
Non-linear Model Fitting to Parameterize Diseased Blood Vessels

Alexandra La Cruz∗
Vienna University of Technology
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Figure 1: Cross-section view of a vessel (a) and the best fitted model (b) from an initial model (c)

ABSTRACT

Accurate estimation of vessel parameters is a prerequisite for au-
tomated visualization and analysis of normal and diseased blood
vessels. The objective of this research is to estimate the dimen-
sions of lower extremity arteries, imaged by computed tomography
(CT). The vessel is modeled using an elliptical or cylindrical struc-
ture with specific dimensions, orientation and blood vessel mean
density. The model separates two homogeneous regions: Its inner
side represents a region of density for vessels, and its outer side a
region for background. Taking into account the point spread func-
tion (PSF) of a CT scanner, a function is modeled with a Gaussian
kernel, in order to smooth the vessel boundary in the model. A
new strategy for vessel parameter estimation is presented. It stems
from vessel model and model parameter optimization by a nonlin-
ear optimization procedure (the Levenberg-Marquardt technique).
The method provides center location, diameter and orientation of
the vessel as well as blood and background mean density values.
The method is tested on synthetic data and real patient data with
encouraging results.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement—Geometric Correction; I.4.6 [Segmentation]: Edge
and Feature Detection—; I.5.1 [Pattern Recognition]: Models—
Geometric;

Keywords: Visualization, Segmentation, Blood Vessel Detection

1 INTRODUCTION

Peripheral arterial occlusive disease (PAOD) is a manifestation of
atherosclerosis. It is characterized by the formation of atheroscle-
rotic plaque on the inner surface of the vessel wall, which protrudes
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into the vessel lumen, causing luminal narrowing (stenosis) or com-
plete vessel occlusion. The reduced blood flow to the legs at first
causes cramping with exercise or walking, and, at later stages of
the disease, rest pain, and tissue loss, which may eventually require
amputation. Vascular imaging plays a pivotal role for diagnosis,
staging, and treatment planning in patients with PAOD. Computed
tomography angiography (CTA) has recently evolved into a rou-
tinely applicable imaging technique to visualize the entire periph-
eral (lower extremity) arterial tree. A peripheral CTA dataset con-
sists of up to 2000 transverse CT slices, and thus cannot be assessed
by the radiologist or treating physician without further image post-
processing. Accurate and automated extraction of the peripheral
arterial tree from peripheral CTA datasets is thus highly desirable.

This is not a trivial task, however, particularly in the presence
of atherosclerotic disease. Normal arteries are characterized by
a fairly homogenous CT density of the vessel lumen due to the
contrast-medium enhanced blood, which is higher in x-ray atten-
uation than the surrounding soft tissues (muscles, fat), and which
is generally lower in attenuation than neighbouring bony tissue.
Diseased arterial segments, however, may have very different x-
ray attenuation. Non-calcified atherosclerotic plaque is isodense
to soft tissues, and calcified plaque has a CT density similar to
bone. Hence, it is not surprising that density and gradient infor-
mation alone is insufficient to accurately extract the centerlines of
a diseased arterial tree. This overlap in density ranges is further
aggravated by the wide range of diameters observed for individ-
ual branches of the arterial tree, as well as by the presence of im-
age noise, scanning artifacts, limited scanner resolution with partial
volume averaging, and finally, inter-individual and within-patient
variability of arterial opacification.

The most characteristic feature of an artery (normal or diseased)
is its cylindrical or tubular shape. A tubular or cylindric shape can
be modeled as elliptical or circular cross-sections along its medial
axis, and then fitted to a candidate vascular structure. As a result
of the estimated vessel diameter and density, a more robust extrac-
tion of a vessel centerline, even in the presence of atherosclerotic
disease, is expected. We are particularly interested in finding a
model that best fits the data satisfying both criteria, tubular shape



and mean density value.
In this work, we propose two new strategies to estimate vessel

parameters from an initial vessel model using a non-linear min-
imization process. The first strategy attempts to fit an elliptical
cross-section-model to the vessel. The second strategy uses a 3D
cylindrical model of the vessel.

The paper is divided into six sections. Section 2 provides an
overview of related approaches concerning model based segmenta-
tion techniques applied to vascular structure. Section 3 describes
the main motivation of this work and the importance of extract-
ing a better parameterization of diseased blood vessels. Section 4
presents the non-linear model fitting technique using an elliptical
cross-section (in 2D) and cylindrical shape (in 3D). In section 5 we
present and discuss our results and finally, in section 6 draw the
conclusions of this work.

2 RELATED WORK

Kirbas et al. [3] classified several segmentation methods accord-
ing to the technique used. They demonstrated that there is no
single segmentation method that allows to extract the vasculature
across different medical imaging and not even for different vascu-
lar anatomic territories. Some methods use threshold values, or an
explicit vessel model to extract contours. Other techniques require
image processing (depending on the data, quality, noise, artifacts),
a priori segmentation or post-processing.

Deformable models [7] and multiscale methods [4] have been
used more recently, and appear to be the most promising segmenta-
tion techniques. Deformable models are powerful and widely used
methods for segmentation and geometric model generation in 2D
and 3D data [1]. They can be used in any modality [3]. These
techniques are based on a minimization process of an energy func-
tion. This energy function involves internal and external forces.
The internal forces allow smoothness on the contour and the exter-
nal forces move the deformable structure towards edges. Depend-
ing on the definition of the energy function, it can inflate or shrink
towards the object. Nevertheless, these techniques are strongly de-
pendent on the initialization. The energy function uses the gradient
information or derivative values around the deformable object. In
constrasct, multiscale methods [4] are based on the extraction of
large structures at low resolution images and fine structures at high
resolution. Multiscale filtering uses the Hessian matrix which con-
tains the second derivatives of the data. Our experimental results
on synthetic and real clinical data suggest, however, [5] that even
the gradient information and derivatives are not sufficient to accu-
rately extract the centerlines of peripheral arteries. This is due to the
overlapping of density values between vascular and non-vascular
structures, the variability in opacification between patients and from
aorta to pedal vessels, image noise, and partial volume averaging.

Classical model based segmentation algorithms [1, 3] applied to
vessel extraction are based on fitting circular, elliptical or cylindri-
cal geometric models to the data. Such techniques combine thresh-
olds with gradient information [12] or derivative estimation [4] in
order to approximate the vessel boundary. Then, this initial bound-
ary estimation is fitted to a geometrical model (circular or elliptical
cross-section or cylindrical structure).

3 MOTIVATION FOR A MODEL-BASED VESSEL PARAME-
TERIZATION

Automatic segmentation and accurate centerline identification of
diseased arteries certainly is a challenge. We are currently using a
density and gradient based vessel tracking and centering technique
to process clinical cases of patients with PAOD [2]. In patients
with extensive disease, however, substantial expert user interaction
and manual corrections are necessary to bridge the segments where

standard segmentation fails. Figure 2 is an illustration of exten-
sively diseased vessel territories where expert user interaction was
required to generate images of adequate diagnostic quality. In this
case, a technique capable of identifying the vessel by its cylindri-
cal or tubular shape might have yielded a similar or better result in
determining the center-line. This would improve the visualization
technique actually used in the clinical environment, which is mostly
Curved Planar Reformation (CPR) and its extensions [2].

Figure 2: MIP image (left) of a clinical peripheral CTA dataset ob-
tained in a patient with advanced peripheral arterial disease with
superimposed tree of vessel-centerlines. The encircled areas indicate
vessel regions, where automated centerline calculations failed due to
excessive disease and vessel calcifications, and thus required manual
placement of center points by a radiologist, to achieve the resulting
Curved Planar Reformation (right).

4 NON-LINEAR MODEL FITTING

In this paper, we present two different vessel models. An elliptical
model in 2D and a cylindrical model in 3D. Each model has a set
of unknown parameters, which are estimated by minimization of a
χ2-based merit function. Both methods require an initial estimation
of the parameters. They can either be obtained from the centerline



defined by vessel tracking, or the previous slices, which requires
only an initial seed point.

We represent the vessel by a 2D (ellipse in a slice) or 3D (cylin-
der) implicit model f . The CT-Scanner, due to finite dimensions of
its detectors, blurs the data, which leads to partial volume effects
(PVE) [10]. This can be modeled by a nonideal point spread func-
tion (PSF) of the scanner, which we approximate with a Gaussian
(Gσ ). Then, we model the PVE by:

1. Estimation of the distance to the surface by Eq. (1).

2. Eq. (2) defines then the density.

First, a distance to the geometrical object is estimated for an im-
plicit function by:

dist =
f

‖∇ f‖ (1)

f is the implicit function of the geometrical object. The PVE from
the CT-Scanner with the σ parameter applied to the distance to the
geometrical object. Finally, the density mean is computed by:

density = b+V ×Gσ (dist) (2)

Then, since a convolution of a unit step with a Gaussian results
in the erfc function, instead of Gσ , we use the erfc function [11].
erfc is defined as the complementary error function encountered in
integrating the Gaussian distribution, more details in [11].

4.1 Creating an Elliptical Cross-section Model of a Vessel

An elliptical cross-section of a vessel is model using the following
parameters:

• Center of the ellipse, given by (x0,y0)

• Radius dimensions, given by (rx,ry)

• Rotation angle, given by α

• A Gaussian filter with parameter σ to model the PSF from the
CT-Scanner

• Mean density value V for a vessel structure

• Mean density value b for background

For a general ellipse with a rotation parameter α , its implicit
function is given by:

f (x,y) =
[(x− x0)cos(α)− (y− y0)sin(α)]2

r2
x

+

[(x− x0)sin(α)+(y− y0)cos(α)]2

r2
y

−1 (3)

4.2 Creating a Cylindrical 3D Model of a Vessel

The cylindrical model is created using the following parameters:

• Center of the cylinder, given by (x0,y0,z0)

• Radius dimensions of the cross-section for the cylinder, given
by (rx,ry)

• Rotation angles around x and y axis, given by α and β

• A Gaussian filter with parameter σ to model the PSF from the
CT-Scanner

• Mean density value V for a vessel structure

• Mean density value b for background

We assume a cylinder along the z-axis rotated with respect to the
x axis by α , and with respect to y axis by β , centered in (x0,y0,z0)
(see Figure 3). A general elliptical cylinder can be modeled by the
equation (4). Its general implicit function is given by:

[(x− x0)cos(β )+(y− y0)sin(α)sin(β )+(z− z0)sin(α)cos(β )]2

r2
x

+

[(y− y0)cos(α)− (z− z0)sin(α)]2

r2
y

−1 (4)

Figure 4 illustrates the model data generated by a cylindrical
model. We create a set of slices with elliptical cross-sections along
the z-axis. This model is modulated by its parameters until it fits
the data.

(a)

(b)

Figure 3: (a) Cylinder along the z-axis rotated with angles α and β
around the x-axis and y-axis respectively. (b) Elliptical cross section
along the z-axis of the rotated cylinder



Figure 4: Illustrative example of a cylindrical model

4.3 Levenberg-Marquardt Method

The Levenberg-Marquardt method [6] is a nonlinear minimiza-
tion technique. This technique can be used to fit a model to data
when it depends nonlinearly on a set of M unknown parameters ak,
k = 1,2, ...,M. The idea of the Levenberg-Marquardt algorithm is
to minimize an merit function χ2 and iteratively determine the best
fitting parameters by minimization. The objective function mea-
sures the agreement between the model and the given data. In a
fitting process, the parameters of the model are adjusted to achieve
a minimum in the objective function. The process is repeated while
χ2 decreases or when a change in the parameters changes χ2 by an
amount << 1, which is not considered statistically significant.

Assume that we are fitting N data points (xi,yi) i = 1, ...,N, to a
model f (x;a) that has M adjustable parameters ak. The model pre-
dicts a functional relationship between the measured independent
(y) and dependent ( f (x;a)) variables.

y = f (x;a) (5)

The idea is minimize the merit function χ2 given by:

χ2 =
N

∑
i=1

[
yi − f (xi;a)

σi

]2

(6)

where yi is a value from an N-dimensional data, and with the same
dimension f (xi;a) is a value from the model evaluated in a. In
our case we used 2-dimensional data for the elliptical cross-section
model, and 3-dimensional data for the cylindrical model. σi repre-
sents a known standard deviation for each point from the data. In
our case, we use σi = 1 by simplicity.

Given an initial estimation of parameters, a the Levenberg-
Marquardt process consists of [8]:

(1) Compute χ2(a)

(2) Set an initial value for λ , say λ = 0.001. Here, λ represents a
factor used in each iteration to cut down the step.

(3) Solve the linear equation ∑M
l=1 α ′

klδal = βk for δa and evalu-
ate χ2(a+δa)

(4) if χ2(a+δa) ≥ χ2(a), increase λ by a factor of 10 (or any
other factor) and go to (3)

(5) if χ2(a+δa) < χ2(a), decrease λ by the same factor as in
(4), update the trial solution a by a+δa and go back to (3)

where

α ′
j j ≡ α j j(1+λ )

α ′
jk ≡ α jk ( j �= k) (7)

and δa represent the steepest descendent formula, and for each
parameter al , δal is given by:

δal =
1

λαll
βl (8)

and

αkl =
N

∑
i=1

1

σ2
i

[
∂y(xi;a)

∂ai

∂y(xk;a)
∂al

]
(9)

5 RESULTS

As first result, we apply both model fitting to a synthetic data set.
This should illustrate that both methods produce quite similar re-
sults concerning the curvature (see Figure 5).

The synthetic data set consists of 3D data of 256x256x768 vox-
els with size 0.53mm. The diameter varies along the z-axis from
about 0.7 to about 23 voxels, simulating the size-range of arterial
vessels imaged with CT. The density is defined between 1130 and
1350 and the background density between 1080 and 1100 (which
corresponds to CT attenuation values of 130 to 350, and 80-100
Hounsfield Units, respectively). The curvature of the vessel is sim-
ulated by a helix with an angle of 32.14 and radius of 76.8 voxels.

Figure 5: Result on synthetic data. Left, MIP image of the synthetic
data, followed by elliptical cross-section model fitted along the vessel
path, and finally a parameterized vessel by cylindrical model fitting

We apply the cylindrical model fitting to a real patient dataset
in a region of interest where manual segmentation by experts is re-
quired (see Figure 2). Figures 6 and 7 show the result of fitting an
initial model to a set of ten slices of volumetric data, starting from
an initial seed point. In the Figures, the first and last columns of
images correspond to the first and the last slice of a sub-volumetric
region defined by a set of 10 slices (as an example). The center col-
umn of images correspond to the slice in the middle of the dataset.
The upper row of images corresponds to a partially occluded vessel.
The second row of images corresponds to the fitted model. Finally,
the third row is a super position of the cylinder enclosing the ves-
sel. Here, we can see that there is not a clear distinction between the
vessel boundary and soft tissue or vessel background. It looks like
a bifurcation, but it is not. This is certainly a difficult case where
any other preprocessing step using derivative estimation, gradient
information or thresholds are likely to fail. However the cylindrical



vessel model fits quite well to the sub-volumetric data of the ves-
sel. Figure 7 shows the result on a calcified vessel. This is also a
difficult case to segment. From the medical point of view it is quite
important to extract the entire vessel dimensions, rather than the lu-
men only, because it allows an estimation of the relative degree of a
stenosis. In both cases (from Figures 6 and 7) the density of the fit-
ted model corresponds to the mean density for the data. This would
help to combine this technique with an adaptive process to correct
for inter- and within-individual variation of the degree of vascular
opacification, and to distinguish vessel from other structures, such
as bone.

Figure 6: Result of fitting on a vessel with a partial occlusion

Figure 7: Result of fitting on a calcified vessel

Finally, we present a comparison of the cylindric model with a
clinical application. It is based on the ray casting technique (RCT)
developed by Kanitsar et al. [2] and evaluated in [5] as a good
approximation of the vessel centerline. Figure 8 presents the cen-
ter path generated by the RCT technique (see Figure 8(a)) and the
cylindrical model fitting (see Figure 8 (b)). Here, we can see how
the centerline generated by the RCT is not actually in the vessel-
center. The centerline extracted from the cylindrical model fitting
looks more centered (see zoomed circular area, showed in Figures
9(a) and (b)).

Figures 9 (a) and (b), are particularly relevant because they show
one of the limitations of the CPR [2] visualization technique, which
is its dependence on an accurate centerline estimation. An off-axis
reformatting surface for the CPRs causes artificial vessel narrowing
or ’pseudo-stenosis’ in the resulting image (see zoomed circular
window in Figure 9). Figures 9 also allow us to compare visually
that the cylindrical model fitting gives a better center approximation
and avoids the generation of artificial stenosis in the CPR images.
The vessel segmented in Figure 10 is characterized by a complex
pattern of densities within the diffusely diseased left femoral artery.
There are pockets of residual lumen (light grey), irregular areas of
non-calcified plaque (dark grey), and areas of calcified atheroscle-
rotic plaque (white). Even though, the centerlines and CPR images
from the cylindrical model fitting are more accurate than the RCT
based results, and compare favorably to those based on expert user
interactions.

6 CONCLUSION

This work presents a strategy to parameterize a vascular structure
from a vessel model by a non-linear fitting process. The Levenberg-
Marquardt method is used as a non-linear minimization process,
which allows to extract optimal parameters from a model that best
fits the data.

In this paper, we present a segmentation solution in cases where
classical segmentation methods fail. Diseased vessels show a wide
variability of density values, which makes it difficult to detect the
vessel boundary. A cylindrical model fitting requires neither a
preprocessing step nor any operator estimation, such as, gradient,
derivative, etc.

The cylindrical model fitting can be considered as initial step to
implement an automatic segmentation of vascular structures. Fu-
ture work should address the following issues: performance, han-
dling of vessel bifurcations, and inclusion of further anatomical
knowledge.
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Figure 9: CPR images of the right femoral artery from the same dataset as figure 8, viewed from three different angles (- 90dgr [as if viewed
from the right side of the patient], 0 dgr [viewed from the front of the patient], and 45 dgr [as if viewed from an oblique left standpoint relative
to the patient]), with superimposed center-paths. Images in panel (a) were created from the RTC-based centerline approximation, Images
in panel (b) were created with cylindrical model fitting. Zoomed images illustrate the improved approximation of the central path with the
cylindrical model fitting technique. Note the artifactual high-grade stenosis in the 45dgr view in (a), which is caused by the eccentric course of
the centerline path.
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Figure 10: CPR images of the left femoral artery from the same dataset as figure 8, viewed from three different angles (- 90dgr [as if viewed
from the right side of the patient], 0 dgr [viewed from the front of the patient], and 45 dgr [as if viewed from an oblique left standpoint relative
to the patient]), with superimposed center-paths. Images in panel (a) were created from the RTC-based centerline approximation, Images in
panel (b) were created with cylindrical model fitting. Note the improved course of the centerline in (b) in this example of complex attenuation
of the diseased blood vessel, caused by residual lumen, hypodense (non-calcified) plaque, and hyperdens calcified plaque.
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