
Parallel Peeling of Curvilinear Grids

Sören Grimm∗
Vienna University of Technology

Austria

Michael Meissner†

Viatronix Inc.
NY, USA

Armin Kanitsar‡

Tiani Medgraph AG
Vienna, Austria

Eduard Gröller§

Vienna University of Technology
Austria

Figure 1: Liquid Oxygen Post: Four iteration steps of our parallel peeling algorithm.

ABSTRACT

In this paper we present a novel hybrid CPU-GPU approach for ren-
dering curvilinear grids. Visibility sorting is accomplished by paral-
lel peeling cells off the grid, utilizing an active cell peeling front. In
each step, we compute the ray-cell intersection coordinates on the
GPU, perform accurate volume integration (CPU), and determine
the set of active cells for the next iteration (GPU). The approach
requires only standard graphics capabilities and can therefore be
used on any commodity PC, including laptops. Furthermore, the
main memory requirements are negligible since the required data
structures are minimal.

The main advantage of our algorithm is that we exploit hard-
ware acceleration for the expensive visibility sorting which is bene-
ficial over time due to the faster performance increase of GPUs over
CPUs. Due to the simplicity of the algorithm and its low require-
ments on preprocessing and main memory, it is well suited for thin
clients. Last but not least, the approach could easily be extended to
irregular grids using tetrahedra.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: Curvilinear grids, Raycasting, Volume Rendering,
Visibility Sorting, Depth Sorting

1 INTRODUCTION

The curvilinear grid is one of the most common volume data
formats in application areas such as scientific computing and
computer-based modelling. For example, it is used in computa-
tional fluid dynamics or partial differential equation solvers. This
type of grids can be seen as the result of a non-linear transforma-
tion applied on a rectilinear grid. Hereby the topological structure
is preserved. However, the implicit storing of grid positions is lost

∗e-mail: grimm@cg.tuwien.ac.at
†e-mail: meissner@viatronix.com
‡e-mail: kanitsar@tiani.com
§e-mail: groeller@cg.tuwien.ac.at

due to the arbitrary alignment of grid points. Each 3D location of
a grid point has to be stored explicitly. The non-linear transforma-
tion implies in general non-uniformly shaped cells. This introduces
considerable complexity to the rendering of such volumetric grids.
In general, the evaluation of volume rendering equations requires
visibility sorting of cells intersected by rays [11]. For each image
pixel a ray is cast through the volume and needs to be integrated
in the correct visibility order. Since the visibility order on a curvi-
linear grid is not implicitly given, it has to be computed explicitly.
In this paper we present an alternative method to obtain this visi-
bility ordering. We apply a peeling approach that utilizes standard
commodity graphics hardware.

2 RELATED WORK

Rendering of curvilinear and unstructured grids is quite a challeng-
ing task, due to their topology. One well known acceleration tech-
nique is the Projected Tetrahedra (PT) algorithm [13]. In general
one of the main challenges in rendering such grids is the inher-
ent need to sort the cells according to visibility. Stein et al. [17]
proposed an exact visibility ordering algorithm with complexity
O(n2). De Berg et al. [3] proposed a faster approach which runs
with O(n4/3+ε ) complexity. Other approaches to perform the nec-
essary visibility sorting have been proposed by Williams et al. [21]
Meshed Polyhedra Visibility Ordering (MPVO) or Cook et al. [2].
Silva et al. [16] (XMPVO) extends the MPVO algorithm such that it
efficiently generates an exact visibility ordering for arbitrary poly-
hedra cell complexes in interactive time. There are also several
approaches which reduce the 3D sorting problem to a 2D problem
within each plane Silva et al. [14], Giertsen et al. [5], Silva et al.
[15], Yagel et al. [23] and Wilhelms at al. [20]. Furthermore Bunyk
et al. [1] presented a simple and efficient ray casting engine for
grids composed of tetrahedra cells, or other cell complexes where
cells have been broken up into faces. The visibility determination
in their approach is done in screen space. For each pixel an ordered
list of boundary faces is computed. The final rendering is done per-
forming ray casting. Hong et al. [7] presented an efficient robust
ray-casting algorithm for directly rendering a curvilinear volume of
arbitrary shaped cells. He improved his approach in [8]. Farias et
al. [4] (ZSWEEP) propose an approach based on sweeping the data
with a plane parallel to the viewing direction. There are also several
approaches exploiting the graphics hardware for volume rendering
of unstructured grids. Westermann et al. [19] proposed a sweep-



plane approach which is accelerated by hardware assisted polygon
drawing. Guthe et al. [6] proposed an approach for accurate render-
ing of unstructured grids using multi-texturing. High quality colors
and opacities of the pre-integration table are achieved by exploit-
ing the high internal precision of the pixel shader. Roettger et al.
[12] proposed a hardware-accelerated pre-integration approach and
a rendering method which utilizes 2D texture mapping instead of
3D texture mapping. Weiler et al. [18] proposed an approach which
performs all computations for the projection and scan conversion of
a set of tetrahedra on the graphics hardware.

Our novel approach utilizes both GPU and CPU and in contrast
to the previous approaches, sorting is implicitly performed on the
GPU using an iterative parallel peeling algorithm. Due to its sim-
plicity, our approach does not require costly pre-processing nor do
we require large data structures to be kept in main memory. The
interpolation of the data and depth values is performed on the GPU
and only the actual volume integration is performed on the CPU.
The presentation of our approach is organized as follows: In Sec-
tion 3 we present our peeling approach. We subdivided the differ-
ent steps of our method in pre-processing, entry-cell determination,
peeling and compositing. At the end of the section we show a peel-
ing work-flow example. The results are presented in Section 4 and
finally in Section 5 we conclude our work.

3 PARALLEL GRID PEELING

Within this section, we will describe the details of our parallel grid
peeling algorithm. It consists of a one-time only pre-processing
step for loading the grid and decomposing its cell faces into trian-
gles. For each frame, we need to determine the ray entry point(s)
on a per ray basis and advance the rays through the grid from cell
to cell in what we call iterative parallel peeling.

3.1 Pre-processing

The pre-processing step is performed only once for each curvilinear
grid that is to be displayed. Since we are using standard capabili-
ties of the GPU, the curvilinear grid needs to be decomposed into
triangles that can be rendered. A cell generally consists of six faces
and each of the faces is decomposed into two triangles, resulting
in a total of twelve triangles per cell. For each triangle, we assign
a unique ID and by keeping these IDs consecutive and in a certain
order1, the ID of the neighboring cell as well as the ID of the neigh-
boring triangle are implicitly given:

Cell ID = Triangle ID / 12

Triangle IDrelative = Triangle ID−12∗Cell ID

Cell IDneighbour = Cell ID +LUT(Triangle IDrelative)
Triangle IDneighbour = 12∗Cell IDneighbour

+((Triangle IDrelative+6) % 12)

TheLUT to obtain the cell offset is:

0,1 ⇒ -1
2,3 ⇒ -#Grid CellsX
4,5 ⇒ -#Grid CellsX ∗#Grid CellsY
6,7 ⇒ 1
8,9 ⇒ #Grid CellsX
10,11 ⇒ #Grid CellsX ∗#Grid CellsY

1Triangles are indexed 0 through 11 starting with the cell face pointing
to the negative X-axis, negative Y-axis, negative Z-axis, positive X-axis,
positive Y-axis, and positive Z-axis. All axes with respect to the index ori-
entation of the original grid.

with the restriction that theCell IDneighbourcan only be computed
as described above if the current cell (Cell ID) is not an outer cell.
Outer cells are defined as cells which contain at least one face which
does not have a neighboring cell. Vice versa, inner cells are defined
as cells which have adjacent neighbor cells for each cell face. De-
termining whether a cell belongs to an outer cell can easily be done
by comparing its axis indices x, y, and z index with 0 and the max-
imum number of cells along each axis.
In addition to the triangle decomposition, we also compute a nor-
mal for each triangle. It is computed such that it always points to
the outside of the cell, as indicated in Figure 2). While we could
compute the normals on the fly using cross products, we are pre-
computing them and trading memory for performance. The nor-
mals are needed in order to increase performance while finding en-
try points for the given cells through backface culling (see Figure
2(b)) and to find the exit points using frontface culling (see Figure
2(c)).

(a) (b) (c)

Viewing
Direction

Figure 2: Culling: (a) Each cell is defined such that the normal
vectors point outwards a cell. (b) Visible faces (red) for a given
viewing direction, backface culling enabled. (c) Visible faces (blue)
for a given viewing direction, frontface culling enabled.

3.2 Entry and Re-Entry Points

For every frame to be generated, the ray entry points need to be de-
termined. Depending on the topology of the curvilinear grid and the
actual view point, each ray could have multiple entry points into the
curvilinear grid by re-entering again. For common curvilinear grids
such as in the blunt fin, post, or delta wing datasets, there is up to
one potential re-entry per ray, as shown in Figure 3. For these type

(a) (b)

Re-entry considered
during rendering

Re-entry not considered
during rendering

Figure 3: Liquid Oxygen Post Data. (a) Re-entry not considered
during rendering. (b) Re-entry considered during rendering.

of grids, we can use a GPU accelerated implementation which sim-
ply renders all triangles that belong to the outer cells of the curvi-



linear grid2. To find the entry points, we enable backface culling
and render each triangle. By setting the depth test toGL LESS,
we obtain for each screen pixel (ray) the closest entry point into
the grid Vice versa, setting the depth test toGL GREATERyields
the potential re-entry point. While this approach works well for up
to two entry points per ray (one re-entry), we currently require a
software implementation to compute the entry points of curvilinear
grids with more than one re-entry per ray. During the actual ren-
dering of the outer cell triangles, we are shading each triangle with
its uniqueTriangle ID, see Figure 4(b). The resulting frame-buffer

(b)(a)

(c) (d)

Figure 4: Blunt Fin dataset: (a) Triangles rendered in line mode.
(b) Triangles shaded with cube IDs. (c) Triangles shaded with data
values. (d) Depth buffer image of triangles (brighter is closer).

image contains for each screen pixel the ID of the triangle and the
depth value. These values are read and used to set up the initial
active triangle and cell that each pixel is initially holding on to. A
re-entry for a pixel is found if flipping the depth test yields a differ-
entTriangle ID. The depth information is used as initial depth for
the rays and by evaluating the occurring triangle IDs the entry cells
are determined. For each of the two runs we introduce an additional
rendering step in order to render the triangles using the actual data
values specified at the grid locations. Those are also read and used
to initialize the data for each entry point. The described steps cor-
respond to Figure 6, row 1-9. Finally, we run-length encode (RLE)
the image space Levoy[9] to be able to quickly skip processing of
empty pixels during the actual peeling process. The RLE is up-
dated for every pixel that is completed during peeling so that we
can make full use of completed rays. Rays may complete when
exiting the volume without any further re-entry or due to early ray
termination.

3.3 Parallel Peeling

We perform image synthesis by iteratively peeling off grid cells
from the curvilinear grid which simultaneously advances all rays
through the grid. For each cell that a ray has entered, it has to exit
this cell through one of the other faces before it can enter the next

2For viewpoints inside the grid, we need to render all cells in order to
determine the first entry point.

adjacent cell. The peeling progress for a rectilinear grid is illus-
trated in Figure 5. Figure 5(a) shows the given grid and the viewing

(a) (b) (c) (d)

(e) (f) (g) (h)

Viewing
direction

Figure 5: Peeling progress illustrated on rectilinear grid: Active cells
are shown in yellow. (a) Given rectilinear grid and rays. (b) De-
termine entry of rays. Red: outer hull of grid. Backface culling is
enabled. (c) - (h) Peeling of grid and processing of rays. Blue: cur-
rent active faces/cells, black: active ray which will advance in next
iteration, green: ray that temporarily cannot advance due to other
rays that are ”behind”, and inactive cells and finished rays are shown
in grey. Frontface culling is enabled.

direction. Figure 5(b) illustrates the previous determination of the
entry cells. In each subsequent iteration a list of current active cells
is generated. A cell is considered active if at least one ray holds on
to it, waiting for an exit to be found. In Figure 5(c) the current active
cells right after the initial entry determination are shown in yellow
and their visible faces are shown in blue. The cells are rendered
with frontface culling enabled (Figure 2(c)) and the resulting image
as well as its depth footprint are read from the graphics card. Each
ray determines if it hit the expected cell and in case it did, it will no
longer hold on to this cell but to the adjacent one. Furthermore, the
current depth value of the rays is used to perform the volumetric in-
tegration. Should the pixel reach the early ray termination criteria,
the RLE of the image is updated. In case the ray hit an outer-cell
the ray terminates as illustrated in Figure 5(d) as indicated by the
greyed-out rays. In case a re-entry was pre-determined for that ray
(see Section 3.2 it would be setup to the corresponding cell. Last
but not least, in case a non expected triangle index is obtained, the
ray will not advance in this iteration. This scenario is illustrated in
Figure 5(d) by the green rays and due to neighboring rays being be-
hind, needing to catch. Once all rays (pixels) have been processed,
one peeling iteration is complete. Row 12 - 18 in Figure 6 summa-
rize the overall algorithm and the update list of active cells is used
for the next iteration until the list of active cells is empty which is
equivalent to the RLE encoding jumping over all pixels. Due to the
nature of this algorithm, all rays are advancing through the grid in
parallel until all grid cells have been peeled off which lead to its
name ”parallel peeling”.

While Figure 5 describes the iterative parallel peeling based on a
rectilinear grid, it works exactly the same for a curvilinear grid (see
Figure 7). However, there are some restrictions for certain curvilin-
ear grids that contain non-convex cells. Non-convex cells are spe-
cial cases since a given ray can possibly enter a cell more than once
and as for most other algorithms, e.g. Max et al. [10], we need
to address this scenario. Figure 8 illustrates a row of non-convex
cells and one sample ray traversing one of them. First, the ray en-
ters the middle cell, exits it on the back to enter into the cell that
would be behind. Once it exits from this cell, it then re-enters the
current cell. The issue here is that since we are rendering all front-



// Entry Cell Determination
01: Enable Back-Face Culling
02: Create initial render-list: all outer-hull cells
03: Render render-list: shaded with cell IDs
04: Retrieve cell IDs
05: Retrieve depth information
06: Render render-list: shaded with data values
06: Retrieve shaded data values
07: Create new render-list: all cells entered by a ray

// Peeling and volume integration
08: Enable Front-Face Culling
09: Repeat 3-7 once to determine ray re-entry
10: do
11: {
12: Render render-list: shaded with cell IDs
13: Retrieve cell IDs
14: Retrieve depth information
15: Render render-list: shaded with data values
16: Retrieve shaded data values
17: Perform volume integration
18: Create new render-list: all cells which need to be

exited by a ray in the next iteration
19: } while (render-list is not empty)

Figure 6: Pseudo-code of our peeling algorithm.

faces of a cell to determine the entry and all backfaces to determine
the exit, the ray will get stuck since it will always find the entry
point where it entered the cell the first time. In order to solve this
problem, we split non-convex cells into tetrahedra so that we again
end up with convex cells. While it creates some overhead in find-
ing and activating neighboring cells, we simply mark non-convex
cells and handle those in an ”else-branch”. Implicit neighborhood
information as presented earlier on is still valid on a cell basis and
within non-convex cells we again have an implicit ordering of the
tetrahedras.

3.4 Volume Integration

Since we are not only interested in getting the ID of the involved
triangle and cell but also the actual interpolated data value across
the cell faces, we render each triangle twice: once with the ID and
once with the actual data values at the vertices. Thus, the bilinear
interpolation of the data values is done on the graphics card. To get
the interpolated data the image is read from the graphics card, as
shown in Figure 4(d). Once we do have the data and depth value
of each ray in their current cell, we can perform volume integration
on the CPU. In order to improve image quality, we do not simply
composite a constant color across the cell length but perform sam-
pling within each cell using a data set specific global sampling rate
that accounts for the minimum and maximum cell sizes. The inter-
polated values are then accumulated:

IR = IR+α ·Cα [val] ·CR[val]
IG = IG +α ·Cα [val] ·CG[val]
IB = IB +α ·Cα [val] ·CB[val]
α = α−α ·Cα [val]

Herby IR,G,B is the resulting accumulated color,α the accumulated
transparency,Cα the current opacity,C{R,G,B} the current RGB
color values, andval the corresponding interpolated data-value. In-
stead of sampling along too long intervals and accumulating these
into the final pixel value, we could alernatively apply some sort of
pre-integration technique, e.g. as presented in [6, 12].

Viewing
direction

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Peeling progress illustrated on a curvilinear grid: Active
cells are shown in yellow. (a) Given curvilinear grid and rays. (b)
Determine entry of rays. Red: outer hull of grid Backface culling
is enabled. (c) - (i) Peeling of grid and processing of rays. Blue:
current active faces/cells, black: active ray which will advance in
next iteration, green: ray that temporarily cannot advance due to
other rays that are ”behind”, and inactive cells and finished rays are
shown in grey. Frontface culling is enabled.

Figure 8: Ray may enter a non-convex cell more than once.

3.5 Peeling Illustration

For a better illustration of the iterative parallel peeling approach,
four iterations steps during rendering of the Blunt Fin data set are
shown in Figure 9. On the left side the current rendered cells are
shown and on the right side the so far accumulated image. Figure
9(a) is the first iteration where compositing is applied. In Figure
9(b) a portion of the grid is already peeled off. The cavity on the
left side corresponds to the part on the right side where the pro-
gression of the composting is quite advanced. Also early ray ter-
mination can be applied as shown in Figure 9(c). The hole in the
grid corresponds to rays which already finished due to full accumu-
lated opacity. These rays do not contribute any cells to the current
render-list of cells. Finally in Figure 9(d) the result image can be
seen.

4 RESULTS

Several data sets were selected to validate the correctness of our
approach as well as to measure its performance. The following
table lists these data sets, their grid type, and the number of cells
they consist of: The system we used to measure the performance
is a laptop with Pentium Centrino CPU and GeForce4 4200 Go (32
MB). While the system is equipped with 1 GB of main memory, we



View Time GPU CPU # Rendered # Iterations Sample Memory
(Figure 10) [secs] [secs] [%] [secs] [%] cells Distance [MB]

(a) 1.10 0.62 56.4 0.48 43.6 48,275 75 0.50 2.34 MB
(b) 1.41 0.84 59,6 0.57 40.4 86,157 115 0.01 6.37 MB
(c) 1.47 1.35 91,8 0.12 8.2 140,778 204 0.10 12.44 MB
(d) 8.31 7.20 88,0 1.11 12.0 1,016,262 184 0.10 15.45 MB

Table 1: Statistics of the iterative peeling algorithm: Image size 256x256, rendered on a Pentium Centrino with GeForce4 4200 Go (32 MB)

Early ray termination

Final image

(a)

(b)

(c)

(d)

Figure 9: Iterative peeling of the blunt data set. Left column shows
remaining cells and right column shows so far accumulated image.
(a) through (d) illustrate different time steps of the 80 iterations.

never used more than 16 MB of main memory to run the algorithm.

4.1 Performance

The rendering performance depends on a number of factors such as
size of the data set, viewing position, viewing direction, zoom fac-
tor, and also viewport size. Figure 10 shows one image for each of

Name grid type number of cells
Blunt Fin curvilinear 37,479
Liquid Oxygen Post curvilinear 102,675
Delta Wing curvilinear 201,135
Neghip rectilinear 250,047

Table 2: Datasets used for validation and performance measure-
ments.

the data sets that were presented in Table 2. The respective detailed
rendering statistics to generate those images are shown in Table 1.
For all curvilinear grids, the rendering times are below1.5 secs
but the actual balance between GPU and CPU varies strongly. For
the delta data set most work is performed on the GPU but for the
bluntfin and post data set the CPU takes around40%of the overall
rendering time. This is due to the over-sampling that is performed
in large cells so that somewhat uniform maximum sample distances
are guaranteed (see Section 3.4). Generally, the time the CPU is
needed in order to decide which triangles to render in the next step
is negligible. In order to improve the performance of the CPU, one
could investigate the use of pre-integration techniques so that the
time consuming sampling could be avoided [6, 12].
Figure 12 illustrates the dependency of rendering time and the view-
ing parameters. For each data set, two different viewport sizes were
used:256×256and512×512. In each case we performed a full
360 degree rotation in increments of 2 degrees and measured the
time of each frame and the number of cells rendered. The rota-
tion direction is illustrated by the small wire-frame drawings un-
derneath each figure. All three diagrams show clearly the view de-
pendent performance. Looking at the results of the blunt and post
data sets, rendering performance is best for straight views onto the
data set. In these views, the maximum number of traversed cells
is smallest, requiring the least number of iterations. For the other
views, the number of traversed cells increases and requires more
iterations. For a rectilinear grid, the number of iterations is equal to
the maximum Manhattan distance. It takes 184 iterations to render
the neghip (643 cells) for an almost diagonal view (Figure 10(d)).
With the number of iterations, the number of actual cells processed
also increases. A cell might have to be rendered more than once
due to blocking rays, as indicated by the green rays in Figure 5(d).
The viewport size is impacting the actual time it takes to fill the
triangles and with increasing viewport sizes, the overall rendering
time increases, too, see Figure 12(a), (c), and (e). However, the
increase in rendering time is not only due to the fill-rate but also
due to less aliasing when using larger viewports. Figure 12(b), (d),
and (f) show an increased number of rendered cells. For smaller
viewports and in areas with many small cells, not all cells will be
able to leave a trace in at least one pixel. Hence, no ray will be
traversing these cells, resulting in fewer cells traversed for smaller
viewports. One way to address this could be using view-dependent
grid resolutions but we have not yet looked into this.
Last but not least, the peeling algorithm performance consider-
ably depends on the memory transfer between CPU and GPU.



(a) (b)

(c) (d)

Figure 10: Volume renderings with our method: (a) Blunt Fin, (b) Liquid Oxygen Post, (c) Delta Wing, (d) Neghip.

After evaluating a couple of transfer formats, we decided to use
NVIDIA’s OpenGL extension to allocate directly suitable AGP
memory for best data transfer and use BGRA format for reading
instead of RGBA. These two optimizations accelerate the reads by
approximately 20-30%, compared to using RGBA and conventual
GPU to CPU transfer.

4.2 Discussion

Apart from the obvious factors influencing the performance, our
algorithm relies on the accuracy of the graphics card. Due to their

nature, curvilinear grids frequently contain cells that extremely vary
in size. Figure 11 (a) and (b) shows this for the blunt data set. As a
result, the z-buffer resolution might lead to numerical inaccuracies
for tiny cells, resulting in cell entry and exit points with the same
depth value and subsequently yielding to a zero integration of such
cells. While this is an inherent limitation of the algorithm depend-
ing on the GPU and its precision, we reduce the impact of this by
using the size of the smallest cell as minimum depth value. Typi-
cally, these small cells are classified with high opacity and in this
case we still get a contribution.
Generally, our approach uses fixed point arithmetic for the cell in-



Large
cells

Small
cells

Figure 11: Blunt fin data set: areas of small and large cells.

tersections (GPU) and floating point arithmetic for the volumetric
integration (CPU) while most other approaches perform sorting on
the CPU and accumulate on the GPU. Hence, those approaches suf-
fer from the limited precision of the RGBA accumulation in the
GPU which has accuracy problems when using opacity weighted
colors[22].

5 CONCLUSIONS

We presented a rendering algorithm for curvilinear grids based on
an iterative parallel peeling approach utilizing GPU. The GPU is
used for iteratively traversing the curvilinear grid (peeling) and
for bilinear interpolation of the cell face. Hereby no costly pre-
processing is necessary and only the actual volume integration
is performed on the CPU. No special OpenGL extension is re-
quired which makes this algorithm suitable for any commodity PC
equipped with a graphics card which supports standard OpenGL or
equivalent instructions. Our novel algorithm produces high quality
images at good performance and can easily be implemented.
The current limitations of the system are the memory transfer be-
tween GPU and CPU but since those have been improving rapidly,
our algorithm will automatically benefit if this development contin-
ues. Furthermore, since GPU performance still increases at a much
higher pace than CPU performance, this approach will accelerate
faster over time than CPU based sorting approaches.
While our current implementation is handling curvilinear grids
only, it could be extended to irregular grids, using tetrahedra in-
stead of cubic grid cells. In addition to the current implementation,
one would need to maintain a data structure for the cell neighbor-
hood information in main memory but be able to render any type of
irregular grids.

6 ACKNOWLEDGEMENTS

The work presented in this publication has been funded by
the ADAPT project (FFF-804544). ADAPT is supported by
Tiani Medgraph, Vienna (http://www.tiani.com), and the
Forschungsf̈orderungsfonds für die gewerbliche Wirtschaft,
Austria. See http://www.cg.tuwien.ac.at/research/vis/adapt for
further information on this project.
We would like to thank NASA and www.volvis.org for the available
datasets. Furthermore, we would like to thank Lichan Hong and
Dirk Bartz for early discussions about this approach back in 1999.

REFERENCES

[1] Paul Bunyk, Arie Kaufman, and Claudio T. Silva. Simple, fast, and
robust ray casting of irregular grids. InScientific Visualization Conv-
erence (dagstuhl), page 30, 1997.

[2] Richard Cook, Nelson Max, Claudio T. Silva, and Peter L. Williams.
Image-space visibility ordering for cell projection volume rendering
of unstructured data.Transaction on Visualization (to appear).

[3] Mark de Berg, Mark Overmars, and Otfried Schwarzkopf. Computing
and verifying depth orders. InSIAM Journal in Computing, pages
437–446, 1994.

[4] Ricardo Farias, Joseph S. B. Mitchell, and Claudio T. Silva. Zsweep:
An efficient and exact projection algorithm for unstructured volume
rendering. InSymposium on Volume Visualization, pages 91–99, 2000.

[5] Christopher Giertsen. Volume visualization of sparse irregular
meshes.Computer Graphics and Applications, 12(2):40–48, 1992.

[6] Stefan Guthe, Stefan Roettger, Andreas Schieber, Wolfgang Strasser,
and Thomasl Ertl. High-quality unstructured volume rendering on the
pc platform. InWorkshop On Graphics Hardware, pages 119 – 125,
2002.

[7] Lichan Hong and Arie Kaufman. Accelerated ray-casting for curvi-
linear volumes. InVisualization, pages 247–253, 1998.

[8] Lichan Hong and Arie Kaufman. Fast projection-based ray-casting
algorithm for rendering curvilinear volumes. InTransaction on Visu-
alization and Computer Grpahics, pages 322–332, 1999.

[9] M. Levoy. Efficient ray tracing of volume data.ACM Transactions of
Graphics, pages 245–261, 1990.

[10] N. Max, P. Williams, C. Silva, and R. Cook. Volume rendering for
curvilinear and unstructured grids. InCGI, 2003.

[11] Nelson Max. Optical models for direct volume rendering. InTrans-
action on Visualization and Computer Graphics, pages 99–108, 1995.

[12] Stefan Roettger and Thomasl Ertl. A two-step approach for interactive
pre-integrated volume rendering of unstructured grids. InSymposium
on Volume Visualization and Graphics, pages 23–28, 2002.

[13] Peter Shirley and Allan Tuchman. A polygonal approximation for
direct scalar volume rendering. InWorkshop on Volume Visualization,
pages 63–70, 1990.

[14] Claudio T. Silva.Parallel Volume Rendering of irregular grids. PhD
thesis, State University of New York at Stony Brook, 1996.

[15] Claudio T. Silva, Joseph S. B. Mitchel, and Arie Kaufman. Fast
rendering of irregular grids. InSymposium on Volume Visualization,
pages 15–23, 1996.

[16] Claudio T. Silva, Joseph S. B. Mitchel, and Peter L. Williams. An ex-
act interactive time visibility ordering algorithm for polyhedral cell
complexes. InSymposium on Volume Visualization, pages 87–94,
1998.

[17] Clifford Stein, Barry Becker, and Nelson Max. Sorting and hardware
assisted rendering for volume visualization. InSymposium on Volume
Visualization, pages 83–90, 1994.

[18] Manfred Weiler, Martin Kraus, and Thomas Ertl. Hardware-based
view-independent cell projection. InSymposium on Volume Visualiza-
tion, pages 13–22, 2002.

[19] Rüdiger Westermann and Thomas Ertl. The vsbuffer: Visibility order-
ing of unstructured volume primitives by polygon drawing. InVisual-
ization, pages 35–ff, 1997.

[20] Jane Wilhelms, Allen Van Gelder, Paul Tarantino, and Jonathan Gibbs.
Hierarchical and parallelizable direct volume rendering for irregular
and multiple grids. InVisualization, pages 57–65, 1996.

[21] Peter L. Williams. Visibility ordering meshed polyhedra.ACM Trans-
action on Graphics, 11(2):37–54, 1992.

[22] Craig M. Wittenbrink, Thomas Malzbender, and Michael E. Goss.
Opacity-weighted color interpolation, for volume sampling. InSym-
posium on Volume Visualization, pages 135–142, 1998.

[23] Roni Yagel, David M. Reed, Asish Law, Pe-Wen Shin, and Naeem
Shareef. Hardware assisted volume rendering of unstructured grids
by incremental slicing. InSymposium on Volume Visualization, pages
55–ff, 1996.



0,5sec

1,0sec

1,5sec

2,0sec

2,5sec

3,0sec

3,5sec

4,0sec
512x512256x256

10000cells

20000cells

30000cells

40000cells

50000cells

60000cells

70000cells

80000cells
512x512256x256

(a) (b)

0sec

1sec

2sec

3sec

4sec

5sec
512x512256x256

0cells

30000cells

60000cells

90000cells

120000cells

150000cells
512x512256x256

(c) (d)

0sec

1sec

2sec

3sec

4sec

5sec

6sec

7sec

8sec
512x512256x256

0cells

100000cells

200000cells

300000cells

400000cells

500000cells

600000cells
512x512256x256

(e) (f)

Figure 12: Render time statistics of a 360 degree rotation. Two different view-port sizes: 2562 and 5122. (a) and (b): Blunt fin render
timings and the corresponding number of cells rendered. (c) and (d): Liquid Oxygen Post render timings and the corresponding number of cells
rendered. (e) and (f): Delta Wing render timings and the corresponding number of cells rendered. Early Ray termination is enabled.


