up table
contains 4 x 1 +4 %7 =32 and for 3D 8% 1 + 12 % 7 4+ 6 % 49 = 386 entries.

Border Handling

In the shared block volume, no additional border blocks are added. Instead
a special border data block is provided for simulating the border. Instead of
having extra blocks as in Figure 4.10 these data blocks are replaced by this

special border data block at the according position as depicted in Figure 4.21.

4.2.6 Compressed Shared Block Volume

For data-sets with large homogeneous regions the shared block volume reduces
the memory requirements significantly. Also having an extremely large vol-
ume initially does not require much memory because one data block is shared
among all blocks in the block volume. The memory requirements can be fur-
ther reduced with the utilization of compression methods.

Up-to now, only data structures storing uncompressed data have been pre-
sented. In these data structures the data is completely memory resident and
instantly accessible. Thus a new issue comes up with the use of compression:
Memory for concurrently storing the compressed and uncompressed data is

required. The memory requirements of the compressed data is proportional



CHAPTER 4. BLOCK VOLUME MEMORY LAYOUT 48

case 7
o|1]2
3 4
0 1 2 5]|16})7
case 1
0] 12
3 4 3 4
516|7
case 4
5 6 7 0] 1 =
3 4
5167

Figure 4.20: This figure shows the affected case (dark color) after a neigh-
bor (light color) has changed its address. Only the affected fields are up-
dated for each case. The following list is stored for neighbor 4 (yellow):
(7,4),(7,7),(1,2),(1,4),(1,7),(4,2),(4,4). This list is to be interpreted as fol-
lows: For neighbor 4 the following fields have to be updated: entry 4 of case
7, entry 7 of case 7, entry 2 of case 1, etc.

with the size of the data-set, whereas the memory requirements for the un-
compressed data depends on the way of processing the data. For example,
processing the data slice by slice would require only a memory area of the size
of a slice for processing. The slices to be processed would be decompressed
successively into this memory area. The handling of the compressed data

and its decompression is discussed in the following chapter.

Compression and Memory Usage

For the compression of the data blocks, a LZ77 descendent compression al-
gorithm is used. It is the so-called LZO [11], the Lempel-Ziv-Oberhumer

compression algorithm, which was developed by Markus Oberhumer in 1994.
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B B B
case 8
8] 6 17 B B B
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Figure 4.21: Relative addressing scheme at the border in the shared block
layout.

It seems not to be very well known, but is used occasionally in the Linux
community. The compression and decompression is slightly faster, than of
other LZ77 variants, but is not required to compress better, because speed
is the more important issue.

Compressed data requires usually less space than uncompressed data. For
computed tomography data the compressed data requires around 30 to 80
percent less memory than the uncompressed data according to Table 4.2.
The table shows the data reduction (0% no reduction, 100% full reduction)

for various volumetric data-sets.

Type Uncompressed | Compressed | Reduction
Visible Human (CT) 717TMB 116MB 84%
Santa Claus (CT) 499MB 247TMB 51%
Mouse Embryo (Photo) 592MB 388MB 34%
Visible Human (Photo) 1613MB 357MB 78%
Analytic Function (Synthetic) 2048MB 462MB 7%

Table 4.2: Various types of volumetric data compressed with the LZO algo-
rithm [11].
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4.3 Volume Processing Hierarchy

In this section a multi-layer abstraction of volume processing is introduced.
This is an abstraction of the interaction between an algorithm processing the
actual data and the structures handling the actual volumetric data-set. On
the top level there is the algorithm operating on the volumetric data. On the
bottom level, there is the volumetric data itself. In between, up to two ad-
ditional layers are introduced. One layer providing an consistent addressing
scheme to the algorithm layer above, and the other layer below for preparing
the data for access by communicating with the data layer below.

In Figure 4.22 this multiple layer abstraction is depicted: The Volume Data
is the actual volumetric data organized in a specific layout. The Volume Han-
dler provides access to volumetric data and handles memory allocation and
addressing of the data. The Volume Iterator translates addressing schemes
and implements specific access patterns, for example slice by slice access. It
hides the actual volumetric data layout. The Algorithm itself operates on
the data.

For example, an algorithm can access memory resident data directly without
any additional data handling processes in between, whereas compressed data
or out-of-core methods require some preprocessing, i.e. data decompression,
before the actual data can be accessed.

In the following four examples of volumetric data processing abstractions are

explained:

a. Direct Access The algorithm operates directly on the memory resident
volumetric data. For example, the data-set is stored in a contiguous
memory block using the sequential layout. The algorithm can directly

access a voxel by calculating the voxel address from its position.

b. Compression and Out-of-Core . With out-of-core processing an ad-
ditional layer, the Volume Handler is inserted: it prepares the volu-
metric data in such way, that it can be processed by the algorithm like
memory resident data. For example, the Volume Handler holds a buffer

for a single slice, so the Algorithm triggers the Volume Handler to load
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(and decompress) a specific slice into the buffer.

c. Hidden Data Structures The Volume Iterator hides the actual volume
organization. It provides access to the data in specific patterns. For ex-
ample the volumetric data is stored in a memory resident block volume,
but provides an interface for slice-wise access. The Algorithm requires
access to a slice using sequential addressing, so the Volume Iterator
translates the sequential addressing into the block volume addressing

scheme.

d. A combination of b and ¢ Since Volume Iterator hides the actual vol-
ume layout from the Algorithm, the data can be processed transparently
regardless of the layout of the data. The Volume Iterator and the Vol-
ume Handler interact in a way that the resources for the volumetric

data access are utilized optimally based on the specific access patterns.
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Algorithm

Volume Data

Algorithm

Volume Data

Algorithm

Volume Data

Algorithm

Volume Data

a) Algorithm operates directly
on memory resident data

b) Algorithm operates directly
on out-of-core data

¢) Algorithm operates
through a generic interface
on memory resident data

d) Algorithm operates
through a generic interface
on out-of-core data

Figure 4.22: The volume processing hierarchy.



Chapter 5

Memory Allocation Strategies

5.1 Introduction

In this chapter two memory allocation strategies for compressed shared block
volumes are presented.

In a compressed shared block volume it is not possible to directly access the
data as opposed to the memory resident sequential volume. Before the data
can be accessed it has to be uncompressed. Additional memory has to be al-
located for storing the uncompressed data. Allocating memory for the whole
block volume is not feasible due to the high memory requirement.

A solution for reducing the memory demands during runtime is the allocation
of memory for only those data blocks which are currently processed by an
algorithm. For example, for extracting single slices from a block volume only
the data blocks intersected by the slice plane are required. Since frequently
allocating and freeing memory is a time-consuming process, an efficient mem-
ory allocation process for these memory areas is desirable.

The memory management is implemented in the volume iterator and the
volume handler layer of the volume processing hierarchy. The volume itera-
tor implements a specific access pattern. An algorithm utilizes the volume
iterator which matches the access pattern of the algorithm. For an algorithm
processing data slice-wise this would be an iterator implementing a slice-wise

access to the data. Since the access pattern is known, the volume handler

93
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is able to prepare the required data blocks while avoiding non-relevant data
blocks.

5.2 Strategy 1: Dynamic Block Allocation

This strategy manages the allocation of memory areas to data blocks. Ba-
sically a list of all currently uncompressed data blocks is maintained. Each
of these blocks point to a memory area containing the uncompressed data.
This memory area is referred to as processing memory block.

When a compressed data block has to be uncompressed, an uncompressed
data block from the list is taken, which is not processed at the time and
has a certain minimum age. This means the difference between the actual
time and the time when the data block was processed for the last time is
above a specified limit, and its processing memory block is assigned to the
block to uncompress. If such an uncompressed data block cannot be found,
a new processing memory block for the block to uncompress is allocated and
is added to the list.

5.2.1 Components

In this subsection the dynamic block allocation is explained on the basis of
the various layers of the volume processing hierarchy.

Volume Data

For storing the volume data, the compressed shared block volume model is
used. Additionally to each data block the following variable is added: a
reference counter holding the number of volume iterators that are using the
data block.

Volume Handler

The volume handler maintains a list of all accessible blocks, i.e. all data

blocks which are uncompressed and have a pointer to a processing memory
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block. A data block can have two exclusive states:

1. Frozen. In this state, the data block is in a compressed state and the
pointer to the processing memory block is null.

2. Defrosted. In this state the data block is in a uncompressed state, stored

in a processing memory block, and is directly accessible.

Volume Iterator

A volume iterator contains an additional structure, which holds a list of
the data blocks used by the iterator. At initialization time, the number of
defrosted data blocks in the list is zero. Before the blocks can be accessed,
the volume iterator prepares the required blocks for being accessed according

to its access pattern.

5.2.2 Internal Operating Sequence

An algorithm, for example a slicer or renderer, operates on a specific set of
blocks. The blocks are accessed in a predefined order. In many cases the
set of blocks can be divided into sub-sets which must be accessible at the
same time or the order of processing is not important. The sub-sets are not
necessarily required to be disjunct. Processing the blocks in such sub-sets
reduces the memory requirements during runtime. Per iteration step such a

sub-set is processed. The volume iterator operates in the following way:

1. Initialization. The processed blocks list, holding the blocks being pro-

cessed in an iteration step, is emptied.

2. Processing loop. During each iteration step in the processing loop, a
different set of blocks is operated on. In many cases the set of blocks
used before and the new set of blocks are not disjunct. This accel-
erates uncompressing of blocks. The following process is depicted in

Figure 5.1:

(a) Initialization. In the initialization step the blocks which should

be processed in this iteration step are prepared.
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Figure 5.1: Dynamic Block Allocation. Example of an iteration step (itera-
tion step 7) of the rendering algorithm of Grimm et al. [6].
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1.

ii.

Set-up. The iteration counter, is increased by one. The re-
quired blocks list is emptied, then the blocks which should be
processed in this iteration step are added to the list. For each

block the following steps are performed:

A. If the iteration number field, holding the number of the
iteration when the block was used for the last time, of
its data block is not equal to the current ¢teration counter
omit this block. That avoids unwanted multiple additions
of the same data block to the list.

B. The iteration number field is set to the current iteration

counter value.
C. The usage counter field is increased by one.

This ensures that a data block appears in the required block

list only once.

Preparing. In this step all blocks from the required blocks list
are prepared for processing. First the usage counter field of
each block in the processed block list which contains the data
blocks used in the previous iteration step is decreased by one
and after that the list is cleared. Now, for each data block
in the required blocks list which does not point to a memory
block, a memory block is acquired as follows: Basically the
memory allocation algorithm maintains a list containing all
currently defrosted data blocks. These data blocks are stored
in a queue. When a free memory block is needed a data block
is retrieved from the queue. Then it is checked whether the
data block is in use or not. If not then this data block is
turned into the frozen state and the memory area is reused
for the new data block. If the data block is in use, then it
is appended at the end of the queue and the next data block
is retrieved from the queue. If no free memory area can be
found, simply a new memory area is allocated through the

system memory manager.
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After for a data block a valid memory area is allocated it is
turned into the defrosted state. The compressed data is de-
compressed into the memory area. Finally the neighbor look-
up tables for the relative neighbor addressing scheme have to

be updated accordingly.

(b) Processing. The data blocks in the required blocks list can be

accessed like a memory resident block volume.

(c) Finish. The processed blocks list is filled with the contents of the

required blocks list.

3. Clean-Up. The usage counter field of each block in the processed blocks
list which contains the blocks used in the previous iteration step is

decreased by one and after that the list is cleared.

5.2.3 Conclusion

Initially the memory requirements comprise the compressed data and the
neighbor look-up tables of each block in the shared block volume. During
runtime, additional memory for storing the uncompressed data is allocated.
Since in the shared block volume for each data block a neighbor look-up ta-
ble for the relative neighbor addressing has to be stored, the space required
for the tables linearly increases with the size of the data-set. The neighbor
look-up table has the the size of 2.8 kilobytes, therefore the memory require-
ment for the shared block volume is at least 4.3 percent (2.8 kilobytes of
64 kilobytes) of the original uncompressed size. Thus space required for the
neighbor look-up tables is significantly large for large data-sets. It turned
out that this issue makes this strategy impractical for large data-sets.

For example, a 2048x2048x2048 volumetric data-set, which has a total size
of 16 gigabytes, is divided into 64x64x64 blocks, in total 262144 blocks. This
would result into a memory requirement of 716 megabytes for the neighbor
look-up tables only. This is not feasible on computers with limited memory
resources, where the neighbor look-up tables would use up most of the mem-

ory. Since this issue cannot be solved easily, a new strategy circumventing
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this problem is presented.

5.3 Strategy 2: Block Mapping

For this strategy the memory requirements for processing is constant and
independent from the data-set size. This is achieved by utilizing a block
volume of a fixed size. In this approach, the sequential layout is applied in a
three level arrangement (see Figure 5.2, compare it with Figure 4.5).

The block volume comnsists of a block of sub-volumes, which itself consist
of blocks. There are two types of sub-volumes: data sub-volumes holding
the data blocks in a compressed state and one processing sub-volume hold-
ing the data blocks in an uncompressed state. The blocks in the processing
sub-volume are referred to as processing blocks. To achieve the independency
of the memory requirements for processing from the data-set size, a single
processing sub-volume is shared among all data sub-volumes, regardless of
the size of the overall block volume. Internally, all data blocks at a specific
position in each data sub-volume share a single processing block of the pro-
cessing sub-volume at the according position. This is referred to as mapped
blocks, i.e. the data blocks are mapped onto a single processing block (see
Figure 5.3).

The size of a sub-volume is fixed and the whole block volume consists of a
fixed number of blocks. The sub-volumes are cube-shaped with a width of 2"
blocks, where n is a fixed number. At the border the address wraps around
to simulate a large, theoretically infinite volume data-set. This is achieved
without any additional computational costs by simple masking operations.
n must have at least the value of 2 to avoid data block conflicts at the wrap-
around (see Figure 5.4).

Also, different from the dynamic block allocation strategy, the size of the
overall block volume is fixed regardless of the size of the actual volumetric
data-set.

In this strategy the previously introduced compressed shared block volume
layout, which is used in the dynamic block allocation, is not required. Since

the processing sub-volume is a block-volume of fixed size for only storing
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uncompressed data, the fragmented block volume is used as a basis for the
processing sub-volume. The contiguous block volume cannot be used because
of the cyclic neighbour addressing introduced in the next section.

For example, assume a block volume of the size 2048x2048x2048. The sub-
volume size is 4x4x4 blocks, which is 128x128x128 in voxels. Thus the block
volume consists of 16x16x16 data sub-volumes. The processing sub-volume
has also the size of 4x4x4 blocks. Thus the processing sub-volume is shared

among 16% = 4096 data sub-volumes.

Volume Sub-Volume Block

Figure 5.2: Block Mapping: Three-level application of the sequential layout.

Volume of Processing Sub-Volume
Data Sub-Volumes

Figure 5.3: Mapping of Data Sub-Volumes to a single Processing Sub- Volume.
A processing block contains a list of all associated data blocks.

5.3.1 Addressing the Sub-Volumes

The addressing in this layout is as easy as for a simple block volume. At

the very beginning the higher bits, from which the BlockIndex is calculated



CHAPTER 5. MEMORY ALLOCATION STRATEGIES 61

E> E> Wrap-Around

Figure 5.4: In the processing sub-volume with wrap-around the width of
the sub-volume must be at least 4 blocks to avoid a self-overlapp of the
neighboring blocks (cyan) of a block (red).

are split up into two parts. The higher part is used for calculating the sub-
volume index. The lower bits are used for the Blocklndex to address the

block within the processing sub-volume. This is depicted in Figure 5.5

X Y Z
[15..5+1] | [s..5] | [4..0] | |[15.s+1] |[s..5] | [4..0] ||[15..5+1] |[s..5] | [4..0]

2 V L2

Blockindex = (X>>5) + (Y>>5)*Wx + (Z>>5)*Wx*Wy

VoxelOffset = (X & 31) + (Y & 31)<<5 + (Z & 31)<<10

SubVolume = (X>>5) + (Y>>s)<<w + (Z>>5)<<(2*w)

Figure 5.5: Block index and voxel address calculation in a mapped block
volume. For the voxel address, only the 5 lowest bits are used, for the block
index the bits above the b lowest are used. The higher bits are used for the
sub-volume index. The variable s denotes the logarithmic width in blocks of
a sub-volume. 2% is the actual width of a sub-volume. w is the logarithmic
width of the overall block volume in sub-volumes. The width in blocks of the
overall block volume would be 257%,
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5.3.2 Components

In this subsection the various layers according to the volume processing hi-

erarchy are explained.

Volume Data

In the data domain the block volume consists of a number of data sub-
volumes. For processing, all data sub-volumes are represented by a single
processing sub-volume structure. The data blocks of each data sub-volume
are mapped to the processing block in the processing sub-volume at the cor-

responding location as depicted in Figure 5.3.

Volume Handler

The volume handler is represented by the processing sub-volume. It maintains
the processing blocks which hold the uncompressed data. It also decompresses

data blocks when required.

Volume Iterator

The volume iterator accesses the block volume in an order that the number
of data block replacements are minimized, as far as it is the inter-block
dependencies allow it. For example an iterator extracting slices the order
of blocks is not important, whereas for a ray-caster processing blocks front
to back the processing order of the blocks is important, because the blocks
further behind depend on the blocks in front of them.

5.3.3 Out-of-core Volumetric Data Processing

The block mapping strategy is extended with an out-of-core data handling
feature. This out-of-core approach operates only on the compressed data
blocks.

For each data block a state is maintained describing whether it is memory
resident or not. Thus the volume handler knows when to retrieve a data

block from the mass storage device. For each data block the time when it
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was accessed the last time is stored, called last access time. The time can be
the real-time or simply a counter increased over time, not necessary regularly,
but in such a way that a temporal order is achieved. In the implementation
such an iteration counter was used. After a volume iterator iteration step
has ended, the set of all memory resident data blocks is analyzed for data
blocks whose difference between the current time and their last access time
exceeds a specific time limit. This is referred to as block memory analysis. 1f
the limit was exceeded, the block is swapped out: If it is not yet stored on
the mass storage device, it is written to it, then its memory is freed.
Another limit is the memory usage limit. This limit is fixed during an itera-
tion step. This memory limit is a soft limit, which means that the algorithm
tries to keep the memory usage below this limit, but it is allowed to exceed
the limit if necessary. As long as the memory usage stays below this limit, no
swapping out is necessary and the time limit is increased by one after each
block memory analysis. But, if the total memory usage is above the limit, the
blocks exceeding the time limit are swapped out thus reducing the memory
usage and the time limit is decreased by one.

Data blocks are swapped in when the volume handler prepares a data block
for being accessed by an iterator, but the data block is not memory resident.
In that case memory is allocated and the data block is loaded from the mass

storage device. Then it is decompressed into its associated processing block.

5.3.4 Operation of the Mapped Block Volume

The basic operation order of the mapped block volume is depicted in Fig-
ure 5.6. It shows a quadratic (can be also rectangular) area of blocks to be
processed. a) processing of blocks 0-2. Data is decompressed (if required)
into the memory blocks and can be processed. b) Here the first block during
this process has to be overwritten: data block 0 is replaced by data block 4.
c-f) During further processing more blocks have to be replaced. g) This is

the state of the processing volume after the traversal of the rectangular area.
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Processing Sub-Volume

Data Sub-Volumes

at Block 8 atBlock 13

at Block 3

at Block 16 at Block 19 at Blc 23

at Block 24

Figure 5.6: The mapped block volume while processing. This Figure shows
a rectangular area of blocks to be processed. The numbers show the order of
processing. On the left side the rectangular area to be processed is shown,
on the right the states of the processing sub-volume while processing.

5.3.5 Conclusion

The advantage of this strategy is, that the resources needed for processing
have a fixed size. Also the size of the data-set has no impact on the amount
of resources required for processing. For multiprocessing purposes several

processing sub-volumes can operate on the same volumetric data-set.
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Implementation

6.1 Introduction

In this section implementation schemes for both strategies are presented.

The implementation was integrated into an existing volume renderer [2].

6.2 Dynamic Block Allocation

Algorithm An Algorithm, processing the volumetric data, utilizes a Vol-
ume Iterator for preparing the required data (black line in Figure 6.1 from
the Algorithm to the Volume Iterator)

Volume Iterator It prepares the data for the Algorithm. It processes
blocks in a specific order: A slicer processes all blocks intersecting the slicer,
a renderer processes blocks for example, in a front to back order. It utilizes

a Defroster for accessing the actual Block Volume.

Defroster With this structure an Volume Iterator interfaces with the Block
Manager (black line in Figure 6.1 from the Defroster to the Block Manager) .
It maintains the specific set of blocks required by the Volume Iterator (green
line in Figure 6.1 from the Defroster to the Blocks)

65
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Algorithm e Algorithm
Volume lterator Volume Iterator
Defroster o Defroster
Block Volume
/" | Block Manager
| |
| Blocks
Out-of-Core Data Manager
Data Blocks

Figure 6.1: Dynamic Block Allocation implementation scheme. Boxes denote
classes (yellow: inner classes), black lines denote communication paths, green
lines denote references.

Block Volume This structure represents the shared block volume. It holds

the properties of a volume, a list of Blocks and a Block Manager.

Block Manager The Block Volume utilizes a Block Manager for control-
ling the preparation of the Blocks during runtime. It is responsible for the
handling of the Blocks (green line in Figure 6.1 from the Block Manager to
the Blocks). This is done by interacting with the Out-of-Core Data Manager
(black line in Figure 6.1 from the Block Manager to the Qut-of-Core Data
Manager)

Block A generic structure for a block. It contains the neighbor look-up

table for the relative addressing scheme. It holds the uncompressed data
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from its associated Data Block (green line in Figure 6.1 from the Blocks to

the Data Blocks)

Out-of-Core Data Manager This structure holds the actual Data Blocks.
It is responsible for the compression and the decompression of the data.
It also controls the out-of-core process. It maintains a list of data blocks

currently hold in memory.

Data Block This structure holds the actual volume data and auxiliary

structures related to the data.

6.3 Mapped Block Volume

Algorithm e Algorithm
Volume lterator . Volume Iterator
ey —
B o

Block Volume

Processing Sub-Volume

/| Data Sub-Volume

Out-of-Core Data Manager
Data Blocks

Figure 6.2: Mapped Block Volume implementation scheme. Yellow Boxes de-
note classes (yellow: inner classes), black lines denote communication paths,
green lines denote references.
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Algorithm An Algorithm, processing the volumetric data, utilizes a Vol-
ume Iterator for preparing the required data (black line in Figure 6.2 from
the Algorithm to the Volume Iterator)

Volume Iterator The volume iterator prepares the data for the Algorithm.
It processes blocks in a specific order: A slicer processes all blocks intersecting
the slicer, a renderer processes blocks for example, in a front to back order.
It accesses the actual Block Volume (black line in Figure 6.2 from the Volume
Iterator to the Block Volume

Block Volume This structure holds the Processing Sub-Volume and the
Data Sub-Volume. The Processing Sub- Volume triggers the Data Sub-Volume
(black line in Figure 6.2 from the Processing Sub-Volume to the Data Sub-
Volume) to retrieve Data Blocks from the Out-of-Core Data Manager (black
line in Figure 6.2 from the Data Sub-Volume to the Out-of-Core Data Man-

ager)

Processing Sub-Volume This structure implements a processing sub-
volume. It contains a list of its Data Sub-Volumes (green line in Figure 6.2
from the Processing Sub-Volume to the Data Sub-Volume). Preparing spe-
cific Data Blocks is done by interacting with the Out-of-Core Data Manager
through the Data Sub-Volume (black line in Figure 6.1 from the Processing
Sub-Volume to the Data Sub-Volume)

Data Sub-Volume This structure implements a data sub-volume. It con-
tains a list of its Data Blocks (green line in Figure 6.2 from the Processing
Sub-Volume to the Data Sub-Volume). It interacts with the Out-of-Core
Data Manager (black line in Figure 6.2 from the Block Manager to the Out-
of-Core Data Manager) to load specific data blocks.

Out-of-Core Data Manager This structure holds the actual Data Blocks.

It is responsible for the compression and the decompression of the data.
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It also controls the out-of-core process. It maintains a list of data blocks

currently held in memory.
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Results

The implementation was integrated into the rendering framework Raybooster
developed by Bruckner [2]. A screen shot of the framework is depicted in
Figure 7.1. For generating the results mainly the ray-casting algorithm de-
veloped by Bruckner [2] is used.

For generating the results various computer tomography data-sets have been
used: Visible Male (Figure 7.7), Christmas Tree (Figure 7.8), Santa Claus
(Figure 7.9) and Skewed Head (Figure 7.10)

7.1 General Remarks

All timings and tests in the results chapter have been performed on an AMD
Athlon System with a 1.2 gigahertz CPU and 512 megabytes of memory

running Microsoft Windows 2000 Professional.

7.1.1 Data Access

While processing a block, the CPU reads from the following memory loca-

tions:

e The Data Block. Tt is a block of 32x32x32 16bit values containing the
density information. It has the size of 64 kilobytes.

70
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Figure 7.1: The Raybooster rendering framework.

o Neighbor Look-Up Table. This table, containing 27x26 entries stored in
a 32bit variable each, has the size of 2.8 kilobytes.

o Other Variables are required for handling the block volume, which make
up several bytes in total.

o Algorithm Specific Variables are required by the algorithm operating
on the data.

In total, processing a single block is bounded to roughly 70 kilobytes of
memory. Several blocks fit smoothly into a 512KB level 2 cache. The level 2
cache is at least 8-way associative (Intel Pentium 4) or 16-way (AMD Athlon)
associative, thus these cache areas of the memory locations specified above,

combined with the frequent accesses to them, are unlikely to be superseded



CHAPTER 7. RESULTS 72

by various other reading and writing accesses requiring a cache update from

the main-memory.

7.1.2 Decompression Speed

We assume a hard-disk with 25 megabytes per second interface speed and a
decompression algorithm with an output speed of 100 megabytes per second.
The data has an uncompressed size of 1000 megabytes and a compressed size
of 500 megabytes. Loading the uncompressed data from the hard-disk takes
40 seconds. Loading the compressed data takes 20 seconds and decompress-
ing takes 10 seconds, in total 30 seconds, which is 10 seconds faster than
loading the uncompressed data. Experimental results with the LZO decom-
pression algorithm (sub-type lzo1z) [11] (Table 7.1) support this assumption.

The data is read sequentially slice-wise from the hard-disk.

Data-set Uncompr. | Compr. | Loading | Loading

size size | uncompr. | compr.
Visible Male (CT) 717 MB | 116 MB 35 sec 8 sec
Christmas Tree (CT) 499 MB | 247 MB 43 sec 17 sec
Visible Male (Photo) 1613 MB | 357 MB 87 sec | 25 sec
Mouse Embryo (Photo) 592 MB | 388 MB 72 sec | 27 sec
Analytic Function (Synthetic) | 2048 MB | 462 MB 105 sec 24 sec

Table 7.1: Comparison of loading uncompressed data with loading com-
pressed data (with decompressing) slice wise.

7.2 Block Volume Results

In this section the memory requirements of the block volume variants are eval-
uated. In Table 7.2 the memory requirements for the block volume types are
shown. The memory usage for the uncompressed block volumes is marginally
higher, because the width of a data-set is rounded up to a multiple of the
block width.
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Data-set Original | Uncompr. | Shared Shared &

Compressed
Visible Male (CT) 717 MB 770 MB | 295 MB 108 MB
Christmas Tree (CT) | 499 MB | 512 MB | 468 MB 238 MB
Visible Male (Photo) | 1613 MB | 1839 MB | 615 MB 327 MB
Santa Claus (CT) 240 MB | 256 MB | 256 MB 163 MB

Table 7.2: Comparison of memory requirements of the block volume variants

for volumetric data.

Data-set Reduction | Reduction Overall

by Sharing | by Compr. | Reduction
Visible Male (CT) 61% 63% 86%
Christmas Tree (CT) 9% 49% 54%
Visible Male (Photo) 67% 47% 82%

Table 7.3: Comparison of memory requirement reduction using the shared
block volume and the compressed shared block volume.

A significant reduction of the memory usage is achieved with the shared
block volume. Data blocks are shared by several blocks reducing the overall
memory requirements. Especially data blocks containing homogeneous data
are shared among blocks containing identical data. With compression, a
further reduction can be achieved. Table 7.3 shows the achieved reduction

of three data-sets in percent.

7.3 Ray-Casting on the Block Volume

In this section several results of both strategies applied on the ray-casting al-
gorithm introduced by Bruckner [2] are presented. As depicted in Figure 7.2,
the rays are successively advanced in a ray front. The following description
of the ray-casting traversal is taken from Bruckner [2]:

The volume is subdivided into blocks. These blocks are then sorted in front-
to-back order depending on the current viewing direction. The ordered blocks

are placed in a set of block lists in such a way that no ray that intersects
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a block contained in a block list can intersect another block from the same
block list. Each block holds a list of rays whose current resample position lies
within the block. The rays are initiolly assigned to the block which they first
intersect. The blocks are then traversed in front-to-back order by sequentially
processing the block lists. The blocks within one block list can be processed
in any order, e.q., in parallel. For each block, all rays contained in its list
are processed. As soon as a ray leaves a block, it is removed from ils ray
list and added to the new block’s ray list. When the ray list of a block is

empty, processing is continued with the next block. Figure 7.2 illustrates this

approach.
. 67 9 (101
Advancing

Ray-Front o7 1819 |10
71819
61718
617
6

Image Plane

Figure 7.2: Block-wise ray-casting scheme (taken from [2]). A ray-front is
advancing through the volume processing one list of blocks in each iteration
step. The numbers inside the blocks denote the iteration step.

In Table 7.4 the frame rates of the rendering process of two different data-
sets, i.e. the Visible Male (see Figure 7.7) and Santa Claus (see Figure 7.9),

are shown.
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Data-set Size | DBA | DBA | MBV | MBV
SBV | CSBV | 40MB | 80MB
Visible Male (CT) | 717 MB | 0.44 032 0.09] 0.13
Santa Claus (CT) | 240 MB | 1.13 0.72 0.52 0.52

Table 7.4: Frame rates (frames per second) of variants of the dynamic block
allocation (DBA) and mapped block volume (MBV). The DBA is applied
on the shared block volume (SBV) and compressed shared block volume
(CSBV). For the mapped block volume a sub-volume size of 256° is used and
a memory limit of 40 and 80 megabytes.

7.3.1 Dynamic Block Allocation

Figure 7.3 shows two successive iteration steps during the ray-casting al-
gorithm. During an iteration step the block list contains the relevant data
blocks (shaded background) inclusive their neighboring blocks (for example,
required for gradient calculation). In total, during 15 iterations the following
numbers of blocks will be successively processed: 0, 6, 6, 9, 11, 19, 24, 24,
21,19, 19,9, 11, 0, 0. 175 blocks in total. The lists of block between succes-
sive iteration steps contain a number of common blocks, thus the common
blocks are reused for the next iteration step and only the new blocks are
prepared for processing. For example, in Figure 7.3 the number of common
blocks is 14, thus only 10 new blocks (instead of 24) are prepared. Figure 7.4
shows numbers of the rendering process of the Skewed Head data-set (see

Figure 7.10).

7.3.2 Mapped Block Volume

In a compressed block volume each block has a status flag indicating if it is
compressed or not. Therefore it is straightforward to incorporate out-of-core
support. This has been done for the mapped block volume.

The diagrams in Figure 7.5 show the relation between the memory usage,
memory limit and time limit during runtime of the out-of-core volumetric
data processing feature for a series of frames. Basically, the Memory Usage

decreases with a decreasing Time Limit and increases with an increasing
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Figure 7.3: The list of blocks of two successive iterations are shown: The
blue shaded blocks inclusively their neighbors are the relevant blocks for the
ray-casting algorithm, the others are omitted, i.e. they are non-relevant.
[teration 6 is colored green and iteration 7 is colored red. In iteration 6
(green) 19 blocks are in the list, in iteration 7 (red) there are 24 blocks. The
overlapping area between both iterations contains 14 blocks.

Time Limat.

Memory usage is the total amount of memory allocated for compressed data.
The relation between the three variables is described as follows: The memory
limit is a fixed variable. When the memory usage is greater than the memory
limit then the time limit is decreased, otherwise increased. A lower time limit
means a shorter life-time for data blocks, causing them to be swapped out
earlier and thus the memory usage decreases.

The soft memory limit makes the algorithm keeping the memory usage below
this limit, but it is allowed to exceed it when necessary. As long as the total
memory usage stays below the limit, no swapping out is necessary and the
time limit is increased by one after each block memory analysis. As soon as
the total memory usage is above the limit, the oldest data blocks, i.e. the
data blocks with a difference between the current time and the time counter
greater than the time limit, are swapped out and the time limit is decreased
by one.

A data block is swapped in when the volume handler prepares this data
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Figure 7.4: Number of used blocks per iteration step of the dynamic block
allocation: The results of three renderings (ray-casting) from similar view-
points are shown (yellow, blue and purple). The number of blocks differs
depending on the view-point. The data-set (Skewed Head, see Figure 7.10)
has a total count of 288 blocks (6 x 6 x 8 blocks).

block for being accessed by an iterator and the data block is not memory
resident. In that case, memory is allocated and the data block is loaded from
the mass storage device. After that it is decompressed into its associated
processing memory block. In Figure 7.6 the numbers of blocks processed for
each rendered frame are shown. Not Used Blocks is the number of blocks
which are not in the main memory at all. Swapped In Blocks is the number
of blocks loaded from the hard-disk for a specific frame. Decoded Blocks is
the number of blocks decompressed. Swapped Out Blocks is the number of

blocks swapped out, i.e. removed from the main memory.
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Mapped Block Volume: Memory Usage
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Figure 7.5: Mapped Block Volume. Rendering of the Visible Male data-set
(716MB) with a memory limit. The memory usage is controlled by the time
limit. Top: At the 80 megabyte limit the memory usage grows up-to 63
megabytes, then stays at this level. With the 40 megabyte limit the memory
usage oscillates around the limit. Bottom: At the 80 megabyte limit as long
the memory limit is not reached, the time limit is increased, whereas at the
40 megabyte limit when the memory usage exceeds the limit the counter is
decreased.
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Mapped Block Volume: Rendering with 80 Megabytes Memory Limit
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Mapped Block Volume: Rendering with 40 Megabyte Memory Limit
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Figure 7.6: Mapped Block Volume. Rendering of the Visible Male data-set
(716MB) with a fixed soft memory limit. Top: Rendering with a memory
limit of 80 megabytes. Since enough memory is available (for rendering only
62 megabytes are required) the memory usage stays below the limit, thus no
swapping out of blocks occurs. Bottom: Rendering with a memory limit of
40 megabytes. Since the memory limit is exceeded, blocks are swapped out
and swapped in again later.
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Figure 7.7: An image of the Visible Male data-set (587 x 341 x 1878 voxel).
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Figure 7.8: An image of the Christmas Tree data-set (512 x 512 x 999 voxel).
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Figure 7.9: An image of the Santa Claus data-set (512 x 512 x 481 voxel).
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Figure 7.10: An image of the Skewed Head data-set (184 x 256 x 170 voxel).



Chapter 8

Summary

8.1 Introduction

Since the introduction of the computed tomography scanner by G.N. Hounsfield
in the early 1970s processing of volumetric data tremendously gained in im-
portance. Computed tomography is the reconstruction of cross-sectional im-
ages from multiple one dimensional scans along lines from different angles
on a plane. It is also referred to as computed tomography. The reconstruc-
tion of a series of such cross-sectional dimensional images results in a three
dimensional, i.e. volumetric, data-set.

In 1972 the first clinical diagnostics based on computed tomography images
were made. A few years later several thousand computed tomography scan-
ners were in use worldwide. The first scanners had a slice size of 80x80 pixel
and a thickness of 13 millimeter.

In the early days of computed tomography, it was sufficient to examine a
single slice, in order to conduct a medical diagnosis. At this time, scanning
a single slice took 300 seconds. Later, with the reduction of the scanning
time down to a few seconds, the acquisition of series of slices at once became
common.

With the up-come of personal workstations in the 1980s, digital processing
of the computed tomography data became more and more popular. Over

the years, the computed tomography technology improved. Now, the slice

84
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resolution of modern scanners is at 1024x1024 with a slice thickness of 0.5
millimeter. A scan usually results in a series of several hundred slices.

This is the point, where volumetric data processing becomes indispensable:
Examining hundreds of slices one by one is not feasible anymore. The in-
troduction of an additional processing step between the data acquisition and
the visualization for diagnostic purpose is necessary. This processing step is
referred to as volumetric data processing.

The past years have shown, that the size of volumetric data-sets has increased
as fast as the CPU processing power and memory size. Thus efficient data
handling has ever been an important issue of volumetric data processing.
Today the common silicon technology reached its physical limits, whereas
in the computed tomography area there is still much potential for further
increase of the data quantity: the recent introduction of 16-slice scanners,
better detectors and the emergence of multi-modal data let expect a further
increase of the amount of data to be processed.

Common computer architecture is sufficient for average applications, however
its complex architecture cannot serve optimally applications with exceptional
resource requirements. Such exceptional requirements are needed in the field
of volumetric data processing, where very efficient data transfer capabilities
in all components, i.e. CPU, memory and mass storage devices, are required.
For optimally utilizing the data transfer capabilities of these components, the
development of specific algorithms exploiting the architectural advantages of

the common computer hardware is desirable.

8.1.1 Data Processing Issues

Memory Access The hardware components involved in the data process-
ing are optimized for sequential contiguous access. A sequential access is
simply an access to a contiguous block of data with specific starting address
and length. In volumetric data processing fast access is very important in or-
der to achieve high performance. Most memory hardware support sequential
contiguous accesses by so-called burst transfers. After the starting address,

and optionally, if supported by the architecture, the length of the desired
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block, has been sent to the memory controller, a whole sequence of words is
transferred at once instead of a single word per addressing action. A word is
the smallest transferable element. Thus it is important to exploit this sequen-
tial access behavior when accessing the main-memory or any mass storage
device.

Irregular accesses constantly trigger cache updates. This leads to a degrada-
tion of performance if memory hierarchy levels are affected which are sensitive
to non-sequential accesses. The affected levels are usually the main-memory
and the mass storage devices. As long as no update of the caches through
those levels is constantly required, no significant performance decrease oc-
curs.

If an algorithm accesses a memory or mass storage device in an irregular
pattern or, more simply speaking, not in a sequential contiguous fashion,
the performance drastically degrades. Methods overcoming this issue by ex-
ploiting the advantages of the current computer architecture hierarchy are
presented. The intention of these methods is to allow irregular accesses while
maintaining sequential accesses for performance reasons. Before the block
volume is introduced, the sequential layout, a commonly used storage format

for volumetric data is discussed.

8.2 Sequential Layout

The sequential layout has arisen in the 1970s with the upcoming of medical
three dimensional imaging systems like computed tomography devices. The
data values of the volumetric data-set are sequentially stored starting with
the first line of the first slice going to the last line of the last slice. Basically
the volume data-sets acquired from computed tomography are organized ac-
cording to this layout.

This layout allows an effective sequential line-by-line respective slice-by-slice
processing of the data. Therefore it is most suited for algorithms which pro-
cess data in a line-by-line respective slice-by-slice manner.

The most profoundly disadvantage of this layout is, that the effectiveness

decreases dramatically when algorithms require random access to the data,
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or, more simply, require access in a different way than in a slice-by-slice or
line-by-line manner. FEven accessing slices in the zz-plane results in process-
ing of single lines across the entire data-set. Even worse, accesses to slices in
the yz-plane results in processing of single voxels, which totally compromises

the caching mechanisms in the hardware optimized for sequential accesses.

8.3 Contiguous Block Volume

The basic data structure for the block allocation strategies is a block volume.
A block volume is a two level application of the sequential layout. The volume
data-set is organized in sequentially organized fixed-size blocks, which are
internally organized again according to the sequential layout. The block
volume demands a more complex addressing scheme compared to a simple
sequential volume. The size of the data blocks is selected in away so that it
fits into the processor’s cache. In a contiguous block volume the blocks are

sequentially stored in a contiguous memory block.

8.3.1 Absolute Addressing

The block address and further the voxel offset are derived from the position
in the three dimensional space as described: Since the width of a block is
an integer power of two, simple arithmetic, masking and shifting operations
can be used for calculating the block and voxel offset. In the first step the
block index and the voxel address relative to the block are calculated from
its position. In the second step the voxel address in memory is calculated by

multiplying the block index with the block size.

8.3.2 Relative Addressing Scheme

Once the absolute address for accessing a specific voxel is calculated, it is
advantageous to have an efficient method for accessing neighboring voxels.
The specific voxel is called the active vozxel respectively the 3x3x3 cube, where

this voxel is located in the center, is called the active cube.
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For each voxel in a block there are 26 different neighbors. In this approach,
the absolute addresses of the neighbors are calculated by adding an offset to
the address of the active voxel. This offset is called the relative address. The
relative address is the difference between the absolute address of the active
voxel and one of its 26 neighbors. The neighbor-lists are classified into 27
different cases. In each case the 26 relative addresses are identical for each
voxel within the case. Ultimately the neighbor look-up table consists of 27
lists with 26 entries each, in total 702 entries.

These 27 cases are derived from the voxel position within a block. A case is
denoted by an case inder. The case index is derived from the position within
the block in the following way: For the one dimensional space there are only
3 cases: most left voxel, inner voxels and most right voxel. For the inner
voxels neighbor addressing is straightforward: each neighbor voxel is located
in the same block as the active voxel. But for the left voxel, its left neighbor
is located in a different block, i.e. the left neighboring block of the active
block. This case is analogous for the most right voxel: The right neighbor

voxel of this voxel is located in the right neighbor block.

Caselndexgiy, = ((((((Positiong;,&31) — 1)&63)|1) + 1) >>5)  (8.1)

Positiong;,, | Caselndex gy,
0 2
1..30 0
31 1

The formula above depicts the case index function. In the calculation
only simple arithmetic, bit-manipulation and shifting operations are used,
thus the calculation is very fast. All possible function values are shown in
the table below the formula.

The case index for three dimensional space is calculated as follows: Since
the range of function values of the case index function is limited to 0..2, the
three dimensional case index is simply derived as depicted in the following

formula.
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Caselndex = Caselndex, * 9 + Caselndex, x 3 + Caselndex, (8.2)

Since for each block the relative addresses are identical, only a single
neighbor look-up table is required for the entire block-volume. Additional
border blocks are added at to ensure a consistent relative addressing also at

the border voxels of the block volume.

8.4 Fragmented Block Volume

In a fragmented block volume, the blocks are irregularly distributed in the
memory space. Therefore the second step of the absolute address calculation
has to be modified as follows: The absolute address of a block is looked up
in the block address list instead of deriving it directly from the block index.
Since for each block the neighboring blocks have different relative addresses,

an own neighbor look-up table for each block is required.

8.5 Shared Block Volume

Basically a shared block volume is a fragmented block volume. The shared
block volume is a more sophisticated structure, which effectively tries to
reduce memory requirements by sharing blocks.

In this concept a block and its data block are separated from each other.
The idea behind the shared blocks is, that at creation time the block volume
is "empty”. At the beginning all voxels have the same density value, for
example 0 (zero), therefore each data block in the volume contains the same
values. Therefore it is possible, that initially one data block is shared by all
blocks. The shared block technique reduces the amount of required memory

significantly for volumetric data-sets with large homogeneous regions.
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Data Block Split

If a new value is written to a data block, which differs from the value at the
current location, the data block is replicated and the new value is written to
the replica. First the data block is shared by n blocks, after this step the
data block is shared by n — 1 blocks, and the replicated and modified data
block is shared by only one block.

Data Block Merge

If a set of m blocks are sharing a data block and a set of n blocks are sharing
another data block, both sets are disjunct, but the data blocks contain iden-
tical data, thus both sets can be merged. One data block can be disposed
and the other data block is shared then by n + m blocks.

8.5.1 Border Issue

Since the data blocks are separated from the blocks, it is not necessary to add
additional border data blocks. A special data block is provided for serving as
border data block required for updating the neighbor look-up tables. Instead
of adding extra border data blocks like in the contiguous or fragmented block
volume, these border data blocks are replaced by this special border data
block.

8.6 Compression and Out-of-core

Until now, only data structures storing uncompressed data have been pre-
sented. In these data structures the data is completely memory resident and
instantly accessible. At the point, where the memory usage of the volume
data exceeds the available memory, the organization of the volume data ac-
cording to the sequential layout or blocked layout is not sufficient anymore.
Introducing compression is a solution to this memory availability problem.

A new issue comes up with the use of compression: Memory for storing the

compressed and uncompressed data is required concurrently. The memory
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requirements of the compressed data is proportional with the size of the data-
set, whereas the memory requirements for the uncompressed data depends
on the way of processing the data.

In the implementation for compressing the data blocks a LZ77 descendent
compression algorithm is used. It is the so-called LZO [11], the Lempel-Ziv-
Oberhumer compression algorithm. The compression and decompression is
slightly faster than of other LZ77 variants. Also implementing out-of-core

methods combined with compression is straightforward.

8.7 Dynamic Block Allocation

In this allocation strategy, the shared block volume model is used for storing
the volume data. For allocating memory to the blocks, a list of all data
blocks which are currently prepared for being accessed and pointer to a valid
processing memory block is maintained. A data block can be in two exclusive
states:

1. Frozen. In this state, the data block exists only in compressed form and
the pointer to the processing memory block is null;

2. Defrosted. In this state the data block is uncompressed and stored in
a processing memory block. For managing the access to the data a volume
iterator is used. It maintains a list of its currently used data blocks. Before
the blocks can be accessed, the volume iterator triggers the volume handler

to prepare the required data blocks for being accessed.

8.7.1 Operation

The wvolume iterator operates in the following way: After initialization of
the iterator, the processing loop is entered. In the loop groups of blocks
are successively processed in iteration steps. The memory for processing is
allocated as follows: First a list of all blocks to be processed is generated.
After that all blocks, which have been processed in the previous iteration step
are removed from this list, because they are still in defrosted state. Then,

memory to the remaining blocks is allocated as follows: In the list of all
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defrosted blocks a block is searched, which was not used for a specified time
interval. If such a block is found, it is frozen, removed from the list and its
memory area is assigned to the new block, which is added to the list. If no

block has been found a new memory area is allocated.

8.7.2 Discussion

Since for each block a neighbor look-up table for the relative neighbor ad-
dressing has to be stored, the space required for this tables increases with
the size of the data-set. The space required for the neighbor look-up tables
will be significantly large, making this strategy inoperative.

For example a 2048 volumetric data-set consists of 643 = 262144 blocks. The
neighbor look-up table has usually the size of 2.8 kilobytes. This would result
in a memory requirement of 716 megabytes for the neighbor look-up tables
only. This is not feasible for really large data-sets. Since this issue cannot
be solved easily, a complete new method was developed which circumvents

this problem.

8.8 Mapped Block Volume

In this approach, the sequential layout is applied in a three level stage. The
block volume consists of a number of fixed sized data sub-volumes holding
the data blocks and one single processing sub-volume holding the processing
blocks. Since the size of a sub-volume is fixed, therefore the whole block vol-
ume consists of a fixed number of blocks. The sub-volumes are cubes with
a width of 2™ blocks, where n is a fixed number. Also, different from the
Dynamic Block Allocation strategy, the size of the overall block volume is
fixed regardless of the size of the volumetric data-set. Instead of having a
dynamic allocation of processing blocks for compressed data, the allocation
is fixed and held by the processing sub-volume. The data blocks at a specific
position in each data sub-volume share a single processing block of the pro-
cessing sub-volume.

The processing sub-volume is a small block volume organized like a frag-
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mented block volume. It holds the processing blocks and the neighbor look-
up tables for the relative addressing scheme. Fach processing block has a list
to its data blocks. At the border the address wraps around to simulate a
large, theoretically infinite volume data-set.

Addressing the data in this layout is marginally more complicated than for
a simple block volume. The sub-volume to load the data from can be easily

derived from the voxel position.

8.8.1 Operation of the Mapped Block Volume

This access strategy is extended with a simple out-of-core data handling
feature. This out-of-core approach operates only on the compressed block
data. For each data block a state describing whether the compressed block
data is in memory or not is maintained. So the volume handler knows when
to load a block from the mass storage device. For each data block the time
when it was accessed the last time is stored. After a wvolume iterator has
ended its operation, the set of all memory resident data blocks is analyzed for
blocks, where the difference between the current time and their last access
time exceeds a specific time limit. If the limit was exceeded, the block is
swapped out: If it is not yet stored on the mass storage device, it is written
to it, then its memory is deallocated.

The memory usage is controlled by the memory limit. This limit is a soft
limit which means that the algorithm tries to keep the memory usage below
this limit, but it is allowed to exceed the limit when necessary. As long as
the total memory usage stays below the limit, no swapping out is necessary
and the time limit can be increased. But, if the total memory usage is above
the limit, the blocks above the specified time limit are swapped out and the

time limit is decreased.

8.8.2 Discussion of the Mapped Block Volume

The advantage of this strategy is, that the resources required for processing

have a fixed size. Also the size of the data-set has no impact on the size of
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the resources required for processing. For multiprocessing purposes several

processing sub-volumes can operate on the same volumetric data-set.

8.9 Conclusion

An effective memory layout for volumetric data, the shared block volume and
two memory allocation strategies have been introduced. The first strategy,
the Dynamic Block Allocation is based on the shared block volume. The
memory requirement is controlled by allocating memory only to the processed
blocks. The second strategy, the Mapped Block Volume has a fixed memory
usage for block processing, but the memory usage is controlled by an out-of-
core handling of the compressed data.

With the use of compression in combination with out-of-core processing large
data-sets, several times larger than the available physical memory, can be

processed.
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