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Abstract

Most volume rendering systems based on CPU volume raycasting still suffer from inefficient CPU utilization and

high memory usage. To target these issues we present a new technique for efficient data addressing. Furthermore, we

introduce a new processing scheme for volume raycasting which exploits thread-level parallelism—a technology now

supported by commodity computer architectures.
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1. Introduction

Three main volume rendering approaches can be

distinguished. Two of them are hardware based; the first

one utilizes commodity graphics-cards; the second one

utilizes special purpose hardware, e.g. VolumePro and

Vizard; the third is CPU based [1–6]. Purely hardware

based solutions provide real-time performance and high

quality; however they are limited in their functionalities:

Basic visualization systems are supported by hardware

volume rendering solutions; consequently they are the

mostly applied approach in practice. Advanced visuali-

zation systems provide preprocessing features such as

filtering, segmentation, morphological operations, etc, if

such operations are not supported by the hardware, they

have to be performed on the CPU and data must be

transferred back to the hardware. This transfer is very

time consuming, thus no interactive feed-back is

possible. In contrast to that, in a purely CPU based

solution this transfer is unnecessary and therefore CPU

based solutions are still commonly used in such systems.

Another advantage of such a solution is the high

flexibility. Many high-level optimization techniques have
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been developed to achieve high performance CPU

solutions. Most of these techniques have one assumption

in common: only parts of the data have to be visualized.

This assumption is still valid, but the data delivered by

new higher-resolution acquisition devices increases ra-

pidly. This introduces a new main issue: enormous

amount of data must be handled. Previous volume

raycasting approaches, like Knittel [7] or Mora [6]

achieved impressive performance by using a spread

memory layout. The main drawback of these approaches

is the enormous memory usage. In both systems, the

usage is approximately four-times the data size, plus

storage for gradients if shading is used. This memory

consumption is quite a limitation, considering that the

maximum virtual address space is about 3 GB on

commodity computer systems. The main focus of our

research was to address this issue in order to present a

new approach using significantly less memory. In contrast

to other methods in our approach, all computations are

done on the fly. To accelerate this on-the-fly computa-

tion, refined data addressing techniques for a bricked

volume layout are presented. Accordingly a data proces-

sing scheme is presented, which exploits common and

new hardware technologies like thread-level parallelism.

Such a technology enables more efficient CPU utilization

and therefore provides significant speedup.
d.
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The distribution of ideas of this paper is as follows:

Section 2 surveys related work; Section 3 describes the

volume raycasting system and its used new acceleration

techniques; Section 3.1 provides a brief introduction to

caches; Section 3.2 describes the used volume memory

layout; Section 3.3 our new data addressing schemes;

Section 3.4 thread-level parallelism; Section 3.5 the

work-flow of the whole raycasting system; Section 3.6

the system is analyzed and results are presented. In

Section 4 the system is discussed. Finally the conclusions

of this research are presented in Section 5.
Table 1

Cache hierarchy

Level Access Typical size

Register 1–3 ns 1 KB

Level-1 cache 2–8 ns 8–128 KB

Level-2 cache 5–12 ns 0.5–8 MB

Main memory 10–60 ns 256 MB–8 GB

Hard disk 8–12 ms 100–200 GB
2. Related work

A prominent volume rendering approach which

achieves high performance by using cache coherency is

the Shear-Warp Factorization algorithm [8]. Cache

coherency is achieved by re-sampling slice-wise and

keeping the data in memory for each major viewing axis.

The main drawbacks are the low quality and the three-

fold memory usage. In contrast to this Knittel [7]

achieved very high cache coherency by introducing a

spread memory layout for fast access. He virtually locked

all needed address look-up tables and color look-up

tables into the cache. This leads to a rather high cache

coherency and therefore high CPU utilization; memory

usage is however increased by a factor of four. This

memory storage requirement is way too high. Consider-

ing that the maximum virtual address space of today’s

mainstream workstations is three Gigabyte. Therefore the

maximum data-set size is limited to 3 Gigabyte=4 ¼
768 MB: This seems to be an adequate size. However, in

most of the visualization systems the examination of

multiple data sets is required. Furthermore, additional

volumes or data-structures have to be kept in memory to

support various operations like segmentation, filtering,

and others. Mora et al. [6] also based their approach on

this spread-memory layout; he used an octree to obtain

even more performance for first-hit volume raycasting.

The enormous memory usage of both systems is a

considerable limitation on state-of-the-art commodity

computer systems; moreover these approaches are more

limited by memory bandwidth than by CPU perfor-

mance. This is not favorably, since the evolution of

computer systems showed that CPU performance in-

creases faster than memory bandwidth does.

Law and Yagel [9] proposed a parallel raycasting

algorithm for a massively parallel processing system:

they proved that appropriate data subdivision and

distribution to the available caches lead to high cache

coherency. The scheme can be adapted to commodity

single- and multi-processors. The use of this scheme,

leads to high cache coherency of all caches; however

high CPU utilization is not inherent. Thread-level

parallelism and advanced data addressing schemes turn
out to be a solution to this utilization issue. Throughout

the research process the basic data processing scheme

was extended, in order to significantly increase CPU

utilization, accelerating the raycasting process.
3. Cache coherent raycasting algorithm

There are two main requirements to achieve high CPU

utilization: First, execution units have to operate at full

capacity; Second a high cache hit rate is desirable, which

implies that no cache thrashing occurs. The first condition

can be fulfilled with thread-level parallelism, see Section 3.4.

For the second condition we will define working sets so that

they follow two known principles of locality, temporal

locality—an item referenced now will be referenced again in

the near future, and spatial locality—an item referenced now

also causes its neighbors to be referenced.

3.1. Cache

The cache hierarchy of a x86-based system is shown in

Table 1. Going up the cache hierarchy towards the CPU,

caches get smaller and faster. In general if the CPU issues

a load of a piece of data the request is propagated down

the cache hierarchy until the requested data is found. It is

very time consuming if the data is only found in a slow

cache. This is due to the propagation itself as well as to

the back propagation of data through all the caches.

Since the focus is on speed, frequent access to the

slower caches has to be avoided. Accessing the slower

caches, like hard disk and main memory, only once

would be optimal. This is straightforwardly achieved for

the hard disk level, as we assume that there is enough

main memory to load all the data at once. To achieve

this for the main memory is much more sophisticated.

Caching is important if data and instructions are not

only used once but used repeatedly with temporal and

spatial locality. In other words, working-sets are needed

which fit into the caches and are used frequently.

3.2. Bricked volume layout

The workflow of a standard volume raycasting

algorithm on a linearly stored volume (commonly
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Fig. 1. Brick-based raycasting speedup compared to common

raycasting on linear volume. Test system specification: Pentium

4 Xeon 512KB Level-2 cache.
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xyz-storage order) is as follows. For every pixel of the

image plane a ray is shot through the volume and the

volume data is re-sampled along this ray. At every re-

sample position re-sampling, gradient computation,

shading and compositing is done. From a performance

point of view this work flow is very inefficient:

* The closer the neighboring rays are to each other, the

higher the probability is that they partially process

the same data. Given the fact that rays are shot one

after the other, the same data has to be read several

times from main memory, because the cache is not

large enough to hold the processed data of a single

ray.
* Different viewing directions cause a different amount

of cache-line requests to load the necessary data from

main memory which leads to a varying frame-rate.

These are the two main reasons, which lead to a bad

CPU utilization.

Our main research focus is to support transparent as

well as first-hit views with high real-time performance,

without increasing the memory usage dramatically. It is

a known fact, that bricking itself is one way to achieve

high cache coherency, without increasing memory usage.

The concept of bricking supposes the decomposition of

data into small fixed-sized data bricks. The brick data in

our case is stored linearly in common xyz-order. The

bricks itself are linearly stored in common xyz-order.

However, accessing data in a bricked volume layout is

very costly (see Parker et al. [10]). In contrast to their

proposed two-level subdivision hierarchy, we choose a

one-level subdivision of the volume data. This is due to

the fact, that every additional level introduces costs for

addressing the data. For this one-level subdivision

layout we developed a very efficient addressing scheme

(see Section 3.3).

In our system, we are able to support different brick-

sizes, as long as each brick-dimension is a power of two.

Especially, if we set the brick-size to the actual volume-

dimensions we have a common raycaster which operates

on a simple linear volume layout. This enables us to

make a meaningful comparison between a raycaster

which operates on simple linear volume layout and a

raycaster which operates on a bricked volume layout

with optimal brick size. To underline the effect of

bricking we bench-marked different brick sizes. Fig. 1

shows the actual speedup achieved by brick-wise

raycasting. For testing we specified a translucent

transfer-function, such that the impact of all high level

optimizations, like early ray termination, brick skipping,

zero-opacity skipping, etc was overridden. In other

words, the final image was the result of brute-force

raycasting of the whole data. We tested data sizes up to

512 MB: The size of the dataset had no influence on the

actual optimal performance gains. The exemplary tested

data shown in Fig. 1 was a 256� 256� 256 typical
medical dataset, with 16 bit per voxel. Furthermore, we

did a worst-case comparison with respect to the viewing

direction. In case of small bricks the worst case is similar

to the best case. In contrast to that, using large bricks

shows enormous performance decreases depending on

the viewing direction. This is the well-known fact of

view-dependent performance of a raycaster operating on

a simple linear volume layout. The constant perfor-

mance behavior of small bricks is one of the main

advantages of a bricked volume layout. There is nearly

no view dependent performance variation anymore.

Going from left to right in the chart shown in Fig. 1,

first we have a speedup of about 2.0 with a brick-size of

1 KB: Increasing the brick-size up to 64 KB also

increases the speedup. This is due to more efficient use

of the cache. The chart shows an optimum at a brick size

of 64 KB ð32� 32� 32Þ with a speedup of about 2.8.

This number shows the optimal trade-off between the

needed cache space for ray-structures, sample data, and

the color look-up-table. Further increase leads to

performance decreases due to exceeding the cache

capacity and bricking overhead. This performance

drop-off is reduced, once the brick subdivisions gets

close to no subdivision. In other words, with a brick size

of the same size as the volume itself, the ray-structures

have no influence on the performance. Since, in this case

there is only one brick and therefore only one list of rays

to process. This is exactly the same rendering context of

a common raycaster for a simple linear volume layout.

3.3. Efficient addressing

The evolution of CPU design shows that the length of

CPU pipelines grows progressively. This is very efficient

as long as conditional branches do not initiate pipeline

flushes. Once a long instruction pipeline is flushed there

is a significant delay until it is refilled. Most of the

present systems use branch prediction. The CPU

normally assumes that if-branches will always be

executed. It starts processing the if-branch before
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actually checking the outcome of the if-clause. If the if-

clause returns false, the else-branch has to be executed.

This means that the CPU flushes the pipeline and refills

it with the else-branch. This is very time consuming.

Using a bricked volume layout one will encounter this

problem. The addressing of data in a bricked volume

layout is more costly than in a linear volume layout. To

address one data element, one has to address the brick

itself and the element within the brick. In contrast to this

addressing scheme, a linear volume can be seen as one

large brick. To address one sample it is enough to

compute just one offset. In algorithms like volume

raycasting, which need to address a certain neighbor-

hood of data in each processing step, the computation of

two offsets instead of one has quite some performance

impact. To avoid this performance penalty, one can

construct an if-else statement. The if-clause consists of

checking, if the needed data elements can be addressed

within one brick. If the outcome is true, the data

elements can be addressed as fast as in a linear volume.

If the outcome is false, the costly address calculations

have to be done. On the one hand this simplifies address

calculation, but on the other hand the involved if-else

statement incurs pipeline flushes. In the following we

take a look at this problem.

For raycasting, one can distinguish two major

neighborhood access patterns. One is for re-sampling.

The other one is for gradient computation. The latter

will be solved generally for a 26-connected neighbor-

hood access pattern. For the re-sampling computation

the eight surrounding samples are needed. The necessary

address computations in a linear volume layout are:
SampleOffseti;j;k
 -iþ j �Dx þ k �Dx �Dy
SampleOffsetiþ1;j;k
 -SampleOffseti;j;k þ 1
SampleOffseti;jþ1;k
 -SampleOffseti;j;k þDx
SampleOffsetiþ1;jþ1;k
 -SampleOffseti;j;k þ 1þDx
SampleOffseti;j;kþ1
 -SampleOffseti;j;k þDx �Dy
SampleOffsetiþ1;j;kþ1
 -SampleOffseti;j;k þ 1þDx �Dy
SampleOffseti;jþ1;kþ1
 -SampleOffseti;j;k þDx þDx �Dy
SampleOffsetiþ1;jþ1;kþ1
 -SampleOffseti;j;k þ 1þDx þDx �Dy
Thereby Dfx;y;zg define the volume dimensions and i; j; k
the integer parts of the current re-sample position in 3D.

This addressing scheme is very efficient. Once the lower

left sample is determined the other needed samples can be

accessed just by adding an offset. In contrast to the linear

volume addressing, the brick volume addressing is:

if(ði’oBDx 	 1Þ and ðj’oBDy 	 1Þ and ðk’oBDz 	 1Þ)
f

SampleOffseti;j;k
 -i’þ j’ � BDx þ k’ � BDx � BDy
SampleOffsetiþ1;j;k
 -SampleOffseti;j;k þ 1
SampleOffseti;jþ1;k
 -SampleOffseti;j;k þ BDx
SampleOffsetiþ1;jþ1;k
 -SampleOffseti;j;k þ 1þ BDx
SampleOffseti;j;kþ1
 -SampleOffseti;j;k þ BDx � BDy
SampleOffsetiþ1;j;kþ1
 -SampleOffseti;j;k þ 1þ BDx � BDy
SampleOffseti;jþ1;kþ1
 -SampleOffseti;j;k þ BDx þ BDx � BDy
SampleOffsetiþ1;jþ1;kþ1
 -SampleOffseti;j;k þ 1þ BDx þ BDx � BDy
g
else

f

SampleOffseti;j;k
 -i’þ j’ � BDx þ k’ � BDx � BDy
SampleOffsetiþ1;j;k
 -ComputeOffsetðiþ 1; j; kÞ

SampleOffseti;jþ1;k
 -ComputeOffsetði; jþ 1; kÞ

SampleOffsetiþ1;jþ1;k
 -ComputeOffsetðiþ 1; jþ 1;kÞ

SampleOffseti;j;kþ1
 -ComputeOffsetði; j; kþ 1Þ

SampleOffsetiþ1;j;kþ1
 -ComputeOffsetðiþ 1; j; kþ 1Þ

SampleOffseti;jþ1;kþ1
 -ComputeOffsetði; jþ 1; kþ 1Þ

SampleOffsetiþ1;jþ1;kþ1
 -ComputeOffsetðiþ 1; jþ 1;kþ 1Þ

g

ComputeOffset(i,j,k)
 -BlkOffseti;j;k � ðBDx � BDy � BDzÞþ
OffsetWithinBlki;j;k
BlkOffseti;j;k
 -ði’’þ j’’ � BVDx þ k’’ � ðBVDx � BVDyÞÞ

OffsetWithinBlki;j;k
 -ði’þ j’ � BDx þ k’ � ðBDx � BDyÞÞ
Thereby BDfx;y;zg define the brick dimensions, Dfx;y;zg

define the volume dimensions. BVDfx;y;zg denote the

brick volume dimensions defined by BVDfx;y;zg ¼
ðDfx;y;zg=BDfx;y;zgÞ; i; j; and k are the integer parts

of the current re-sample 3D-position, i’, j’, k’ are defined

by i’ ¼ ði mod BDxÞ; j’ ¼ ðj mod BDyÞ; and k’ ¼
ðk mod BDzÞ; and i’’, j’’, k’’ are defined by i’’ ¼
ði div BDxÞ; j’’ ¼ ðj div BDyÞ; and k’’ ¼ ðk div BDzÞ:
To avoid the costly if-else statement and the expensive

address computations, one can create a look-up table to

address all the needed samples.

The straightforward approach would be to create a

look-up table for each possible sample position in a

brick. Since our optimal brick size is 323; this would

mean that we would need 323 different look-up tables to

address the neighboring samples. In the re-sampling

case, 7 neighbors need to be addressed; accordingly the

size of the look-up tables would be 323�7�4 Bytes ¼
896 KB (4 Bytes per offset). In the gradient computation

case we need to address even more neighbors: 26

neighbors need to be addressed, which leads to a size

of 323�26�4 Bytes ¼ 3:25 MByte (4 Bytes per offset) in

total. Such a huge size for a look-up table is not

preferable, due to the limited size of cache. However the

addressing of such a look-up table would be straightfor-

ward, because the indexes in the look-up table would be

the corresponding offsets of the current sample position,

assuming the offset is given relative to the brick memory

address.

We developed a more efficient approach. We differ-

entiate the possible sample positions by the locations of

the needed neighboring samples. The first sample

location ði; j; kÞ is defined by the integer parts of the

current re-sample position. The access pattern of

adjacent samples during re-sampling is defined by

accessing samples to the right, top, and back. The

samples of a brick can be subdivided into subsets. For

the largest subset the seven adjacent samples of a sample

ði; j; kÞ lie within the same brick. The other subsets are
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Table 2

The eight neighbor brick constellations

Case iA jA kA

0 f0;y;BDx 	 2g f0;y;BDy 	 2g f0;y;BDz 	 2g
1 f0;y;BDx 	 2g f0;y;BDy 	 2g BDz 	 1

2 f0;y;BDx 	 2g BDy 	 1 f0;y;BDz 	 2g
3 f0;y;BDx 	 2g BDy 	 1 BDz 	 1

4 BDx 	 1 f0;y;BDy 	 2g f0;y;BDz 	 2g
5 BDx 	 1 f0;y;BDy 	 2g BDz 	 1

6 BDx 	 1 BDy 	 1 f0;y;BDz 	 2g
7 BDx 	 1 BDy 	 1 BDz 	 1
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defined by samples ði; j; kÞ on the border of the current

brick. The adjacent samples lie partially or completely

within neighboring bricks. These other subsets are

defined by the needed neighbor bricks to access all

seven adjacent samples. The 2D case is illustrated in

Fig. 2(a). Only samples to the right and to the top are

needed, thus there are just four cases. Basically if the

sample ði; jÞ lies on one or two of the brick faces (top-,

and right-face), neighboring bricks are needed. This can

be mapped straightforwardly to the 3D case, by also

taking into account the back-face. The eight occurring

cases are shown in Table 2.

As mentioned before the bricks itself are stored in

xyz-order, therefore the necessary offsets for the eight

neighboring samples can be pre-computed and stored in

a look-up table. Furthermore, the look-up table is for

each brick the same. The look-up table contains 8� 7 ¼
56 offsets. We have eight cases, and for each sample

ði; j; kÞ we need the offsets to its seven adjacent samples.

The seven neighbors are accessed relative to the sample

ði; j; kÞ: Since each offset consists of four bytes the table

size is 224 bytes: This is an improvement of a factor of 4

compared to the straightforward solution.

By compressing the look-up tables in this way the

index computations for the look-up table access become

more difficult. It can be achieved efficiently if the brick

dimensions are a power of two, and a power of two

apart. The second constraint can be removed by

introducing a simple shift operation to virtually hold

the constraint. To exemplify the algorithm we assume

that the brick dimensions are 32� 16� 8: The input of

the look-up table addressing function is the sample

position ði; j; kÞ: As first step the brick offset part from

i; j; and k is extracted by adding the corresponding
Brick Sampleboundary Brick Sampleboundary

(a) (b)

Fig. 2. Sample position ði; j; kÞ is defined by the integer parts of

the re-sample position. The sample positions ði; j; kÞ of a brick

are subdivided into subsets. The membership depends on the

location of the adjacent samples. They are either in the same

brick or in one of the neighboring bricks. (a) Re-sampling: four

areas, because only samples to the right and to the top are

accessed. (b) Gradient computation: nine subsets, because

samples in every direction are accessed.
BDfx;y;zg 	 1: The result can be seen in Table 3 second

column. The next step is to increase all by one. By this

operation the current maximal possible value BDfx;y;zg 	
1 is moved to BDfx;y;zg: All the other possible values stay

within the range ½1;BDfx;y;zg 	 1�: Then a conjunction

with the resulting value and the complement of

BDfx;y;zg 	 1 is performed. After this operation the

input values are mapped to f0;BDfx;y;zgg; as shown in

Table 3, column four. The last and final step is to add

the three values and divide the result by the minimum of

the three brick-dimensions BDfx;y;zg; which maps the

result into the range ½0; 7�: This last division can be

exchanged by a shift operation. The final algorithm for a

32� 16� 8 brick is:
SampleOffseti;j;k
 -ComputeOffset(i,j,k)
Index
 -((((i&0�1F)+1)&0xE0)+
-(((j&0�0F)+1)&0xF0)+
-(((k&0�07)+1)&0xF8))b3
SampleOffsetiþ1;j;k
 -SampleOffseti;j;k þ Lut½Index�½0�

SampleOffseti;jþ1;k
 -SampleOffseti;j;k þ Lut½Index�½1�

SampleOffsetiþ1;jþ1;k
 -SampleOffseti;j;k þ Lut½Index�½2�

SampleOffseti;j;kþ1
 -SampleOffseti;j;k þ Lut½Index�½3�

SampleOffsetiþ1;j;kþ1
 -SampleOffseti;j;k þ Lut½Index�½4�

SampleOffseti;jþ1;kþ1
 -SampleOffseti;j;k þ Lut½Index�½5�

SampleOffsetiþ1;jþ1;kþ1
 -SampleOffseti;j;k þ Lut½Index�½6�
The ComputeOffset step can be simplified, to only the

offset calculation within one brick; this is possible as the

processing is done brick-wise; therefore the brick-offset

remains constant, while processing one brick.

Compared to the if-else solution which has the costly

computation of two offsets in the else branch, we get a

speed up of about 30%. The benefit varies, depending on

the brick dimensions. For a 32� 32� 32 brick size the

else-branch has to be executed in 10% of the cases and

for a 16� 16� 16 brick size in 18% of the cases. With

larger brick-sizes the percentage of the else-branch

executions is smaller and therefore also the benefit

decreases. But the focus is on small brick-sizes anyway.

For these sizes we reduced the overhead significantly.

The other important benefit is, that it does not matter

anymore where in the brick adjacent samples are
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Table 3

Look-up table addressing for re-sampling. Thereby BDx;y;z ¼ 32; 16; 8

Case i&

ðBDx 	 1Þ
j&

ðBDy 	 1Þ
k&

ðBDz 	 1Þ
i þ 1 j þ 1 k þ 1 i&

BðBDx 	 1Þ
j&

BðBDy 	 1Þ
k&

BðBDz 	 1Þ
ði þ j þ kÞ=
MinðBDx;BDy;BDzÞ

0 0–30 0–14 0–6 1–31 1–15 1–7 0 0 0 0

1 0–30 0–14 7 1–31 1–15 8 0 0 8 1

2 0–30 15 0–6 1–31 16 1–7 0 16 0 2

3 0–30 15 7 1–31 16 8 0 16 8 3

4 31 0–14 0–6 32 1–15 1–7 32 0 0 4

5 31 0–14 7 32 1–15 8 32 0 8 5

6 31 15 0–6 32 16 1–7 32 16 0 6

7 31 15 7 32 16 8 32 16 8 7
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accessed. It is always performed with constant computa-

tional time.

A similar approach can be done for the gradient

computation. We present a general solution for a 26-

connected neighborhood. Here we can, analogous to the

re-sample case, distinguish 27 cases. The 2D case is

illustrated in Fig. 2(b). Depending on the position of

sample ði; j; kÞ a brick is subdivided into 27 subsets. In

contrast to the re-sample situation, additionally we have

to handle sample positions on the bottom-, left-, and

front faces.

The first step is to extract the brick offset, by adding

BDfx;y;zg 	 1 as shown in Table 4, second column. Then

we subtract one, and with BDfx;y;zg þ BDfx;y;zg 	 1; to
separate the case if one or more components are zero. In

other words zero is mapped to ð2 � BDfx;y;zg 	 1Þ (Table
4, third column). All the other values stay within the

range f0;y;BDfx;y;zg 	 2g: The other case which has to

be separated is the case if one or more of the

components are BDfx;y;zg 	 1: This can be done by

adding one, after the previous minus one operation is

undone by a disjunction with 1, without loosing the

separation of the zero case. The result can be seen in

Table 4, third column. Now all the cases are mapped to

f0; 1; 2g to obtain a ternary-system. This is done by

dividing the components by the corresponding brick-

dimensions. These divisions can be exchanged by fast

shift operations. The last and final step is then 9 � i þ 3 �
j þ k to get unique values in the range of ½0; 26�: The
final look-up table index computation for a 32� 16� 8

brick is:
i’
 -((i & 0x1F) 	1) & 0x3F
j’
 -((j & 0x0F) 	1) & 0x1F
k’
 -((k & 0x07) 	1) & 0x0F
i’’
 -((i’ | 0x01)+1)b 5
j’’
 -((j’ | 0x01)+1)b 4
k’’
 -((k’ | 0x01)+1)b 3
Index
 -(i’’�9+j’’�3+k’’)
The benefit is a 40% speedup. The index computation

is more costly compared to the re-sample lookup table

indexing computation. However, the percentage where
the else-branch has to be executed nearly doubled.

Therefore the more costly index computation is com-

pensated by the higher percentage of costly cases. What

we did not mentioned so far is the size of the look-up

table. It is 27 cases �26 offsets �4 byte per offset ¼
2808 Bytes: This can be reduced by a factor of two due

to symmetry reasons. Therefore we have a very small

look-up table of 1404 Bytes: This is an improvement of

approximately a factor of 2427 compared to the

straightforward solution. Thus, the re-sample look-up

table and the 26-connected neighborhood look-up table,

fit into 2 KB:
We assumed that bricks are stored linearly. This

simplified the explanation of our addressing scheme.

However, storing the bricks at arbitrary locations in

memory is also possible. It requires creating a specific

look-up table for each brick. The base structure of the

address look-up tables and their indexing remain the

same; only the stored offsets change according to the

memory locations of the adjacent neighboring bricks.

This possibility enables the exploitation of different

bricks arrangements, such as arrangements based on

space filling curves, to improve the spatial locality.

Storing an address look-up table for each brick requires

small additional storage of ð1=65536Þ � ð2808þ 224Þ �
100E4:63% per brick. The brick size in our case is 323 �
2 byte ¼ 65536 byte; the re-sample look-up table size is

224 byte; and the 26-neighbor address look-up table size

is 2808 byte: The symmetry of the 26-neighbor address

look-up tables cannot be exploited, due to the arbitrary

brick arrangement requirement.

Another possible option to simplify the addressing is

to inflate each brick by an additional border of samples.

However, such a solution increases the overall memory

usage considerably. Using a brick size of 32� 32� 32

increases the total memory usage of the volume data by

approximately 20%. This is an inefficient usage of

memory resources and the storage redundancy reduces

the effective memory bandwidth. In contrast to that our

approach has a memory usage increase of 4.63% per

brick if an arbitrary brick arrangement is permitted. No

additional memory is required for a linear brick
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Table 4

Look-up table addressing for 26-connected neighborhood. Thereby BDx;y;z ¼ 32; 16; 8

Case i&

ðBDx 	 1Þ
j&

ðBDy 	 1Þ
k&

ðBDz 	 1Þ
i 	 1&

ðBDx þ BDx 	 1Þ
j 	 1&

ðBDy þ BDy 	 1Þ
k 	 1&

ðBDz þ BDz 	 1Þ
i j 1þ 1 j j 1þ 1 k j 1þ 1 i=BDx j=BDy k=BDz 9 � i þ 3 � i þ k

0 1–30 1–14 1–6 0–29 0–13 0–5 2–30 2–14 2–6 0 0 0 0

1 1–30 1–14 7 0–29 0–13 6 2–30 2–14 8 0 0 1 1

2 1–30 1–14 0 0–29 0–13 15 2–30 2–14 16 0 0 2 2

3 1–30 15 1–6 0–29 14 0–5 2–30 16 2–6 0 1 0 3

4 1–30 15 7 0–29 14 6 2–30 16 8 0 1 1 4

5 1–30 15 0 0–29 14 15 2–30 16 16 0 1 2 5

6 1–30 0 1–6 0–29 31 0–5 2–30 32 2–6 0 2 0 6

7 1–30 0 7 0–29 31 6 2–30 32 8 0 2 1 7

8 1–30 0 0 0–29 31 15 2–30 32 16 0 2 2 8

9 31 1–14 1–6 30 0–13 0–5 32 2–14 2–6 1 0 0 9

10 31 1–14 7 30 0–13 6 32 2–14 8 1 0 1 10

11 31 1–14 0 30 0–13 15 32 2–14 16 1 0 2 11

12 31 15 1–6 30 14 0–5 32 16 2–6 1 1 0 12

13 31 15 7 30 14 6 32 16 8 1 1 1 13

14 31 15 0 30 14 15 32 16 16 1 1 2 14

15 31 0 1–6 30 31 0–5 32 32 2–6 1 2 0 15

16 31 0 7 30 31 6 32 32 8 1 2 1 16

17 31 0 0 30 31 15 32 32 16 1 2 2 17

18 0 1–14 1–6 63 0–13 0–5 64 2–14 2–6 2 0 0 18

19 0 1–14 7 63 0–13 6 64 2–14 8 2 0 1 19

20 0 1–14 0 63 0–13 15 64 2–14 16 2 0 2 20

21 0 15 1–6 63 14 0–5 64 16 2–6 2 1 0 21

22 0 15 7 63 14 6 64 16 8 2 1 1 22

23 0 15 0 63 14 15 64 16 16 2 1 2 23

24 0 0 1–6 63 31 0–5 64 32 2–6 2 2 0 24

25 0 0 7 63 31 6 64 32 8 2 2 1 25

26 0 0 0 63 31 15 64 32 16 2 2 2 26
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Fig. 3. Hyper-threading technology duplicates the architectural

state of the physical processor, providing two logical proces-

sors.
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arrangement, as all bricks share one global address look-

up table. In conclusion we presented a very efficient

approach to access neighboring samples within a brick

based volume layout by using a small look-up table.

Furthermore, we presented a refined index computation

to access the look-up tables very efficiently.

3.4. Thread-level parallelism (hyper-threading

technology)

So far CPU designers tried to improve the CPU

performance mainly by increasing the clock-rate. To-

day’s main processors perform at 3 GHz resulting in

0:33 ns per clock-cycle. Achieving higher rates becomes

more and more difficult due to physical laws and

manufacture costs. Other directions to increase CPU

performance were explored. The Pentium CPU was the

first to allow the parallel execution of several instruc-

tions per clock-cycle. However, this feature was insuffi-

cient, because normally there are not enough sequential

instructions which can be performed in parallel. To

overcome this issue an out-of-order execution unit was

introduced. This unit reorders the instruction stream

such that the CPU can execute more instructions in

parallel. This concept is called instruction level paralle-

lism. At first sight this is a very efficient solution, but

studies have shown that in a typical application at most

2.5 instructions can be found to be executed simulta-

neously.

Thus, there are still unused execution resources on the

CPU. To use them, they introduced hyper-threading

technology for commodity CPUs to exploit thread-level

parallelism. With this technology the CPU designers go

one step further. Additionally to the instruction level

parallelism, thread level parallelism (TLP) is introduced

to identify even more instructions for parallel execution.

Before, the out-of-order execution unit could choose

from an instruction buffer of only one thread. Now, this

buffer contains instructions of two threads which

obviously increases the likelihood of finding data-

independent instructions. This technology makes a

single physical processor appear as two logical proces-

sors. It just duplicates the architectural state, while the

physical execution resources and caches are shared (see

Fig. 3). In other words the CPU is capable of holding

two thread contexts at the same time. The two threads

are executed simultaneously on the same execution

units, using the same caches. If one thread stalls due to a

cache miss, the other one uses the idle execution

resources. More information on hyper-threading tech-

nology can be found in [11–13].

In Section 3.2 we presented a bricked memory volume

layout with a highly optimized addressing scheme. This

layout is now the base for our volume raycasting system.

The main idea to do raycasting on a bricked volume

layout is to have data working-sets which can be shared
between two hyper-threads. This is very important since

hyper-threads share caches.

3.5. Volume raycasting algorithm work-flow utilizing

TLP

To get optimal cache coherence, high CPU utilization,

and the ability to do efficient threading we based our

system on Law’s and Yagel’s [9] raycasting method.

They proposed a parallel raycasting algorithm for a

massively parallel processing system (Cray T3D Super-

computer). The data was subdivided into small units and

then evenly distributed among the processors, such that

optimal cache coherence was achieved.

This distribution scheme can still be used on current

multi-processor systems; however it cannot be used

straightforward for a hyper-threaded system. Therefore

we extend their distribution scheme to support logical

CPUs within one physical CPU. The main difference is,

that logical CPUs within one physical CPU need to

operate on the same data to be efficient.

The workflow of the algorithm is as follows: Our

algorithm is based on the previous described bricked

volume layout. The used optimal brick size is 32� 32�
32; see Section 3.2. Each brick contains data-structures

for high-level optimizations and a reference to a list of

rays to process. The bricks themselves are stored in xyz-

order. The workflow of the algorithm shown in Fig. 4.

Initially a list of bricks is created. It is sorted by the

traversal order of the rays. Therefore each brick has to

be processed only once. That this has to be done only

once for the eight view octants, was shown by Law and

Yagel [9]. Each brick has initially an empty list of rays.

In the pre-processing phase all viewing rays are assigned

to those bricks through which they enter the volume

first. During volume raycasting, each of these bricks is

processed until all the rays enter subsequent bricks. If a

ray enters a subsequent brick, it is removed from the

current brick and assigned to the subsequent one.

Subsequent bricks, which now contain the rays, are

processed in the same manner. By this mechanism

the rays are completely carried through the volume as
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Fig. 5. Volume raycasting system exploiting thread-level

parallelism speedup.

Initialization:
1.) Create ordered list of bricks to process list.

Preprocessing:
2.) Add rays to bricks which are hit first.

Raycasting:
for (all bricks ”b”)

while (brick ”b” contains rays to process)
for (all active rays ”r” of brick ”b”)

1.) Re-sampling at position of ray r.
2.) Gradient computation at position of ray r.
3.) Shading at position of ray r.
4.) Compositing at position of ray r.
5.) Advance ray r.
6.) if(ray enters subsequent brick)

(i) Remove ray from current brick.
(ii) Assign ray to the subsequent brick.

Fig. 4. Brick-wise raycasting algorithm.
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soon as all bricks are processed. These bricks basically

define the data working-sets which were mentioned in

Section 3.1.

The workflow of the volume raycasting system

exploiting TLP on a system with two physical CPUs

supporting hyper-threading technology, illustrated in

Fig. 5.

In the beginning seven threads, T1;y;T7; are started.
T1 is responsible for all the preprocessing. In particular

it has to be assigned the rays to those bricks through

which the rays enter the volume first. Then it has to

choose the lists of bricks which can be processed

simultaneously, with respect to the eight to distinguish

viewing directions. Each list is subdivided evenly by T1

and sent to T2 and T3. After a list is sent, T1 sleeps until

its slaves are finished. Then it sends the next list to

process, and so on. T2 sends one brick after the other to

T4 and T5. T3 sends one brick after the other to T6 and

T7. After a brick is send, they sleep until their slaves are

finished. Then they send the next brick to process, and

so on. T4, T5, T6, and T7 perform the actual raycasting.

T4 and T5 simultaneously process one brick, and T6 and

T7 simultaneously process one brick. By this mechanism

all bricks are processed in the correct order.

3.5.1. Implementation issues

No special parallel programming library was used, to

keep complete control over the thread execution and

synchronization flow. The threads are created once

during startup, according to the number of physical and

logical CPUs and synchronized by light-weighted events.

Expensive thread creation is avoided and thread context

switches are kept low. For optimal CPU utilization a
CPU specific compiler was employed. Full optimization

was enabled performing interprocedural optimizations

and inlining across multiple source files.

3.6. Results

Test system specification: Dual Pentium Xeon

2:4 GHz; 512 KB level-2 cache, 8 KB level-1 data cache,

1 GB Rambus memory, and a GeForce IV graphics-

card. The graphics card capabilities are only used to

display the final image. Our system is able to force

threads on specific physical and logical CPUs. By

following this mechanism we forced it to run only on

one physical CPU using both logical CPUs. Benchmarks

were performed using several different data sets and

transfer functions. Fig. 6 shows the results of an

exemplary test run using a CTA scan of human head

with enhanced venous system (512� 512� 333; 12 bit).

Different transfer-functions were specified in order to

achieve high work loads. The images ð512� 512Þ from
left to right show renderings with progressively less

translucent transfer function settings. Measured render

timings are: (a) 10:1 s; (b) 5:8 s; (c) 1:7 s; and (d) 1:3 s:
Non-translucent transfer functions lead to frame rates of

up to 2:5 fps for this particular data set. All test runs

consistently showed the same speedup factors.

The achieved thread-level parallelism speedup is

shown in Fig. 7. Testing thread-level parallelism on

only one CPU showed an average speedup of 30%.

While changing the viewing direction, the speedup varies

from 25% to 35%, due to different transfer patterns

between the level-1 and the level-2 cache. Whether

hyper-threading is enabled or disabled adding a second

CPU approximately reduces the computational time by

50%. This shows that our thread-level parallelism

scheme scales very well on multiprocessor machines.
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Fig. 6. CTA scan of human head with enhanced venous system.
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Also the hyper-threading benefit of approximately 30%

is maintained if the second hyper-threaded CPU is

enabled.

Fig. 8 shows the TLP speedup according to different

brick sizes. The speedup significantly decreases with

larger brick sizes. Once the level-2 cache size is exceeded,

the two threads have to request data from main

memory. Therefore the CPU execution units are less

utilized. Very small brick sizes suffer from a different

problem. The data fits almost into the level-1 cache.

Therefore one thread can utilize the execution units

more efficiently, and the second thread is idle during this

time. But the overall disadvantage is the inefficient usage

of the level-2 cache. The optimal speedup 1=ðð100	
30Þ=100ÞE1:42 is achieved with 64 KB ð32� 32� 32Þ:
This is also the optimal brick size for the bricked volume

memory layout, see Section 3.2.
4. Discussion

Efficient use of hardware resources for basic graphics

algorithms is very important. It is a known fact, that

TLP can increase performance by a factor of 30% for

very well parallelized algorithms. However, very well

parallelized in this sense means that threads have to

operate on coherent data. Our tests have shown that

large brick-sizes lead to very low TLP performance

benefits. This is due to the fact, that using large brick-

sizes leads to a low cache hit rate and therefore to

execution stalls because of expensive main memory

requests. For example, by just splitting the image plane

in half and assigning each half to a hyper-thread, you

will encounter a performance decrease instead of

increase. This is, because the two threads constantly

request data from different memory locations. This leads

to enormous cache thrashing, since the two threads

share caches.

The bricking speedup is about 2.8. However, it is

important to note that this speedup factor characterizes

the improvement in traversal, re-sampling and gradient

computation. These are the components of the system

which are directly affected by the accelerated memory

access. Other parts, such as compositing and shading do

not benefit from the presented optimizations. In our

system, however, these parts only play a minor role in
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overall performance. We use front-to-back compositing

and phong shading with two light sources.

Our experiments have shown that with the optimal

brick-size of 32� 32� 32 a speedup factor of 2.8 is

achieved. Enabling TLP results in an additional speedup

of 1.42. The combined speedup is 2:8�1:42E4:0: High-

level optimizations, such as empty space skipping or

early ray termination, did not influence this speedup

factor. Our efficient addressing scheme considerably

reduces the cost of addressing in a bricked volume

layout. Its influence on the overall performance gains

depends on the filter support size used for re-sampling

and gradient estimation as well as on the complexity

of the remaining calculation such as shading and

compositing.
5. Conclusion

We have presented a raycasting system utilizing TLP.

We utilized a bricked volume layout in order to design a

highly efficient threading scheme which maximizes the

benefits of TLP. The high cache coherency inherently

present in a bricked volume layout combined with the

two refined addressing schemes significantly reduced the

costs for re-sampling and gradient computation.

For efficient use of TLP we introduced a multi-

threading scheme, such that two threads running on one

physical CPU simultaneously process one data brick.

Processing the same data brick simultaneously with both

hyper-threads is essential for exploiting this technology.

The results have proven that inefficient CPU utilization

can be significantly reduced by using hyper-threading

technology. The realization of the system showed that

using this new technology is not straightforward.

Systems have to be adapted to take advantage of this

architecture. Most of today’s used multi-threaded

systems have to be redesigned. By just starting more

threads one can encounter significant performance

decrease instead of an increase. This is due to the fact,

that hyper-threads share caches.

We achieved a significant speedup with our new

addressing method in a bricked volume layout. The new

addressing scheme can be used for any volume proces-

sing algorithm, which has to address adjacent samples.

The results showed that conditional branches have quite

some performance impact, due to the growing length of

the CPU pipeline.

In conclusion, we have shown that advanced low-level

optimizations lead to efficient CPU utilization and a

significant speedup factor of 4.0.
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