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ABSTRACT 

Abstract 
Today, a major challenge of computer graphics is the generation of realistic images at rates 
that arouse the impression of fluid motion in the viewer. Of central importance in this context 
is the application of specialized hardware, which has experienced an impressive evolution in 
recent years, increasing both speed and functionality in a significant fashion. However, 
displaying complex scenes like whole cities requires dealing with such an amount of data, that 
dedicated acceleration algorithms are still necessary in order to cope with the tight temporal 
constraints. In doing so, methods for detecting invisible parts of the scenery play a key role. A 
particular challenge is classifying those objects in an efficient way which are invisible due to 
being entirely occluded by other objects in front of them. Although this visibility problem 
belongs to the classical tasks of computer graphics, just recently introduced extensions to the 
graphics hardware permit the design of new algorithms with fascinating opportunities, but 
also requirements that have been of no concern to previous approaches. 

This master thesis deals with the task of developing an efficient algorithm for solving the 
visibility problem for arbitrary scenes, which is tailored towards the NV_occlusion_query 
OpenGL extension, in different ways: 

One method approximates the potential occlusion within a given scenery from a certain 
viewpoint by constructing a directed acyclic graph, which is in turn used to be able to issue as 
many occlusion queries as possible in a concurrent fashion. Several extensions amend and 
improve the core algorithm by employing a more equal load balancing and exploiting both 
temporal and spatial coherence. Finally, this approach is extended by incorporating an 
appropriate spatial hierarchy. 

Although this technique is by and large significantly superior to rendering without 
occlusion culling, the obtained results are not satisfactory in every respect. Therefore, a 
second approach is proposed that does not rely on any graph. This hierarchical algorithm 
depends entirely on the visibility classification of previous frames and stresses thus the aspect 
of temporal coherence. Even though it is considerably simpler than the first approach, it yields 
superior and generally convincing results. 

Both approaches are conservative (which means that they do not affect the correctness of 
the resulting image), but can easily be modified in a way that permits to trade off quality for 
speed by tolerating precisely definable mistakes. 



KURZFASSUNG 

Kurzfassung 
Zu den größten Herausforderungen der heutigen Computergraphik zählt es, realitätsnahe 
Bilder mit solcher Geschwindigkeit zu erzeugen, dass beim Betrachter der Eindruck einer 
flüssigen Bewegung erweckt wird. Massive Bedeutung kommt dabei dem Einsatz spezieller 
Hardware zu, deren Entwicklung in den letzten Jahren in beeindruckender Weise sowohl zu 
bedeutend mehr Geschwindigkeit als auch einer ständigen Erweiterung der Funktionalität 
führte. Dennoch fällt bei der Darstellung komplexer Szenen wie ganzer Städte eine derartige 
Datenmenge an, dass Algorithmen zur Steigerung der Effizienz nötig sind, um den zeitlichen 
Anforderungen gerecht werden zu können. Einen wesentlichen Beitrag liefern dabei 
Methoden zur frühzeitigen Identifizierung unsichtbarer Teile der Geometrie, wobei es eine 
besondere Herausforderung darstellt, speziell jene Objekte auf effiziente Art und Weise als 
unsichtbar zu klassifizieren, die gänzlich durch davor liegende Objekte verdeckt werden. 
Wiewohl dieses Sichtbarkeitsproblem zu den klassischen Aufgabenstellungen der 
Computergraphik zählt, erlauben erst in jüngerer Zeit eingeführte Erweiterungen der 
Hardware das Design neuer Lösungen mit faszinierenden Möglichkeiten, aber auch bisher 
nicht auftretenden Anforderungen. 

In dieser Diplomarbeit wird die Aufgabe, einen speziell auf die NV_occlusion_query 
Erweiterung von OpenGL zugeschneiderten, effizienten Algorithmus zur Sichtbarkeits-
berechnung allgemeiner Szenen zu entwickeln, auf mehrere Arten angegangen: 

Eine Methode approximiert potentielle Verdeckungen innerhalb einer Szene von einem 
gewissen Betrachtungspunkt aus mittels eines gerichteten azyklischen Graphen und ver-
wendet diesen, um möglichst viele Sichtbarkeitstests parallel einsetzen zu können. Diverse 
Erweiterungen ergänzen und verbessern das Grundprinzip durch eine ausgewogenere 
Verteilung der Last, sowie durch Ausnützen von zeitlicher und räumlicher Kohärenz. 
Schließlich wird diese Methode durch den Einsatz einer geeigneten räumlichen Hierarchie 
ausgebaut. 

Da dieser erste Ansatz zwar im Großen und Ganzen dem Rendern ohne 
Sichtbarkeitsberechnung deutlich überlegen ist, jedoch nicht in jeder Hinsicht zufrieden-
stellende Resultate liefert, wird eine zweite Methode vorgestellt, die ohne Graph auskommt. 
Dieser ebenfalls hierarchische Ansatz beruht zur Gänze auf der Sichtbarkeitsklassifikation 
vorheriger Frames und betont somit die Ausnutzung zeitlicher Kohärenz. Obwohl deutlich 
einfacher als der erste, erzielt er diesem durchwegs überlegene und generell sehr zufrieden-
stellende Ergebnisse. 

Beide Ansätze sind vom Prinzip her konservativ (das heißt sie führen zu keinerlei Fehler 
im resultierenden Bild), können allerdings durch Betrachtung des Ergebnisses der Sicht-
barkeitstests auf einfache Weise dazu verwendet werden, die Performance durch Tolerierung 
genau spezifizierbarerer Fehler weiter zu steigern. 
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1 Introduction 

1.1 The Goals of Real-Time Rendering 
Real-time rendering belongs to the area of computer graphics. While in former times, the 
ultimate goal has been to produce appealing still images by mimicking real photographs, the 
tremendous evolution of graphics hardware within the past few years has shifted the focus 
towards applications that generate several (dozens) images per second. In combination with 
interactivity, this allows a user to become immersed in an artificial world. Real-time rendering 
has numerous applications, with computer and video games being the most popular and 
economically most important. 

The main goal of real-time rendering is speed, since the image must be updated about 60 
times per second in order to avoid disturbing visual artefacts. Apart from speed, another 
important goal is visual quality: Both hardware and software constantly strive for an increase 
of the image quality referring to the physical resolution as well as the degree of realism 
determined by the scene complexity and the application of convincing shading techniques. 
When designing an application, one usually faces a tradeoff between these two contradicting 
goals, as improving the image quality normally slows down the rendering process. The 
challenge is to sustain sufficiently high frame rates while maintaining an image quality hardly 
discernable from reality. 

1.2 Occlusion Culling 
An imperative  is that the generated images depict a correct visibility situation, which means 
that surfaces being closer to the viewer must not be hidden by more distant objects. Such 
errors are ruled out by modern graphics accelerators which employ a depth-buffer (Z-buffer) 
for this task and the applications usually do not have to heed this issue on a per-triangle, or 
even per-pixel level. However, before being rejected by the Z-buffer, much effort has already 
been wasted in transferring the geometry and according data like textures to the graphics card, 
transforming it and scan-line converting numerous triangles. Therefore, a significant speed up 
of the rendering process can be achieved when committing only such objects that will 
contribute to the resulting image. 

The task of identifying visible geometry is referred to as visibility culling. On a per-
object level (in this context, the term ‘object’ denotes a certain independent geometry – 
ranging from a single triangle up to several thousands – together with all data required for its 
depiction), visibility culling comprises view-frustum culling and occlusion culling. The 
intention of the first one is to remove those objects from the overall scene which are definitely 
invisible, being placed outside the space captured by the camera (referred to as view frustum), 
and is in practice not complicated to realize. Occlusion culling, on the other hand, further 
refines the set of objects passing view-frustum culling by seeking to detect those ones which 
need not be rendered due to being (entirely) occluded by others. This is a rather complex issue 
and a proper implementation must take many aspects into consideration in order to succeed in 
actually accelerating the rendering process. 
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1.3 Hardware Occlusion Queries 
Many approaches have been presented for doing occlusion culling – see chapter 2.5. Most of 
them depend completely on the CPU by approximating the resulting image in one way or the 
other and rejecting those objects that fail the usually more conservative CPU-test. The 
drawback is the observation that the bottleneck of a considerable number of applications 
already lies on the CPU side – thus additional work by doing occlusion culling could easily 
have the contrary effect as intended. Now, the idea behind employing the graphics hardware 
is to distribute the load of occlusion culling more equally between CPU and GPU as well as to 
exploit the specialized hardware for a task very similar to its actual purpose. 

Hardware occlusion queries follow a simple pattern: A typically conservatively 
simplified geometry of an object is sent to the graphics hardware as usual. Yet instead of 
affecting any buffers, a result is returned to the application providing the information if 
anything would have been drawn. If not, rendering the original object can safely be skipped. 
The main problem is the non-negligible latency between issuing a test and waiting for the 
result to become available, hence a major challenge when designing a respective algorithm is 
to fill this time with meaningful work for the CPU. 

1.4 Main Contributions 
All research done for this master thesis bases on the application of hardware occlusion queries 
with certain properties, which are already realized in the NV_occlusion_query OpenGL-
extension. Therefore, all algorithms are designed towards its very properties. This master 
thesis contributes to the field of occlusion culling for real-time rendering three algorithms that 
strive for an optimal application of this extension. The cornerstones of my work are as 
follows: 

• A method for approximating occlusion within a scene by establishing a directed acyclic 
graph – the so-called occlusion graph – and utilizing the constraints imposed by it in 
order to maximize the parallelism between CPU and GPU. 

• Ways to increase efficiency by exploiting both temporal and spatial coherence within 
the occlusion graph and the obtained test results in a non-hierarchical setting. 

• A second approach with the goal to reduce the average effort by incorporating a 
hierarchy into the occlusion-graph based approach and demonstrating how temporal 
coherence can then be exploited in an even more distinct way. 

• A separate hierarchical approach which stresses temporal coherence and manages to 
overcome flaws of prior approaches almost entirely. 

The pros and cons of the various approaches are extensively discussed and compared to each 
other, providing evidence that remarkable speed ups are feasible and have actually been 
achieved in a concrete implementation. 

Furthermore, this master thesis contains an overview of real-time rendering in general 
and other approaches for occlusion culling in particular. 

1.5 Structure of this Thesis 
This master thesis is organized as follows: 
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• After giving a brief introduction to the field of real-time rendering, chapter 2 focuses on 
work related to the topic of occlusion culling. It especially centers on a thorough 
description and comparison of available hardware occlusion queries, yet it deals with 
other acceleration techniques as well. 

• Chapter 3 motivates the idea of approximating occlusion within a scene by a directed 
acyclic graph and uses it for a first approach. After analyzing major flaws, several 
improvements are presented and discussed to mitigate them. 

• Chapter 4 deals with the application of spatial hierarchies in the context of occlusion 
culling. First, it motivates this step and points out general facts concerning their 
properties and construction. Then it incorporates a kd-tree into the graph-based 
approach of chapter 3. Finally it introduces a second hierarchical approach which 
exploits temporal coherence in a very distinct fashion. 

• While the approaches have already individually been discussed subsequent to the 
respective descriptions, chapter 5 provides a detailed overall comparison and assesses 
the practical relevance. 

• Chapter 6 concludes the thesis by summarizing the most important insights and 
proposes possible future work. 
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2 Related Work 

2.1 Real-time Rendering 
Real-time rendering belongs to the area of computer graphics and as such it is concerned with 
generating images. What distinguishes real-time rendering from other fields like photo-
realistic rendering is the requirement to update individual images at a rate that does not permit 
the viewer to tell apart separate frames any more. Unlike movies, the user is usually able to 
control the process, and his actions – or reactions – take effect immediately. This way, the 
user becomes immersed in a dynamic process, a feedback loop. Whilst a certain feeling of 
interactivity is already aroused when updating the displayed image about six times per second 
– usually referred to as frames-per-second, abbreviated as fps – a refresh rate of the monitor 
of at least 60 fps must be exceeded in order to get rid of any disturbing visual artefacts 
[Helm94]. 

Furthermore, rendering in real time normally means depicting three-dimensional scenes. 
While interactivity with three-dimensional worlds at frame rates that convey the impression of 
fluid motion could be – and has also been – realized entirely by the CPU, the constant demand 
for an increase of scene complexity and detail has been the driving force for an amazing 
development: Beginning with the introduction of the 3Dfx Voodoo 1 in 1996 [Eccl00], more 
and more work has been shifted from the CPU to dedicated specialized graphics accelerators, 
so called GPUs, thus making the CPU free for other tasks (more precisely, graphics 
accelerators like the workstations of Silicon Graphics have also been available before 1996, 
but the Voodoo 1 was the first serious respective product that was successful in the consumer 
market). 

Among important applications of real-time rendering, like the interactive visualization of 
scientific data or the ability for architects to study not yet realized buildings in a previously 
unthinkable way by walkthroughs, the killer applications nowadays are without doubt 
computer games. Their importance manifests itself in the economical dimension of the 
computer-gaming industry and the fact that enhancing realism even further has become a 
major argument for the development and sale of still faster CPUs, which must keep up with 
the higher speed of the graphics hardware in order to supply the graphics accelerator with 
meaningful work. 

Summarizing, real-time rendering in our context refers to an interactive process of 
generating and depicting satisfactorily realistic images of mathematically defined three-
dimensional scenes utilizing specific hardware at frame rates that allow the user to become 
convincingly immersed. An excellent introduction to the field of real-time rendering which 
also served as an important source of information for this master thesis can be found in 
[Möll02]. 

2.2 The Graphics Pipeline 
As emphasized in the previous chapter, a major criterion for real-time rendering is speed. In 
the context of work to be done, speed means that a certain task is accomplished in as little 
time as possible. When the work can be broken down to several small jobs, we achieve a short 
overall duration either by carrying out each job on its own in almost no time, or by dealing 
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with several jobs simultaneously without (remarkably) slowing down the progress of an 
individual one. 

The scene is usually broken down to dozens or even hundreds of smaller parts (for 
instance one wall of a house) which are easier to handle and are sent to the graphics hardware 
one by one. Although the individual parts obviously may differ completely from each other 
with regards to the optical result, the steps of the processing as such – the involved ‘jobs’ – 
are more or less the same for each. The totality of all stages necessary to achieve the desired 
optical result is called graphics pipeline. The idea behind subdividing the overall work this 
way is the same why modern CPUs are organized in the same manner: parallelism [Patt98]. 
Generally speaking, dividing work into n pipeline stages should ideally give a speed-up factor 
of the whole work of n by increasing the throughput n-fold. Note however that the time it 
takes to complete a single part of the work – the latency of this part – remains roughly 
identical. Concerning the graphics pipeline, several jobs can be processed in a concurrent 
fashion when each stage deals with one job. This implies that the speed of the pipeline is 
determined by its slowest stage, called bottleneck, no matter how fast the other stages may be 
[Möll02]. Therefore, when optimising performance, it is crucial to locate that bottleneck and 
implement measures that sustain a well balanced load throughout the whole time. 

On a coarse level, the application generates drawing commands and commits them to the 
GPU. There, the geometry gets first transformed and then rasterized before being written to 
the buffer which serves as source of the displayed image. Each stage can further be 
subdivided by distinguishing various steps. While modern GPUs may comprise several 
dozens of internal stages, Fig. 2.1 illustrates the (traditional) graphics pipeline by means of 
eleven stages, which shall briefly be outlined in this chapter. Since this graphics pipeline is 
the core of real-time rendering, just a brief glance on each stage can be given here. Most 
aspects are highlighted in much greater detail in [Möll02] which itself references much work 
providing focussed discussions on specific topics. Furthermore, note that applying vertex 
shaders and pixel shaders within very recent GPUs replaces parts of the traditional graphics 
pipeline. However, since this has no further impact on the discussion about occlusion culling, 
this aspect is omitted here. 
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Fig. 2.1: The traditional graphics pipeline 

• Application: One major task of an application generating real-time graphics is to 
maintain a description of the scene in some form (for instance a scene graph, as 
described in the next chapter) and to issue appropriate drawing commands – usually by 
calling functions of a certain API like OpenGL [Woo99] or Direct3D – that allows the 
subsequent stages to produce the desired results. However, an application typically has 
to deal with lots of other tasks as well: Handling (maybe user-generated) events, doing 
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computations like the AI of characters in a computer game and maintaining an overall 
state, just to mention a few. 

• Command: Since the rates at which the application issues drawing commands and at 
which the GPU can actually handle them will typically not coincide, buffering 
commands is a crucial issue in order to balance the load and to maximize parallelism. 
Besides, the driver must maintain a certain graphics state and the (mostly platform-
independent) commands sent by the application must be interpreted and unpacked in 
order to obtain instructions which are meaningful to the GPU. 

• Model & View Transform: Each geometry must be transformed to a global coordinate 
system (known as world space) that must itself be transformed in order to simulate an 
arbitrarily position-able camera. Among other literature, refer to [Woo99], [Hear94] or 
[Watt93] for a more detailed description. 

• Lighting: While modern GPUs also permit lighting to be done on a per-pixel basis, 
typically the influence of the various light sources is computed by evaluating a lighting 
equation for each vertex and the result is interpolated over the triangles (in subsequent 
stages). This technique is referred to as Gouraud shading [Gour71]. 

• Projection: The view volume must be transformed into a unit cube, which is called 
canonical view volume. Common transformations are the orthographic (or parallel) 
projection and the perspective projection. The latter takes depth into consideration by 
bringing two points the closer to each other the greater their distance is to the viewer. 
This simulates more accurately how the human eye works (see for instance [Woo99] for 
a detailed description). 

• Clipping: Primitives that are partially inside the viewing volume require clipping, 
which means cutting away those parts that are outside (possibly yielding new vertices). 

• Screen Mapping: Before entering the rasterization stage, the normalized x- and y-
coordinates must be scaled in order to match the resolution of the output device (known 
as screen coordinates). 

• Rasterization: This step refers to converting continuous triangles to a set of discrete 
fragments by sampling each triangle in a non-ambiguous way (this process is called 
scan conversion and is described for instance in [Akel88]). Furthermore, properly 
interpolating all data specified on a per-vertex basis (mainly colour, light and depth) for 
each fragment plays an important role as well. 

• Texturing: In order to increase the degree of realism, details are added by providing 
additional information on an interpolated per pixel basis. Formerly, this simply meant 
‘gluing’ an image onto the object. Nowadays, several textures can be combined in 
various ways (called multi-texturing) and in addition to being displayed directly, the 
information provided by the textures can be used as input for further calculations (like 
bump-mapping). 

• Fragment Processing: Before becoming actually visible, tests decide if a certain 
fragment should actually affect the final image, the stencil test (confining the area where 
modifications are admissible) and the depth test – or Z-test – (rejecting fragments lying 
behind already drawn geometry) probably being the most famous. Moreover, instead of 
overwriting previous pixels, using alpha blending permits to simulate transparency by 
combining the current colour with the previous one. 

• Display: In the final stage, the digital image is converted to an analogue signal for the 
display device (typically a monitor). 
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2.3 Scene Graphs 
As briefly mentioned in the previous chapter, one task of an application dealing with real-time 
rendering is maintaining a sort of database that describes the scene and serves as a basis for 
generating drawing commands. A scene graph is a higher-level tree structure that comprises 
all necessary information in order to render images. It is discussed here because the system 
which served as basis for the implementation of the approaches of this master thesis employs 
a scene-graph technique. 

Scene graphs organize the scene in a hierarchical fashion using trees. However, unlike 
other hierarchical spatial data structures like ordinary bounding-volume hierarchies or BSP 
trees (see chapter 4.1 and 4.2), they contain more than just geometry: The structure is 
augmented with textures, transformations, material properties, light sources and other settings 
relevant for the rendering process. A typical way of enabling a certain feature (e.g. setting a 
certain colour) is to generate an appropriate node and place everything that should be affected 
in form of a subtree underneath this node. 

One often distinguishes between nodes bearing some actual content like some kind of 
geometry or light source (these nodes are normally leaves of the tree) and so called group 
nodes that can define a common property for the respective subtree or activate only a certain 
part of its subtree for rendering. Therefore, typically many specialized group nodes for 
various tasks exist. The idea is that restricting all effects on the subtree permits a modular 
construction of the scene because all other parts of the scene graph stay unaffected. Moreover, 
nodes frequently require further components for their work – for instance, a shape node may 
comprise both the geometry and a certain colour. 

Performing some action typically involves traversing the scene graph. Possible actions 
are saving the scene in its current state or finding the first object that intersects a certain ray, 
but probably the most common action is rendering the scene graph. Traversals are performed 
in depth-first order and an important issue for rendering is maintaining a state in order to 
realize the restricted effects as explained above. In order to allow fast culling techniques, each 
node has usually assigned a bounding volume. Thus scene graphs are somewhat related to 
bounding-volume hierarchies. 

A common practice is that certain parts of the scene graph are referenced by multiple 
parents. For instance when modelling a city, much memory can be saved if a car object is 
stored only once and used various times – each time being transformed differently. However, 
when sharing nodes, the graph degrades from a tree to a more general directed acyclic graph 
(see [Corm90]) which may tremendously complicate some algorithms working on it, as 
discussed in [Eber00]. 

Among others, well known scene graph APIs are Open Inventor [Wern94] and Java3D 
[Nade98], which also the graphics engine of this master thesis was modelled on. 

2.3.1 Engine 
The implementation to this master thesis is based on the YARE graphics engine (YARE is the 
abbreviation for Yet Another Rendering Engine), which has been developed at the institute 
for computer graphics of the technical university of Vienna mainly by Michael Wimmer. 
Although it is part of the Urban Visualization project that aims at the creation of an integrated 
solution for modelling and real-time visualization of large and medium-scale urban 
environments (see: http://www.cg.tuwien.ac.at/research/vr/urbanviz/), its capabilities are by 
no means restricted to this specific kind of scene, but it is a generally applicable graphics 
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engine that also serves as platform for the implementation, testing and assessment of new 
techniques concerning image-based rendering and occlusion culling. 

As mentioned above, it organizes the scene in form of a scene graph, which shows many 
similarities to Java3D. Internally, OpenGL is used as lower-level graphics API. Most facts 
concerning scene graphs pointed out in the previous chapter apply to it as well: It 
distinguishes between various kinds of group nodes (e.g. transforming the contents, selecting 
one child for rendering and allowing the shared usage of a subtree), it knows several sorts of 
leaves (e.g. three-dimensional shapes, many kinds of lights and nodes affecting others) and 
many components. Traversals follow the visitor design pattern [Gamm94] and implementing 
the approaches for occlusion culling presented in this master thesis could be done by deriving 
the class implementing rendering the scene graph without occlusion culling. 

2.4 Overview about Acceleration Techniques 
As pointed out in chapter 2.1, real-time rendering means striving for steady frame rates being 
at least the update frequency of the monitor. Although modern systems (this includes both 
CPUs and GPUs) are already amazingly fast, the scene complexity has been continually rising 
at a speed the computers could not keep pace with: They are still entirely overwhelmed with 
generating images at the desired rate that come at least close to reality. Combining the 
contradicting goals of maintaining high image quality and constantly high frame rates requires 
intelligent acceleration algorithms: By achieving the final result as efficiently as possible, 
both higher frame rates as well as a more detailed scene geometry become possible using the 
same hardware. 

Acceleration techniques are a huge topic and a vivid area of research. There is an 
abundance of approaches that try to enhance performance in many different ways (refer to 
[Möll02] for an overview). Because this master thesis deals with an approach that belongs to 
the category of occlusion culling, only the work related to this subject is discussed in more 
detail (in the next chapter), while this chapter gives but a brief glance on other topics 
concerning acceleration techniques. 

There is one aspect, all acceleration techniques have in common: As the name suggests, 
the ultimate goal is to increase performance. As reasoned in chapter 2.2, this performance is 
determined by the bottleneck of the graphics pipeline. On a coarse level, this can either be the 
application-, the geometry- the rasterization stage or the graphics bus connecting the CPU 
with the GPU. Many approaches – among them those presented in this master thesis – aim at 
reducing the load of one particular stage which often incurs increasing the load of another 
stage (at least slightly). Consequently, acceleration techniques can only succeed if they reduce 
the load of that stage that actually turns out to be the bottleneck, which requires careful 
examinations and measurements. However, the location of this bottleneck is likely to change 
several times within a frame, which usually renders accurate predictions about the effect of 
acceleration algorithms very difficult. 

While some approaches can reasonably be combined (for instance employing spatial data 
structures for occlusion culling), others are unaffected by each other as far as the 
implementation is concerned, but may be sensible complements in order to achieve the 
desired frame rates. For example, if all culling techniques fail to reduce the geometry to an 
amount the GPU can cope with – maybe because almost the whole scene is actually visible – 
a further option is to compromise quality with speed by decreasing the complexity of the 
individual objects using for instance LODs. 
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LODs (which is the commonly used abbreviation for Levels of Detail) refer to using a 
more and more simplified version of a certain geometry if it contributes less and less to the 
rendered image. They have been used first by Clark [Clar76]: When being looked at from a 
distance of two meters, a car model may require thousands of triangles to convey a realistic 
look, but with gradually increasing distance, a few hundred triangles may suffice and once the 
car is kilometers away, about 50 triangles may be enough. Doing so is usually feasible 
without seriously affecting the image quality, since the area covered by the model has become 
so tiny that using the original complex model for an object being kilometers away will 
typically not significantly increase its degree of realism – if the simplification is done 
properly. In general, using LODs decreases the load mainly for the geometry stage, while the 
number of fragments remains roughly identical. In the context of occlusion culling, LODs are 
a reasonable complement as they decrease the complexity of the visible geometry. 

Issues related to LODs are the generation, their selection and the way how the transition 
between the levels is realized. Generating LODs means simplifying a certain geometry by 
removing vertices and is usually done as a pre-processing step (see for instance [Garl97]). 
Typically, some kind of metric is employed to identify the vertex that causes the least 
distortions when being removed. Throughout the rendering process, a concrete level is chosen 
based on some static criterion like the distance or – interesting in the context of the 
NV_occlusion_query extension – the amount of covered space. Further possibilities are 
reacting to recent frame times or evaluating some cost/benefit model [Funk93]. Switching 
between various levels can either be done in an abrupt fashion (which often yields ugly 
popping artifacts), or by some sort of blending [Gieg02] or morphing between the levels of 
interest. 

Another acceleration technique is image-based rendering. According to Lengyel 
[Leng98], rendering geometric models is a physically based way to obtain the visual result, 
while permitting images as another primitive is an appearance based way to achieve the same 
goal. Polygons represent an object in a reasonable fashion from any view, but images have the 
advantage of being independent of the scene complexity they depict. Textures are the most 
common way to incorporate images into the rendering process. Other simple methods are 
sprites which can arbitrarily be moved around the screen (for instance the mouse cursor) 
[McCu00] and billboards [McRe99] referring to rotation-symmetric objects comprising a 
single polygon which always faces to the viewer. In combination with partial transparency, 
many ‘special effects’ like lens flares [King00] and particle systems (see [Möll02] for an 
overview of literature) simulating fire, smoke, falling water and so on can be modelled this 
way. 

In the context of acceleration algorithms, primarily impostors, introduced in a statically 
pre-computed version by Maciel and Shirley in 1995 [Maci95] and extended for dynamic 
generation by Schaufler [Scha95], play an important role. Simply put, the idea is to replace a 
complex three dimensional object by an image depicting it. These images are obviously view 
dependent and thus only valid as long as the viewpoint stays within a certain region. 
Generating an impostor requires rendering the according geometry into a texture (see 
[Wimm01]). Impostors can further be augmented with a depth component which is usually 
called depth sprite or nailboard [Scha97]. Furthermore, impostors can be used in a 
hierarchical fashion, known as hierarchical image caching [Shad96]. Moreover, instead of 
being a single polygon, they can be used as textures of simple meshes which permits a better 
adaptation to complex structures, called multimesh impostors [Deco99]. 

Rather than being an acceleration technique on their own, spatial data structures refer to 
organizing the scene in a hierarchical fashion and serve as the basis for many algorithms. 
They usually allow to increase efficiency by exploiting spatial coherence within the scene and 
often succeed in reducing the average effort from O(N) to O(log N). This can be used for 
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instance when computing ray intersections, doing collision detection and not least in the 
context of occlusion culling. After all, two of the approaches presented in this master thesis 
employ spatial hierarchies as well; that is why a whole chapter (chapter 4) was dedicated to 
them where they are discussed in more detail. 

Another tool for many acceleration techniques is the usage of bounding volumes (BV). A 
BV entirely encloses one or multiple objects and is typically a much simpler geometrical 
shape than the contained objects. This permits tests to be done much faster using the BV than 
with the original shapes. Common types of BVs are spheres, oriented bounding boxes and 
axis-aligned bounding boxes. An extension is organizing them in a hierarchical fashion, called 
bounding-volume hierarchies, in order to exploit spatial coherence, as mentioned in the 
previous paragraph. The approaches of this master thesis make heavy use of bounding 
volumes (especially axis-aligned bounding boxes) as well as their organization within a 
hierarchy. 

Finally, various culling techniques exist in order to remove all those portions from a 
scene that are not considered to contribute to the final image. In the context of computer 
graphics, also the term visibility culling is common to refer to this task. This term is 
mentioned within this overview as it is of course another (and very important) acceleration 
technique, yet since the topic of this master thesis falls into the category of occlusion culling, 
being part of visibility culling, it is discussed in more detail in the next chapter. 

2.5 Visibility Culling 
In the following discussions, objects refer to geometric elements that make up the scene. An 
object may be a collection of graphics primitives or a single primitive. 

Visibility culling is essentially based on the observation, that most of the time, large parts 
of the scene are not visible and thus do not contribute to the visual result. This invisibility 
basically may be due to three reasons (as illustrated in Fig. 2.2): 

• The camera only covers a certain space, known as view frustum. All objects being 
outside this view frustum are definitely invisible; detecting them is referred to as view-
frustum culling. Analogically, the human eye can not perceive anything behind our back 
(neglecting the effect of mirrors). 

• Objects being (at least partially) inside the view frustum can still be invisible because 
they are behind other (opaque) objects – they are occluded by them. Detecting them is 
called occlusion culling. 

• Even for non occluded objects within the view frustum, usually not the whole surface is 
visible at the same time, but only those parts facing to the viewer. Removing parts of the 
surface facing away is known as backface culling. 
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Fig. 2.2: Different techniques of visibility culling. (Illustration after Cohen-Or et al. [Cohe02]) 

The remaining parts are those actually depicted in the final image. They are known as the 
Exact Visible Set (EVS), being defined as all primitives that are partially or fully visible. 
Visibility Culling refers to removing objects from the scene before rendering it (in this context 
‘remove’ means that they are simply not sent to the GPU, of course they are not actually 
deleted) and comprises backface culling, view-frustum culling and occlusion culling as listed 
above. Ideally, the set of objects passing visibility culling exactly coincides with the EVS. In 
practice, only a certain approximation can be determined with reasonable effort, which is 
called Potentially Visible Set (PVS). The more closely this PVS matches the EVS, the higher 
is its quality. The PVS can be distinguished as follows: 

• Conservative: PVS ⊇ EVS. We do not lose image quality but tolerate to render some 
additional objects in vain. Conservative approaches are usually preferred. 

• Approximate: PVS ~ EVS. Some objects are rendered in vain, while some minor 
mistakes are tolerated. 

• Aggressive: PVS ⊆ EVS. All objects being actually rendered contribute to the image. 
However, this often leads to perceivable errors. 

Rendering invisible objects does not affect the image, though: Parts outside the view frustum 
are clipped in the geometry stage of the graphics pipeline (see chapter 2.2) and occlusion is 
resolved on a per-pixel basis using the Z-buffer. The reason why we still bother to compute 
the PVS is speed: The fastest polygon to render is the one never sent down the graphics 
pipeline. Rejecting great parts of the scene already at the application stage may save much 
traffic on the graphics bus (which can be a bottleneck as well), it may prevent the 
transformation, lighting and clipping of thousands of vertices, it may avoid the rasterization of 
countless fragments and – last but not least – it may avert myriads of expensive memory 
accesses on the graphics board for both textures and buffers. However, it must be emphasized 
once more that all these savings are pointless if the bottleneck already is on the CPU: Every 
kind of visibility culling – and this especially applies to all approaches dealing with occlusion 
culling – can only pay off if it manages to take away load from the bottleneck, otherwise, it 
may actually deteriorate performance. 
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Nowadays, backface culling is implemented within the GPU and can be turned on and off 
using appropriate functions of the graphics API. As explained above it detects those triangles 
facing away from the viewer within the geometry stage and does not pass them on to 
subsequent stages, thus reducing work for the rasterization stage. The sign of the scalar 
product of the normal vector of a triangle with the vector of the viewing direction determines 
whether the triangle is facing away from the viewer or not. If – after appropriate 
transformations – the camera looks in the direction of the negative z-axis (as it is usually the 
case), this computation boils down to checking the sign of the z-component of the normal 
vector itself. Shirman and Abi-Ezzi [Shir93] extend this technique to groups of back-facing 
polygons by calculating a cone out of all normal vectors and prove that the geometry can be 
culled away if the viewpoint is located in some region with respect to the cone. This technique 
has further been extended by Kumar and Manocha [Kuma96]. 

View-frustum culling [Clar76] is implemented in software, but due to its simplicity and 
general applicability, it is part of almost all real-time rendering systems. Generally speaking, 
some kind of bounding volume is tested in world space against all six planes comprising the 
view frustum of the virtual camera and is thereby classified as entirely inside, partially inside 
or entirely outside – the latter objects are culled away, thus reducing the load for the GPU and 
traffic on the graphics bus. View-frustum culling is often done in a hierarchical fashion, 
where the classification is refined for bounding volumes being partially inside the view 
frustum. Assarsson and Möller propose several improvements [Assa00] that are partly 
implemented in this thesis and are discussed in more detail in chapter 4.3.1. 

2.5.1 Basics of Visibility and Occlusion 
Determining visibility shows many similarities with computing shadows and many terms are 
used in both contexts alike. Various approaches for solving the visibility problem can roughly 
be classified as follows: 

• From-point approaches 
• From-cell approaches 

Generally speaking, occlusion culling is usually done on a per-object level, instead of dealing 
with single polygons. Firstly, each occlusion test done at runtime incurs some non-negligible 
overhead and the geometry must be complex enough that skipping it can actually pay off, 
while approaches pre-computing visibility may face a memory problem. Secondly, triangles 
are usually sent to the GPU in triangle strips – a per-triangle classification would involve a 
costly rearrangement of data structures at runtime. 

From-point approaches seek to determine all visible objects from a single viewing 
location in a certain viewing direction. Consequently, they are view dependent and (assuming 
that either the viewer or the scene is in motion) valid merely for a single frame. The 
computations are comparable with calculating shadows for a single point light source 
representing the viewpoint: In both cases, all objects of interest can be classified as either 
occluders (hiding other objects or receiving light, respectively) or occludees (hidden by other 
objects or lying in the shadow of other objects, resp.). The invisible space behind occluders 
(the shadow cast by them) is called their shadow volume or umbra. For convenience, let us 
assume in the following discussion that in order to become an occludee, an object must be 
entirely invisible, otherwise it is an occluder. 
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Fig. 2.3: Visibility from a point: The cumulative occlusion of A and B hides C. 

An essential fact about visibility is that the cumulative occlusion of multiple objects can be far 
greater than the sum of what they are able to occlude separately. In order to take this fact into 
consideration, the union of all individual shadow volumes must be computed before testing if 
an object is within. Merging the umbrae of several occluders is referred to as occluder fusion. 
This is illustrated in Fig. 2.3: A and B are occluders while C is an occludee. However, neither 
A nor B can entirely occlude C on their own, thus C would be considered visible without 
occluder fusion. Therefore, dealing with cumulative occlusion properly emerges as important 
requirement for any occlusion culling approach. 

From-cell approaches determine which objects are invisible from all points within a 
given cell. Analogous to point light sources, this is similar to computing the shadow of an 
area light source: In addition to the umbra, objects also have a penumbra, which is the space 
that is visible from some, yet not all parts of the cell. One distinguishes between bounding 
planes and separating planes being the border of the umbra and the penumbra region, 
respectively. For bounding planes of a certain occluder, the viewing region is located on the 
same side as the occluder itself, while it is on the other side for the separating planes. 
Visibility from a cell with a single occluder is illustrated in Fig. 2.4. 
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Fig. 2.4: Visibility from a cell: Only the umbra is invisible from all points within the viewing region. 

Basically, those objects overlapping the penumbra must be considered visible, as they are not 
invisible within the whole viewing region. However, in contrast to visibility from a point, 
determining the cumulative occlusion of multiple objects is more than computing the union of 
the individual umbrae, but those regions must be added where the penumbrae merge to an 
umbra. Generally speaking, determining visibility from a region is more time consuming than 
from a point and is thus often done as a pre-processing step. 

A ‘natural’ set of regions can be obtained on a global basis by partitioning the whole 
space in such a way that the classification for each object remains the same within each cell. 
The boundaries separating these regions are called visual events and characterize changes of 
the classification of one or multiple objects. This has been extensively investigated using so-
called aspect graphs [Egge92, Dura97]. While being important for the study of visibility, a 
major problem is that they do not scale well to large scenes. 

Another important observation is the fact that not all objects serve equally well as 
occluders: The occlusion power of little or loosely connected objects will on average tend to 
be smaller than that of large compact ones like houses. Therefore, many approaches employ a 
heuristic to calculate the occlusion potential of an object, based on attributes like the distance 
to the viewpoint, the area of the occluder and the angle between some average normal and the 
viewing direction. This process is referred to as occluder selection and is crucial especially 
where computational requirements severely restrict the set of objects which are taken into 
consideration for occlusion culling. 

2.5.2 From-Point Approaches for Occlusion Culling 
From-point approaches for occlusion culling are done at runtime for every new frame. The 
challenge is to design approaches that: 

• Scale well to arbitrarily complex scenes. 
• Are general in the way that they do not make assumptions about the scene. 
• Always yield a conservative PVS that almost coincides with the EVS. 
• Cause little overhead so that employing them leads to significant speed-ups where 

occlusion is present and does not affect the frame rate in cases of no occlusion. 
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This is an extremely complex issue. For instance, speed gains due to a tighter PVS are often 
foiled by a higher overhead and painfully often, ‘improvements’ turn out to have the contrary 
effect most of the time. 

A generic occlusion culling algorithm explicitly considering accumulative occlusion was 
presented by Zhang [Zhan98] (see listing 2.1). It distinguishes between an occlusion 
representation OR and a set of potential occluders PO. All objects must be traversed in roughly 
front-to-back order to ensure that later objects take advantage of the occlusion of prior ones. If 
an object is found visible, it automatically becomes an occluder itself. However, since 
updating OR is expensive, new occluders are first moved to PO which is in turn used to update 
OR if it exceeds a certain complexity. This is referred to as multi-pass occlusion culling. The 
rate at which OR is updated by PO is a significant criterion in which various approaches may 
differ: One extreme case is selecting a few large occluders in advance without performing any 
update at all. The other end of the spectrum is actually updating OR with each newly found 
occluder (this is called progressive occlusion culling). 

Listing 2.1: Generic occlusion culling algorithm after Zhang [Zhan98]: 

OR = empty;  
PO = empty;  

for each object g ∈ Scene 
{ 
  if (isOccluded(g, OR)) Skip(g);  
  else { 
    Render(g);  
    Add(g, PO); 

    if (isComplexEnough(PO)) { 
      Update(OR, PO);  
      PO = empty;  
    } 
  } 
} 

From-point approaches can be categorized whether they operate in object space or in image 
space. Maintaining a proper representation of the fused umbrae of all occluders is generally 
more complicated in object space. Therefore, many approaches operating in object space 
select only a few objects as occluders, which are considered to contribute a high occlusion 
power due to some heuristics. All other objects are tested against the shadow volume defined 
this way. According approaches have been proposed by Coorg and Teller [Coor96], Bittner et 
al. [Bitt98] and Hudson et al. [Huds97]. 

In order to simplify the problem, some algorithms assume scenes to be 2½D. This means 
that the depth complexity is never greater than 1 along some axis, or simply put: all occluders 
are connected to the ground (like buildings). This can be used to do occlusion culling in urban 
environments, where primarily buildings serve as source of occlusion (although arbitrary 
other three-dimensional objects may be contained in the scene as well). Downs et al. 
[Down01] present an according algorithm operating in object space that stores occlusion 
information as an occlusion horizon, which is a conservative approximation of a cross section 
through the occlusion shadow defined by a plane. The main idea is to sweep a plane parallel 
to the near plane away from the viewer, thereby creating an occlusion horizon as a piecewise 
constant function on the fly, which accumulates the occluding power of all occluders and can 
be used to cull objects conservatively. Fig. 2.5 demonstrates the principle of occlusion 
horizons. 
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Fig. 2.5: Approximating occlusion with an occlusion horizon: The symbolized buildings are 
considered as occluders, while the black piecewise constant function is the approximated 
horizon. An object (like the depicted one) can be culled if it is entirely below this horizon. 

Most approaches operating in image space attempt to approximate some aspects of the final 
image in one way or the other. Wonka and Schmalstieg [Wonk99] propose an algorithm 
working in image space that approximates the occlusion within urban environments: An 
orthographic projection is employed for drawing the fused shadows cast by some selected 
occluders when viewed from above. Since all occluders must be 2½D in this approach, the 
content of the Z-buffer gives at each pixel the height below which all objects are definitely 
hidden. 

Rather conceptually important than practicable for actual implementations is the 
hierarchical Z-buffer (HZB) introduced by Greene et al. [Gree93]. It organizes the Z-buffer as 
an image pyramid, where the standard Z-buffer is its finest (highest-resolution) level. At all 
other levels, each z-value is the farthest in the corresponding 2 x 2 window of the adjacent 
finer level. Consequently, the topmost level contains a single value, which is the farthest value 
of the overall scene. Inserting an object is performed in a hierarchical fashion, starting at the 
coarsest level: If the nearest depth of an object is farther, the object must entirely be occluded 
and can be skipped. Otherwise, testing continues recursively down the HZB until an area is 
found to be occluded, or until the bottom level of the pyramid is reached. Updates to the 
buffer, on the other hand, must be propagated in a bottom-up fashion which can be much 
effort. Instead of implementing this in software (which would be rather pointless, since the Z-
buffer is one of he final stages of the graphics pipeline, see chapter 2.3), Greene suggests 
modifying the hardware Z-buffer accordingly, which has also to some extend been actually 
realized – for instance the so called Hyper Z II technology in the Radeon 8500 GPU by ATI 
organizes the Z-buffer in a hierarchical fashion. 

Another way of enabling hierarchical image space culling is the hierarchical occlusion 
map (HOM) proposed by Zhang [Zhan98]. It is characterized by the decomposition of 
visibility determination into a two-dimensional overlap test and a depth test. The former is 
realized by occlusion maps which are organized as an image pyramid to perform the test 
hierarchically. It basically serves to classify all objects as definitely visible which are not 
entirely inside the cumulative occlusion of all considered occluders. The occlusion maps are 
created by reading back the frame buffer after rendering some chosen occluders and 
repeatedly filtering the retrieved image. The depth test decides whether a potential occludee is 
actually behind the occluders and differs from other algorithms like the Z-buffer in so far as it 
does not by itself determine an the visibility of an object. Zhang proposes several possible 
realizations. One implements a software Z-buffer with a coarser resolution than the screen 
that stores the farthest Z-value for each region (unlike standard Z-buffers which store the 
nearest Z-value). For an object to be occluded, the rectangle of its projected bounding volume 
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must pass both the overlap and the depth test. Furthermore, Aila and Miettingen propose the 
Umbra system [Aila00], which implements what they call incremental occlusion maps (IOM). 
Since they are created in software, the system does not depend on rapid read operations of the 
frame buffer. This approach combines several existing algorithms with new techniques and is 
currently considered state-of-the-art in occlusion culling. 

Finally, hardware occlusion queries belong to the category of from-point approaches as 
well. However, since they are the core part of this master thesis, they are discussed separately 
in chapter 2.6. 

2.5.3 From-Cell Approaches for Occlusion Culling 
This kind of approaches attempts to solve the visibility problem for a whole region of possible 
viewing space. In order to classify an object as occluded, it must be occluded from all points 
within the region of interest. Due to reasons stated in chapter 2.5.1, this is even more complex 
than doing occlusion culling from a point and thus usually performed within a preprocessing 
step. At runtime, the pre-computed results are utilized, thus incurring a negligible overhead 
compared to from-point approaches. However, the drawback is that any modification to the 
geometry (at least the part considered for the visibility calculations) invalidates (at least some 
of) these results and requires a new computation, which can take a long time. 

A well-known approach for pre-computing visibility within architectural models like 
buildings is portal culling (confusingly also often referred to as PVS) introduced by Airey 
[Aire90] and extended by Teller and Séquin [Tell91]. This approach is based on the 
observation that walls are the main source of occlusion in indoor scenes, while open spots 
within these walls like windows and doors, called portals, are the main reason why one room 
can be visible from another one. Consequently, the scene is partitioned, whereby cells 
correspond roughly to rooms and hallways of a building and portals connect adjacent rooms. 
One possibility is to obtain the visibility information from a preprocessing step which can be 
done either automatically or manually, and stored as an adjacency graph that tells which cells 
are potentially visible from a given cell and which are definitely occluded. At runtime, we 
have to locate the cell where the viewpoint is positioned and render all visible cells according 
to the graph (alternatively, more fine-grained techniques may be employed after having 
resolved visibility at this coarse level). Another possibility is to preprocess the scene only in 
order to partition it and to detect walls and portals, while the actual visibility is determined at 
runtime by diminishing the view frustum to fit closely around each portal. This way, the 
algorithm resembles view-frustum culling with several small view frustums. This is illustrated 
in Fig. 2.6. 
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Fig. 2.6 : Portal culling by diminishing the view frustum (after [Möll02]). 

As reasoned above, calculating visibility from a point is in general less complex than visibility 
from a cell. Wonka et al.[Wonk00] present a technique called occluder shrinking that permits 
to compute visibility valid for a whole cell using an algorithm that determines visibility from 
a point. The central idea is as follows: If visibility can be computed for a certain point P, then 
a conservative classification of a sphere around P with radius R can be obtained if all 
occluders are shrunk by the same amount R. The shrinking operation can be realized in a 
comparatively simple way within a 2½D setting as presumed by the approach, or if regular 
volumetric data structures (like octrees) are used to store the occluders. Since the occlusion 
power diminishes fast with increasing values for R, he extends this approach for bigger view 
cells by point sampling the cell space in a fashion that many spheres cover the boundary of 
the view cell. The visibility from the cell is then given by the union of the PVSs of all 
sampling spheres and can be stored with the cell. 

Koltun et al. [Kolt00] introduce the term ‘virtual occluder’, being a simple convex object 
used to replace the fusion of several much more complex occluders.  

Another approach operating from a cell using shafts is presented by Schaufler et al. 
[Scha00]. View cells and occluders are axis-aligned bounding boxes and the occlusion of the 
scene is stored as an octree, where each leaf is classified as opaque (e.g. fully inside a 
definitely invisible space), boundary or empty. To begin with, the algorithm attempts to find 
an opaque leaf node. This is then extended as much as possible by combining adjacent opaque 
nodes. Afterwards, the occluder is extended by its own shadow volume, i.e. leaf nodes in 
hidden space are considered opaque regardless of their actual classification. A semi-infinite 
shaft is constructed from the view cell to the occluder, where all objects inside can be culled. 

Durand et al. [Dura00] introduce extended projections, which are based on a similar 
algorithm as the hierarchical occlusion maps, as described above, but modify the way how 
occluders and occludees are projected onto the occlusion map: Durand et al. define how the 
projection of occluders and occludees should look like so that an image-space algorithm can 
be applied to occlusion culling from a region. 

While all approaches so far have operated either in image space or in object space, 
Bittner et al. [Bitt01a] introduce a powerful algorithm working in ray space (or line space), 
being a dual space where each possible ray within object space corresponds to a certain point. 
In ray space, an occluder can be seen as a polygon that describes which rays are occluded. 
The algorithm calculates a conservative PVS for a view cell within a 2½ D scene by 
subdividing the two-dimensional ray space into areas of ‘similar’ visibility: Several occluder 
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polygons in ray space are merged using BSP trees. Bittner also presents an according 
visibility test that provides an exact analytic solution to from-region visibility in 2½D scenes. 

Wonka et al. propose an approach called Instant Visibility [Wonk01], which is 
characterized by computing visibility on-the-fly on a distinct visibility server in parallel to the 
rendering pipeline executed on the actual display host. The visibility server might 
communicate with the display host over a network. The idea is that the display host continues 
rendering new frames while the visibility server calculates visibility for future frames, thus 
seeking to eliminate any latency. The validity of the results is ensured by restricting the 
movements and rotations of the viewpoint to some extent which permits the application of 
occluder shrinking (as described above) with a certain radius. 

2.6 Hardware Occlusion Queries 
So far, basically two different categories of occlusion-culling approaches have been 
presented: Techniques determining visibility from a cell and from a point and rely primarily 
on the CPU. Both suffer from shortcomings, though: While the former are generally quite 
inflexible concerning any modifications of the scene due to the pre-processing, the latter 
usually mean a significant overhead for the CPU that sometimes even exceeds the benefits – 
especially if the bottleneck already lies on the CPU. 

Now, the idea behind hardware occlusion queries is to exploit the graphics hardware not 
only for the rendering itself, but also for supporting occlusion culling, intending to make use 
of the incredible speed of the rasterizer unit. Besides, the load for occlusion culling might be 
partitioned more equally this way. As mentioned in chapter 2.5.2, Greene proposed the 
hierarchical Z-buffer [Gree93], which is supposed to be implemented in hardware. There has 
been much discussion relating to this approach, for instance by Hong [Hong97], and it has to 
some degree also been applied within recent commercial products. However, although the 
HZB is relevant, because it is a way to employ special hardware support for more 
sophisticated visibility algorithms than the ordinary Z-buffer, it differs substantially from the 
kind of occlusion queries this work is based on. 

Bartz et al. [Bart98] propose an OpenGL extension for occlusion queries along with a 
discussion concerning a potential realization in hardware, that comes in some aspects 
remarkably close to actual implementations. A first concrete realization of occlusion queries 
was implemented in 1998 by Hewlett Packard in the VISUALIZE fx graphics hardware 
[Scot98]. It is usually referred to as HP-occlusion test, HP-occlusion bit and similar terms. 
The according OpenGL extension is titled HP_occlusion_test. This extension is the direct 
predecessor of the NV_occlusion_query extension (often simply called NV query) introduced 
by NVidia with the Geforce3 graphics accelerator. It is also accessible via an OpenGL 
extension and is the topic of this master thesis. Therefore, these extensions are described, 
discussed and compared to each other in detail in the next three chapters. 

Apart from these extensions offering hardware functionality to the application, there are 
purely hardware based methods like ATI’s Hyper-Z and NVidia’s Z-Cull. These are meant to 
reduce demands on fill, but can not decrease the traffic on the graphics bus. 

Instant visibility [Wonk01], as described in chapter 2.5.3, is relevant to occlusion queries 
in so far, as it also has to deal with aspects of parallelism: The display hosts continues 
rendering new frames while the visibility server calculates visibility for future frames. 
However, since a different hardware is employed for the visibility computations and the 
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actual rendering, it differs essentially from hardware occlusion where both is done by the 
same GPU. 

2.6.1 Description 
Hardware occlusion queries operate in image space. Although it would eventually be possible 
to use them for preprocessing purposes of from-cell approaches as well, all algorithms 
employing them so far (including those proposed by this master thesis) determine visibility 
from a point. Their intention is to determine whether a certain object is occluded and thus they 
can be seen as one possible realization of the ‘isOccluded’ function in the pseudo code of 
the generic algorithm presented in listing 2.1 (chapter 2.5.2). 

The principle of hardware occlusion queries follows a simple pattern: In order to find out 
whether a certain geometry is visible, a conservatively simplified version (usually a bounding 
box) of it is sent to the graphics hardware in a special mode that does not affect any buffer and 
thus generates no visual results, but considers visible pixels by setting a flag (HP test) or 
incrementing a counter (NV query). Afterwards, the application can query if anything of that 
geometry would have been visible (which means if any fragment has passed both the depth 
test and the stencil test). If nothing had been visible, the actual geometry can safely be culled, 
otherwise the original geometry must be rendered as usual. In order to minimize the effort for 
the tests, every feature (like lighting, texturing,…) should be turned off as it has obviously no 
impact on the result but may reduce performance. 

The advantage is that between issuing an occlusion test and querying the result (which 
can take a considerable amount of time), the CPU is free to do other tasks – in contrast to 
purely CPU-based occlusion culling. However, asking for the result too early (before it is 
actually available) will stall the CPU, as discussed in the next chapter. Therefore, applications 
employing hardware occlusion queries must be designed accordingly in order to make use of 
this newly gained parallelism – simply replacing CPU-based tests (for instance relying on 
software buffers like the hierarchical occlusion map, see section 2.5.2) by hardware queries 
would probably work, yet is unlikely to be a suitable design. 

A nice aspect of hardware occlusion queries is that they do not require a fundamental 
modification in the architecture of existing graphics hardware: The only difference to normal 
rendering is that the write-enable signal of the buffers must be caught and evaluated 
differently, while the rest of the graphics pipeline stays exactly the same. Since modern GPUs 
perform tasks like transforming vertices and rasterizing triangles much faster than any CPU, 
this explains why the graphics hardware is actually adept for testing the visibility of a certain 
geometry. 

As already mentioned, this new functionality is offered to the application by extending 
existing graphics APIs like OpenGL (in fact, OpenGL is up till now the only possibility to 
make use of these features, which is due to its flexible extension mechanism). The 
specification of both HP_occlusion_test and NV_occlusion_query can be found in [Crai02]. 
Since the HP test has been released earlier, some approaches utilizing it have been published, 
e.g. [Meiß99, Stan02], while there has been very little work tailored towards the NV query. 
Recently, Salomon et al. [Salo02] have proposed an algorithm which employs the NV query: 
They subdivide a scene using a uniform grid. Then the cubes are traversed in slabs roughly 
perpendicular to the viewer. Tests are issued for all cubes of a slab at once, before any result 
is fetched and the visible geometry of this slab is rendered. Another implementation of them 
uses nested grids: Instead of containing geometry, a cell contains further cubes that are 
traversed in the same way if the overall cube is proven visible. In the highly complex model 
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(a power plant consisting of more than 12 million triangles) used for measurements, they are 
able to achieve speed ups of four to ten times. 

2.6.2 Benefits and Drawbacks 
Employing hardware occlusion queries has pros and cons. The main advantages are as 
follows: 

• As pointed out above, occlusion queries hardly differ from normal rendering, thus they 
take full advantage of high fill rates of modern GPUs. At the same time, the CPU is free 
to do arbitrary other tasks as long as they do not depend on the result of the query. 
Therefore, if applied properly, significant performance increases are possible by 
stressing the aspect of parallelism. 

• They are very generally applicable and do not depend on any specific type of scene or 
geometry. Furthermore, the result of NV Queries can also be used for other purposes 
than occlusion culling, for instance selecting a LOD-level. 

• The usage is straightforward and almost identical to rendering as usual (note that this 
only refers to the way how a query is issued, it does definitely not apply to the overall 
design of the algorithm). 

However, hardware occlusion queries have disadvantages compared to purely CPU-based 
approaches as well: 

• The latency between issuing a test and being able to ask for its result without stalling the 
CPU is significant. 

• Measurements have shown that it takes a considerabe amount of CPU time within the 
driver to issue an occlusion query – independent of the state of the command buffer, the 
actual rasterization effort or anything else. This prohibits an indiscriminate application. 

• Typically even more fragments must be rasterized for a conservative bounding volume 
– hence for an occlusion query – than for the geometry itself. 

• The functionality is still vendor specific, although the NV_occlusion_query extension is 
– apart from recent graphics cards by NVidia, creator of the extension – meanwhile also 
supported by graphics cards from ATI. For this reason, commercial software like games 
should not completely rely on the availability of respective extensions, but should be 
prepared to do occlusion culling differently, if the extension is not available. 

• OpenGL is the only API supporting the functionality through extensions. There is no 
way to use it for instance within current versions of DirectX. 

The first point needs further discussion: Generally speaking, the term latency refers to the 
time between making a query and receiving its result. In the concrete case of hardware 
occlusion queries, the latency basically comprises the time for processing the geometry itself 
– with an effort being approximately linear to the number of pixels being rasterized, as shown 
in [Stan02] – as well as accomplishing all tasks waiting in the command buffer at the time the 
query is issued. This has a serious impact on the overall load balancing within an application: 
Typical applications have parts where they commit more drawing jobs than the GPU can 
handle in the same time (procedures dealing with rendering the scene), but these parts are 
usually followed by purely CPU-based tasks (like calculating the AI of game characters) 
where the GPU can finish its work meanwhile. However, this principle is only valid when the 
CPU does not depend on any information from the GPU for further rendering. With hardware 
occlusion queries, the GPU finishes more or less at the same time when the CPU leaves the 
part for rendering the scene and is usually idle for the rest of the frame. In order to outweigh 
this flaw, a scene must have a considerable amount of occlusion. 
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As pointed out, the CPU is free for other tasks while the occlusion query is being 
executed. However, this is based on the assumption that there actually is enough meaningful 
work. This is often not the case, because the only reasonable task would be to render further 
objects which is not feasible as this would require the result of the current test. While asking 
for a result is always possible – even immediately after issuing a test – it incurs stalling the 
CPU (which means doing nothing but waiting) if the test has not been finished yet and this in 
turn foils the parallelism which is the main reason for hardware occlusion queries. 
Consequently, care must be taken when designing according approaches, and reducing the 
work for the CPU will not always reflect in better performance as it often simply increases the 
time wasted by stalls. 

Summarizing, hardware occlusion queries are definitely not for free. Therefore, rendering 
the original geometry must be much more expensive than performing an occlusion test in 
order to justify this action. Besides, the bounding volumes should be as tight as possible to 
avoid a significant overestimation of visibility: It must not be forgotten that visible objects 
require the effort of both the occlusion test as well as the normal rendering and are thus 
inherently slowed down by any attempt of occlusion culling.  

2.6.3 Comparison HP_occlusion_test – NV_occlusion_query 
Although the HP test is the direct predecessor of the NV query, they differ in the details of the 
functionality which has a tremendous impact on the design of potential algorithms employing 
them. 

The first distinction is the exact result: The HP test returns a simple yes or no (yes means 
that at least one pixel of the geometry used for testing actually passed all tests), while the NV 
query provides the precise number of visible pixels. This latter version permits a much greater 
flexibility in the evaluation: For instance, (as we will do in chapter 3.4.2.1) it enables 
compromising quality with speed (a certain threshold can classify objects as invisible where 
only very few pixels have passed the test). Furthermore, the LOD-selection may be based on 
this result. Craighead [Crai02] proposes using it for determining the contribution of light 
sources which can in turn be used to adapt the brightness of lens flare effects accordingly. The 
only potential advantage of the HP test is that, unlike with NV queries, the hardware can 
theoretically return the result as soon as the first visible pixel is found which could save some 
rasterization effort. However, I have no information if this is actually considered by the 
implementation. 

A further disadvantage of the HP test is that the extension gives us no hint when the 
query has actually been accomplished. Since the latency includes the effort for rendering all 
geometry currently waiting in the command buffer – and the application has no idea how 
much this is – it is impossible to predict how long a query might take. This flaw has been 
tackled with NV queries: This extension essentially contains a mechanism similar to the 
NV_fence extension which permits to ask whether the GPU has already executed a certain job 
– without stalling the CPU if not (glFinish() guarantees that all work committed before is 
complete afterwards but it is no option for it causes the same stalls). Therefore, we can 
quickly (measurements have shown that the effort for this is negligible and thus it can be done 
as often as needed) ask if any new results are available (without actually retrieving them if 
they are) and base the further execution on this information. 

Finally and probably most important for the design of sufficiently parallel applications is 
the fact that multiple NV queries can be issued before asking for the result of any one 
(arriving in the same order as they have been sent), while only one HP test is allowed at a 
time. As argued in subsequent chapters, this latter restriction permits only one kind of 
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algorithm, which incurs the full latency each time. On the other hand, issuing multiple NV 
queries which are independent of each other is crucial for the design of algorithms that are 
actually capable to exploit the full parallelism, which is the main reason for hardware 
occlusion queries. 

 

 HP_occlusion_test NV_occlusion_query 

Result yes/no Number of visible pixels 

Completion No information Can be checked 

Parallel queries No, only one at a time Yes 
Table 2.1: The main differences between HP tests and NV queries. 

Concluding, the NV_occlusion_query extension is superior in all respects and permits much 
greater flexibility in the design of algorithms, therefore, all research done in the course of this 
master thesis has been modelled after this very extension. However, since the approaches 
presented in this master thesis are designed to be applicable to any future extensions and 
implementations in other APIs, all subsequent chapters use the general term ‘occlusion 
query’, instead of calling them explicitly ‘NV query’. 
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3 Occlusion-Graph Based Approach 
As it was outlined in the previous chapter, an efficient approach using hardware-accelerated 
occlusion queries must take several factors into account that are of little or no importance in 
pure CPU-based occlusion tests. This chapter introduces a way of modeling approximated 
occlusion within a scene from a given viewpoint, being the basis for the development of an 
algorithm that is designed to meet the requirements of occlusion queries. After describing the 
core algorithm, it points out imperfections and presents several improvements to overcome 
some of them. 

3.1 Motivations and Considerations 
When designing an algorithm for the efficient application of occlusion queries, one of the 
main issues that must be dealt with is the order in which individual parts of the overall 
geometry that make up the scene can be tested and rendered. This order should meet multiple 
criteria: 

• The loss of occlusion, which happens when actually occluded objects are tested before 
their occluders have been rendered, should be minimized or – in the best case – ruled 
out completely. It is worth mentioning explicitly that it does not suffice when occlusion 
queries have already been issued for these occluders – they must have been actually 
drawn (this is comprehensible when keeping in mind that occlusion queries never affect 
any buffer). 

• The penalty incurred by CPU stalls due to requesting occlusion-query results that are 
not yet present ought to be minimized as well – this is intuitively achieved by 
maximizing the time span of each object between issuing the test and asking for its 
result and this in turn means that the order should seek to issue tests as soon as possible. 

• Determining the order should not be too computationally expensive. Otherwise, 
potential benefits are likely to be foiled by the additional costs. 

Since it is a basic property of occlusion that (opaque) objects next to the viewer tend to 
occlude objects which are farther away, the order should sort the objects (at least roughly) by 
their distance from the viewpoint, starting with the closest ones. However, as two different 
actions – testing and rendering – are done for each object at different times, this still leaves an 
abundance of possibilities, which are shown by means of two extreme cases, both ordering the 
objects in a strict front-to-back way. Formally, assume a scene S containing n objects is 
specified for a certain viewpoint as follows: 

S = <O1, O2, .. On>, with dist(Oi) ≥ dist(Oj) for i,j ∈ [1,..,n] and j ≤ i 

dist(Oi) gives the distance of the ith object to the current viewpoint (this implies that the order 
can change whenever the viewpoint moves). 

One possible (extreme) sequence is to issue the occlusion query for the ith object after 
rendering all objects with indices smaller than i, then wait for the result and render it if the test 
proved the object visible. The advantage is the guarantee that no occlusion will be lost and 
that the overhead for determining the order is rather moderate; However, concerning CPU 
stalls, no other approach could be worse since the CPU is idle for the complete duration of an 
occlusion test and this applies to all objects of the scene, hence we incur the full latency. 
Despite of all inconveniences, this algorithm has practical relevance indeed and is from now 
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on referred to as stop-and-wait approach. Since the HP_occlusion_test does not support 
multiple queries to be issued in parallel, every application using the HP_occlusion_test more 
or less boils down to implementing this algorithm. 

Another possibility is to approximate the correct visibility situation very roughly by 
dividing the scene into two parts: As mentioned in chapter 2.5.1, certain objects can be 
assumed to be occluders due to some heuristic, while the rest is considered to be occludees. 
The first set would then be rendered without test. Afterwards, tests are issued for all objects of 
the second set before querying their results in the same order the tests were issued, and 
immediately rendering eventually visible objects. In the context of occluder selection, the 
distance is a commonly used criterion: The first m objects (m ≤ n) of S are classified as 
occluders regardless of their actual visibility. 

Viewpoint
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Fig. 3.1: An example for a scene where the occlusion is very badly estimated by employing a 

distance-based criterion. Object with bold outlines are actually visible, dotted outlines 
indicate occlusion. Filled objects (to the left of the vertical line) are assumed to be 
occluders and are thus rendered whereas empty ones (to the right) are thought to be 
occludees. 

This approach will stall the CPU much less than the first one, yet if the geometry is not evenly 
distributed within S, it is likely to lose a lot of occlusion – thus wasting rendering time – in 
both parts: Even near objects (assumed to be occluders) can actually be occluded while even 
distant objects (thought to be occludees) can be visible and in turn would occlude objects that 
are even farther away. An example is given in Fig. 3.1: The objects A and B are the only ones 
which are classified correctly, while C, D and E are rendered in vain. The situation is even 
worse to the right of the vertical line indicating the border between those objects considered 
as visible due to their proximity and those assumed to be occluded: Because all objects (F to 
K) will be tested before any one gets actually rendered, the test will classify all objects as 
visible, although this is in fact merely correct for F and G. Note that the constellation 
presented in Fig. 3.1 is by all means of practical relevance: For instance when looking along a 
street, buildings to the left and to the right will be quite close to the viewer (corresponding to 
the objects A to E), whereas the centre will permit free sight to distant objects (F to K). 

The two approaches can be combined by breaking down the scene into more than two 
slices (as the second order does), but still gathering more than one object per segment (as in 
the first approach). Each set of objects is then tested against all geometry in prior parts, but 
neglects occlusion within itself. This might yield satisfactory results if the size of the 
individual slices is appropriately chosen - an issue being closely related to the discussion if 
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occlusion culling for a scene should be done in a progressive or multi-pass way, as elucidated 
in [Zang98] and also mentioned in chapter 2.5. 

However, major shortcomings remain: On one hand, the occlusion of objects within one 
part (independent of its size) is assumed to depend on all objects in all prior parts, which is a 
massive overestimation. Consider once more Fig. 3.1: Object D for example can be identified 
as occluded as soon as object B is rendered and is in fact completely independent of the time 
when the objects A and C get rendered, although both are closer to the viewer. On the other 
hand, members of the same segment actually can occlude each other, as shown for the objects 
F to K. Assuming them as independent is an underestimation of occlusion that might cause 
unnecessary rendering. 

Another imperfection might be less obvious and is specific for hardware occlusion 
queries: Once the next step would be to fetch the result of a test, there is no alternative work 
to do and one is forced to wait. As described in the previous chapter, the NV_occlusion_query 
permits to ask in almost no time if a result is already present. Consequently, it would be 
beneficial if the tasks at hand could be rearranged in order to continue with other meaningful 
work in the meantime and postpone the actual query of the test result until it can be achieved 
without penalty. 

The perfect solution would be to know for each object which other objects contribute to 
its occlusion and to which extent. Answering this question accurately would mean solving the 
visibility problem itself (this is essentially the EVS, as introduced in chapter 2.5) and no 
further tests would be needed at all, but doing so is costly which contradicts the third criterion 
as stated above. Hence, what we attempt to find is an order for testing and rendering the 
various objects that minimizes the loss of occlusion – unlike heuristic occluder selection as 
described above –, and rules out the false classification of visible objects (thus it should be 
conservative). Furthermore, it must be much cheaper to determine than the EVS and allow 
interleaving the classification of many objects – unlike the stop-and-wait approach. 

3.2 The Occlusion Graph 
After having outlined some criteria a rendering order should meet, this chapter introduces a 
graph which will turn out to be suitable for guiding the interleaved process of testing and 
rendering. 

3.2.1 Description and Properties 
One approach proposed by this master theses seeks to find out for each object which other 
objects may contribute to its occlusion. The calculations are not done for the actual geometry, 
but for a very rough approximation which both greatly simplifies the computations and leads 
to convenient properties that even the exact solution does not show. 

Basically, what we need is a set of constraints of the form: 

A → B 
which means that A must be rendered before B can be tested in order to avoid any loss of 
occlusion. This induces a certain relationship R between the objects of a scene from a given 
viewpoint: R(A, B) – or written differently as A → B – is valid if and only if the 
approximation of A directly contributes to the complete occlusion of the approximation of B. 
Aspects worth emphasizing are: 
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• A must contribute directly to the occlusion of B: It is not sufficient for R(A, B), if A 
occludes an arbitrary object X which in turn directly occludes B. For this reason, R is not 
transitive. 

• B must be entirely occluded to occur in R as an occludee. This need not be done by A 
alone: R(A, B) is also valid if A only partially covers B directly, as long as the uncovered 
parts of B are occluded by some other objects. 

• Apart from being non-transitive, R is definitely non-reflexive (R(X, X) can never occur 
as no object can entirely occlude itself) and must be non-symmetric (if R(X, Y) is valid, 
R(Y, X) must never occur). Being non-symmetric is not fulfilled for arbitrary shapes; 
therefore, all objects must be approximated in a way when determining R that rules out 
symmetric cases. 

• R is unambiguous, provided that all objects are approximated in the manner demanded 
to ensure the property of non-symmetry. 

R can be visualized as a directed acyclic graph, summing up all constraints within a scene 
from a given viewpoint (and adding isolated objects being not constrained in any way). Nodes 
correspond to objects and edges represent the constraints that are part of R. This graph is 
named Occlusion Graph (from now on abbreviated as OG) and is illustrated in Fig. 3.2: 
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Fig. 3.2: A scene consisting of eight object approximations and the according Occlusion Graph. Note 
that the dotted arrows lead to partially uncovered objects and are thus not part of the actual 
OG. 

Even more precise would be the name ‘Potential Occlusion Graph’: Some constraints may be 
due to the usage of conservatively overestimated geometry within the construction and could 
be removed for the original geometry. Some remarks may help to clarify things: 

• The reason why a direct contribution of the occlusion is required for R is that this 
greatly simplifies the construction of the OG (as subsequent chapters will explain). 
Besides, if A → B and B → C, C is implicitly constrained by A anyway, even if A → C 
is not explicitly contained in the OG – thus we save many abundant constraints this 
way. On the other hand, relationships like A → F in Fig. 3.2 (which is also implicitly 
given via D) can not be removed, since improvements introduced later assume each 
object to be aware of all other objects it occludes. 

• A complete coverage is required for any potential occludee because objects where the 
approximation is not entirely hidden by other objects must be considered visible and 



OCCLUSION-GRAPH BASED APPROACH 

- 28 - 

thus rendered anyway. Therefore, constraining the moment when they are rendered 
makes no sense. The dotted arrows in Fig. 3.2 are present just in order to illustrate this 
explicitly once, and will consequently be omitted from now on, as they do not belong to 
the actual OG. 

• It is worth realizing how cumulative occlusion (i.e., occluder fusion) is explicitly 
modelled – an important condition as discussed by [Zang98] and stated in chapter 2.5. 
For all nodes being pointed to by more than one arrow, multiple objects are necessary 
for complete occlusion. Consequently, all predecessors must be rendered before the 
object itself can be tested. 

• Finally, one might wonder why arrows originating from non-root nodes (nodes being 
constrained themselves) are of any relevance at all: If the according objects are 
invisible, they do not get rendered and thus induce no constraint. However, since 
different geometries are used for rendering (namely the original ones) and testing 
(approximations), such objects have in fact good chances to be visible and can therefore 
occlude others. Generally speaking, when establishing the constraints for an arbitrary 
node, it is treated as if it was a starting node, no matter how much it might actually 
depend on others. 

3.2.2 Creation 
As the meaning and the basic properties of the OG have been pointed out now, let us turn to 
the way how this graph gets constructed: According to the fact that we are about to design a 
occlusion-culling approach from a point and thus the OG is only valid for one specific pair of 
position and viewing direction, this construction has to be done each frame. Therefore it must 
be so fast that frame rates of 60fps and more are still feasible (after all, occlusion culling is 
supposed to speed things up, not to slow them down). Furthermore, all objects must have been 
correctly transformed to their actual position and orientation in world space before 
approximating them. Because the implementation is integrated into a scene-graph based 
environment, putting all objects to the intended places means traversing the scene graph 
before starting to create the OG. Another important step preceding the actual construction of 
the OG is view-frustum culling, which should be listed separately, but comes in our case as a 
by-product of the scene-graph traversal. 

The construction is done entirely by the CPU, which implies that nothing can get tested 
or rendered before the OG is complete – hence the GPU is idle at that time (at least in the 
basic approach without improvements). As another consequence, the overall performance 
depends to a great extent on the CPU speed – a slow CPU will decrease the frame rate 
drastically even if the GPU is very fast. 

The basic idea is to project a simplified version of each object to screen space. There, the 
objects get sorted by their distance to the viewpoint and drawn to a software buffer with a 
much coarser resolution than the actual output device. This software buffer always contains 
the index of the object with the greatest distance at each point. Collecting these indices within 
the area occupied by an object before adding the object itself yields its predecessors within the 
OG. 

In more detail, the algorithm for creating the OG can be outlined as follows: 
• The axis-aligned bounding boxes (being the chosen conservative approximation) of all 

objects passing view-frustum culling are projected to screen space in the very same way 
as this transformation will be done by the GPU for the actual geometry. This yields a set 
of two-dimensional points. 
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 • Screen-space bounding boxes (in the following text abbreviated with SSBB; a SSBB is 
essentially the smallest possible rectangle containing the entire projection of an object to 
screen space) are constructed out of these points overestimating the area where the 
regarded objects will be drawn. 

• The smallest distance of the respective approximated geometry from the near plane of 
the camera is assigned as depth value to these rectangles. 

• Strictly sorted by this depth value, all rectangles are drawn into a software buffer with a 
much lower resolution than the screen, hereby roughly approximating the actual scene. 

• Before overwriting other rectangles within the software buffer, the algorithm collects 
the indices of the objects associated with those rectangles. These objects will become 
predecessors of the currently processed object in the OG. 

Before explaining the involved steps in more detail, the choice of approximation for the 
objects (i.e., the type of bounding volumes) shall be reasoned: As mentioned, all objects are 
approximated by axis-aligned bounding boxes (from now on abbreviated as AABBs) for they 
seemed to be a good compromise between simplicity and an excess of conservative 
behaviour. While oriented bounding boxes usually approximate the original objects more 
accurately, they would make several algorithms more complicated and thus slower. Bounding 
spheres on the other hand seem to offer a reasonable complexity for all needed purposes, but 
they tend to overestimate the geometry too much – especially when considering that they get 
simplified by SSBBs themselves. For more information about bounding volumes, refer to 
[Möll02]. 
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Fig. 3.3: A simple occlusion graph and its internal representation as adjacency list. The numbers in 
brackets express that each object is identified by its index within the array 

Finally, it must be stated that the OG is internally stored as an adjacency list, being a well 
known data structure suitable for the representation of graphs of all kinds: Each node 
corresponds to an instance of a certain data structure. These instances are kept within an array 
so that the index suffices to uniquely identify a node. Apart from other members like the 
represented geometry, this data structure contains a list of indices of the nodes the according 
geometry might occlude – basically the ‘arrows’ in the OG originating from the respective 
node. Fig. 3.3 demonstrates the principle of adjacency lists by comparing a small OG to the 
resulting adjacency list. 

3.2.2.1 Projection of AABBs to Screen Space 
The following description is based on the assumption that an arbitrary number of objects is 
given and that each object permits easy access to its AABB given in world space. The first 
issue that must be dealt with is how a SSBB can be computed from an AABB. Basically, this 
involves two steps: 
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• Transforming of all eight vertices to screen space. 
• Determining the smallest rectangle that contains all transformed vertices. 

The first step requires that we emulate exactly how each vertex would be transformed if it 
were defined at the very same place within the code using the OpenGL command 
glVertex(). Briefly summarizing, three matrices usually participate in the transformation: 
The modelling matrix transforms an object from its local coordinate system in which it was 
loaded to a global one (the already mentioned world space). The viewing matrix arranges this 
world space in order to simulate an arbitrarily position-able camera, and the projection matrix 
finally calculates the position of each vertex within a (normalized) two-dimensional 
coordinate system with x and y values ranging from –1 to +1, known as screen space. Many 
books about computer graphics cover this topic much more extensively, among them 
[Woo99], [Hear94] and [Watt93]. In OpenGL, the first two matrices are combined to a single 
matrix consequently named modelview matrix. This one and the projection matrix can be 
queried in OpenGL and combined, resulting in one overall matrix (denoted as M) which 
transforms vertices directly from their local space to screen space. However, while the 
projection matrix and the viewing matrix will typically remain unchanged throughout the 
whole frame, the modelling matrix might vary with each object, so that M would have to be 
re-computed for each object. But as we request the AABBs to be already given in world 
space, the same M can be applied to the AABBs of all objects and will successfully transform 
the vertices to two-dimensional points in screen space. 

Nonetheless the implementation of this projection is more complex than simply 
multiplying 8 points with M and computing their bounding rectangle: Efficiency can be 
increased by exploiting the fact that we are dealing with AABBs (as described in appendix A 
of [Zang98]), and obtaining correct results requires clipping against the near plane of the 
camera. 

Finally, computing the bounding rectangle (the SSBB) is straightforward: Simply the 
minimum and the maximum of the x and y coordinates of the transformations of all 
considered points (which can actually be more than eight due to clipping) have to be found. 
By employing SSBBs for the construction of the OG, which have assigned a single depth 
value for the whole occupied area, it is ensured that symmetric relationships between two 
objects will never occur as requested in chapter 3.2.1. 

3.2.2.2 Inverse Z-Buffer 
What we have done so far is conservatively overestimating the place where a given object will 
appear on the screen (provided that is located within the view frustum). This approximation is 
a rectangle in screen space and we assume the same depth value for its whole area (namely 
the distance of the closest vertex to the near plane). The next step is to establish relationships 
between these objects as described above. The algorithm used to accomplish this task can be 
outlined as follows: 

• Assign a unique index to each object. 
• Ensure that all objects are dealt with in front-to-back order. 
• Scale the coordinates of the rectangle to the resolution of a two-dimensional software 

buffer. 
• Collect all indices encountered within the area enclosed by the rectangle. If still empty 

space is covered as well, the respective object is considered visible and no constraints 
are added to the OG for this object.  

• Write the index of the object to the respective rectangle within the software buffer. 
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The first step is already done when preparing the ‘bare’ adjacency list (without any 
relationships) by setting up the data structure. 

The second step means sorting the objects by their distance (which should have been 
computed by then) in front-to-back order. The precise algorithm used to achieve this is of no 
significance as long as it is fast (I first used a multimap of the Standard Template Library 
and later replaced this by a quicksort due to speed reasons). 

For the next step, the already mentioned software buffer must be introduced: Sorted by 
the depth, the SSBB of each object is written to its appropriate place there after collecting the 
indices of all encountered objects. ‘Inverse Z-Buffer’ (from now on abbreviated as IZB) seems 
to be an appropriate name since the way it works shows much resemblance to a usual Z-
buffer, except for the fact that points get overwritten by objects behind them instead of ones 
lying in front of them. Another way to think about it is to imagine a view from infinitely far 
behind with inverted viewing direction. However, unlike a normal Z-buffer coping with 
arbitrarily shaped objects, we do not need to check if an object is behind another – not even 
on a per object basis – since owing to the fact that only flat rectangles are inserted with 
increasing distance, it is for certain that each new object will have a greater depth value on 
each point than all objects that have previously been there. 

1 2

3

4

1 2

3
 

Fig. 3.4: A new rectangle gets added to the inverse Z-buffer. 

Before scan-converting one rectangle with corner coordinates ranging from –1 to +1 after the 
transformation, it must be scaled and aligned to match the resolution of the IZB which is 
much coarser than the actual output target (a discussion about the resolution is given below). 
Note that the rectangle is enlarged in order to snap to the grid given by the resolution. 
Afterwards, the rectangle is scan-converted (a trivial task with SSBBs and another reason why 
this kind of representation has been chosen). The index of each covered point is added to the 
indices of the predecessors (unless it is already there) before being replaced by the own index. 
This is illustrated in Fig. 3.4 which shows an IZB containing three rectangles and a fourth one 
to be added. The left image depicts the previous situation and outlines the new rectangle after 
scaling but before snapping to the grid. The right image demonstrates the situation after the 
update: large parts of the objects 1, 2 and 3 have been overwritten and – since no empty space 
was met – they become the predecessors of the new object 4. 

It is worth emphasizing that especially the steps done for each point are extremely time-
critical. Assuming an average number of 100 IZB-pixels per object and 1000 objects per 
frame (actual numbers vary of course and depend on many factors, but these assumptions are 
by all means realistic for a scene of average complexity), the according code has to be 
executed 6 million times per second in order to achieve a frame rate of 60fps. Thus it is 
crucial that the implementation is designed to meet the goal of high performance. The most 
effort is needed to gather all found indices, but to count each just once. My implementation 
uses a very simple hash table with a hash function masking the n least significant bits (a 
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simple logical AND). Besides, allocating memory the usual way using new and delete 
each time slows down the code dramatically so that pre-allocation is necessary. Such 
implementation specific details are covered in more detail in Appendix A. 

After adding the object to the IZB, a check must be done if also yet uncovered space has 
been discovered. If so, the object is regarded as a starting node (as reasoned in chapter 3.2.1) 
and no dependencies are created. Otherwise, the new object is added as successor to the lists 
of all encountered objects. 

A few comments about the resolution of the IZB are in order: We face a tradeoff between 
accuracy and speed. Since all rectangles are conservatively aligned to the grid which always 
leads to an increase of the occupied area, a lower resolution will tend to yield larger rectangles 
which in turn means more unnecessary constraints. On the other hand, a high resolution will 
significantly reduce performance, since index look-ups are done on a per-pixel basis and they 
are costly when considering the overwhelming number needed. My choice was a resolution of 
64 x 64, which both proved high enough to avoid over proportional increases in the size of the 
rectangles and still managed to do the look-ups in reasonable time.  

Note that the idea of using a software buffer for approximating cumulative occlusion is 
not new: For example, the approach presented here shows similarities to one level of 
hierarchical occlusion maps as described in [Zhan98], which also serves the purpose of 
finding out if an object can possibly be occluded by the cumulated projection of others. The 
most important difference is that while Zhang accelerates the test by making it hierarchical, 
the IZB provides more information by exactly identifying the objects that contribute to the 
occlusion. 

3.2.3 Traversal 
Once the OG has been created, it is used to determine the order in which objects are tested 
and drawn as described in this chapter. This process is called traversal and it must account for 
the constraints given by the OG as well as select among all possibilities (e.g. nodes that could 
be tested next) in a fashion that minimizes the overall duration. 

While up till now, the execution time was (without improvements) solely determined by 
the CPU, the bottleneck of this part typically lies on the GPU since it must both render and 
test the objects while the work for the CPU is comparatively simple. Thus, additional 
computations leading to less occlusion queries will normally pay off (a fact utilised by 
enhancements discussed in later chapters). 

3.2.3.1 Structure of the Pipeline 
In each moment of the traversal, each node falls into one of four possible categories 
representing the stage of progress of the node: 

A: Yet untested nodes. 
B: Nodes waiting for the result of their occlusion queries to become available. 
C: Nodes with determined visibility (the result is present or no occlusion query was 

needed) but before a potential rendering. 
D: Nodes that have been rendered or skipped due to occlusion. 

These classifications can be regarded as a pipeline for a single node and they are sorted by the 
time a node passes them. Without improvements, each object (apart from the starting nodes) 
starts as part of A and makes its way to D in a step-by-step manner. Later, we will introduce 
some kind of shortcut, allowing a node to move directly from A to C (therefore saving the 
occlusion query by skipping B). Note that all successors within the OG of an arbitrary object 
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will always be within the same or a former stage, but can never be ahead. Since this concept 
of a pipeline comprising four stages is important for the further discussion and in a distinct 
fashion reflected by the implementation, Fig. 3.5 represents the according state machine and 
titles the transitions. 

A: untested B: waiting for the
result

C: determined
visibility

D: no further
treatment

issue NV-Test result becomes
available

render or skip
object  

Fig. 3.5: The testing/rendering pipeline of a single node. 

The initial situation is that all nodes identified as starting nodes are assigned to C while all 
other nodes still belong to A; B and D are empty. The traversal is complete when all nodes 
have reached D which is equivalent to B and C being empty (each node of A must have at 
least one predecessor in B or C which will issue its occlusion query). 

The sets B and C are explicitly modeled by data structures in the implementation (a queue 
and a heap, respectively). A is implicitly given by the successors of the objects of B and C 
within the OG – since each node is aware of its successors, it can propagate them from A to B 
before it moves to D itself. The nodes within D need not be remembered as they are of no 
further importance anyway. Details concerning the mentioned data structures are discussed in 
a later chapter. 

Note that the structure of this pipeline applies to most occlusion culling algorithms - for 
those not employing hardware tests, B might be missing. Yet unlike straightforward 
approaches simply starting to handle the next object when another one has reached D 
(characterizing the basic stop-and-wait approach presented in chapter 3.1), we overlap the 
pipelines of many objects, seeking to interleave the execution of the various steps as much as 
possible. 

3.2.3.2 Node Selection 

An important aspect of the OG is that it defines a set of constraints rather than a unique order. 
There are still many different sequences of tests and renderings feasible, some being much 
better than others with respect to the time of the incurred CPU stalls. Choosing randomly may 
lead to situations where quite isolated nodes are dealt with first, while other nodes occluding 
many objects are postponed causing all successors to wait for them. What we need is a way to 
prioritize nodes, thus assigning a priority value to each node that represents its importance. 
This allows us to simply select the one with the highest priority among all possibilities. 
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$32:
A mul $14, $4, 8
B addu $6, $5, $14
C mul $15, $7, 8
D addu $24, $15, $8
E l.d $f4, 0($24)
F mul.d $f6, $f4, $f12
G l.d $f8, 0($6)
H add.d $f10, $f6, $f8
I s.d $f10, 0($6)
J addu $7, $7, $9
K addu $4, $4, $10
L addu $2, $2, $1
M bne $11, $2, $32

I(1)

H(5)

F(13)

M(2)

L(3)

E(16)

D(17)

C(18)

J(1)

G(8)

B(9)

A(10)

K(1)
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1
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Fig. 3.6 : A program written in MIPS assembly language and the according data dependence graph 
with execution times and priorities. 

A similar problem arises within a completely different branch of computer science: Compilers 
for modern CPUs face the challenge of ordering the individual assembler instructions being 
the result of former steps in a way that both takes all dependencies into account and 
maximizes the parallelism within the CPU by minimizing the time wasted by pipeline bubbles 
[Broc02]. In this context, dependency refers to a situation where for example the result of one 
instruction is used as an operand by an immediately following one. The second instruction 
must wait until the result is actually present, yielding unwanted pipeline stalls that could have 
been avoided if independent instructions had been put between. These dependencies are 
modelled by an acyclic graph very similar to the OG – called Data Dependence Graph –, as 
shown in Fig. 3.6, where a small program written in MIPS-assembly language is compared to 
the according graph. 

However, there is a difference: While the execution time of each instruction is known in 
advance (each edge is titled with the number of clock cycles needed for the originating 
instruction in Fig. 3.6), we typically do not know how long an occlusion query will take. 
Although the time for the test itself is proportional to the number of fragments, as shown for 
HP tests by Staneker [Stan02], several other factors render useful predictions impossible – the 
state of the command buffer being the most significant. Therefore we assume the same 
duration for all occlusion queries. 

According to [Broc02], all algorithms for finding the best order for the instructions (the 
exact solution) show NP-complete behaviour. Consequently a heuristic algorithm called List 
Scheduling is introduced, which is worth describing here because it will turn out to be 
conceptually equal to the algorithm traversing the OG. It repeatedly selects the instruction 
which should be scheduled next by evaluating the following two criterions: 

• Among all potential instructions (where all predecessors have been scheduled), select 
the one that will wait the least or – if possible – not at all. 

• If there are more candidates, select the one with the longest path to the end of the graph. 

The second criterion is a proposal how to obtain the required priority value, as mentioned in 
the first paragraph of this chapter: For each instruction we know the best-case duration until 
all other instructions being directly or indirectly dependent have completely been executed. 
When each edge is assigned the duration of the execution of the originating instruction, this 
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value coincides with the maximal path length (given by the numbers in brackets beside the 
letters of the instructions in Fig. 3.6). 
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Fig. 3.7: Three different ways to compute priorities for the same graph: The List-Scheduling 
heuristic (left), exactly counting all dependent nodes (middle) and the introduced 
approximation (right). 

This concept is directly applicable to the OG: Apart from the difference that each node is 
assumed to take equally long (taking unity as duration) as reasoned above, we successfully 
attain a meaningful priority for each node as shown in the left third of Fig. 3.7. This is still not 
the optimal solution though: Fig. 3.8 shows a situation where the node A and B would be 
assigned the same priority value. In reality, rendering node A is more urgent than rendering B 
which should be reflected by their priorities. This problem is caused by the fact that we 
basically count nodes, while the original heuristic counts execution times. In the latter 
approach, the number of dependent instructions is not significant as long as these instructions 
can be executed fast. So, how can we overcome this flaw? 

A B
 

Fig. 3.8: A situation, where the List-Scheduling heuristic yields bad results. 

Assuming the same time for all occlusion queries, an optimal priority would be the number of 
nodes being direct or indirect successors, yet counting each node only once (the resulting 
priorities are depicted in the middle third of Fig. 3.7.). While this is a trivial task for tree-like 
data structures, the challenge with general acyclic graphs are diamond shaped constellations: 
nodes merging multiple branches originating from the same node should be counted only 
once. Since I did not find an algorithm solving this problem in linear time, I decided to 
approximate the results by the following heuristic which can be computed with O(N) effort 
and generally yields convincing results: 

P(A) = Max(P(Si(A))) + C(A), i = 0 .. C(A) - 1 
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P(A) is the priority of the node A, Si(A) is the i-th successor of A and C(A) is the number of 
direct successors of A. In other words: The priority of each node is equivalent to the number 
of its direct successors plus their maximum priority. This way, each node will definitely be 
counted not more than once and this formula can easily be computed in a recursive function. 
The result is shown in the right third of Fig. 3.7. 

3.2.3.3 Traversal Algorithm 
Apart from the formula used to compute the priority, the actual traversal algorithm strongly 
resembles List Scheduling as outlined above. However, for the sake of completeness and 
since this is a core piece of the whole OG-based approach, a more detailed description follows 
in terms of the pipeline introduced in chapter 3.2.3.1. 

In the initial situation, all starting nodes are within C while all other nodes are part of A; 
B and D are empty. Listing 3.1 illustrates the algorithm in pseudo code. 

Note the comments indicating when an object advances from one stage to another. 
Furthermore, the idea behind the parent counter needs some explanation: Since a node is not 
directly aware of its predecessors (in contrast to its successors), the initialization at least tells 
it how many other nodes are referencing it – the parent counter. This value is needed to 
determine when an object is free to be tested (being the time when all predecessors have 
reached D). 

Listing 3.1: The traversal algorithm for the OG: 

while ((B not empty) AND (C not empty))  
{ 
  // B -> C 
  Move all nodes where test result is present from B to C  

  // B -> D, resp. C -> D 
  if (C is empty) N = node from B with oldest test 
  else            N = node from C with highest priority 

  Visible = occlusion query result(N)  
  if (Visible = TRUE) Render(N) 

  Toggle GLState to testing 

  for each Successor S of N 
  { 
    S.ParentCounter = S.ParentCounter - 1 
    if (S.ParentCounter = 0)  
    { 
      Issue occlusion query(S) 

      // A -> B 
      Add S to B 
    } 
  } 

  Toggle GLState to rendering 
} 

3.2.3.4 Implementation Issues 
The algorithm as presented in listing 3.1 can be improved in several ways which will be 
subject of later chapters, yet one basic optimization is already introduced now, for it does not 



OCCLUSION-GRAPH BASED APPROACH 

- 37 - 

affect the concept as such: In this version, we switch back and forth between the OpenGL 
states for rendering and testing too often. Frequent GL-state changes become costly, so we 
must seek to reduce them. Objects issuing no occlusion query for their successors require no 
toggling at all which can be considered by changing the state lazily (referring to changes only 
done when actually needed for a subsequent action). But even then, once we are in testing 
mode, we will probably return to rendering mode for a single object before restoring testing 
mode again. 

The idea is to reduce the number of loop executions by gathering multiple objects from C 
and rendering all of them before testing their children. This has no severe impacts on the 
pseudo code of listing 3.1, N simply becomes a set of nodes instead of a single one. However, 
an issue is how many objects should be gathered at one time. Very small numbers result in 
many state changes, yet collecting lots of objects might interfere with the priority-based 
selection (if all objects within C would be dealt with immediately, any tests for successors 
could be issued possibly only after all objects currently stored within C have been rendered, 
which would contradict the requirement to issue tests as early as possible and would foil the 
benefits of the priority-based selection). In practice, gathering five objects has proved to be a 
reasonable compromise. In any case, no additional nodes should be taken from B as this 
would incur CPU-stalls. Hence if C is empty, still only the oldest object of B is considered 
and if C contains less than five nodes, only these are handled without adding further objects 
from B. 

For the sake of brevity and since presenting every little detail would probably rather cause 
confusion than to make things clear, no source code is shown here. However, a few remarks 
concerning the implementation may prove helpful to highlight practical aspects of the 
concepts that have been dealt with in a theoretical manner so far. 

Perhaps the most important question is which data structures are appropriate for the 
classifications that have been called B and C. The requirements for C was to: 

• Allow quick access to the element (which is an OG-node in our context) bearing the 
highest priority. 

• Support fast insertion and removal of elements – this means in logarithmic time. 
• Make no assumptions about the elements (e.g. multiple nodes can have the same priority). 

A data structure matching all requirements is a heap. A heap can be characterized as an array 
constraining the order of its elements. Let Pi be the priority of the i-th element, then 

Pi ≥ P2i and Pi ≥ P2i+1 

must evaluate true for all elements. It is immediately obvious that the element with the highest 
priority must be the first one which grants access in constant time. As required, insertion and 
removal can be done in logarithmic time, so the heap is an efficient data structure for our 
needs. Note that heaps are also sometimes referred to as a priority queues. Further information 
about heaps can be found in several books about standard algorithms. I want to add that I 
implemented the heap as a generic C++ template permitting flexible reuse. 

The purpose of B is to hold back tested nodes, where the result is still outstanding. 
According to the specification of the NV_occlusion_query [Crai02], tests are guaranteed to 
arrive in the same order as they have been issued, so the result of the oldest test will be 
available first. Therefore a queue is the most appropriate data structure for this task (this 
means an ordinary queue not to be confused with the priority queue mentioned in the previous 
paragraph). While this choice is quite evident, a more interesting question is if the queue 
should be bound in size. Doing so implies an assumption about the maximum duration of a 
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test (in terms of how many other tests can be issued and objects rendered until the result is 
ready) and I actually attempted at first to find out a proper value for its size. 

However, this turned out to be problematic: Having a small queue, objects are likely to 
proceed to C just because their space is needed for further tests – hence C contains objects 
with unfinished tests causing unnecessary CPU stalls when waiting for the results. On the 
other hand, a large queue might delay objects too long, interfering with the priority-based 
selection. Even worse, very long queues lead to situations where almost no node proceeds to 
C at all and each node must already be taken from B due to a lack of alternative work. Yet 
worst of all is the observation that no optimal value for the size of such a queue exists: Mainly 
the state of the command buffer, but also other factors beyond the scope of predictability like 
interrupts by other tasks make an ‘optimal’ value vary to an extent that makes it reasonable to 
look for an alternative solution. 

Fortunately, such a solution exists: As described in chapter 2.6.3, the 
NV_occlusion_query permits to ask if a result of an outstanding test is present without 
incurring any stall. Furthermore, measurements have shown that such requests consume 
almost no time even when using them excessively. Thus, a better way to implement B is as an 
unlimited queue, where the oldest tests within the queue are checked for availability at each 
pass of the loop and moved to C if the according tests are ready. The best place for this check 
is right before nodes get chosen from C (as shown in Listing 3.1). This way, all nodes of C are 
guaranteed to cause no delay as well as nodes are only taken from B if there is really nothing 
else to do (and because the test of the first node always dates back longest, exactly that node 
will be fetched that incurs the shortest CPU stall). 

3.3 Problems 
So far, theory and practice of the OG-based approach (without extensions and major 
improvements) have been discussed in detail, but the most important question has not been 
dealt with: Does the effort actually pay off? 

Generally speaking, the disillusioning answer is: It does not. Scenes with little occlusion 
are slowed down dramatically and even in cases where much occlusion can be found, the 
performance is hardly better – if not worse – than with the straightforward stop-and-wait 
model as described in chapter 3.1. Concrete results are presented in chapter 3.5 and for a 
comparison with other approaches, refer to chapter 5, so this chapter basically confines itself 
to highlighting main insights and flaws informally. 

The most striking issue is: Why does the theoretical superiority compared to the simple 
methods of chapter 3.1 – and the approach actually is superior with regards to its flexibility, 
generality and the quality of the obtained order – hardly reflect in better frame times? The 
reasons range from general problems of occlusion culling (if no occlusion is present, doing 
any sort of occlusion culling will inevitably slow down the whole rendering process), to 
problems specific for hardware occlusion queries as well as – and this is the main point – 
design faults of the algorithm. These are the major shortcomings of the approach as presented 
so far: 

• Since the scene-graph traversal and the generation of the OG are pure CPU tasks, the 
GPU is idle very long, while it becomes the bottleneck afterwards; hence the load is 
badly balanced. 

• The pure CPU tasks take too long – basically this is equivalent with the insight that we 
have to deal with too many nodes. 
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• The occlusion queries themselves are expensive (see the discussion below) and can only 
pay off if the geometry to be culled away exceeds a certain complexity which is most 
often not the case. 

• The time wasted by CPU stalls could considerably be reduced, but is still far from being 
negligible. 

How can these problems be solved? The following list outlines potential solutions regardless 
of a concrete realization. How these improvements can actually be achieved will be the 
subject of the following chapters. 

• Increase the parallelism between CPU and GPU by rendering visible objects before 
constructing the OG. 

• Decrease the number of objects for which the OG gets constructed. 
• Increase the average complexity of an object thus making an occlusion query relatively 

cheaper compared to rendering it. 
• Reduce the number of occlusion queries to a minimum. 

Before showing how these improvements can be attained, let us answer the question why 
occlusion queries are so expensive: 

• As discussed in chapter 2.6, these tests differ from ordinary rendering operations only in 
so far as no buffers are affected, yet the rest of the work basically stays the same: While 
the tested geometry is trivial and hardly means an additional strain for the geometry 
stage of the GPU, and no textures or other non-geometry data consume AGP-
bandwidth, the number of fragments to be rasterized usually even exceeds the according 
original geometry (although lighting, texturing and other fancy effects ought to be 
turned off). 

• As already discussed extensively, asking for the result of a test can lead to CPU stalls. 
• The task of issuing the tests turned out to be much more expensive than expected. Apart 

from the OpenGL commands for specifying the geometry, especially the procedures 
BeginOcclusionQueryNV() and EndOcclusionQueryNV() emerged as 
substantial speed killers: On the computer where the implementation for this master 
thesis was developed (refer to chapter 3.5 for technical details), only executing these 
two commands 1000 times (and some scenes may require much more) takes at an 
average 2,4 milliseconds, being more than 14 percent of the desirable overall frame time 
for rendering at 60fps. These times are independent of the state of the command buffer 
and other circumstances as can easily be found out by calling glFinish() before. 

• Finally, one must not overlook that a great part of the preparations (above all the 
construction of the OG) merely serves the purpose of allowing a sensible application of 
occlusion queries and is not needed for any other reason. 

These points mean an additional effort compared to a straightforward rendering which is 
definitely not negligible. Therefore the original geometry of an object must be enriched to 
such a great amount that an occlusion query has any chance to pay off at all and it is an 
absolute imperative to maintain a reasonable ratio between the effort spent on testing and the 
rendering costs avoided due to occlusion culling. 

3.4 Improvements 
As reasoned in the previous chapter, the approach is not practicable so far since speed gains 
are foiled by an over proportionate effort for the occlusion culling itself. Fortunately it can be 
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enhanced in several ways, realizing a better load balancing as well as reducing the amount of 
occlusion queries and the overall number of objects. As it will turn out, even the 
implementation itself can be made faster when sacrificing a little bit of flexibility. 

Many improvements have in common that they exploit coherence between successive 
frames in one way or the other: Up till now, each frame was completely independent of what 
has been rendered before and did not care if its classifications could be of any interest to the 
following frames. The same way, it did not matter if an object was close to an already 
classified one, or not. However, in reality, both temporal and spatial coherence can be 
observed and exploiting them appropriately is crucial to cope with the problems as described 
above. 

One remark to clarify the structure of this thesis: A fundamental modification will be to 
do the approach hierarchically. Since a separate chapter (chapter 4) was dedicated to 
hierarchical approaches in order to separate hierarchy-related discussions from the basics of 
the OG and to permit a better comparison between the hierarchical OG-based approach and an 
alternative, also hierarchical approach doing without OG, this topic will be subject of chapter 
4. 

3.4.1 Reduction of Occlusion Queries 
As argued in chapter 3.3, occlusion queries are inherently expensive, so we must seek to 
reduce them as much as possible. This can be achieved in two ways: 

• Having less objects will automatically lead to fewer tests. 
• Tests can be saved when we are able to predict their result. 

While the reduction of objects will be one effect of having a hierarchy, the measures 
presented here deal with the prediction of test results. Generally speaking, care must be taken 
when classifying an object without test: False classifications always come at a cost. While 
regarding an actually invisible object as visible simply means superfluous work but does not 
do any harm to the visual result due to the Z-buffer, assuming an actually visible object as 
invisible deteriorates the image quality and ought to be avoided (still, one modification will 
do right that). Consequently, especially rejects are tricky. On the other hand, assuming an 
object as visible can sometimes even make sense if we are not sure at all: Due to the 
considerable overhead of occlusion queries, objects being simple enough (e.g. containing very 
few triangles) could be rendered without wasting any time on tests. However, this principle is 
not applicable to the non-hierarchical version we are currently discussing as will be pointed 
out in chapter 4.1. 

3.4.1.1 Using Temporal Coherence 
So far, the approach assumes that no frame resembles the previous one in any way. In 
practice, subsequent frames will hardly differ: For example when moving with walking speed, 
each step will alter the position by about half a meter and will take about half a second, hence 
(assuming 60fps) the viewpoints of approximately 60 frames are within one meter. With a 
very high probability, all of these frames (and presumably many further ones) will show 
almost the same objects, which in turn means a very similar classification of occluders and 
occludees. When standing still, no changes will probably occur at all, but this principle even 
holds when moving faster than with walking speed or when performing rotations. 

This phenomenon is referred to as temporal coherence and can be observed in several 
contexts: Movies like MPEGs for instance do not store each frame independently, but reuse 
former (and also later) frames. Furthermore, many caching strategies are based on temporal 
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coherence: Once a certain server has been contacted, a further request to the same server is 
usually much more likely than to an arbitrary other server. In the context of occlusion culling, 
temporal coherence can be exploited in several ways. Here, we are about to reuse one test 
result for several frames. 

As argued above, doing occlusion culling conservatively requires that only positive 
classifications (such indicating visibility) are reused since drawing objects for too many 
frames is wasted effort, yet will not affect the final image. Falsely classifying an object as 
invisible on the other hand may lead to ugly distortions. Since the state of occlusion can not 
be guaranteed to hold for subsequent frames as well, this principle can not be applied to 
occluded objects. From now on, this modification will be referred to as assumed visibility. 

The decisive parameter is, for how many frames a test should be skipped once an object 
was found to be visible (from now on, this number is referred to as VF, abbreviating visible 
frames). A serious discussion requires that we anticipate a few results: Fig. 3.9 plots the 
average frame times of three different walkthroughs against varying values for VF. The scene 
of the first walkthrough is a box which is densely populated with teapots – small yet quite 
complex objects with much cumulative occlusion. The scene of the second and the third 
walkthrough is a model of an urban environment; the difference is that one time (titled as 
‘Simple City’), we move through streets where much occlusion occurs, the other time (‘City - 
No Occlusion’), we look at an open area from above, causing hardly any occlusion. For more 
information, refer to the description of the test walkthroughs in chapter 3.5. 
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Fig. 3.9 : The effect of Assumed Visibility (using a fixed number for VF) in three different scenes for 
varying values of VF. The frame times of the teapot scene were divided by 10 to permit a 
better comparison by drawing all three plots into the same graph. 

While the teapot scene was considerably slowed down, the first city walkthrough basically 
remained quite unaffected and the second one could even be remarkably accelerated. For an 
interpretation of these results, one has to become aware of the costs and benefits of assumed 
visibility: 

• Costs are objects rendered due to false classification. 
• Benefits are skipped tests for correctly classified objects. 
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Note that the costs differ tremendously with the complexity of the objects; hence if a teapot 
consisting of approximately 2000 triangles is rendered in vain, the penalty is much greater 
than for a flat wall of a house with maybe less than 10 triangles. Apart from the number of 
triangles, the occupied number of fragments, the textures and the presence of expensive 
effects like pixel shaders contribute much to the complexity of an object. 

In the teapot scene, just a small part is actually visible for many objects, peering behind 
some tiny hole. Even slight changes of the viewpoint are likely to close these holes and open 
new ones, showing mostly different objects. Therefore, when assuming visibility for several 
frames, a significant part of the objects considered to be visible is actually hidden. Besides, 
especially the teapot scene would require a precise classification due to the high complexity 
of the objects as explicated above. In conclusion, comparatively moderate benefits of a few 
correctly skipped tests oppose huge costs – this explains the bad performance. 

 In the first walkthrough of the city scene, slight improvements can be observed. Here, 
only a small fraction of the overall geometry is visible – yet for these few objects, the 
principle of temporal coherence is applicable. However, since the number of visible objects is 
so small and these objects are moreover very simple, the costs are almost negligible just like 
skipping a few occlusion queries does not mean a big gain. 

In the second walkthrough of the city scene, almost all objects passing view-frustum 
culling are actually visible, hence each occlusion query is wasted effort. The benefits exceed 
the costs by far and this explains the good results there. 

But can we actually call this modification an improvement, if it can also have the 
contrary effect as intended? It must be revised so that VF depends on how likely an object is 
to stay visible for several frames. This can be achieved by using the result of the occlusion 
queries: Knowing both the total size and the number of visible fragments allows us to 
compute the percentage p to which the object could be seen. Furthermore, let VFmin and VFmax 
denote the number of frames for which an object is assumed to stay visible at least and at 
most, respectively, then a reasonable actual value for VF can be obtained by linear 
interpolation: 

VF = VFmin + p * (VFmax – VFmin) 

So far, we discussed a special case where VFmin coincided with VFmax. As illustrated in Fig. 
3.10, calculating VF by linear interpolation slightly compromises the benefits where temporal 
coherence has already worked well, yet no considerable deterioration can be observed any 
more for small values of VF in any scene. Fig. 3.10 shows the same walkthroughs as before 
with varying VFmax and keeping VFmin set to zero. 
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Fig. 3.10: The effect of Assumed Visibility in three different cases (using a linearly interpolated 

number for VF). Again, the times of the teapot scene have been divided by 10.  

After all, no generally optimal values for VFmax and VFmin exist, since the actual amount of 
temporal coherence differs from scene to scene and from view to view. Generally speaking, 
VFmin should not be much higher than one or two in order to avoid the same troubles as with 
the constant value. Increasing VFmax amplifies both the benefits and the costs. Usually, for low 
values, the benefits rise faster than the costs while this situation is reversed at some point 
being the optimal value. But this values possibly ranges from zero to several hundred, 
depending on the scene and of course on the movement within that scene. However, in 
practice, setting VFmax to 10 has been found to be a reasonable compromise as it is 
conservative enough to avoid a massive over-classification and still high enough to permit a 
perceptible effect. Therefore, this value will be used from now on in full awareness that for 
some scenes, a lower or higher value would be more appropriate. 

One might object that the performance gains are still far from being impressive. This is 
true as long as the number of visible objects is a minority with regards to the overall number 
of objects. However, assumed visibility is still important since it is a prerequisite for a better 
load balancing as discussed in chapter 3.4.2.2 which can lead to more substantial performance 
gains. 

The idea behind this approach is not new: Bittner [Bitt01b] updates the visibility of 
visible objects (that are nodes of a hierarchy) with a certain probability, otherwise they are 
considered to stay visible, which is basically the same idea, only he lacks the information 
about how many percent have actually been visible. 

An idea for a potential improvement is to incorporate the current movement into the 
computation of VF: For instance, when standing still, much higher values might be reasonable 
than when racing through a town. The idea of making the validity of a set of visible objects 
dependent on the movement speed is related to Instant Visibility as presented by Wonka 
[Wonk01]. However, no further research has been done on the concrete application within our 
setting and it is up to future work to do so. 

3.4.1.2 Using Spatial Coherence of the Occlusion Graph 
As demonstrated in the previous chapter, saving occlusion queries only for the visible part of 
all objects does not suffice. This chapter presents a method to skip tests for occluded objects 
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as well. More precisely, we want to be able to classify objects as invisible without testing and 
we want to do this conservatively. 

The core of the approach we have been discussing for several pages now is the OG. So 
far, however, its only purpose is to reduce the time of CPU stalls by stating which objects are 
independent of each other. It manages to do this task successfully, yet the performance gains 
can never pay off the costs of its construction. Fortunately we can also use its information in 
another way. 

A very primitive OG comprising only two objects is A → B. It tells us that B can only be 
tested after A has been rendered, as has been thoroughly discussed. Remembering the 
construction, it tells us even more: B’s SSBB must be completely covered by A’s SSBB. 
Otherwise, A would not constrain B. If A is invisible (for instance if this is only a part of a 
greater overall OG), it is very likely that B is invisible too. Since ‘very likely’ is not enough 
for a conservative approach, let us examine under which circumstances B can still be visible, 
if A has been proven invisible: 

• Parts of B lie in front of A. 
• B’s approximated geometry used for the occlusion query (e.g. its AABB) is not 

completely covered by A’s approximated geometry, although this is true for their 
SSBBs. 

As it was discussed in chapter 3.2.2.2, all objects are approximated by planar SSBBs bearing 
the distance of the vertex of the original geometry which is nearest to the near plane. These 
SSBBs are in turn sorted by that distance before being written to the IZB. Therefore, 
situations are rendered impossible where a ‘nearer’ object could be penetrated by a ‘farther’ 
one – so the first point can never happen. 

AA

B

 

Fig. 3.11 : A case where the SSBBs indicate occlusion, although none is actually present: Object A is 
assumed to be in front of object B. The (perspectively projected) AABBs do not overlap, 
while the SSBB of A entirely covers the SSBB of B. 

Fig. 3.11 illustrates a situation as described by the second point: Although A’s SSBB covers 
B’s SSBB completely, B’s projected AABB can still be seen (even entirely in this example). 
However, tackling this problem is not difficult either: It simply must be guaranteed that we 
use exactly the same geometry for the occlusion queries and for constructing the OG. Since 
scan converting arbitrarily projected AABBs into the IZB is no option due to complexity and 
performance reasons, from now on, we must use SSBBs for the occlusion queries. The 
disadvantage is that a SSBB is an even more conservative approximation than an AABB, thus 
we will lose some occlusion (as it will turn out, this loss can actually be significant). On the 
other hand, in most cases we can skip a vast part of the occlusion queries for the occludees. 
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Generally speaking, provided that all objects are sorted by their minimal distance from 
the near plane and that precisely the same geometry is used for the occlusion query and for the 
construction of the OG, an arbitrary object is definitely invisible if all predecessors have been 
proven invisible. From now on, this technique will be referred to as Early Rejection. Since 
exploiting it incurs no further costs (apart from the more conservative approximation), it 
means a substantial improvement (see chapter 3.5 for graphs comparing rendering with and 
without Early Rejection). 

However, the implementation issues are not completely trivial and should briefly be 
discussed: Propagating occlusion from one node to another is not difficult to implement: All 
nodes but the starting nodes are at first assumed to be invisible. Once a node has been proven 
visible, it sets all of its successors to potentially visible, which means that an occlusion query 
is required for each to make sure. If a node is fetched from A (using the terms for the testing 
pipeline of chapter 3.2.3.1 again) which is still classified as invisible, it can immediately be 
forwarded to C in order to ‘free’ its successors and then moved to D without any rendering 
and testing. In turn, the same applies to its successors. 

The tricky part of the implementation is deriving the geometry for the occlusion query: 
As the name suggests, SSBBs are given in screen space, not in world space where we usually 
define geometry. What we basically have to do is: 

• Compute the device coordinates of the SSBB. 
• Find a way to specify it in OpenGL. 

Even the first step is not as straightforward as it may seem, since we must take into account 
that all SSBBs get aligned to the grid of the IZB. The resulting enlargement must be 
considered before scaling the values to match the resolution of the output device. 

Afterwards, we know the area which has to be covered by the geometry in device 
coordinates as well as its depth value, which is the distance from the near plane, and must take 
care to specify this correctly. The clean way to do this is to switch to orthographic projection, 
which allows the usage of the device coordinates without further computations. The actual 
challenge is defining the correct depth value: Let d denote the distance from the viewpoint, let 
P be the current perspective transformation applied to the ordinary geometry and let O be the 
orthographic projection. When specifying geometry as usual, d is not used for the Z-buffer 
test as it is, but after being transformed by P, referred to as P(d). The same way, O transforms 
depth values before using them in the Z-buffer test, yet by another formula than P. What we 
need is a transformation T with 

O(T(d)) = P(d) 

The equation is true for T(d) = O-1(P(d)) with O-1 being the inverse of O. In OpenGL, a 
perspective transformation P is generated by calling glFrustum(l, r, b, t, n, f) 
and an orthographic projection O is generated by glOrtho(l, r, b, t, n, f) – in 
both cases, l means the left border of the viewport, r the right one, b its bottom and t its top 
while n stands for the distance of near plane and f for that of the far plane. The matrices for P 
and O-1 can be found in [Woo99]; considering only their third and forth row (we are only 
interested in the depth value), and negating the result of the intermediate steps since distances 
are assumed to be negative, we get: 

d
nfdfndT )()( +−

=  

This result can be passed as third parameter to the glVertex3f() command. 
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Early Rejection can be seen as one way to exploit spatial coherence: Objects tend to be 
classified like nearby objects. As with temporal coherence, taking advantage of spatial 
coherence is not a new idea in occlusion culling algorithms: Basically the main intention 
behind all sorts of spatial hierarchies is to make use of it (just like we will do in chapter 4). An 
approach remotely related to Early Rejection is presented in [Bitt01b], titled Visibility 
Propagation: It also attempts to determine the visibility of a node by examining its 
neighbours. While the idea is similar, the realization differs fundamentally from Early 
Rejection: Visibility Propagation is done in a hierarchical setting (using kd-trees) and seeks to 
determine the visibility of the bounding box of a certain node by regarding the classification 
of neighbouring nodes. Unlike Early Rejection, no graph is used and the involved 
computations are not trivial. 

3.4.2 Implementation-Related Improvements 
The previous chapter presented two techniques to reduce the number of occlusion queries: As 
explained, Assumed Visibility is beneficial when we have a large set of objects staying visible 
for several frames and Early Rejection is effective when we have to deal with many 
occludees. However, since the other shortcomings mentioned in chapter 3.3 must also be 
addressed, further improvements are necessary. 

3.4.2.1 Introducing a Visibility Threshold 

The intention was to design a conservative approach, which means that an object being culled 
away must not contribute to the final image at all, and this holds for all improvements 
presented so far. Nevertheless, it can sometimes be desirable to trade off quality for speed. 
The NV_occlusion_query extension permits to do this very easily: Unlike with the 
HP_occlusion_test extension, we get the exact number of pixels passing both Z-buffer and 
stencil-buffer test. Thus we can simply introduce a threshold TV rejecting objects with less or 
equal visible pixels: Instead of a single value (zero), occlusion becomes an interval [0, TV]. 

Small values for TV  can even make sense if we want to preserve the conservative 
behaviour on the whole: Due to the over estimation of the geometry itself, it is likely that only 
a small band at the edge or a part of a corner of the SSBB is visible which does not cover the 
actual geometry anyway. Such assumptions are justifiable yet need not be true – if TV is 
greater than zero, we inevitably lose the conservative behaviour. 

 

Fig. 3.12: The teapot scene, rendered with TV = 0 (left), TV = 100 (middle) and TV = 500 (right). 
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Once more, an optimal value for TV mostly depends on the properties of the scene: As 
subjective observations show, an urban environment with buildings as big occluders 
predominantly being not too far away permits much greater values for TV than the teapot scene 
where the majority of the visible objects appears behind some small hole and even modest 
values for TV may deteriorate the image quality perceivably (see Fig. 3.12 for a comparison of 
the image quality with TV = 0, TV = 100 and TV = 500). 

Another effect should be mentioned: Small objects being far away can suddenly vanish 
even if they are completely uncovered and still within the view frustum. If the SSBB shrouds 
less than TV pixels, an object has no chance to be proven visible. At first sight, this fault 
resembles view-frustum culling with a far plane too close to the viewpoint. 

Impacts on the performance are discussed in chapter 3.5. Further considerations can be 
found in [Zang98] where similar thresholds are used. 

3.4.2.2 Better Load Balancing between CPU and GPU 
A major design fault of the OG-approach as presented so far is the badly balanced load 
between the CPU and the GPU: Scene-graph traversal along with view-frustum culling, 
sorting the objects by their distance, computing the SSBBs and generating the OG by 
projecting them into the IZB – all these tasks are completely done by the CPU before the first 
triangle of this frame is committed to the GPU. Afterwards, work is lavished on the GPU 
while the CPU – despite the OG – idles a considerable amount of time waiting for test results. 

As pointed out in chapter 2.6.2, such a discrepancy can also be observed with other 
applications where one task is to render the scene while other tasks are pure CPU work (for 
example calculating the AI). The difference is, though, that the command buffer usually 
manages to balance the load when the rendering procedure does not have to wait for any 
feedback from the GPU. Since our approach inherently relies on the results of the occlusion 
queries, this balancing does not work, so when returning from the rendering procedure, the 
work for the GPU is (almost) done as well. 

This problem can hardly be solved entirely, yet it would mitigate the situation if certain 
objects could be rendered before doing the CPU-intensive tasks. On one hand, we have no OG 
then that could guide our selection, yet on the other hand, we do not want to lose occlusion by 
rendering objects which finally turn out to be occluded. The only objects that will definitely 
be rendered independently of the OG are those assumed to stay visible (see chapter 3.4.1.1) – 
that is why Assumed Visibility was said to be a prerequisite for this improvement. 

Summarizing, all objects being classified as visible without occlusion query and passing 
view-frustum culling are rendered before computing SSBBs and creating the OG. From now 
on, this modification is referred to as Pre-Rendering. Since we still need to traverse the scene 
graph and must do view-frustum culling before, such an object can immediately be rendered 
after it has been proven to lie inside the view frustum (this means before doing view-frustum 
culling for other objects). The rest of the approach remains unchanged, particularly the OG 
still gets constructed out of all objects passing view-frustum culling – including the pre-
rendered ones. Of course, care must be taken that an object does not get rendered twice per 
frame which can be ensured by applying a frame counter. 

The effect of Pre-Rendering is tightly interwoven with the command buffer: Any 
drawing command is enqueued within the driver and its execution is delayed until all 
previously committed work has entirely been pulled from the GPU. Consequently, the overall 
latency L of a drawing command in general (and an occlusion query in particular) comprises 
both the actual execution time within the GPU (Town) as well as the execution times of all 
commands (Tother) which are stored in the command buffer at the time when the respective 



OCCLUSION-GRAPH BASED APPROACH 

- 48 - 

command is added. L can be long, which is unpleasant if the application relies on feedback 
from the GPU – as it is the case with occlusion queries – since longer latencies of occlusion 
tests will on average mean that more time is wasted on the CPU side waiting for results. 

Pre-Rendering tackles this problem: Although the execution times themselves of the 
various commands (Town) are determined by the speed of the GPU and can not be influenced, 
it seeks to reduce Tother for each occlusion query by keeping the command buffer as empty as 
possible within the OG traversal. This is achieved by shifting much of the rendering effort for 
drawing visible geometry away from the GPU-intensive part of the OG-traversal: With Pre-
Rendering, the GPU can accomplish the rendering of considerable parts of the visible scenery, 
while the CPU is still busy with traversing the scene graph and creating the OG. This is 
illustrated in Fig. 3.13: It shows the fill level of the command buffer and the state of the CPU 
versus time. With Pre-Rendering, the scene traversal takes longer (since rendering commands 
must be issued), but during the traversal of the OG, less work accumulates within the 
command buffer, reducing the time wasted by stalls. Besides, the figure highlights that the 
GPU is idle for a long time without Pre-Rendering. Note that – for the sake of simplicity – 
Fig. 3.13 assumes that all further work depends on the result of an occlusion query, which is 
not the case with the OG-based approach, as objects can be handled independently of each 
other, but the overall effect remains correct. 
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Fig. 3.13: The effect of Pre-Rendering on the fill level of the command buffer and the duration of CPU-stalls. 
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3.5 Results and Discussion 
Chapter 3 introduced an approach for occlusion culling using hardware occlusion queries 
based on a directed, acylic graph – the OG –, pointed out several shortcomings and presented 
some improvements. While most of the previous discussion has been held theoretically, some 
figures should finally highlight practical aspects. However, this examination focuses on the 
OG-based approach as such – for comparison with other approaches, more detailed 
assessments and conclusions, refer to the chapters 5 and 6. 

All measurements have been taken on an Intel Pentium IV system with 2,26GHz and 
512Mb DDR-RAM. The graphics card was an NVidia GeForce 4, Ti-4400. All times have 
been measured when rendering into a window with a size of 640 x 640. 

From now on, some test scenes and walkthroughs are needed that should possibly cover a 
great variety of different cases while their number should stay small for the sake of clarity. 
The following test scenes have been chosen: 

• A scene containing 2500 teapots (total number of triangles: 5.760.000) being randomly 
distributed and oriented within an (invisible) box – see Fig. 3.12 for an example. This 
scene can be characterized by its high complexity, much cumulative occlusion, rather 
little temporal coherence (as reasoned in chapter 3.4.1.1), many objects being almost 
occluded (yet small parts still visible) and a high number of triangles per object (which 
makes an exact classification crucial). 

• A part of a Vienna modelled with a very simplified geometry (e.g. the walls of buildings 
are flat) and an overall triangle count of 240.388. While the occlusion and temporal 
coherence are usually good when walking through the city, viewing from above tends to 
be problematic because this leads to a rapid increase in visible objects. In this scene, the 
average number of triangles per object is quite small. 

 

Fig. 3.14: A typical view of the city model. 

• The same part of Vienna but modelled with a much more detailed geometry (1.042.378 
triangles). While most properties apply to this scene as well, doing unnecessary 
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rendering tends to be more expensive due to a higher average number of triangles per 
object. Fig. 3.14 shows a typical view. 

• A terrain-scene (modelling the hills surrounding the town of Klosterneuburg). Since this 
landscape basically consists of two valleys, mentionable occlusion can only be 
encountered when looking from inside one valley to the direction of the other one. 
However, the overall number of triangles (87.424) as well as the average number of 
triangles per object are quite low which makes it quite difficult to attain significant 
performance increases by doing occlusion culling. 

Within these four models, the following walkthroughs have been chosen: 
• Teapots: Moving around in the teapot scene: Partly, the box is viewed from the side (as 

shown in Fig. 3.12) and partly standing in front of it (with much occlusion). 
• Simple City: Walking through the simple city: Partly walking (about 2 meters above 

the ground) along some broad and some narrow streets, partly moving across an open 
square and – decreasing performance tremendously – partly making a 360° panorama 
rotation about 50 meters above the ground (higher than the average roof level). This 
kind of walkthrough shows dramatic peaks (in the detailed figures in chapter 5), because 
the amount of visibility is subject to very strong variations. 

• Normal City: Exactly the same walkthrough in the city, but within the detailed city 
scene. For many applications, this is probably the most representative walkthrough. 

• City – No Occlusion: Making the view wander around a place within the complex city 
model where (almost) no occlusion is present. This basically demonstrates the overhead 
incurred by the various approaches. Here, performance increases are almost impossible 
to achieve by occlusion culling itself without compromising the image quality. 
However, other means like implementing a more efficient traversal may lead to speed 
ups. 

• Terrain: Flying along one valley in the terrain scene (below the tops of the hills), 
making a turn around one ridge into the other dale. At the end, the height is increased 
until we peek over some summits to some other hills – where only very little occlusion 
is present any more. 

All measurements dealing with temporal values (e.g. frame times, times of CPU-stalls, etc.) 
have been taken using an according profiling mechanism of the YARE-engine, which is based 
on reading the current clock cycle counter of the CPU using the Pentium instruction RDTSC. 
In order to determine the time of CPU stalls, the execution time of the NV_occlusion_query 
extension function glGetOcclusionQueryivNV() has been measured when asking for 
the result. The reason for this is that stalls occur within this function if the result is not yet 
available, and the overhead of this function apart from stalls is negligible. 

Generally speaking, for the sake of brevity, only the most striking aspects of the 
following figures are highlighted in the text – they essentially reflect what has been argued in 
the text. The following measurements will be shown in this chapter: The first figure (Fig. 
3.15) compares the basic OG-based approach without improvements to the stop-and-wait 
approach and to rendering without occlusion culling. The figures 3.16 to 3.20 illustrate the 
separate effects of the various modifications to the basic OG-based approach, and Fig. 3.21 
finally provides an overall performance comparison when applying all improvements 
simultaneously. 
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Fig. 3.15: Comparison of rendering without occlusion culling, applying the simple stop-and-wait 
approach and the basic OG-based approach (without any improvements) by decomposing 
the average frame times of all five walkthroughs (the times for the teapot scene had to be 
divided by 10 in order to make the values lie approximately within the same range). 

The main aspect of Fig. 3.15 is to show that without improvements, the OG-based approach is 
sometimes worse than the simple stop-and-wait model: The performance gains by reducing 
the time of stalls can hardly outweigh all other costs. Besides, it demonstrates that speed ups 
by doing occlusion culling in general are more likely where in fact occlusion is present and 
the geometry exhibits a non-trivial complexity. 
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Fig. 3.16: The effect of Assumed Visibility at VFmax = 10 and VFmin = 1 compared to the basic OG-
based approach (both without any further improvements): The average number of occlusion 
queries is reduced at the cost of rendering some occluded objects as well. 
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The essence of Fig 3.16 is that Assumed Visibility reduces the number of occlusion queries the 
more the higher the percentage of visible objects is compared to the overall number of objects 
within the view frustum. The costs seem to be moderate yet can nevertheless do harm if the 
additionally rendered objects are complex enough (like the teapots). 
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Fig. 3.17 The effect of Early Rejection (without further improvements): Both the number of tests and 
the frame times could be reduced. 

Fig 3.17 shows that employing Early Rejection is a reasonable complement to Assumed 
Visibility: While the latter one optimizes the usage of occlusion queries for visible objects, 
Early Rejection succeeds to reduce the number of occlusion queries especially in cases of 
much occlusion. The increases of overall performance – particularly in the city scenes – are 
remarkable too. 
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Fig. 3.18: The effect of various values for TV on the average number of visible objects compared to 
rendering with a threshold of zero. 
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Fig. 3.19: The effect of various values for the visibility threshold on the average frame times 

compared to rendering with a threshold of zero. 

Fig. 3.18 and Fig. 3.19 basically show that the benefits of a visibility threshold depend largely 
on the scene, but can be substantial where many objects are visible to a small percentage (like 
in the teapot scene). However, it must be emphasized that a threshold of 500 already led to 
ugly optical distortions in almost all scenes – and especially in the teapot scene. 
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Fig. 3.20: The effect of Pre-Rendering compared to rendering without it. Both tests are measured with 
assumed visibility at VFmax = 10, but utilizing no other improvements and decomposing the 
average overall frame time. 

Fig. 3.20 shows that Pre-Rendering improves the performance yet to a smaller amount than 
one might have expected, if done separately. However, it is more effective in combination 
with Early Rejection which reduces the overwhelming number of occlusion queries. 
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Fig. 3.21: Comparison of the average performance of all approaches presented so far for all 
walkthroughs. Note that the times of the teapot walkthrough have been divided by 10 in 
order make all values lie approximately within the same range. 

Fig. 3.21 demonstrates the average performance for the various walkthroughs. The 
improvements refer to VFmin = 1, VFmax = 10, TV = 50 along with applying Pre-Rendering and 
Early Rejection. Note that these parameters are by no means optimal for all scenes: For 
instance, the results for the teapot scene could definitely be enhanced by a lower value for 
VFmax. Nevertheless, the same values were used for all scenes on purpose since this approach 
is meant to be of general nature and should yield good performance for arbitrary scenes 
without special tuning. For even more detailed results, refer to chapter 5, where exact plots of 
the varying performance throughout the various walkthroughs can be found. 

It can be seen that basically two properties determine the success of the OG-based 
approach: 

• The average amount of occlusion. 
• The average object complexity. 

Firstly, scenes with a considerable amount of occlusion are actually sped up remarkably 
(especially with the improved version) while the last two scenes suffer from any attempt of 
occlusion culling so far (in the terrain scene, this is more due to the low object complexity, 
though). 

Secondly, the gains are greatest where the average object complexity is high. Yet 
especially in these scenes, the stop-and-wait approach performs unexpectedly well. This leads 
to the comprehensible insight that the more complex an object is, the more essential is it that 
is not rendered in vain. 

In conclusion, the (non-hierarchical) OG-based approach together with the introduced 
improvements succeeds in increasing the average performance of scenes with enough 
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occlusion. Although single enhancements as such might have had a quite disappointing effect, 
the accumulated improvement is evident and holds for all scenes. As it will be shown in the 
next chapter, it can still be enhanced for some scenes by making use of a hierarchy. However, 
its applicability as well as the optimal values for the parameters of the improvements depends 
to a great extent on the scene – even more precisely on the exact position within the scene as 
it is obviously the case for the city scenes. Besides, it should not be ignored that the whole 
approach with all improvements has grown quite complex which could prove too 
cumbersome to implement for a practical application. Finally, it is a reasonable approach that 
helped to gain many insights and can even be a good choice in rare cases as reasoned in 
chapter 5. Yet for the vast majority of scenes it does not yield the optimal performance 
possible with the NV_occlusion_query extension. 
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4 Hierarchical Occlusion Tests 
While the non-hierarchical OG-based approach as presented in chapter 3 succeeds under 
certain circumstances to speed up the rendering process, it is generally speaking not good 
enough. Despite of all improvements, the main problem is still a big overhead that grows 
linearly with the number of objects, and the fact that many objects simply consist of too few 
triangles to justify an own occlusion query. 

This chapter introduces spatial hierarchies being a well-known way to accelerate all sorts 
of computations in computer graphics. After motivating this step, techniques for creating 
spatial data structures being appropriate for our purpose are compared and assessed. Then it is 
demonstrated how to incorporate them into the existing OG-based approach. Finally – yet 
probably most important – an alternative, comparatively simple approach not relying on any 
form of OG is presented that will turn out to be superior in many cases. 

4.1 Motivations and Considerations 
While the number of occlusion queries could be significantly reduced by assuming objects as 
visible for several frames (Assumed Visibility) and rejecting definitely occluded objects 
without test (Early Rejection), essential problems still remain: 

• Constructing the OG for many objects takes much time. 
• Many objects tend to be too simple to justify their own occlusion query. 

The first problem was partly solved by the introduction of Pre-Rendering, where the 
construction of the OG proceeds in parallel to GPU rendering. However, performing the 
necessary steps for several thousand objects is still a considerable overhead for the CPU that 
we must seek to reduce. 

As pointed out in chapter 3.3, an occlusion query is the more expensive compared to 
straightforward rendering of an object, the less complex the respective object is. Therefore the 
complexity of an object to be tested should exceed a certain triangle count in order to make 
occlusion queries efficient. On the other hand, simply rendering all objects with less than a 
certain number of triangles without testing them first can be no solution, since: 

• Apart from being system-specific, an optimal value for this threshold is likely to vary 
with the current state of the command buffer and other traversal-related details – 
computing a reasonable threshold would therefore be difficult if not impossible. 

• Automatically assuming simple objects as visible could interfere with techniques that 
seek to determine the visibility of objects by exploiting spatial coherence (like Visibility 
Propagation in [Bitt01b], or Early Rejection, as described in chapter 3.4.1.2): Actually 
occluded objects would have to be considered visible just due to their (small) 
complexity and could therefore make occlusion tests of adjacent objects necessary that 
could have been avoided otherwise. 

• If a scene consists only of such simple objects, doing no occlusion culling is not an 
option. 

Spatial hierarchies tackle both problems mentioned above: Informally put, by combining 
several objects which are close together to one elementary cell, we achieve both a reduction 
of the number of nodes contained in the OG and an increase of the average number of 
triangles per item, and doing so hierarchically permits a flexible adaptation to actual visibility. 
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However, this comes at the cost of a considerable rise of (original) objects being classified as 
visible. 

Internal
nodes

 

Fig. 4.1: A simple scene consisting of six objects and a way to organise their AABBs hierarchically. 

Spatial hierarchies subdivide a certain n-dimensional space (3-dimensional in our context) in 
a recursively nested manner and are modelled using trees as data structure: Each node 
contains a subset of the space of its parent and its own space is subdivided further by its 
children. Therefore, the number of nodes grows exponentially with the depth within the tree. 
The actual geometry is usually stored within the leaves of the tree. Each node, including leaf 
nodes, has a bounding volume (an axis-aligned bounding box – abbreviated AABB – in our 
case) that encloses the geometry in its entire subtree – consequently, the root node contains 
the whole scene. The advantage is that every kind of traversal can stop at nodes where the 
criterion under examination (visibility in our context, yet also other properties like 
intersection with a ray are common) is not fulfilled for the whole space of the according 
bounding volume – the subtree does not need to be traversed any more. This way, the effort 
for queries can typically be reduced from O(n) to O(log n), provided that the tree is 
approximately balanced. One possibility of a spatial hierarchy is illustrated in Fig. 4.1. 

Commonly desirable properties of spatial hierarchies are: 
• The tree should be approximately balanced. 
• It should fit the objects of the scene tightly. In other words, the surface area and the 

volume of the AABBs of internal nodes should be minimal. 
• The depth of the tree should match the size and complexity of the scene in a way that 

the coarseness of the subdivision diminishes remarkably with increasing depth, but the 
tree does not become too flat to foil the benefit of logarithmic effort for traversals . 

Such hierarchies are commonly used in computer graphics in order to exploit spatial 
coherence. In the context of the OG-based approach, we will use them as an alternative to 
Early Rejection, being one proposal presented in chapter 3.4.1.2 to exploit spatial coherence. 
Concerning occlusion culling, this implies that several objects that are close to each other tend 
to be classified alike. Instead of issuing a separate occlusion query for each object, we can test 
a bounding volume enclosing several objects. If this test indicates occlusion, we can skip the 
contained objects altogether. If parts of the bounding volume are visible, we are free to decide 
what to do next: Refine the result by testing more, yet smaller bounding volumes, or render all 
objects in the sub-tree without testing. Hence, by using a spatial hierarchy, we can choose the 
coarseness of the subdivision for certain parts of the scene and continuously adapt it in order 
to match the circumstances given by visibility. This principle is illustrated in Fig. 4.2: It 
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shows the parts of the geometry of a city that are classified as visible, and a corresponding 
subdivision (AABBs rendered in wire-frame mode): orange boxes are considered visible, gray 
boxes are classified as invisible. The point is that the subdivision of the visible parts is much 
more fine-grained compared to the coarse subdivision of the occluded space. However, 
further details of this image like the exact kind of hierarchy applied are subject to later 
chapters. 

 

 

Fig. 4.2: An example for a subdivision of space: orange boxes correspond to visible nodes, the much 
coarser grey nodes indicate occlusion. 

While the principles described so far apply to almost every spatial data structure, the details 
differ remarkably: A criterion to distinguish spatial data structures is whether they subdivide 
the space regularly (e.g., an octree) or irregularly (e.g., BSP trees), somewhat compromising 
simplicity with flexibility. A further aspect is whether the construction is done bottom up 
(simple objects are successively merged) or top down (the whole scene gets repeatedly broken 
down to increasingly smaller parts). Even considering only one type of hierarchy, different 
heuristics and values for thresholds are possible which influence its final properties. A good 
introduction to spatial data structures can be found in [Möll02], an even more detailed 
comparison can be found in [Same89]. 
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In our context, incorporating spatial data structures into the OG-based approach does not 
only mean choosing an appropriate kind and finding reasonable heuristics for the construction 
that really succeed in reducing the number of objects (which will be dealt with in the next 
chapter), but also implies significant modifications to the traversal of the OG which will be 
subject of chapter 4.3. Occlusion tests in a hierarchical setting are also used by [Meiß99] in an 
approach which shows some similarities to the one we are going to develop in this chapter, 
yet they do not exploit temporal coherence within the hierarchy. 

4.2 Creating Spatial Hierarchies 
Since the form of the actual geometry of the objects is quite irrelevant for the OG-based 
approach, the creation of the hierarchy will only take into account AABBs of objects. 
Therefore we look for an approach that splits space in an axis-aligned manner. A further 
criterion is the time needed to create the hierarchy: Although it might be important to point 
out that the process of the creation does not need to fulfil real-time requirements, since it is 
done only once when a new scene is loaded, it should still not exceed 10 to 15 seconds in 
order to avoid annoying delays at start up. 

Two different methods are presented: A bottom-up approach resulting in general AABB 
hierarchies and a top-down approach creating axis-aligned BSP-trees – also called kd-trees. 
These techniques will be assessed by means of the properties of the resulting tree. Although 
octrees are another famous spatial data structure, they are not considered here due to their 
similarities to kd-trees (which are basically a more general, irregular form of octrees). 
Polygon-aligned BSP-trees coincide in our case with axis-aligned BSP-trees, since the 
AABBs we use are per definition axis-aligned. 

4.2.1 A Bottom-Up Technique 
Initially, a set of independent objects is given, each one having an AABB assigned. An 
obvious way to organize them hierarchically is to combine adjacent AABBs successively until 
one AABB contains the entire scene. This is a typical bottom-up process for creating 
hierarchies. 

Before describing some of the involved considerations, I want to refer to [Bare96] for 
another bottom-up approach, called BOXTREE. Besides, [Gold87] presents methods for the 
evaluation and automatic creation of general bounding volume hierarchies by incremental tree 
insertion. This chapter describes a different bottom-up approach. However, anticipating the 
results, the obtained trees do not match the requirements of chapter 4.1. Therefore, this 
method has finally been rejected in favor of the top-down approach presented in the next 
chapter. Still I want to outline the approach briefly. 

Two questions guide the construction: 
• Which objects should be merged next? 
• How should they be merged? 

The first question addresses the detection of two objects that can be tightly combined by a 
common AABB. Once a pair of nodes has been chosen for the next merge operation, the 
second question deals with the decision if one node should become the child of the other, or a 
common parent node should be introduced. 
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The approach discussed here repeatedly picks two nodes and merges them until only one 
overall node is left. Let T(N) denote the number of triangles contained by the subtree of the 
node N and let S(N) be the surface area of its AABB. Then 
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expresses something like the density of triangles contained by the node. Note that it is not a 
density in the common sense, though, since the term ‘density’ is usually defined as a division 
by a volume. However, it has turned out that dividing by the surface is more suitable, because 
troubles with flat objects can be avoided this way, which would have a volume of zero. 

Given two arbitrary nodes A and B, A ≠ B, 
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is a measure how much the density will decrease for a common AABB: Possible values for Q 
lie within (0, 1], where greater values mean that the density will diminish less (1 as result 
means that both AABBs coincide). According to chapter 4.1, the spatial hierarchy should fit 
the objects of the scene tightly. Since losing density is equivalent with approximating the 
objects less tightly, it is preferable to combine those two nodes which maximize Q. 
Determining the pair that maximizes Q basically implies comparing each node to each other 
node, but the quadratic effort of this search can be avoided if we insert all nodes into a regular 
grid and consider only nodes within the containing and neighboring cells. 

The next step is to perform a merge of the selected nodes. While the heuristic for 
choosing two nodes works quite well, no method seems to be really satisfactory, since all 
applied heuristics fail to create trees with properties as requested in chapter 4.1. One way is to 
simply introduce a common parent node for each pair. This usually works well at the 
beginning but gradually one node turns out to dominate, growing bigger by swallowing most 
of the smaller nodes, yielding quite unbalanced trees. Enforcing a balanced tree during the 
construction impaired the tightness of the bounding volumes, on the other hand. This 
approach was finally rejected in favour of the simpler top-down techniques as described in the 
next chapter. 

In general, while these flaws may be solved somehow, bottom-up approaches tend to 
generate trees with many overlapping nodes, which is usually undesirable, and they do not 
permit to sort the nodes implicitly as is possible with spatial subdivisions like the kd-tree. 

4.2.2 A Top-Down Technique 
Top-down techniques create hierarchies by repeatedly subdividing space. The first step is 
usually to compute a bounding volume (an AABB in our case) for the whole scene. This 
volume gets split according to some considerations into two or more parts. Each part gets 
subdivided again yielding an even more fine-grained decomposition, until a node is 
considered simple enough.  

The majority of hierarchy construction algorithms are top-down approaches. This 
discussion focuses on the specific type of kd-trees. This decision is due to several advantages 
of kd-trees (partly according to [Havr00]): 

• Kd-trees allow flexible positioning of the splitting planes, which results in various sizes 
of the elementary cells. These cells adapt well to the geometry of the scene. 
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• Unlike the more general bounding-volume hierarchies, kd-trees contain no overlapped 
elementary cells. 

• Approximate depth-sorting can be done implicitly by traversing the tree appropriately. 
• Kd-trees can be used to topologically model many other spatial subdivisions: for 

instance uniform and non-uniform grids and octrees can be seen as special cases of kd-
trees. 

• It is theoretically possible (although of no practical use for our purpose) to extend kd-
trees for a space of arbitrary dimension. 

• The underlying data structure of kd-trees is the well understood and simple binary tree. 

Summarizing, kd-trees offer a good compromise between flexibility and simplicity and 
therefore they have been chosen as hierarchy for the two hierarchical approaches presented in 
this chapter. Fig. 4.3 depicts a typical kd-tree: Note that the triangle in the bottom left belongs 
to both C and D, thus it is contained by both leaves. Furthermore, note that the decomposition 
of space as shown in Fig. 4.2 is a kd-tree as well (although parts were culled away by view-
frustum culling). For more elaborate examinations on kd-trees than given by this theses, refer 
to [Same90] and [Havr00]. 
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Fig. 4.3: A constellation of objects being subdivided and the resulting kd-tree. 

Basically, the creation of kd-trees follows a pattern that can be outlined this way: 
• Decide if the current node is simple enough and terminate if so. 
• Select an axis at which the n-dimensional box is to be split. 
• Compute the exact position of the split within this axis. 
• Classify the geometry as part of the left or right (or possibly both, see below) half. 
• Proceed with both halves recursively. 

Let us have a closer look at the various steps: First of all, a test decides whether the node 
needs further refinement or if it is already simple enough. Several factors might be taken into 
consideration, for instance the volume of the node, its surface area, its complexity in terms of 
contained triangles and the depth within the tree. The implementation of this master thesis 
uses the following thresholds: 

• TKdO: Threshold for the number of scene-graph objects referenced by a node. It ensures 
that objects being both big and complex are still not subdivided further, which would be 
useless, as they get rendered as a whole anyway. 
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• TKdT: Threshold for the sum of the number of triangles of all objects referenced by a 
node. It prevents nodes from getting too simple and thus makes sure that occlusion 
queries can pay off. 

• TKdS: Threshold for the surface of the AABB of that node. This value is not specified 
absolutely, but in terms of a percentage with respect to the surface of the AABB of the 
whole scene (e.g. 0,05%, defined as 1/2000). This threshold restricts the minimal size 
which is necessary to ensure the termination in some tricky constellations. 

If any actual value of a node drops below the respective threshold, the node is considered as 
simple enough and thus not split any further. Note that these thresholds have a tremendous 
effect on the behaviour and performance: The higher the values, the less nodes will result 
from the creation process. This may reduce the effort for some computations, yet a coarse 
subdivision may have negative impacts (in our case for instance, all objects of a leaf which is 
considered as visible are classified as visible as well, which may cause a significant increase 
in the number of rendered objects – see the chapters 4.3.3 and 5 for detailed figures). 

Common strategies for selecting the axis of subdivision are: 
• Cycle through all axes. 
• Always split the largest side of the box. 

 

Fig. 4.4: A strictly cyclic axis selection (above) versus selecting the largest side (below). 

The second strategy was used within the implementation due to cases as shown in Fig. 4.4: If 
the initial box is not approximately a cube, obstinately cycling through all axes may yield 
rather non-uniform cells. This is undesirable since objects far from each other might get tested 
together. However, splitting the largest side of the box requires the storage of the axis with 
each node. 

Computing the exact position of the split plane is a decisive and computationally 
expensive step: The applied heuristic should seek to create two approximately equally 
complex parts, but the ultimate goal is to generate trees which conform to the criterions stated 
in chapter 4.l. In addition to the factors relevant for the termination criterion, the formula 
could try to minimize the number of objects that get intersected by the split plane, since these 
objects are referenced by multiple nodes, which can be undesirable. The implementation for 
this master thesis permits to choose between two heuristics – in both cases, potential splitting 
planes are the parallel planes of all AABBs lying within a certain band around the center of 
the box: 

• =q number of objects intersected by the split plane. 
• RRLL NSNSq ** +=  with SL/R being the surface of the left and right part, respectively 

and NL/R being the number of objects in the respective part. 
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The first heuristic stresses simplicity and can be computed quickly. The second heuristic 
originates from the field of ray-tracing, where it was proven to be a good choice as described 
by Havran [Havr00] (the theoretical background can be found there as well), and it has been 
applied in order to assess if it works well in the context of occlusion culling too. Either way, 
the splitting plane with the minimal value for q is chosen. As illustrated in the results section, 
both heuristics show approximately the same performance most of the time. 

The next step is to assign the geometry to the respective parts. The classification is 
obvious for all items entirely contained in one part. However, although it is undesirable, it is 
usually not avoidable to intersect objects which overlap both parts. One strategy is to split the 
geometry itself down to the triangle level so that each triangle uniquely belongs to one cell. In 
our case, though, objects are considered as atomic, which means that instead of splitting them, 
they might be referenced by multiple nodes (like the triangle in Fig. 4.3): An object gets 
rendered if any cell containing it is visible – the implementation has to take care that this 
rendering is done only once per frame. Nevertheless, the fact that these objects will overlap 
multiple cells does not affect the AABBs of the cells: They do not need to contain all 
referenced objects entirely, only the space of the cell itself. The parts of an object lying 
outside the AABB of one cell are within the AABBs of other cells. Therefore, assuming 
visibility of the cell D in Fig. 4.3 and occlusion for C, the triangle contained in both nodes 
will be rendered completely while the other contents of C get culled. 

Despite the advantages listed above, kd-trees have disadvantages as well: 
• Adjacent objects can be in completely different branches of the tree. 
• The AABB of a cell can be a too conservative approximation of its contained objects. 

The first problem applies to all top-down approaches: Once two objects lie in different parts, 
they are handled separately, even if they are in fact very close together and thus combining 
them would be advantageous. The earlier in the construction process such adjacent objects are 
separated, the worse. One can only attempt to tackle this by constructing sophisticated 
heuristics that take such considerations into account. 

The second point refers to situations as shown in Fig. 4.5: The space actually occupied by 
the objects is small compared to the AABBs of the cells. Since the probability of an AABB to 
be classified as visible increases with its size, we should seek to minimize them. This can be 
done easily by storing two different AABBs for each cell: One that contains the whole space 
as usual and one that is basically the intersection of the cell with an AABB around all of its 
objects. This is illustrated by the dotted lines in Fig. 4.5. The cost for this tighter match is the 
fact that modifications to the set of objects managed by the tree will generally also invalidate 
several AABBs which can cause expensive recalculations. 
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Fig. 4.5: A kd-tree with tight AABBs: The hatched space can be saved if not the cells themselves are 
used as AABBs. 

4.3 Occlusion-Graph Based Approach 
So far, we, we have motivated the introduction of a hierarchy and have reasoned why kd-trees 
are the data structure of choice. This chapter explains how a kd-tree can be incorporated into 
the OG-based approach, while chapter 4.4 will present an independent approach which is 
based on kd-trees as well. 

As mentioned above, the creation of the hierarchy is a separate step which is done only 
once when a new scene is loaded (at least for the static geometry). Therefore, this chapter 
assumes that the kd-tree already exists and focuses on those task which are done each frame: 

• Traversal of the kd-tree. 
• Traversal of the OG. 

Generating the OG is still done each frame anew, but this procedure is not affected by the 
introduction of a hierarchy apart from the fact that it gets created out of kd-tree nodes. 

4.3.1 Traversal of the Hierarchy Using Temporal Coherence 
Originally, the whole scene graph itself had to be traversed to gather all objects of interest. As 
shown in appendix A, arbitrary data structures can be used to support the scene graph – a 
simple list there, and a kd-tree here. While traversing a list is a trivial task, this is different for 
kd-trees, since all of its properties should be exploited as much as possible: As mentioned 
above, kd-trees allow for the sorting to be done implicitly. Another issue is view-frustum 
culling, which can also be enhanced by exploiting the hierarchical setting. Finally, the 
purpose of the hierarchy is to combine several nodes, which implies that the traversal does not 
go down to the leaves each time. How this can be attained will be a central question. 
Summarizing, we have to deal with three issues: 

• Obtaining a sorted set of nodes by traversing the kd-tree appropriately. 
• Optimising view-frustum culling for a hierarchical setting. 
• Improving the traversal by exploiting coherence. 
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As described in [Möll02], we can achieve a rough front-to-back sorting by traversing the tree 
as follows: Each node must be aware which axis has been split (if any at all). For an arbitrary 
internal-node, the traversal continues on the side of the split plane where the viewpoint is 
located. When encountering a node where the traversal should stop (assume for now that this 
only applies to leaves, yet later in this chapter, this can also be the case for certain internal-
nodes), we append the respective node to the end of the set of objects for which the OG is to 
be constructed. An example for such an order is given in the left half of Fig. 4.6. Note that this 
order is independent of the viewing direction. 
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Fig. 4.6 : The left half shows a viewpoint-dependent ordering of the cells; the right half illustrates 
that although the order is not strictly front-to-back, earlier cells will never be occluded by 
later ones. 

This algorithm does not yield an exact depth-sorting; for example, in Fig. 4.6, some parts of 
cell number 4 are definitely closer to the viewpoint than any point of cell number 2. Although 
it was said in chapter 3.2.2.2 that all objects must be sorted by their distance from the near 
plane, this does no harm: As shown in the right half of Fig. 4.6, it is guaranteed in such a case 
that later objects will never occlude earlier ones. More precisely, even if the screen-space 
bounding box (abbreviated SSBB) of a later node (the fourth node in the right half of Fig. 4.6) 
has a smaller depth value than the SSBB of an earlier node (the second node in this example), 
for those parts where they overlap, the earlier cell will lie in front of the later one – thus, we 
will get a correct order for the inverse Z-buffer (IZB) and for the occlusion queries. 

The next issue is view-frustum culling within a hierarchical setting. A good reference 
about this topic is [Assa99], therefore, I will merely briefly outline those suggestions which 
have been considered in the implementation. As a starting point, the equations of all six 
planes forming the viewing frustum in world space must be extracted from the parameters of 
the camera or the OpenGL projection matrix (see [Morl00], how this can be achieved). The 
following points are some relevant aspects and possible improvements when doing view-
frustum culling for a hierarchy of AABBs:  

• The most basic approach is to test all 8 vertices against all 6 clip planes, thus one object 
might need up to 48 tests for a complete classification. To test a vertex, it is inserted 
into the respective plane equation and the sign of the result tells whether it is in front of 
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it or behind. If all eight vertices are in front of all planes (assuming inward-looking 
planes) the AABB is completely within the view frustum, if all vertices are behind any 
plane, it lies completely outside and can thus be culled. Otherwise, it intersects the view 
frustum. 

• The number of tests can be reduced significantly since it is sufficient to test two vertices 
per plane: Given the normal vector of the plane equation, one can easily compute those 
two vertices forming the diagonal of the AABB that is most closely aligned by checking 
the signs. The so called p-vertex has the greatest signed distance from the plane, 
whereas the n-vertex has the smallest signed distance of the whole AABB (the latter one 
is also used as distance of the according SSBB for the occlusion queries). 

• Temporal coherence can be exploited by the so called plane-coherency test: If an 
AABB fails the test for a certain plane, it is likely that it will fail the test for the same 
plane the next time as well. Beginning with this plane the next frame, we have a good 
chance of classifying an AABB as outside with the effort of a single test. 

• If the AABB of a certain node is entirely in front of a clip plane, this is also valid for the 
AABBs of all nodes within the whole subtree. Therefore, we can exploit the hierarchical 
setting by passing a mask (implemented as a bitfield) from the parent to its children 
indicating which planes can safely be ignored. 

Finally it must be explained how we can make use of temporal coherence. This concept is not 
only significant for the hierarchical OG-based approach, it is also crucial for the approach 
presented in chapter 4.4. These ideas are closely related to [Bitt01b]. 

So far, we make use of the hierarchy only for view-frustum culling, yet all nodes not 
culled away are traversed down to the leaves. This yields a great number of objects which 
must be considered by the OG, even if the majority turns out to be actually occluded. Now, 
the idea is to stop the traversal at internal nodes which can already be classified as definitely 
invisible, thus skipping the traversal of the subtree. Unfortunately, this does not work for 
entirely visible internal nodes as well, since – unlike occlusion – the visibility of an internal 
node says nothing about the visibility of its sub-nodes. For this reason, we do not distinguish 
between entirely visible and partially visible nodes (unlike [Bitt01b]). 

The most basic approach (from now on referred to as basic hierarchical approach) for 
doing occlusion culling in a hierarchical setting can be outlined as follows (note that this 
method is not directly suitable for the purpose of gathering nodes for the OG, yet it is 
described anyway for the sake of comparison and since it will gain relevance in the next 
chapter): Once a node has passed view-frustum culling, it is tested for occlusion (with an 
occlusion query in our case). If it passes this test as well, these steps are repeated first for the 
child closer to the viewpoint (as described above for the sorting) and after this subtree has 
been completely traversed, for the other child – visible leaves simply render their geometry. 
Since this basically boils down to a roughly front-to-back sorted stop-and-wait testing of all 
nodes within the tree, it may incur significant latencies. However, lacking further information 
about the nodes like for instance an OG or a previous visibility classification, it is the only 
possible method to traverse the tree without risking the loss of any occlusion. 

The way how the kd-tree is traversed by the hierarchical OG-based approach is superior 
to the basic hierarchical approach, as it exploits temporal coherence: It maintains a set of 
nodes (from now on referred to as ‘cut’), which are exactly those where the traversal stops 
and consequently the ones for which the OG gets constructed. This cut comprises all internal 
nodes where the whole subtree is classified as invisible, and visible leaves. Instead of issuing 
occlusion queries for all nodes encountered during traversal, the algorithm collects all nodes 
of the cut passing view-frustum culling and passes them on to the generation of the OG. When 
the viewpoint changes, this cut will typically have to adapt as well: Some previously occluded 



HIERARCHICAL OCCLUSION TESTS 

- 68 - 

internal nodes may become visible – thus the cut moves down the tree, we call this situation a 
pull down – whereas other nodes become occluded and might be combined on a higher level – 
then the cut moves upwards, which is accordingly called pull up. Initially, the cut is assumed 
to consist of all leaves, but this typically changes after the first frame. Temporal coherence is 
exploited in so far as the classification of the previous frame is used to construct the cut for 
the current frame. Fig. 4.7 depicts a tree along with the respective classifications of all nodes 
and the according cut and also demonstrates a pull-up and a pull-down for a changed 
classification. 
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Fig. 4.7: A tree where all nodes are classified as either partly visible (V) or invisible (I) and the 
resulting cut. The right tree demonstrates the effect on the cut when the classification 
changes. Note that light grey nodes are merely traversed but not occlusion tested, and 
dotted nodes are not even traversed, only nodes belonging to the cut are both traversed and 
tested. 

Note that the cut need not be stored separately – it suffices when nodes are aware of their 
former classification. 

This paragraph describes the realization of pull ups, which is partly done during the 
traversal of the kd-tree and partly within the traversal of the OG. Within the kd-tree traversal, 
the visibility classification of the previous frame is considered for each traversed node in 
order to determine the cut for the current frame. Afterwards, each traversed node is assumed 
to be proven invisible within the current frame (at this place regardless of the actual visibility) 
which is basically equivalent to – temporarily – pulling the cut of the subsequent frame (not to 
be confused with the cut of the current frame which has been determined by then and is not 
lost by doing so) up to the root, being the most radical pull up possible. This obviously wrong 
classification is corrected during the traversal of the OG: The visibility of all nodes of the cut 
of the current frame is determined. Each node being proven visible sets all its parents within 
the kd-tree up to the root visible as well, thus removing them from the cut of the subsequent 
frame again (this is probably a bit confusing: The cut of the next frame, which has temporarily 
been pulled up to the root, is moved downwards again, but this action is still part of the ‘pull 
up’, for the cut will be at most moved down to the level of the current frame, but not below). 
The idea is that only internal nodes where all children are classified as invisible stay within 
the cut. This way, the extent of the pull up is not restricted by any means. 
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Pull downs can only be performed when the visibility has been determined, which is not 
before the traversal of the OG. They are required when previously invisible internal nodes 
have become visible and will be dealt with in the next chapter. 

Summarizing, listing 4.1 shows a pseudo code for the overall kd-tree traversal. 

Listing 4.1: Kd-tree traversal: 

Traverse(Node N) 
{ 

  if (InsideViewFrustum(N)) 
  { 

    if (IsLeaf(N)) 
    { 
      // Assumed Visibility 
      if (AssumedVisible(N)) Render(N); 

      AppendToCut(N); 
    } 

    else if (Classification(N) == INVISIBLE) 
    { 
      AppendToCut(N);  
    } 

    else // visible internal node 
    { 
      // this might get overwritten 
      SetClassification(N, INVISIBLE); 

      if (ViewPoint[GetSplitAxis(N)] < SplitValue(N)) 
      { 
        // the left child is closer 
        Traverse(GetLeftChild(N));  
        Traverse(GetRightChild(N));  
      } 

      else 
      { 
        // the right child is closer 
        Traverse(GetRightChild(N));  
        Traverse(GetLeftChild(N));  
      } 
    } 
  } 
} 

4.3.2 Changes to the Occlusion Graph Traversal 
Once the set of objects for the current frame has been determined, the generation of the OG 
remains unaffected by the introduction of a hierarchy. Basically, the traversal of the OG stays 
the same as well, hence the pseudo code of listing 3.1 (in Chapter 3.2.3.3) is still applicable. 
However, two modifications are necessary in order to realize pull ups and pull downs as 
discussed above: 
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• Each visible node must propagate its classification to all of its parents. 
• Visible internal nodes of the kd-tree require a pull down. 

Both modifications concern visible nodes, therefore an implementation (as discussed in this 
chapter) essentially extends the line of listing 3.1: 

if (Visible = TRUE) Render(N) 

The first modification is part of the realization of pull ups, as explained in the previous 
section, and its implementation is quite straightforward: Each node has to be aware of its 
parent node within the kd-tree. Since this parent knows in turn its own parent node, this yields 
a sequence for each node up to the root. If an arbitrary node has been proven visible, all nodes 
along this sequence are set visible as well. 

Handling the second task appropriately is much more sophisticated: If an internal node N 
turns out to be visible, it has obviously come into sight since the last frame. Now the 
challenge is that its subtree within the kd-tree must of course be rendered and tested, yet these 
nodes are not contained in the OG. Besides, the successors of N within the OG should only be 
dealt with after the subtree of N has entirely been drawn to avoid any loss of occlusion. 
Therefore they are not freed by N itself, but by the last node of its subtree. 

One strategy for realizing pull downs is to classify all nodes within the subtree of N as 
visible without test which means rendering all leaves immediately, which is the most massive 
pull down possible. Consequently, all leaves will belong to the cut the next frame and get 
classified independently, probably leading to a significant pull up the frame after. Doing so is 
simple, yet a very bad idea since this inevitably causes a huge jitter for even slight 
movements. Apart from that, the majority of the objects within the subtree would be rendered 
in vain since with high probability, only a small fraction is actually visible. In fact no leaf 
needs to be visible at all since the classification of N can be due to its large AABB, and even 
its direct children can still be invisible as their AABBs match the actual geometry more 
tightly. 

A better strategy is the basic hierarchical approach as presented in chapter 4.3.1: It issues 
a test for the child closer to the viewpoint and handles its subtree entirely before issuing the 
test for the second child. The problem of this method are the CPU stalls as reasoned above. A 
supposed way to overcome this is by increasing parallelism through immediately issuing the 
occlusion queries for both children. However, this turns out to be a bad idea, since the tests 
will not detect any sort of self-occlusion within the subtree (one part of the tree occluding 
another) which is in fact a common source of occlusion. If we are unlucky, even the whole 
tree might get falsely classified as visible this way, causing a big jitter again. 

Because we do not have any further information about the nodes within the subtree of N 
(they are neither contained by the original OG, nor have they been classified in the previous 
frame), we can not get around applying the basic hierarchical approach. One modification has 
been tried, though: The closer child of a visible internal node was also assumed visible 
without test since I supposed that this was usually the case. However, it turned out that this 
assumption was not beneficial to performance; therefore I rejected the modification and 
returned to the unchanged basic hierarchical approach. 
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Fig. 4.8 : The collaboration of the traversal of the subtree of a visible internal node and the OG. 

Concerning the implementation, nodes being direct or indirect children of N are treated much 
like normal nodes of the OG. However, since these nodes are added to the OG afterwards, the 
implementation has to take care that all according variables of their data structures are set 
appropriately (which requires computing the SSBB for instance). In order to ensure the 
correct sorting, the child being closer to the viewpoint is assigned the other child as mere 
successor within its ‘own’ OG, while this latter child receives the complete list of successors 
from N – this way, these successors are freed after having rendered the last node of this 
subtree. Fig. 4.8 illustrates this by means of an example: It shows a possible subtree of N and 
how it might get traversed when assuming visibility for all nodes except for D and when 
presuming that A is closer to the viewpoint than D and B being closer than C. The right part 
shows the various steps in terms of the state of the temporary OG of this subtree, which is part 
of the overall OG (X denotes all successors of N and can actually be an arbitrarily large set of 
nodes). 

4.3.3 Results and Discussion 
This section extended the OG-based approach by using a hierarchy in order to reduce the 
number of objects making up the OG. Techniques were discussed to create spatial hierarchies 
resulting in the decision for kd-trees as most appropriate for our purpose. It was pointed out 
which issues must be paid attention to when traversing this tree, and in which way the 
traversal of the OG is affected. 

This chapter also highlights some aspects of the hierarchical OG-based approach and 
discusses if this modification succeeds or fails to enhance overall performance. All 
measurements have been taken using the same five walkthroughs on the same system as 
presented in chapter 3.5. In all cases the improvements of chapter 3 have been applied: 

• Assumed Visibility (VFmin = 1, VFmax = 10) together with Pre-Rendering. 
• Early Rejection. 
• Visibility threshold TV of 50. 

Besides, all hierarchical tests employ view-frustum culling, use the cut and order the objects 
implicitly by traversing the kd-tree as explained in chapter 4.3.1: Since these techniques are 
proven, no separate measurements have been taken in order to demonstrate their efficiency. 
For related results, refer to the according literature. 
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Fig. 4.9: Impact of the termination criterion used during the kd-tree construction on the overall 
performance. T stands for TKdT, S for TKdS and O for TKdO. TKdO, TKdT and TKDS  
constrain the properties of internal nodes as described above: In order to be split any 
further, a node must lie above all three thresholds. 

The size of the kd-tree is determined by the termination criterion used for its construction, 
which affects the performance substantially as illustrated by Fig. 4.9: The number of nodes 
(the granularity of the leaves) decreases to the right. Evidently, having too many nodes has a 
negative effect on the performance since the geometry is too simple to justify its own 
occlusion query (it fits well that this does not apply to the teapot scene where each teapot is 
already quite complex). If the granularity becomes too coarse, many objects are rendered in 
vain thus decreasing performance again. For both city scenes as well as for the terrain, a 
setting of TKdT = 2000, TKdS = 1/12000, TKdO = 3 (constraining triangles, surface and objects 
– see the image text) has been found optimal. Therefore, these values will be used from now 
on for all following tests. 
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Fig. 4.10: Effect of the heuristic used during the kd-tree construction on the overall performance. 
Note that in order to make all results lie approximately the same range, 100 has been 
subtracted from the times of the teapot scene (which makes the difference much less than it 
might appear). 

Fig. 4.10 shows that the two heuristic applied to select the optimal split value basically have 
the same effect on the performance. This might be a surprising result yet it holds for all 
scenes. Still it can not be ruled out that a heuristic could be found that improves the 
performance perceptibly. Due to (very slight) advantages, the second heuristic is used from 
now on. 
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Fig. 4.11: The effect of the hierarchical OG-based approach compared to the non-hierarchical OG-
based approach. 
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Fig. 4.11 illustrates how radically the introduction of a hierarchy affects the OG-based 
approach: The number of nodes making up the OG could (in some cases dramatically) be 
reduced. On the other hand, although a certain increase in the number of visible objects might 
have been expected, the actual amount is rather unpleasant. Especially where the geometry 
tends to consist of few triangles, many objects must be gathered to one node. Thus even if just 
a small part of the resulting SSBB used for testing is actually visible, still all objects are 
rendered. However, as shown in Fig. 4.9, accepting this additional rendering effort is for 
many scenes still better than doing tests in a more fine-grained fashion. 

Apart from that, having less nodes may have led to the assumption that the number of 
occlusion queries can consequently be lessened as well. Obviously, this is not necessarily 
true: On the one hand, the regions that are simplified the most are those that are completely 
occluded anyway (and which cause hardly any tests due to Early Rejection). On the other 
hand, one must keep in mind that doing a pull down may take more tests than the number of 
contained leaves. Therefore, if the cut is constantly subject to strong variations, more tests 
might be required than without the hierarchy (this is particularly true for the teapot scene 
where hardly any temporal coherence is present for the remote teapots). Furthermore, due to 
the increased size of the testing entities as well as the still very conservative approximation 
with SSBBs, comparatively more tests indicate visibility on average, which interferes with 
Early Rejection. 
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Fig. 4.12: Comparison of the average performance of all important approaches presented so far for all 
walkthroughs. Note that the times of the teapot walkthrough have been divided by 10 in 
order make all values lie approximately within the same range. 

Finally, does it pay off to do the OG-based approach in a hierarchical setting? Fig.4.12 
compares the average frame times. For more detailed plots, refer to chapter 5. While some 
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scenes could be sped up, others are slowed down which makes a generally valid answer 
difficult. 

As already pointed out in chapter 3.5, an essential criterion for occlusion queries is the 
average object complexity: It decides if an additional occlusion query does pay off in order to 
refine the classification. In the teapot scene for instance, the costs of unnecessarily rendering 
many objects exceed the benefits of issuing less tests, while the situation is contrary in the 
scenes with little occlusion. Besides, the teapot scene suffers from a high dynamics of the cut 
due to little temporal coherence for the remote objects as reasoned above. The result of the 
complex city might be astonishing: When examining the exact plot of this walkthrough (as 
given in chapter 5), it turns out that the frame times for the ‘usual’ walkthrough situation – for 
example going along a street in a normal person’s view – were reduced by and large, yet that 
the peak load has increased dramatically which is once more due to the raised number of 
rendered objects. The scene with no occlusion has – surprisingly – even become faster than 
without any occlusion culling. However, these performance gains originate from the 
introduction of the visibility threshold (which does not render almost imperceptibly small 
parts) and maybe a slightly more efficient traversal (e.g. exploiting the hierarchy for view-
frustum culling) rather than from actual occlusion culling itself. 

Summarizing, as with most occlusion culling approaches, it must be decided for each 
scene anew if doing occlusion culling with the hierarchical OG-based approach makes sense. 
This will generally rather be true for scenes with significant occlusion on a coarse level: This 
means that – as with the terrain scene or the walkthrough without occlusion – the 
classification is unlikely to switch back and forth often within a small area. In other words: A 
hierarchy is a way to exploit spatial coherence and it will be the more successful, the more 
distinct the property of spatial coherence is for a certain scene. Still, one might be able to 
optimize the approach for a given setting by finding the most appropriate parameters for the 
creation of the kd-tree. 

In conclusion, the hierarchical OG-based approach yields pretty satisfactory results for 
scenes with a high spatial and temporal coherence. However, the sometimes dramatic 
overestimation of visibility might be unbearable for many scenes. Besides, the incorporation 
of a hierarchy has further increased the complexity of the already quite complex non-
hierarchical OG-based approach. Thus the results may not justify the high programming 
effort. Besides, dealing with dynamic scenes has become even harder due to the static 
hierarchy; even more disadvantages are listed in section 4.4.1. Finally, the 
NV_occlusion_query extension has still a greater potential. Therefore – although some results 
might be encouraging –a still easier and generally better approach is desirable. 

4.4 Efficient Hierarchical Temporal-Coherence Based 
Approach 
This chapter presents an independent approach for doing occlusion culling with hardware 
occlusion queries, which is different  from the OG-based approaches discussed in previous 
chapters. Although the insights gained with the OG-based approaches had of course a strong 
influence on its design, it is a completely independent algorithm that does not rely on the OG 
in any form. As its name suggests, the main characteristics of this new approach (from now 
on abbreviated as HTC-based approach) are its application within a hierarchical setting and 
the exploitation of temporal coherence in two ways. 
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The first part of this chapter explains why the OG-based approach was not considered to 
be sufficient, and how these experiences could help to design an even better algorithm. The 
following two parts deal with the algorithm itself and significant issues concerning its 
implementation, before the final part presents the according results and figures. 

4.4.1 Motivations and Considerations 
This approach was devised for two reasons: 

• Major flaws of the OG-based approach are inherent and can only be mitigated yet by no 
means entirely solved. 

• To examine how well the OG-based approach is actually doing, i.e., for the sake of 
comparison. 

To begin with, let us analyze the main problems of the OG-based approach and their 
implications for the design of an alternative algorithm: 

• Despite of all improvements, it can not be ruled out that the OG might be created for a 
lot of objects, which means a significant CPU overhead. The less occlusion we have, the 
more painfully this overhead will affect frame times. Consequently, a new approach 
should not suffer from any remarkable CPU overhead. 

• Although the OG-based approach succeeds in reducing the time of CPU stalls 
significantly compared to the basic stop-and-wait algorithm, it fails to cut them down to 
a negligible amount. This is due to the fact that it often lacks alternative work even if 
the algorithm is aware that fetching the next test result would incur a CPU stall. 
Therefore a new approach should (nearly) always be able to provide the CPU with 
reasonable alternative work if the result of the oldest outstanding occlusion query has 
been proven unavailable yet. 

• The effect of Early Rejection – this improvement turned out to be crucial in order to 
justify the construction of the OG at all – is diluted when applying the approach in a 
hierarchical setting. Basically, the problem caused by a host of occlusion queries for 
occludees is tackled in two different ways then. Since a new approach will do without 
OG anyway, this topic need not be heeded any further. 

• SSBBs must be computed for the IZB and are moreover necessary as approximations 
for Early Rejection as reasoned in section 3.4.1.2, but they have two major 
disadvantages: Firstly, their computation out of AABBs is very expensive and secondly, 
they are extremely conservative (much more than AABBs), which causes many objects 
to be falsely classified as visible. Therefore, the new approach should do without 
SSBBs and use AABBs as test geometry instead. 

• Finally, the OG-based approach along with all its improvements has grown quite big 
and complex, which might hinder its application for other purposes than scientific 
investigations. Hence, simplicity and brevity emerge as design goals for a new 
algorithm. 

In order to be able to cope with an abundance of objects properly, using a hierarchy is a 
requirement for the new approach. As reasoned in chapter 4.2, kd-trees proved to be a good 
compromise between flexibility and simplicity, so a kd-tree will be the core of the new 
algorithm as well. Everything that was said in chapter 4.2.2 concerning its construction also 
applies to the HTC-based approach; in fact, the respective code was hardly modified for the 
new approach at all. 

As a consequence of the first point of the list above, it is not affordable to traverse the 
scene graph each frame because of the massive CPU overhead. Besides, doing so would 
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contradict the demand for a hierarchy. Therefore, as explained in appendix A, we use a kd-
tree as additional data structure which only references single nodes of the scene graph. 
Furthermore, avoiding any CPU overhead means that no time must be wasted by doing any 
pre-traversals of the kd-tree before starting the actual work of testing and rendering. 
Everything must be accomplished within one traversal. 

The second point implies the maintenance of two different sources of meaningful work: 
Preferably, the results of previous occlusion queries are fetched, yet if no results are available 
at the moment, a second source should always be able to supply the CPU with further work. A 
prerequisite for doing so is the ability to check if outstanding test results are available without 
incurring any stall. Observations show that such checks are almost for free. 

Finally, it should be emphasized that – unlike the OG-based approach – it was no 
requirement for the HTC-based approach to rule out any loss of occlusion caused by incorrect 
sorting of rendering and testing, which turned out to be a too strong restriction for the OG-
based approach (even more so as the OG-based approach actually does lose occlusion anyway 
owing to the usage of SSBBs and – in the hierarchical version – combining many objects 
within the elementary cells of the hierarchy). It is tolerable if a few objects might be rendered 
in vain as long as the benefits of this increased flexibility outweigh the costs entailed by such 
renderings. 

4.4.2 Algorithm Description 
The central idea of the HTC-based approach is to exploit temporal coherence of the visibility 
classification in order to increase the parallelism within the application: The CPU and the 
GPU can act more independently of each other, if the time when an occlusion query can be 
issued for a node does not depend on the classification of any other node (in contrast to the 
OG-based approach). 

Basically, the HTC-based approach is solely a new combination of ingredients which 
have already been developed for the hierarchical OG-based approach. Apart from the fact that 
it does not rely on an OG, it partly resembles this approach very strongly since it is basically a 
mixture of methods used within the traversals of the OG and the kd-tree. The new algorithm is 
based on the following techniques (the discussion assumes that these techniques are familiar): 

• Approximate front-to-back kd-tree traversal (chapter 4.3.1). 
• Having a queue of issued occlusion queries as one source of work, and another data 

structure for alternative work for the case that no results are currently available 
(chapters 3.2.3.3 and 3.2.3.4). 

• Maintenance of a cut (chapter 4.3.1). 
• Application of Assumed Visibility (3.4.1.1) and a visibility threshold (3.4.2.1). 
• Exploiting the hierarchy for view-frustum culling (chapter 4.3.1). 

Apart from Assumed Visibility, which is rather an extension than a part of the core algorithm, 
temporal coherence is primarily exploited by maintaining a cut. Summarizing the description 
of chapter 4.3.1, the idea is to subdivide all nodes of the kd-tree into three categories: Nodes 
above the cut are only traversed but not considered for occlusion queries, nodes belonging to 
the cut are both traversed and occlusion tested and nodes below the cut are neither traversed 
nor handled in any other form (provided that the cut needs no adaptation). Whether a node 
belongs to the cut is determined by the visibility classification of all nodes in the former 
frame: The cut comprises all invisible internal nodes where the whole subtree is invisible as 
well and all visible leaves. 
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Very briefly, the algorithm can be outlined as follows: The kd-tree is traversed once per 
frame in a depth-first manner that yields an approximate front-to-back sorting of the nodes 
and performs view-frustum culling. When the traversal encounters a node which belongs to 
the cut, it issues an occlusion query in order to check if the previous visibility classification is 
still valid. Furthermore, if the respective node has been proven visible in the previous frame, 
it is rendered immediately after issuing the occlusion query (without waiting for the result!) to 
permit the occlusion of further nodes. In addition to the actual traversal, the algorithm 
repeatedly checks the availability of occlusion results. If these results indicate changes in the 
visibility classification with respect to the previous frame, pull ups and pull downs must be 
performed to adapt the cut accordingly. As possible improvements, occlusion tests can be 
saved by reusing results indicating visibility for several frames (assumed visibility), and 
considering only such nodes as visible where more than a specified number of pixels have 
passed the occlusion test, allowing to trade off quality for speed. 

The algorithm comprises two major parts which alternate permanently: 
• It traverses the kd-tree in a front-to-back order down to the cut and deals with the nodes 

of the cut passing view-frustum culling as suggested by the respective previous 
classification, which may involve rendering and issuing occlusion queries. 

• By evaluating the results of the occlusion queries, it ensures that the cut and the 
classifications of its nodes are still correct, and updates them if needed. 

As with the traversal of the OG, the termination condition is when no part requires further 
progress (there are no occlusion queries waiting, and the kd-tree has already been entirely 
traversed). Furthermore, processing available results is preferred: As long as test results are 
present, they are fetched and handled appropriately; only if querying would incur a CPU stall 
or no tests are currently enqueued, we turn to the alternative work in form of continuing the 
traversal of the kd-tree. 

4.4.2.1 Kd-tree Traversal 

This part of the algorithm can briefly be characterized as follows: 
• Deal with all nodes recursively down to the cut. For each node, start with the subtree 

being located on the same side of the split plane as the viewpoint, yielding a roughly 
front-to-back sorting (as described in chapter 4.3.1). 

• View-frustum culling is performed for each traversed node, taking advantage of the 
hierarchy (as described in chapter 4.3.1). 

• Invisible nodes of the cut within the view frustum are only tested but not rendered, since 
they are assumed to stay invisible. 

• Visible nodes of the cut (which must be leaves) are tested (unless this test is skipped due 
to Assumed Visibility) and immediately rendered afterwards since the test is presumed to 
indicate visibility. Note that this instantaneous drawing is crucial since this is the only 
way that potential occlusion of the next few nodes in the traversal is made possible. 

Since we lack any information which objects will overlap in the final image, we can not get 
around dealing with all objects in a roughly front-to-back manner. In order to maintain the 
cut, each node stores the information of its visibility classification from the previous frame. 
This way, leaves and invisible internal nodes – generally speaking all nodes making up the cut 
– need not be traversed any further. Again, this cut is likely to require adaptations, referred to 
as pull ups and pull downs, for every modification to the viewpoint or the viewing direction. 
The latter ones are more unpleasant as they entail the traversal of a subtree with the basic 
hierarchical approach; for more detailed information about adapting the cut, refer to the next 
chapter. 
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After outlining the traversal, let us consider its implications: The advantage of relying entirely 
on the former visibility classification is that no node is constrained by the progress in the 
visibility classification of any other node. However, this comes at the cost of possibly 
rendering a few occluded nodes as well: False classifications can only be ruled out under the 
condition that the cut has not changed within the recent two frames (and even longer if we 
take Assumed Visibility into account). For instance, if a leaf N has become occluded since the 
last frame, this is noticed only after N has been rendered unnecessarily, yet it will not be 
rendered the next frame. Formally, let ‘Tk(N)’ denote the issuing of an occlusion query for N 
within the k-th frame. Similarly, ‘Rk(N)’ indicates that N is rendered and ‘Fk(N): X’ means that 
the result of the occlusion query for N is fetched and – anticipating the next chapter – the 
visibility classification of N is possibly inverted to X. Furthermore NI and NV mean that N is 
classified as invisible or visible, respectively, before applying the according action. Using this 
formalism, the situation described above (a leaf N has become occluded) can be described as 
follows: 

Frame k: Tk(NV) → Rk(NV) → Fk(NV): I 
Frame k+1: Tk+1(NI) → Fk+1(NI): I 

If a previously occluded node X has come into view, hereby occluding another formerly 
visible node Y, it takes even two frames (without Assumed Visibility) to adapt the 
classification of Y: In the first frame, Y is tested before X (more precisely: the visible nodes of 
its subtree) is rendered, thus Y is found visible again. In the second frame, the test for Y is 
issued after X has been rendered and consequently proves it invisible, yet as explained above, 
this happens after Y has been rendered once more: 

Frame k: Tk(XI) → Tk(YV) → Rk(YV) → Fk(XI): V → Rk(XV) → Fk(YV): V 

Frame k+1: Tk+1(XV) → Rk+1(XV) → Tk+1(YV) → Rk+1(YV) → Fk+1(XV): V → Fk+1(YV): I 
Frame k+2: Tk+2(XV) → Rk+2(XV) → Tk+2(YI) → Fk+2(XV): V → Fk+2(YI): I 

4.4.2.2 Updating Classifications and the Cut 
After issuing an occlusion query for a node, this node is enqueued in order to delay fetching 
its result until this result is actually present (note that nodes are tested in order to verify their 
classification, not to constrain the time of their rendering). In the best case, all results confirm 
the classifications of the respective nodes, thus neither the nodes themselves, nor the cut need 
any updating. However, the vanishing of a previously visible node – apart from updating its 
classification – can entail a pull up, just like the appearance of a previously invisible node 
requires a pull down (if this node is not a leaf anyway). As reasoned in chapter 4.3.2, 
performing a pull down means traversing the according subtree with the basic hierarchical 
approach, which is conceptually a traversal within the traversal and must of course be 
appropriately interwoven with the rest of the work. 

As explained in chapter 4.3.1, the basic hierarchical approach means traversing a tree in a 
front-to-back fashion, just like the HTC-based approach does it. However, the difference is 
that an occlusion query is issued for each node encountered throughout the traversal and the 
work can only be continued after the result is present – hence the full stall is incurred each 
time. 

4.4.3 Implementation Issues 
While the concepts of the HTC-based approach were described in the previous chapter, this 
section briefly covers some implementation related aspects: 



HIERARCHICAL OCCLUSION TESTS 

- 80 - 

• Doing the front-to-back kd-tree traversal. 
• Performing pull ups. 
• Performing pull downs. 
• Realizing assumed visibility. 
• Managing the OpenGL state for testing and rendering. 

Let us begin with the kd-tree traversal: As explained in chapter 4.3.1, a front-to-back traversal 
can be achieved by always starting with the part which lies on the same side of the split plane 
as the viewpoint. Dealing with all nodes in the correct order can be ensured by maintaining a 
stack for the storage of nodes which are yet to be traversed. This stack initially contains 
merely the root node. Each time the foremost node is removed, and only if this node does not 
belong to the cut, it pushes its children in reverse order onto the stack (of course this only 
applies to children passing view-frustum culling). This way, the whole subtree of the closer 
child will be traversed before the other child gets processed. 

Pull ups are basically done quite the same way as with the OG-based approach (see 
chapters 4.3.1 and 4.3.2): Each node encountered throughout the stack-based kd-tree traversal 
is assumed to be part of the cut the next frame (this implies that we assume invisibility too). 
On the other hand, every visible leaf informs all of its parents up to the root that they are 
visible as well and can therefore not belong to the cut. As a consequence, if no direct or 
indirect child is proven visible for an arbitrary internal node, this node remains classified as 
invisible and thus stays within the cut until the next frame where it is handled accordingly. 

As mentioned before, performing a pull down for an internal node requires a traversal 
using the basic hierarchical approach. Although the rest of the HTC-based approach does not 
constrain nodes by the progress of other nodes, doing so is inevitable in the case of the basic 
hierarchical approach in order to avoid losing too much occlusion within the subtree itself 
(see section 4.3.2). This traversal within the traversal is implemented as follows: A stack is 
maintained for each pull down traversal the same way as for the overall traversal (described in 
two paragraphs above), where the topmost node is occlusion tested and enqueued just like any 
other tested node. If this test indicates invisibility, the node is popped off the stack without 
replacement; otherwise, its children are pushed onto the stack in reverse order of their 
distance. The work is continued by issuing an occlusion query for that node of the stack which 
is topmost then. Unlike the overall traversal, the stack is not modelled as an independent data 
structure, but each node contains a pointer to the node below in the stack (if a node is not part 
of a stack – which is the case for most nodes, as this pointer is only used for pull downs – or if 
it is the bottommost element, this pointer is null). Summarizing, an own stack is maintained 
for each traversal (one overall traversal and several pull downs), but the queue for outstanding 
occlusion-test results is the same throughout the whole algorithm. 

The improvements of Assumed Visibility (chapter 3.4.1.1) and the visibility threshold 
(chapter 3.4.2.1) are applied in the same manner as within the OG-based approaches. Unlike 
the latter enhancement, incorporating Assumed Visibility requires minor modifications: As 
reasoned above, AABBs are used as geometry for the NV queries instead of SSBBs. While 
this means no great difference for the code of the testing itself, it involves a revision of the 
formula we evaluate for computing the number of frames an object is assumed to stay visible: 
Since we don’t have any screen-space projection, we lack the information how many pixels 
are potentially covered by the geometry – hence we can not compute the percentage how 
much of an object was found to be visible. Generally speaking, this percentage must be 
approximated one way or the other. A reasonable way would be to estimate the area of the 
screen space projection (an according formula can for instance be found in [Coor96]). The 
alternative used for the implementation to this thesis compares the number of visible pixels, 
which is the result of the NV query, to the overall number of pixels of the output device. A 
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certain percentage PV is presumed to indicate full visibility. Assuming for instance a 
resolution of 640 x 640 and a PV of 2 (which has been found a reasonable value in practice), 
test results of 8192 visible pixels upwards are considered fully visible. Thus if for instance 
3000 pixels pass an occlusion query, a visibility of 36,6% is presumed. Apart from that, the 
number of frames without test are still linearly interpolated as shown in chapter 3.4.1.1. 

Another topic is ensuring the correct OpenGL state without unnecessarily switching back 
and forth between the rendering and testing modes. In the traversal of the OG, NV queries and 
renderings were done in an alternating fashion. In the HTC-based approach, we can’t predict 
in which order tests and renderings will occur. This problem was tackled by switching the 
state lazily: Every time that a certain state is required, we check if this state isn’t already set 
anyway. If it is not, it is changed accordingly. 

 Finally, listing 4.2 shows the HTC-based approach in C-like pseudo code. 
ClassifyParentsAsVisible(N) is part of the pull down: It sets all parents of the node 
N (up to the root) as visible, thereby removing them from the cut of the subsequent frame. 

Listing 4.2: The Efficient Hierarchical Temporal-Coherence Based Approach: 

//---- initialisation 
Stack.Clear(); Queue.Clear(); Stack.Push(Root); 

while (NOT Stack.Empty()) OR (NOT Queue.Empty()) 
{ 

  //---- part one: updating cut and classification 
  while (NOT Queue.Empty()) AND 
        ((TestAvailable(Queue.Front())) OR 
        (Stack.Empty())) 
  { 
    N = Queue.Dequeue(); 

    if (VisiblePixels(N) > VisibilityThreshold) 
    { 
      ClassifyParentsAsVisible(N); 

      if (IsLeaf(N)) 
      { 
        Render(N); 

        ComputeVisibleFrames(N); // Assumed Visibility 
      } 

      else 
      { 
        // pull down 
        RemoveFromCut(N); 
        AddToCut(N->Left); AddToCut(N->Right); 

        if (InViewFrustum(CloserChild(N))) 
          PullDownStack(N).Push(CloserChild(N)); 

        if (InViewFrustum(DistantChild(N))) 
          PullDownStack(N).Push(DistantChild(N)); 
      } 
    } 
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    if (NOT PullDownStack(N).Empty)  
    { 
      M = PullDownStack(N).Pop(); 

      NVTest(M); Queue.Enqueue(M);  
    } 
  } 

  //---- part two: kd-tree traversal 
  if (NOT Stack.Empty()) 
  { 
    N = Stack.Pop(); 

    if (IsWithinCut(N)) OR (IsLeaf(N)) 
    { 
      if (NOT Visible(N)) OR (NOT VisibleFrames(N) > 0) 
      { 
        NVTest(N); Queue.Enqueue(N); 
      } 

      if (VisibleFrames(N) > 0) 
      { 
        DecrementVisFrames(N); SetVisible(N); 
      } 

      if (Visible(N)) AND (IsLeaf(N)) 
      { 
        Render(N); ClassifyParentsAsVisible(N); 
      } 
    } 

    else 
    { 
      // pull up 
      AddToCut(N); 

      if (InViewFrustum(DistantChild(N)) 
        Stack.Push(DistantChild(N)); 

      if (InViewFrustum(CloserChild(N)) 
        Stack.Push(CloserChild(N));  
    } 
  } 
} 

4.4.4 Results and Discussion 
In this section, the HTC-based approach has been introduced as another possibility to use the 
NV_occlusion_query extension in a hierarchical setting exploiting both spatial (by the 
hierarchy) and temporal (by the cut and Assumed Visibility) coherence. As before, all 
measurements have been taken using the same five walkthroughs on the same system as 
described in chapter 3.5. 

This section basically confines itself to presenting the average frame times of the 
walkthroughs, since the figures of chapter 4.3.3 concerning the parameters for the 
construction of the kd-tree apply to this approach as well and an examination of the effect of 
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Assumed Visibility and the visibility threshold can be found in chapter 3.5. For a detailed 
comparison of other aspects than the performance itself (e.g., number of visible scene-graph 
objects, number of NV queries or average CPU-stalls) and the exact performance plots refer 
to the comparison of all approaches in the next chapter. 
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Fig. 4.13: Comparison of the average performance of all introduced approaches. Note that the times 

of the teapot walkthrough have been divided by 10 in order make all values lie 
approximately within the same range. 

The most striking result is that the HTC-based approach clearly outperforms both hierarchical 
and non-hierarchical OG-based approach – regardless of the scene. This insight is even more 
pleasing, as this approach is much simpler than the others and thus of a higher practical 
relevance. Obviously, this approach seems to be an appropriate way to ensure a constant 
supply of meaningful work to the GPU while maintaining a reasonable accuracy in the 
classification – in spite of the fact that the HTC-based approach does without strict 
constraints, but classifies each node independently. 

The advantages of the HTC-approach are without doubt the satisfactory performance and 
its comparative simplicity. However, one might suppose that it suffers from a tendency to 
classify even more objects as visible than the hierarchical OG-based approach. Maybe 
somewhat surprisingly, this is not the case (see the comparison of chapter 5 for exact 
numbers) – on the contrary: Apart from the absence of any CPU-overhead combined with a 
reduction of CPU-stalls, the main reason for the speed-ups is the less conservative 
approximation of the geometry used for the NV queries (AABBs instead of SSBBs), which 
prevents a lot of false classifications. This way, even the teapot scene, which is very sensitive 
to the correctness of the classification, shows remarkable performance gains, because less 
teapots were rendered than with the non-hierarchical OG-based approach (let alone the 
hierarchical version). 
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Anticipating chapter 6.2, one might ask if any further enhancements to the HTC-based 
approach are still imaginable. One idea could be to combine entirely visible subtrees as well 
(so far, this is only done for entirely invisible subtrees). However, it turns out that this is 
practically impossible since generally speaking, even the full visibility of a common AABB 
doesn’t suffice to rule out that some leaves may still be occluded due to self-occlusion within 
the subtree. Besides the problem of an abundance of small visible leaves causing many NV 
queries is already tackled by the introduction of Assumed Visibility and the effort for the 
traversal as such is likely to be negligible. Another idea is to switch to rendering without 
occlusion culling when almost no occlusion is encountered any more, which would probably 
increase performance even more for many scenes; the challenge is to find out when occlusion 
culling should be turned on again. 

Summarizing, the HTC-based approach shows the highest performance of all algorithms 
presented in this master thesis and can therefore be seen as its main contribution. It is both 
generally applicable and still relatively simple. Besides, due to the tighter approximations, it 
tends to classify less objects as visible than the hierarchical OG-based approach, for example. 
As far as all results show, it has no serious drawback that wouldn’t be inherent to any 
occlusion culling algorithm (e.g. that a certain overhead is inevitable). Eventually, it might 
turn out that it is less suitable for incorporating dynamic objects, since this requires inserting 
them into the kd-tree each frame anew which might become costly if done very often. 
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5 Discussion and Comparison of 
Approaches 
In this master thesis, three different approaches for doing occlusion culling with the 
NV_occlusion_query OpenGL extension have been described and discussed. Two of them are 
based on the non-hierarchical and hierarchical, traversal of a directed acyclic graph – the 
occlusion graph (OG) -, while the third one depends solely on temporal coherence in a 
hierarchical setting. 

Each approach has already been thoroughly discussed more or less on its own (some 
comparison between various approaches has been necessary already in the previous chapters, 
though). The purpose of this section is to provide an overview about all approaches, their 
performance and other important aspects. 

To begin with, let us specify what the various approaches actually refer to: 
• No occlusion culling: Simply traversing the original scene-graph and rendering all 

objects within the view-frustum. Note that this is the only actually conservative 
approach in this comparison: While all other test employ a visibility threshold, this is 
obviously impossible in this case, since no occlusion queries are issued. 

• Stop-and-wait approach: Sorting all objects within the view-frustum in a strictly front-
to-back fashion (using a quick-sort) and testing them this way. AABBs are used for 
testing. All objects where at least 50 pixel pass the occlusion query (TV = 50) are 
considered visible (and thus rendered),. This algorithm is also referred to as Exact 
Visibility. 

• Non-hierarchical OG-based approach: The approach presented in chapter 3 together 
with all improvements, SSBBs are used for testing. The parameters are set as follows: 
Assumed visibility VFmax = 10, VFmin = 1, TV = 50. 

• Hierarchical OG-based approach: The approach presented in chapter 4.3 together 
with all improvements. The parameters for constructing the kd-tree are set as follows: 
TKdO = 3, TKdS = 1/12000, TKdT = 2000 with the heuristic q = Nl * Sl + Nr * Sr. The 
parameters of the optimisations are set to the following values: VFmax = 10, VFmin = 1, 
TV = 50. 

• HTC-based approach: The approach presented in chapter 4.4. The kd-tree was 
constructed with these settings: TKdO = 3, TKdS = 1/12000, TKdT = 2000 with the 
heuristic q = Nl * Sl + Nr * Sr. The parameters of the optimisations are set to the 
following values: VFmax = 10, VFmin = 1, TV = 50. AABBs are used for testing. 

• Optimal (precalculated visibility): This is not an actual approach, but refers to the 
time it would take to render all visible objects (assuming a visibility threshold of 50 
again) if this visibility was known without any computations. 

The measurements refer to the duration of the whole rendering – thus until all committed 
work has entirely been handled by the GPU (this can be ensured by calling glFinish()). 

The figures 5.1 to 5.5 depict the exact plots of the frame times for all approaches and all 
test scenes. 
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Fig. 5.1: Comparison of the frame times of the walkthrough of the teapot scene. 

0

5

10

15

20

25

0 500 1000 1500 2000 2500
Framenumber

Fr
am

e 
Ti

m
e 

(m
s)

No Occlusion Culling

Stop-and-Wait Approach

Non-Hierarchical OG-Based
Approach
Hierarchical OG-Based
Approach
HTC-Based Approach

Optimal (Precalculated
Visibility)

 

Fig. 5.2: Comparison of the frame times of the walkthrough of the simple city model. 



DISCUSSION AND COMPARISON OF APPROACHES 

- 87 - 

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500
Framenumber

Fr
am

e 
Ti

m
e 

(m
s)

No Occlusion Culling

Stop-and-Wait Approach

Non-Hierarchical OG-Based
Approach
Hierarchical OG-Based
Approach
HTC-Based Approach

Optimal (Precalculated
Visibility)

 

Fig. 5.3: Comparison of the frame times of the walkthrough of the complex city model. 
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Fig. 5.4: Comparison of the frame times of the city walkthrough when no occlusion is present. 
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Fig. 5.5: Comparison of the frame times of the walkthrough of the terrain scene. 

A few facts should briefly be pointed out: 
• The performance of the various approaches differs very much from scene to scene and 

varies strongly even within one walkthrough. The figures highlight pretty clearly that 
doing no occlusion culling at all can be a good idea for some scenes while it is 
unbearable for others. 

• As reasoned in the description of the walkthroughs in chapter 3.5, a few figures reveal 
strong peaks (especially in the city walkthroughs when lifting the camera above the 
height of the roofs). Obviously, some approaches are more susceptible to peaks while 
performing better in the ‘usual’ case (particularly the hierarchical OG-based approach) 
than others. One has to assess for each application anew if such peaks are tolerable. 

• The two main characteristics of a scene that determine the performance of the various 
approaches are the average amount of occlusion and the average complexity of an 
object. If both (and especially the latter) are high, even the stop-and-wait approach can 
yield better results than the more sophisticated OG-based approaches due to the more 
precise classification. 

• The HTC-based approach performs nearly always better than the other approaches and 
shows less distinct peaks than the OG-based approaches. Sometimes it is even close to 
the optimal time. This confirms the assessment that it is actually a very reasonable way 
to do occlusion culling with hardware occlusion queries. 

In the following, some other aspects apart from the performance itself are compared. It must 
be emphasized once more that many characteristics are not inherent for a specific approach, 
but are rather valid only for the very parameters used for these tests. Furthermore, it must be 
stressed that the concrete values to which the parameters were set are by no means claimed to 
be optimal in all cases, but turned out to be a satisfactory compromise for all test scenes with 
respect to performance. 
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Since the teapot scene differs significantly from all other scenes concerning its 
complexity, the values had to be divided by a scale factor in order to make all results lie 
approximately within the same range (as it has already be done in various figures up till now). 
Otherwise, the differences within the other scenes would have been hardly perceptible. 
However, this has no impact on the correctness of the tendencies for the teapot scene. 
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Fig. 5.6: Comparison of the number of scene-graph objects classified as visible (and thus rendered) 
by the various approaches. The values of the teapot scene were divided by 5. 

Fig. 5.6 illustrates how many objects are on average classified as visible with the various 
approaches: 

• Hardly surprising, the stop-and-wait approach (= exact classification) usually yields the 
most exact classification, since it issues the tests on a per-object basis and loses no 
occlusion. Note however, that the number is still an over-estimation as the geometry 
itself is approximated by AABBs. 

• The non-hierarchical OG-based approach is in most cases just slightly worse than the 
exact classification. The difference originates from the application of Assumed Visibility 
and the more conservative approximations by SSBBs instead of AABBs. 

• The hierarchical OG-based approach is worst in all test scenes. In addition to the 
application of Assumed Visibility and the approximation by SSBBs, the coarser 
subdivision (tests are not done on a per-object basis any more) increases the number of 
visible objects considerably. Besides, due to the on average larger SSBBs, the effect of 
the visibility threshold is somewhat diminished. 

• The results of the HTC-based approach are hard to generalize: On one hand, it suffers 
from the same coarse subdivision as the hierarchical OG-based approach. Moreover, it 
loses a little bit of occlusion in cases where previously visible nodes have become 
occluded. On the other hand, the application of AABBs as testing geometry has turned 
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out to have a remarkably positive effect so that its classifications are in general more 
precise than the hierarchical OG-based approach. 

The results of Fig. 5.7 are tightly related to those of Fig. 5.6 (basically it boils down to 
multiplying them with the average number of triangles per object) and thus need no separate 
discussion but are provided for the sake of completeness. 
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Fig. 5.7: Comparison of the average number of triangles rendered with the various approaches. The 
values of the teapot scene were divided by 100. 

Fig. 5.8 illustrates that the number of occlusion queries has successfully been reduced by both 
OG-based approaches as well as the HTC-based approach. This was achieved on one hand by 
the application of Early Rejection and Assumed Visibility and on the other hand by 
incorporating a hierarchy which combines several objects and manages to classify vast parts 
as invisible with only few tests. 
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Fig. 5.8 Comparison of the average number of occlusion queries per frame for the various 
approaches. The values of the teapot scene were divided by 10. 

Finally, Fig.5.9 compares the average time wasted by CPU-stalls. This duration can be 
determined by measuring the execution time of the API call that fetches a result: Since the 
overhead for requesting an available result is negligible, this duration reflects the time of the 
stall quite precisely.  
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Fig. 5.9: Comparison of the average time per frame spent waiting for results of occlusion queries for 
the various approaches. The values of the teapot scene were divided by 10. 

As expected, much CPU-time is lost with the stop-and-wait approach. The OG-based 
approaches usually take less than half the time (which one is actually better differs from scene 
to scene) and the HTC-based approach manages to avoid them almost completely. This aspect 
is somewhat remarkable indeed: Although the OG fulfills its purpose to increase the 
parallelism between CPU and GPU (at least once it has been created), doing entirely without 
any constraints is still better. As reasoned in previous chapters, the key is both being able to 
query if a result is present without incurring any stall and having enough alternative work for 
the CPU if no result is available at the moment. This paradigm is also applied by the OG-
based approaches, yet obviously the tight constraints often foil an alternative supplement of 
work. 

The conclusion of all results is that the HTC-based approach is most suitable for the vast 
majority of cases, yet the question remains whether the OG-based approaches have their right 
to exist as well. Apart from being a subject of research that has served well to gain many 
insights and thus being an important step towards the HTC-based approach, the hierarchical 
version is actually probably useless due to its tendency to classify more objects as visible than 
any other approach and the considerable effort for a proper implementation. The situation is a 
little bit different with the non-hierarchical version: Although it is still more complex than the 
HTC-based approach and definitely has some flaws – the significant CPU overhead most 
likely being the worst – it usually yields a more precise classification than the HTC-based 
approach as it operates on a per-object basis (instead of a per-node basis of a hierarchy). 
Therefore, if the geometry of all objects is really extremely complex, which does not only 
mean many triangles but also many textures and possibly expensive effects like pixel shaders, 
the more accurate classification could outweigh the all additional costs so that it would 
actually exceed the HTC-based approach. Since the geometry tends to grow more and more 
complex while the CPUs become constantly faster, this aspect is likely to become even more 
important in the future. 
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Still one might wonder, if doing occlusion culling with either the non-hierarchical OG-
based approach or – more likely – the HTC-based approach will always pay off. The answer 
is no: 

• Scenes with no occlusion at all are still slowed down. At first sight, this might 
contradict the results with the HTC-based approach for the according test-scene, but as 
mentioned in section 4.3.3, these gains originate from the visibility threshold and the 
hierarchical traversal, not from the occlusion culling itself: The latter is also possible 
without the HTC-approach and the visibility threshold trades off image quality for speed 
– if one is not willing to tolerate any visibility errors, these gains must not be taken into 
account. 

• For static scenes like the interior of buildings, calculating visibility offline (e.g. using 
PVS) is probably still the better choice – at least for doing occlusion culling at a coarse 
level, yet refining the result by the HTC-based approach can be a reasonable option. 

• All approaches presented in this master thesis are definitely not adept for a few non-
adjacent, moving objects like the characters in a computer game. In this case, simply 
issuing an independent test for each character is definitely more suitable. 

Finally, it must be pointed out that neither the HTC-based approach, nor the non-hierarchical 
OG-based approach can guarantee a fixed frame rate. At least the HTC-based approach will in 
many cases increase the frame rate compared to rendering without occlusion culling, but to 
which extent depends on many factors and can not be determined by the user. If such a 
constant frame rate is in fact required, it only remains to compromise image quality with 
speed. This can be achieved for instance by adapting the visibility threshold TV with respect to 
the current performance instead of using a static value or by using LOD (see chapter 2.4). 
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6 Conclusions 
The driving motivation for this research was to sustain high frame rates in order to convey the 
impression of fluid motion in real-time rendering by relieving the GPU from drawing objects 
being occluded by others. The goal was to develop an approach for solving the visibility 
problem with the following properties: The approach must be based on the application of 
hardware occlusion queries and should be fast by maximizing the parallelism between CPU 
and GPU, generally applicable as well as realizable with a sensible effort. This final chapter 
presents the most important insights and proposes some ideas how the work could be further 
extended and improved. 

6.1 Conclusion 
Computing visibility for an arbitrary three-dimensional environment is a non-trivial problem. 
It is a big challenge to design a general algorithm that yields good results under all possible 
circumstances. Many purely CPU-based approaches have been presented so far, whereas there 
has been little work on solutions which are optimised for the use of specialized hardware 
extensions. The main difference is the requirement to shift as much work from the CPU to the 
GPU as possible while maintaining parallel execution and still avoiding a too conservative 
estimation of the set of visible objects. 

Due to its major improvements, which consist of the ability to deal with more tests 
concurrently, to ask for the availability of results without incurring a CPU-stall and the more 
detailed information about the actual amount of visibility, the NV_occlusion_query extension 
is a very reasonable utility that permits the design of algorithms which are superior to 
approaches using the more limited HP_occlusion_test extension. However, an important 
insight is that even when not considering potential stalls, occlusion queries are inherently 
expensive and should therefore be minimized. The duration of stalls, on the other hand, is 
impossible to predict and the overall amount of wasted CPU-time does not grow with the 
number of issued occlusion queries in a linear fashion. 

Tackling this problem by querying the accessibility of results can only be a solution when 
an alternative supplement of work for the CPU exists. In this context, the amount of 
constraints given by the introduction of an occlusion graph has turned out to be counter-
productive, as it often prevents the availability of further work. 

In order to obtain satisfactory results, every kind of coherence must be exploited as much 
as possible. However, while this applies to the majority of scenes, in some cases the absence 
of coherence can actually deteriorate performance when coherence is assumed. The extent to 
which temporal and spatial coherence of a scene is supposed to occur is determined by 
various parameters which have – in addition to the algorithm itself – a tremendous impact on 
the overall behaviour and performance. When optimising them for specific scenes, one 
usually faces tradeoffs. For instance, a reduction of occlusion queries is normally 
compromised with a less precise classification of visibility. 

An important aspect is the insight that an occlusion query only has a chance to pay off in 
cases where the original geometry exceeds a certain complexity. The decision if a further 
refinement is desirable should be based on this concern. Although for the sake of simplicity 
only the triangle count of an object has been considered to determine its complexity, the costs 
of rendering also comprise its textures (which could squander precious bandwidth and might 
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interfere with caching strategies) and eventually expensive computations like pixel shaders to 
achieve realistic shading. Taking into account these factors as well could lead to further 
increase in the efficiency. A recent proposal for rendering time estimations can be found in 
[Wimm03]. 

The most important contribution of this thesis is the hierarchical temporal-coherence 
based approach (HTC-based approach). Its design is based on insights gained with both OG-
based approaches and takes into consideration most aspects mentioned in this conclusion. The 
HTC-based approach has been proven to outperform any other tested algorithm for the 
majority of scenes. It manages to avoid CPU-stalls almost entirely, it does not show any 
significant CPU-overhead, it does not suffer from a remarkable complexity, and it yields an 
acceptably accurate visibility classification. However, in rare cases, the usually tighter set of 
potentially visible objects of the non-hierarchical OG-approach could outweigh the additional 
costs, and for scenes without noteworthy occlusion, the best performance is sometimes still 
achieved when doing no occlusion culling at all. 

6.2 Further Ideas 
As reasoned above, the HTC-based approach already offers an adept solution to the problem 
of occlusion culling with hardware occlusion queries in many cases. In order to increase its 
generality even further, some enhancements are still imaginable. 

The probably most urgent modification for many applications is the incorporation of 
dynamic objects. These objects should be free to be added or removed as desired and are not 
bound to any fixed position, orientation or size. A typical example are the characters of a 
computer game, but generally speaking all items that are possibly subject to any change fall 
into this category. It seems reasonable to explicitly distinguish between static and dynamic 
geometry, as dealing with the latter tends to involve more effort. As a proposal, the spatial 
hierarchy could be constructed out of the entire static geometry, while all dynamic objects are 
inserted each frame anew without affecting the structure of the spatial hierarchy itself, and 
removed after completing the traversal. Respective research would have to take into account 
issues like the validity of AABBs (along with a quick computation and potential caching 
strategies), examinations about the applicability of the formula used for temporal coherence, 
as well as a possibly more accurate visibility classification for dynamic objects (on average, 
dynamic objects are modeled in more detail resulting in a higher complexity). If the number 
of dynamic objects becomes overwhelming, even handling them in a completely separate way 
might pay off (see [Ratc01]). Respective algorithms could be performed subsequent to the 
actual HTC-based algorithm for the static geometry. 

Further ideas concern the ability of the algorithm to adapt to the current circumstances in 
an even more distinct way: Especially the formula for computing VF, the number of frames an 
object is assumed to stay visible, could yield more precise results by incorporating further 
aspects like the current speed of the observer, both the viewing direction and the direction of 
movement as well as maintaining a small history about the recent development of visibility 
for each object. As always, care must be taken that the additional computational costs do not 
exceed the resulting benefits. 

As already mentioned, making the visibility threshold TV dependent on the past few frame 
times instead of using a fixed value could help to sustain a certain frame rate by 
compromising image quality with speed. Methods of control engineering like using a 
hysteresis must be employed in order to avoid constant strong overshooting. 
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Finally, within some areas of a scene, doing no occlusion culling at all might be the best 
idea. Therefore the algorithm could be extended in a way that permits to disable occlusion 
culling automatically if the number of occludees drops below a certain threshold. While being 
switched off, a few stochastically chosen objects could still be tested to decide when 
occlusion culling should be turned on again. 
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Appendix A – Implementation Details 

Pre-Allocating Memory 
Throughout the implementation to this master thesis, several data structures support both all 
kinds of traversals and – in the OG-based approaches – the creation of the OG. Common data 
structures have been used like for instance heaps, queues, or hashtables, which make intensive 
use of dynamic memory – mostly for allocating and freeing single elements of lists 
comprising some kind of content and the pointer to another element. Using new and delete 
each time would slow down execution dramatically, since both operators are quite complex 
functions after all. The solution is to pre-allocate the memory. This means to allocate the 
memory once and reuse it each frame without returning it to the operating system. This 
strategy can either be realized by knowing the exact number of needed elements (or more 
precisely: knowing an upper boundary), or – more flexibly – by encapsulating the allocations 
as a class implementing a pool for a specific type that permits dynamic growth. Instead of 
calling the ordinary new operator, something like pool.new() must be called to obtain a 
valid pointer. When all elements of the pool are currently in use, it automatically increases its 
size by allocating a certain number of further elements. At the beginning or at the end of a 
frame, the pool must be reset which clears an internal counter so that further memory request 
would return the same pointers as previous requests. Summarizing, memory pre-allocation 
proved to be an appropriate way to enhance performance without notably complicating the 
implementation. 

Maintaining Data Structures in Addition to the Scene 
Graph 
Within all approaches presented in this master thesis, the scene has been modelled by using 
both a scene graph as well as a – hierarchical or non-hierarchical – other data structure. The 
scene graph was not sufficient on its own for the following reasons: 

• A traversal took much too long for our purpose. 
• Objects were not uniquely identifiable. 
• Other spatial data structures had to be employed for acceleration purposes. 

The first point meant quite a tough problem at first: Within complex scenes, a complete 
traversal took sometimes even longer than the time available for the whole frame (about 16ms 
when requesting 60fps). The exact duration varied very much depending on the number of 
objects that could be culled away on a higher level by view-frustum culling, yet generally 
speaking, another solution had to be found – especially for the OG-based approaches, where 
all objects must be known before the creation of the OG can be started. 

The second point refers to the fact, that nodes can be referenced by multiple parents (as 
described in section 2.3). This is problematic, when one has to store additional data for each 
instance (meaning appearances on the screen), in contrast to each node. Since the pointer 
itself is not sufficient, techniques must be applied where a key is computed in connection with 
a hash value derived from the transformation matrix, yet this is an additional effort that 
becomes costly when done very often (besides it is clumsy). 
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Furthermore, scene graphs are a convenient way to store the contents of the scene, but 
they are by no means the most appropriate data structure with respect to acceleration. 
Therefore, it is common practice to employ a scene graph for the storage of the actual scene 
description, but to make use of other spatial data structures in order to speed up rendering. 
The latter do not replace the scene graph entirely, but reference single nodes within. While the 
geometry and all drawing attributes stay within the scene graph, all data related to 
acceleration (AABBs, previous visibility classification, etc.) is stored within the supporting 
spatial data structure – and this can be done for each visual instance, which renders elaborate 
hashing techniques unnecessary. The coexistence of a scene graph and another data structure 
(a list, but it could be any other data structure as well) is illustrated in Fig. A.1: Note that 
single scene-graph nodes can get referenced by multiple list elements. 

Root

Group

Transform

GroupGroup

Transform

Scene graph
List

 

Fig. A.1: The scene graph is supported by a list referencing nodes. Boxes stand for group nodes in 
some form whereas circles represent leaves (e.g. actual geometry, lights,…). 

Concerning the implementation, the scene graph is traversed once when a new scene has been 
loaded, gathering all relevant instances together with their transformation matrices, and this 
data is used to construct the supporting data structure (which is a kd-tree for the hierarchical 
approaches). However, doing so is not for free, for subsequent modifications of the scene 
graph are problematic: These scene-graph nodes and their sub-graphs being referenced by the 
other data structure still get traversed as usual, when they are about to be rendered, so 
subsequent changes automatically take effect. However, altering any super ordinate 
transformation can invalidate AABBs which must be cached for speed reasons (calculating 
the AABBs for all objects each frame is no option). Therefore, the system would need to 
detect such modifications in order to selectively update the affected AABBs. Moreover, it 
would also have to be noticed somehow when new objects are added or existing ones get 
removed. 

One possibility to address these issues might be to distinguish between static geometry 
which is assumed to stay where it is and dynamic geometry which would have to be checked 
for changes at each frame – this approach is pursued by some commercial rendering engines. 
In this case, a spatial hierarchy might comprise static geometry only whereas the dynamic 
objects are handled separately in order to avoid costly updates and both sets are merged later 
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in the frame. Dealing with an increasing number of dynamic objects requires a more elaborate 
organization for the dynamic geometry than a simple list as well: [Ratc01] presents an 
efficient way to maintain a hierarchy for objects in motion. However, it should be emphasized 
that these issues have not been considered by the implementation in any form. 
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