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Figure 1: Close-up of the visible male.

ABSTRACT

Most CPU-based volume raycasting approaches achieve high per-
formance by advanced memory layouts, space subdivision, and ex-
cessive pre-computing. Such approaches typically need an enor-
mous amount of memory. They are limited to sizes which do not
satisfy the medical data used in daily clinical routine. We present a
new volume raycasting approach based on image-ordered raycast-
ing with object-ordered processing, which is able to perform high-
quality rendering of very large medical data in real-time on com-
modity computers. For large medical data such as computed to-
mographic (CT) angiography run-offs (512x512x1202) we achieve
rendering times up to 2.5 fps on a commodity notebook. We achieve
this by introducing a memory efficient acceleration technique for
on-the-fly gradient estimation and a memory efficient hybrid re-
moval and skipping technique of transparent regions. We employ
quantized binary histograms, granular resolution octrees, and a cell
invisibility cache. These acceleration structures require just a small
extra storage of approximately 10%.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: volume raycasting, large data, acceleration techniques

1 INTRODUCTION

Direct Volume Rendering is known as a powerful technique to vi-
sualize complex structures within three-dimensional data. Its main
advantage, compared to standard 3D surface rendering, is the ability
to perform translucent rendering in order to provide more informa-
tion about spatial relationships of different structures. In general 3D
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visualization helps to understand patient’s pathological conditions,
improves surgical planning, and is a big aid in medical education.
A typical data size of today’s clinical routine is up to 512x512x512.
However, some examinations, such as peripheral CT angiography
run-offs, require even larger scans. For example Rubin et al. [16]
reported a mean of 908 transverse reconstructions. Furthermore due
to improved capabilities of newer acquisition devices it is possible
to scan with higher resolution. The higher resolution is often used
for difficult cases which also results in larger data. This large data
presents a challenge to current rendering architectures and tech-
niques. The increasing demand of interactive 3D visualization is
basically driven by the size itself. Conventional slicing methods
already reach their limit of usability due to the enormous amount
of slices. 3D visualization is more and more explored as an attrac-
tive alternative additional method for examinations of large medical
data to support the obliged 2D examination. Figure 1 shows an ex-
ample of a 3D visualization.

Within the research area of accelerating volume rendering, two
main research streams can be distinguished. One stream is focused
on exploiting special purpose hardware such as Volume Pro (Pfister
et al. [15]), Vizard (Meissner et al. [8]) or graphic cards (GPU)
(Cabral et al. [1], Westermann et al. [19], Guthe et al. [3] and many
others). This approach usually provides high performance when
data fits into internal memory. However, this issue becomes the
most critical bottleneck once the data size exceeds the onboard in-
ternal memory capacity. Expensive main memory to internal mem-
ory transfers have to be performed, which lead to an enormous per-
formance penalty. Furthermore, the accelerated pace of the GPU’s
development cycle produces heterogenous multi-user hardware en-
vironments. This makes the adoption of such special purpose hard-
ware solutions even more difficult. The other research stream is
based on CPU technologies. In general they provide better per-
formance for large data due to the inherent larger memory capac-
ity. Many proposed approaches for CPU based volume raycasting
achieve high performance by utilizing super-computers or clusters;
e.g. Parker et al. [14] presented a volume rendering approach on an
SGI Reality Monster and were capable to render the Visible Woman
(approx. 1 GB) with up to 20 fps utilizing 128 processors. How-
ever, it is a large scale solution which does not apply to the needs
and capacities of an ordinary medical environment.
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The purpose of this paper is to present a solution which resolves
the issues presented before: an interactive real-time volume render-
ing approach for large medical data, capable of performing in a het-
erogeneous hardware environment, by using commodity computers
such as notebooks, and providing high performance and high qual-
ity images. We achieve this by introducing an efficient method for
on-the-fly gradient estimation and an efficient hybrid removal and
skipping technique of transparent regions. The presentation of our
new approaches is subdivided as follows: Section 2 surveys related
work. Section 3 presents a brief overview of our raycasting pro-
cessing work-flow. In Section 4 we introduce our refined caching
scheme to accelerate on-the-fly gradient estimation. In Section 5
we focus on removing and skipping of transparent regions by em-
ploying quantized binary histograms, granular resolution octrees,
and a cell invisibility cache. In Section 6 we present the results. In
Section 7 we discuss and give a conclusion. Finally in Section 8 we
give ideas for future work.

2 RELATED WORK

The most popular CPU-based direct volume rendering algorithms
are shear-warp, splatting, and raycasting. Shear-warp is considered
to be the fastest software algorithm (Lacroute et al. [6]), however
the inherent bi-linear interpolation provides quality which is in gen-
eral insufficient for medical purposes. Splatting was first proposed
by Westhover et al. [20]. Later it was improved in terms of quality
and speed by Mueller et al. [11, 12], and Hung et al. [4]. This
technique provides high quality images. However it still lacks the
speed provided by the general volume raycasting technique.

Volume raycasting is still widely used if high quality rendering
of large data is desired. Several acceleration techniques for volume
raycasting have been proposed over the last decade. Knittel et al.
[5] and Mora et al. [10] proposed volume raycasting approaches
for commodity computers. They achieve impressive frame-rates by
using a spread memory layout and pre-computed gradients; how-
ever their method requires a huge amount of additional memory.
The spread memory layout itself increases the memory usage by a
factor of four. This becomes a rather limitation factor if large data
needs to be handled, or if the the rendering system is part of a larger
visualization systems and memory resources need to be shared.

In contrast to that, our approach does not rely on extensive pre-
computing or a spread memory layout; it is based on a bricked vol-
ume layout. To achieve high performance advanced acceleration
structures and techniques are necessary. In the following Sections
we present several memory efficient acceleration approaches.

3 VOLUME RAYCASTING WORK-FLOW

The following paragraph presents a brief overview of the work-
flow of our volume raycasting approach. Bricking of volume data
is a well known method to exploit cache coherence [2, 3, 7, 14].
We decompose the volume data in bricks and perform processing
brick-wise. The volume raycasting process is subdivided into pre-
processing, pre-rendering, rendering, and post-rendering. The pre-
processing step is done only once during start-up and the remaining
steps are performed every time the image needs to be re-rendered.
At first we give a brief overview of the four rendering steps.

Pre-Processing: During loading, the data is decomposed into
small bricks of size 323. The data within the bricks and the
bricks themselves are stored in common xyz-order. For each
brick information about the contained density values is stored,
e.g. min-max values, quantized binary histograms, etc.

Pre-rendering: In this phase transparent regions are removed and
the rays-volume intersections are computed. There are eight

different brick lists which are defined by the eight possible
viewing-octants in 3D. Depending on the viewing direction
the appropriate list is selected to process the volume brick-
wise and in correct visibility order.

Rendering: According to the brick list, all rays traverse the bricks
in visibility order, until all bricks are processed or all rays
are terminated due to complete opacity accumulation. During
traversing regular re-sampling, gradient computation, classi-
fication, shading and composition are performed.

Post-rendering: At this point the final image is displayed, written
to a file, or sent over the network to a client.

A more detailed description of the used acceleration techniques and
structures for the pre-rendering and rendering step is given in the
following Sections. There are two major strategies to accelerate
volume raycasting. The first one is to reduce the computational
costs at one re-sampling location. We achieve this by using an ac-
celeration technique for gradient estimation (Section 4). The sec-
ond strategy is to efficiently remove and skip transparent regions,
which we achieve by using quantized binary histograms, granular
resolution octrees, and a cell invisibility cache (Section 5).

4 EFFICIENT GRADIENT CACHING

The most common method to accelerate gradient estimation is to
read pre-computed gradients from memory. However, this acceler-
ation technique has several drawbacks. In order to gain high per-
formance the gradients must be stored in memory, resulting in an
inefficient usage of resources. Furthermore such a solution is lim-
ited by memory bandwidth instead of preferably CPU throughput.
The evolution of computer systems has shown that CPU perfor-
mance increases faster than memory bandwidth. Going one step
further if the data exceeds the main memory capacity, out-of-core
rendering has to be performed and the gap between CPU through-
put and memory bandwidth becomes even larger. Experience has
shown, that not every gradient estimation scheme performs equally
well on all kinds of data. Therefore the ability to switch between
different gradient estimation schemes is an important feature and
basically not efficiently given if pre-computing is used. Addition-
ally, often only gradient direction is stored and the gradient mag-
nitude is omitted, otherwise the storage requirements can become
considerably high. Finally, pre-computing the gradients is quite
time consuming. Considering a now-a-days medical visualization
system, the doctor’s main interest is to carry out the examination
as fast as possible. The total time from scanning the patient to the
actual examination is a highly critical factor.

To avoid these issues, our approach performs on-the-fly gradi-
ent estimation. In order to obtain highly accurate images, a dense
object and image sample distance is inevitable, which implies high
computational costs. A typical re-sampling resolution illustrated in
2D is shown in Figure 2a. In this case there are eight re-sample
locations within a cell. Each gradient at the corners of one cell has
to be computed eight times. Furthermore, each corner is shared
between four cells in 2D. The total amount of redundant gradient
computations at one corner is eight re-sampling positions multi-
plied by four cells which gives a total of 32 computations. In 3D
the computational costs are even considerably higher. These very
costly redundant gradient computations can be avoided by refined
caching. However, not every gradient estimation scheme is suitable
for caching. There are several studies on gradient filters for volume
rendering with focus on accuracy, importance in terms of image
quality and efficiency. Especially, Moeller et al. [9] give a thorough
comparison of commonly used normal estimation schemes. They
differentiate between four types of gradient estimation schemes:
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1. Continuous Derivative uses a derivative filter which is pre-
convolved with the interpolation filter. The gradient at a re-
sample location is then computed by convolving the volume
with this combined filter.

2. Analytic Derivative uses a special gradient filter derived from
the interpolation filter for gradient estimation.

3. Interpolation First computes the derivative at the re-sample
position by re-sampling the data on a new grid, such that the
used derivative operator can be applied directly. This is very
beneficial if orthographic rendering is performed.

4. Derivative First computes the gradients at the grid-points and
then interpolates these at the desired re-sample position.

For scheme one and two no caching mechanism is available. Only
schemes three and four can be considered for efficient gradient
caching. Due to their numerical equivalence only a comparison
with respect to efficiency is necessary. Moeller et al. [9] proposed
the Interpolation First method as the most efficient one. Consider-
ing volume rendering and no caching this is quite obvious. How-
ever, applying the Interpolation First scheme requires re-sampling
of the original grid to a much larger grid if the object sample dis-
tance is significantly smaller than one. Already an object sample
distance of 0.25 increases the grid size by a factor of four. This
enormous amount of data makes caching inefficient and difficult.
Especially if the object sample distance should be kept dynamical
or if jittering techniques are applied to improve the image accu-
racy. Due to these reasons the Derivative First gradient estimation
scheme is more efficient from a performance point of view, since
it is more suitable for caching. In this case, the amount of data to
cache is always determined. This makes interactive changes of the
object sample distance possible.

4.1 Per Brick Gradient Caching

Our caching scheme requires two data structures: the cache itself
and a second structure to store the corresponding valid bits. The
used processing entity is not the whole volume; in fact the volume
is decomposed in bricks and each brick defines a processing entity.
The size of the cache matches the number of gradients needed for
one brick. The most straightforward way to use this cache would be
to pre-compute all gradients which correspond to the current brick
and use those during brick processing. This would be very ineffi-
cient, since more gradients than necessary would be pre-computed
if only parts of a brick are visible. In contrast to that we addition-
ally use valid bits, which encode if a gradient is already computed
and stored in the cache. During brick processing every time a gra-
dient needs to be computed, it is checked if the gradient is already
stored in the gradient cache. If not, the gradient is computed and
stored in the cache and the corresponding valid bit is set to true.
This mechanism ensures that gradients are computed only once at
each sample position during brick processing. The cache remains
only valid during the processing of one brick. Once the next brick
is processed the cache is reset. This has the effect that the gradients
which are also needed in adjacent bricks are processed more than
once. The resulting performance penalty is low, since the number
of those gradients is small compared to the number of all gradients.

5 REMOVING AND SKIPPING OF TRANSPARENT REGIONS

For medical imaging, interactive classification of data is manda-
tory. In general during examination it happens quite often, that
large parts of the data are classified as transparent to allow a more
precise view of the region of interest. For acceleration purposes it

Exemplary rays

(a) (b)

Gradient has to be computed

eight times per cell

Cell has to be classified

eight times 

Figure 2: Typical re-sampling resolution of a cell in 2D. (a) In the
shown case each gradient at the cell corners has to be computed 8
times while processing one cell. (b) In the shown case a cell has to
be classified 8 times.

(a) (b) (c) (d)

Fully transparent

brick

Partially transparent

brick

Figure 3: General work-flow of our hybrid transparent region removal
and skipping technique: Red are brick boundaries, blue are octree
boundaries, grey are transparent regions and green is visible volume
data. (a) → (b): removal of transparent bricks, (b) → (c) removal
based on octree projection and (c) → (d) removal using the cell
invisibility cache.

is quite beneficial to exploit this transparency information and start
the actual re-sampling of the data right where the visible data be-
gins. The work-flow of our hybrid transparent region removal and
skipping technique is shown in Figure 3. At first transparent re-
gions are removed on a brick basis (Figure 3a → Figure 3b). Then
to support even more refined removal of smaller transparent regions
we perform octree projection (Figure 3b → Figure 3c). Due to ef-
ficiency reasons our octree subdivision does not fully go down to
individual cells. The granular resolution of the octree leads to just
approximate rays-volume intersections. To overcome the resulting
performance penalty we introduce a Cell Invisibility Cache (CIC)
to skip the remaining transparent cells (Figure 3c → Figure 3d).
In the following we describe our hybrid transparent region removal
and skipping technique in more detail.

5.1 Quantized Binary Histograms

At first we describe an efficient encoding for finding transparent
bricks. The most common methods are minimum-maximum en-
codings and summed area tables. A summed area table encodes the
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opacity integral by

S(0) = α(0)
S(k) = S(k−1)+α(k)

Hereby k ∈ H = [0..4095], which is the possible range of Hounds-
field units and α represents the opacity. imin and imax denote the
minimum and maximum density value within a brick. The inte-
gral of the discrete function α over the interval [imin, imax] can be
approximated in constant time by performing two table lookups:

imax

∑
k=imin

α(k) = S(imax)−S(imin)

If S(imax)− S(imin) = 0 then the brick is transparent and can be
skipped. At this point we differentiate between pre- and post-
classification. For post-classification the min-max encoding is the
most accurate, since due to interpolation of data all values be-
tween the minimum and the maximum may occur. However, if
pre-classification is performed the min-max encoding may be too
granular when applied on large regions. Figure 4 shows an exam-
ple where the min-max encoding is too conservative. The min-max
encoding would report both bricks as being visible. The main issue
is, that the min-max encoding accuracy relies heavily on the un-
derlying data. If the region is large it is quite likely that its values
differ considerably. The min-max encoding becomes too granular
to effectively encode the area. We use a more refined structure,
i.e., a quantized binary histogram. In general a binary histogram is
encoded as:

σ x(B) =

{
1, x ∈ B
0, otherwise

Hereby B is the set of all density values a brick contains, with
B ⊆ H = [0..4095]. σ x(B) = 1 means that the density value x is
given at least at one grid position in the underlying brick. This
encoding is effective, however it is quite inefficient in terms of
memory usage and efficient evaluation. Additionally to the binary
codomain quantization we also quantize the domain itself. This
quantized binary histogram is stored for each brick.

It is determined by

σ i(B) =

{
1, ∃x : x ∈ B,x ∈ [128 · i..128 · (i+1)[
0, otherwise

Where (0 ≤ i ≤ 31). Within quantized binary histograms the ex-
istence of data within a specific interval is encoded. The intervals
are concatenated, disjunct, have same length, and cover the range
of Houndsfield units. In the pre-processing phase every brick is
parsed and encoded. The same encoding can be performed for the
transfer-function with respect to opacity:

λi =

{
1, ∃x : opacity(x) �= 0,x ∈ [128 · i..128 · (i+1)[
0, otherwise

Hereby x ∈ H and i ∈ [0,31]. Every time the transfer-function
changes, the transfer-function is re-encoded in this way.

With this information one can quickly determine the transparent
bricks. A brick is transparent if

∀i ∈ [0..31] : λi ∧σi = 0

This conjunction test can be done very efficiently on an x86 based
CPU. Note, that this is a conservative estimate of a brick’s visi-
bility. It is possible that due to the chosen encoding we consider
a brick as visible although all contained values are classified as
transparent. However, if we look at Figure 4, we can see that the
quantized binary histogram would report the bricks correctly if pre-
classification is performed. This is due to the fact, that the quantized

binary histogram is more sensitive for largely varying data values.
This property can be efficiently exploited if the binary histogram
encodes a segmentation information volume. In such a volume,
segmented objects are encoded by labels. These labels can differ
largely and interpolation is not applicable. Only pre-classification
can be performed in this case

Min =  0

Max = 270

1 01 0 0
Min =  0

Max = 150

0 11 0 0

Quantized binary histogram

of brick

Min/Max of brick

0

150

270

I II

Figure 4: Min-Max encoding granularity issue if pre-classification is
performed: If the range of non-transparent values is set from 130
to 150, the min-max encoding would report both bricks as being
opaque. The quantized binary histograms would report brick I being
transparent and brick II being opaque.

5.2 Granular Resolution Octrees

With the method described in Section 5.1 entirely transparent bricks
are determined and therefore unnecessary processing is avoided.
We also want to avoid processing of transparent regions within a
brick. Therefore, each brick contains a granular resolution octree
to enable the determination of transparent regions within a single
brick. A min-max octree is one of the best known space subdivi-
sion structures to support refined skipping of small transparent areas
(Lacroute [6], Wilhelms et al. [21], and Mora et al.[10]). Each brick
(32x32x32) contains a 3-level min-max octree, shown in Figure 5a.
For each octree level we store the minimum and maximum value as
a pair of numbers. For level 0 we have 8 pairs, level 1 needs 8x8 =
64 pairs, and level 2 needs 8x8x8 = 512 pairs. When classification
changes the octree is recursively evaluated by a summed area table
for all bricks. We store the classification information efficiently by
hierarchical compression [5]. Nodes of level 2 are either opaque
or transparent. All other nodes have an additional inhomogeneous
state. The information whether a node of level 2 is transparent or
opaque is stored in one bit. The state of a level 1 node is determined
by testing of one byte, which contains all the bits of its children. For
level 0 such a hierarchical compression requires to test 8 bytes for
a node and 64 bytes for the brick. Due to efficiency reasons we
explicitly store the state information of level 0. We have three pos-
sible states, thus we need 2 bits for each level 0 node. Thus, we
additionally require two byte per brick. Due to this encoding, the
octree can be very efficiently traversed.

5.3 Removing of Transparent Regions

We have two structures, a quantized binary histogram and a granu-
lar octree, to find the rays-volume intersections up to the resolution
of the granular octree (Figure 3c). The bricked geometry of the vol-
ume and the octrees within the bricks are converted to a polygonal
structure and rendered into a z-buffer [17]. Basically we traverse
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( a)

Brick

Image plane

Template

L evel 0

L evel 1

L evel 2

( b)

Figure 5: (a) Octree classification scheme for an individual brick.
Transparent bricks are white, opaque bricks are blue and inhomo-
geneous bricks, partially transparent and partially opaque, are blue
striped. , (b) Brick projection template.

through the brick list and determine which brick has visible data and
needs to be evaluated for rays-volume intersection [3]. The evalu-
ation is performed by quantized binary histograms in case of pre-
classification or min-max encodings in case of post-classification.
The octree of those bricks is evaluated and the sub-bricks which
contain visible data are rendered. This rays-volume intersection
computation by rendering requires the granular resolution of the
octree. With more than three octree levels the number of polygons
would exceed the rendering performance of commodity graphics
hardware.

Utilizing OpenGL for rendering provides high performance and
high accuracy; however, if the approach is used as an integrated
module it requires off-screen rendering. This is available in
OpenGL by PBuffers. Unfortunately, this feature is not available
on every graphics card. Furthermore the rendering requires a huge
amount of graphic cards memory. Considering a 1024x1024 im-
age, the needed buffer is already 8 MB. Most of the more ad-
vanced medical visualization systems support high-resolution dual-
displays. This feature normally utilizes all the available graphics
card memory. There is no space left for graphics hardware accel-
erated off-screen rendering. Due to this reason, we also developed
the rendering in software. This can be done very efficiently, if the
simple polygonal structure of the bricked octree layout is exploited.
Since every brick is of the same structure, one can use template
based projection of the octree. Similar work has be done by Srini-
vasan et al. [18]. The main idea is to project just one brick per
viewing direction for each octree level as shown in Figure 5b. This
projection is used as a template for all other bricks of the same
level. Any other brick of the same level has the same projection
footprint and is obtained by translation. The projected footprint ac-
tually consists of z-values, since we are interested in the z-buffer
footprint of the octree. All possible entry bricks are rendered in a
front-to-back order by using the projected z-value template. The
resulting z-buffer footprint of the octree is then used to determine
the rays-volume intersections. This is as fast as the OpenGL imple-
mentation, since the costly projection itself has to be done only for
one brick per viewing direction. Furthermore no costly OpenGL
glReadPixels() instruction is involved and the resulting z-buffer di-
rectly contains the z-components of the ray starting-positions.

5.4 Cell Invisibility Cache: Skipping of Transparent Regions

As the granular resolution octree does not go down to cell level, a
cell invisibility cache is used to skip the remaining transparent cells
((Figure 3c → Figure 3d)). The volume-rays intersections estima-
tion by template-based projection of the octree subbricks brings us
as close as 4x4x4 samples to the visible data. This is inefficient
from a performance point of view. Especially if first-hit-raycasting
is performed every non skipped sample has a large impact on the
resulting frame-rate. A resolution of 4x4x4 results in a large num-
ber of non skipped samples. This is depicted by the red samples
shown in Figure 7. All these samples have to be classified in order
to determine which cell can be skipped. Depending on the object-
sample distance and the zoom factor these cells have to be classified
several times. This is shown for a typical re-sampling resolution in
Figure 2b. In this case each cell has to be classified eight times.
Considering the same example in 3D, the number of redundant cell
classifications would be considerably larger. Due to this reason we
introduce a refined cell invisibility caching. We extend the volume
raycasting pipeline in such way that classification of these invisi-
ble cells has to be done only once. The extended pipeline is shown
in Figure 6. A Cell Invisibility Cache (CIC) is attached at the be-
ginning of the traditional volume raycasting pipeline. This CIC is
initialized in such a way that it reports every cell as visible. In other
words every cell has to be classified. Now, if a ray is send down the
pipeline, every time a cell is classified as invisible (all its samples
have zero opacity contribution) this information is cached in the
CIC. A cell can either be invisible or visible, this information can
be encoded in just one bit. Once a cell is classified as invisible, the
costly classification of a whole cell is exchanged by a binary test.
This leads to an enormous performance increase. On the one hand,
this is due to the reduced memory access and on the other hand due
to the inherent classification and conjunction information of 8 sam-
ples. The information stored in the CIC remains valid as long no
transfer-function change is performed. The CIC is stored per brick
and therefore allows interactive changes of the transfer function. If
the transfer function changes only the CICs of the bricks which are
affected need to be reset. During the examination of the data, e.g.
by changing the viewing direction, the CIC fills up and the perfor-
mance increases progressively. The same mechanism is also very
beneficial for general empty space skipping within the data.

Compositing

CIC

Classi-

fication
Advance

ray

Visible

Terminate

Write

Pixel

Re-sampling

Shading

Traditional raycasting pipeline

Visible

Gradient-

estimation
YES

YES NO

YES

NO

NO

NO

Figure 6: Cell Invisibility Cache (CIC) - Acceleration by caching in-
visibility information of cells. The acceleration path is emphasized in
red.
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Figure 7: Zoomed in granular octree of one brick. Blue crosses:
skipped samples, white crosses: opaque samples, and red crosses are
samples that can not be skipped due to the granular resolution of
the octree.

6 PERFORMANCE RESULTS AND MEMORY CONSUMPTION

6.1 Gradient Cache

The memory consumption of the gradient cache is very low. The
cache size is not related to the volume dimensions. It is related
to the brick dimensions. The brick dimensions in our case are
32x32x32, the size of the gradient cache is (dimension of brick+1)3

multiplied by dimension of gradient multiplied by size of gradient
component, which is (33)3 ·3 ·4 ≈ 421,14 KByte. Additionally we
store for each cache entry a valid bit, which adds up to 333 Bit ≈
4.39 KByte. This is altogether less than 512 KB. For performance
reasons the data shall remain in the level 2 cache. This is not an is-
sue as current commodity CPUs have a level 2 cache size of 1 MB.

Figure 8 shows the effect of per brick gradient caching compared
to per cell gradient caching and no gradient caching at all. Per cell
gradient caching means that gradients are cached while a ray re-
samples a cell. For gradient estimation we used the gradient filter
proposed by Neumann et al. [13]. This filter produces slightly bet-
ter quality than the Sobel filter, supports inherent volume filtering
and has approximately the same computational cost. Due to the
on-the-fly computations, the filtering can be enabled and disabled
interactively. The on-the-fly filtering has low computational cost
and can be used to increase the quality, when a smaller number of
rays are shot to increase the frame-rate during interaction.

For testing we chose an adequate opacity transfer function to
enforce translucent rendering. The charts in Figure 8 show differ-
ent timings for object sample distances from 1.0 to 0.125 for three
different zooming factors 0.5, 1.0, and 2.0. In case of zooming fac-
tor 1.0 we have one ray per cell, already here per brick gradient
caching performs better than per cell gradient caching. This is due
to the shared gradients between cells. For a zooming out factor of
0.5 both gradient caching schemes perform equally well. The rays
are so far apart that nearly no gradients can be shared. On the other
hand for zooming in (2.0), per brick caching performs much better
than per cell caching. This is due to the increased number of rays
per cell. As more rays process the same cell, the more beneficial the
per brick caching becomes. Per brick gradient caching compared to
no caching shows already with a zoom factor of 2.0 and an object
sample distance of 0.5 an impressive speedup of approximately 3.0.
The speedup favorably scales with the zoom factor. Figure 9 shows
an example rendering of the Visible Male with a high proportion of
transparency. Our caching scheme compared to no caching shows
a speedup factor of ≈ 2.2.
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Figure 8: Comparison between no gradient caching, per cell gradi-
ent caching, and per brick gradient caching. Timings are given in
seconds. The tested object sample distances are 0.125, 0.25, 0.5,
0.75, and 1.0. Data: UNC head, 256x256x224, 12 bit. Intensity
range [0,1136] is mapped to 0.0 opacity and range [1136,4095] to a
linear opacity ramp between 0.0 and 1.0. System specification: CPU
- Intel r©Pentium r©M 1.6 GHz, Cache - 1 MB Level2, RAM - 1 GB,
GPU - GForce4 4200 Go (32MB).

6.2 Acceleration Structures for Skipping Empty Regions

The additional memory usage of all three acceleration structures,
i.e., quantized binary histogram, granular resolution octree, and
the cell invisibility cache, is rather low. Considering the size
of the volume as 100%, they increase the size by approximately
10%. We use bricks of size 32x32x32 storing 2 bytes for each
sample, which is a total of 65536 bytes. Additionally for each
brick we store: Quantized binary histogram → 4 byte, Min-max
information → (512+64+8+1) * 4 = 2340 byte, Octree classifi-
cation information → (64 + 2) = 66 byte, and Cell Invisibility
Cache → 323 bit /8 = 4096 byte. In total the storage increase is
((4+2340+66+4096)/65536) ·100 ≈ 9.9%.

Figure 10 shows the effect of our hybrid removal and skipping
technique of transparent regions and shows the corresponding ren-
dering output. For benchmarking we used a commodity notebook
equipped with an Intel R©Pentium R©M 1.6 GHz CPU, 1 MB Level2
cache, 1 GB RAM, and a GForce4 4200 Go (32MB). The graphics
card capabilities are only used to display the final image. We tested
different data sets. A rather small data set, the UNC head is used to
be able to compare our speed to the approach of Mora et al. [10].
This approach is slightly faster than the UltraVis system [5]. They
are both based on a spread memory layout and use pre-computed
gradients. This leads to an inefficient memory usage and so they
are restricted to rather small data. Mora’s total render time is ap-
proximately a factor of two faster than our approach. However,
Mora’s approach uses pre-computed gradients, does pre-shading,
and its template based interpolation scheme limits the zooming to
a zooming-factor of four. In contrast to that we chose to sacrifice
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some performance for increased flexibility, high quality, and a sig-
nificantly lower memory usage. This enables us to render large
data, used in clinical routine, on commodity hardware. We tested
three different large typical medical data sets. The results show that
our acceleration techniques typically achieve render-times of about
2 fps even for these large data sets. Figure 10, fourth column, shows
the total render time achieved by brick based transparent region re-
moval. In the fifth column we additionally apply the granular octree
projection. And finally in the sixth column we enabled the Cell In-
visibilty Cache to see the overall total render time achieved by the
combined effect of all three acceleration structures.

7 DISCUSSION AND CONCLUSION

We presented a volume raycasting approach which provides high-
quality images in real-time for large data on standard commodity
computers without advanced graphics hardware. For large medi-
cal data such as computed tomographic (CT) angiography run-offs
(512x512x1202) we achieve rendering times up to 2.5 fps on a com-
modity notebook. This shows that real-time rendering of such large
data on commodity notebooks is within reach. Our method can be
straightforwardly adapted to other modalities such as MR. Further-
more, our approach can utilize symmetric multiprocessing systems
as processing is performed brick-wise. It scales well and achieves a
speedup factor of approximately 2.0 on a dual CPU machine. This
is very beneficial if a large amount of data has to be processed.
Although we avoided costly pre-computing and compute each part
of the volume raycasting pipeline on-the-fly, we achieved perfor-
mance in the same range as approaches which heavily rely on the
memory bandwidth such as Mora et al. [10]. Our refined caching
scheme for gradient estimation in conjunction with hybrid skipping
and removal of transparent regions enables us to achieve high qual-
ity while maintaining high performance. Due to the efficient mem-
ory consumption of our acceleration structures (quantized binary
histogram + granular resolution octree + Cell Invisibility Cache)
and the bricked volume layout we are able to handle very large
data. All acceleration structures require only an extra storage of
approximately 10%. Data sizes up to 2GB are possible, which is a
limitation imposed by the virtual address space of current consumer
operating systems.

8 FUTURE WORK

In the future we want to support out-of-core rendering to be pre-
pared for the next generation of data sizes. First commodity proto-
type scanners already deliver data in the range of 1024x1024x2048,
which is about 4GB of data and quite challenging to handle. Addi-
tionally we want to incorporate brick-based compression to achieve
interactive rendering times for these large data. Furthermore we
want to support perspective rendering. The changes, which have to
be made, are basically to split the brick rendering lists such that the
correct processing order is ensured. Additionally we have to ren-
der perspectively distorted bricks to be able to find the exact entry
points of the rays. Other than that all the presented accelerating
techniques should work as well as for orthogonal projection.

Additional material can be found at:
http://www.cg.tuwien.ac.at/research/vis/adapt/2004 meas
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Figure 9: Data: Visible Male (587x341x1878). System: (Notebook) Intel r©Pentium r©M 1.6 GHz. Image size: 1024x768. Object sample
distance: 0.25. Render timings: no gradient caching → 21.1 sec, with full gradient caching → 9.6 sec.

(a) (b) (c) (d) (e)

(f)

Name Dimensions Size TBR TBR + OPR TBR + OPR + CIC
(a) Visible Male 587x341x1878 0.70 GB 0.61 sec 0.46 sec 0.40 sec
(b) Visible Male 587x341x1878 0.70 GB 0.68 sec 0.53 sec 0.45 sec
(c) Run-off 512x512x1112 0.54 GB 1.16 sec 0.93 sec 0.61 sec
(d) CTA run-off 512x512x1202 0.59 GB 0.86 sec 0.70 sec 0.64 sec
(e) CTA run-off 512x512x1202 0.59 GB 0.69 sec 0.46 sec 0.37 sec
(f) UNC head 256x256x256 0.03 GB 0.71 sec 0.26 sec 0.18 sec

Figure 10: Performance results for different data sizes, which are used in daily clinical routine. Image size: 512x512, Sample rate: 0.5, and
Hardware: CPU - Intel r©Pentium r©M 1.6 GHz, Cache - 1 MB Level2, RAM - 1 GB, GPU - GForce4 4200 Go (32MB). TBR: brick based
transparent region removal. OPR: octree projection based transparent region removal. CIC: cell based transparent region skipping.
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