
Strategies for Interactive Exploration of 3D Flow
Using Evenly-Spaced Illuminated Streamlines

Oliver Mattausch∗, Thomas Theußl∗, Helwig Hauser†, and Meister Eduard Gröller∗

∗Institute of Computer Graphics and Algorithms
Vienna University of Technology, Austria
†VRVis Research Center, Vienna, Austria

Abstract

This paper presents several strategies to interactively ex-
plore 3D flow. Based on a fast illuminated streamlines al-
gorithm, standard graphics hardware is sufficient to gain
interactive rendering rates. Our approach does not re-
quire the user to have any prior knowledge of flow fea-
tures. After the streamlines are computed in a short pre-
processing time, the user can interactively change appear-
ance and density of the streamlines to further explore the
flow. Most important flow features like velocity or pres-
sure not only can be mapped to all available streamline ap-
pearance properties like streamline width, material, opac-
ity, but also to streamline density. To improve spatial per-
ception of the 3D flow we apply techniques based on ani-
mation, depth cueing, and halos along a streamline if it is
crossed by another streamline in the foreground. Finally,
we make intense use of focus+context methods like magic
volumes, region of interest driven streamline placing, and
spotlights to solve the occlusion problem.

Keywords: 3D flow visualization, illuminated stream-
lines, interactive exploration, focus+context visualization

1 Introduction

Many convincing techniques for visualizing 2D flow are
available. Visualization of 3D flow, on the other hand,
is much more demanding. Several nontrivial issues have
to be dealt with, like occlusion of important flow fea-
tures, spatial perception, and orientation difficulties. Many
methods need prior knowledge of the flow to achieve rea-
sonable results, others show only details of the flow but
not the general picture.

Thus, interactive exploration of the flow field is an im-
portant feature. We present a visualization tool that makes
it possible to render an overview of the flow without hav-
ing any prior knowledge of the important flow features at
first, gaining fast insight of the flow, and then focusing on
the interesting regions in a continuous manner. We use il-

∗{matt|theussl|meister}@cg.tuwien.ac.at,
http://www.cg.tuwien.ac.at/home/

†Hauser@VRVis.at, http://www.VRVis.at/

Figure 1: Flow around a block with high and low pressure
coded as different colors and transparencies.

luminated streamlines proposed by Zöckler et al. [19] as
graphical objects representing the flow, because they pro-
vide fast rendering rates by exploiting current graphical
hardware. Illuminated streamlines as a sparse represen-
tation give a good overview of the flow. Applying the
Phong shading model for illumination to the streamlines
improves the perception of spatial orientation and depth
ordering.

The seeding strategy we chose is the evenly-spaced
streamlines algorithm by Jobard and Lefer [8]. It gives
an even distribution of streamlines and therefore produces
a good overview of the flow without the need to specify
a special seeding region. Although originally intended for
2D flow visualization, it can straightforwardly be extended
to 3D. It was further extended to a multi-resolution model
by Jobard and Lefer in 2001 [9]. For our visualization
tool, this multi-resolution approach allows smooth transi-
tions of focus+context regions and also a nearly continu-
ous mapping of flow features to streamline density.

Our contribution to 3D flow visualization is a frame-
work which provides:

• an automatic overview of the whole 3D flow without
user input for exploration purposes with possibilities
for subsequent analysis of the flow

• full interactivity after a few seconds of preprocessing
• flexible streamline appearance modifications for ad-

ditional scalar data and better spatial perception
• interactive halos to greatly improve depth perception

of the streamlines
• mapping of scalar values to streamline density as an

automatic focusing strategy
• spotlights for user driven focusing

2 Related Work

In 2D, texture-based methods producing a dense represen-
tation of the flow, first introduced by van Wjik [17] with
the spot noise algorithm, have proven to be quite appeal-
ing and comprehensive. Cabral and Leedom [1] developed
LIC (Line Integral Convolution) which results in similar
images. LIC uses a white noise input texture that is con-
volved along streamlines.

Sparse representations of vector fields, on the other
hand, need a good seeding strategy for graphical primi-
tives like streamlines or streak-lines to give visually pleas-
ing results. Turk et. al [16] introduce an algorithm to pro-
duce hand drawn-style images of long evenly distributed
streamlines. Jobard and Lefer [8] get similar results in
significantly less computational time with the additional
advantage that the algorithm is straightforwardly extended
to 3D. This algorithm basically takes a separating distance
as input parameter and calculates streamlines which are at
least this separating distance apart.

Van Wijk [18] developed a framework to produce a va-
riety of different flow visualizations in 2D, like moving
particles, moving textures, or streamlines. The method is
interactive and in particular suited for unsteady flow.

Although dense texture-based methods work well in
2D, a dense representation of a 3D field suffers from se-
vere occlusion and perception problems. Interrante and
Grosch [7] combined LIC using a sparse input texture
with traditional volume rendering methods to visualize 3D
flow fields. Rezk-Salama et al. [13] tackle the occlusion
problem of volumetric LIC with interactive cutting planes.
Sabadello [14] improves 2D and 3D spot noise with depth
cueing and transparency coded velocity. Both Interrante
and Sabadello make use of color coded scalar flow proper-
ties to further enhance spatial perception. A drawback of
both methods is that they lack interactivity, an important
feature of 3D flow visualization. The method of Rezk-
Salama on the other hand is interactive but only shows the
flow on planes and does not give a complete overview.

Crawfis and Max [2] investigated special vector filters
to render a single scalar field and a vector field in the

same image, showing the relationship of a scalar field and
the flow in global climate models. The same authors ex-
tended the splatting algorithm by using texture map splats
not only to render scalar volumes but vector volumes as
well [3]. By exploiting texture hardware flow animation
is done at interactive rates. Max et al. [10] introduce flow
volumes that can be distorted in real time to render smoke.

Fuhrmann and Gröller [5] use animated dash tubes to
show flow in a virtual environment. Tools useful for the
exploration of the flow by focusing on a region of inter-
est are presented (magic lens, magic box). We extend the
magic box idea and achieve a similar level of interaction
without the need of a virtual environment in our work.
Guthe et al. [6] point out the use of animation to improve
depth perception. They introduce an algorithm for ani-
mating texture based particles along a streamline. Flow
features are mapped to particle velocity, form, and color.

Zöckler et al. [19] propose illuminated streamlines for
renderings of sparse representations of a 3D vector field.
Only line segments are used to draw the streamlines inte-
grated from the underlying vector field. Implemented en-
tirely in hardware, interactive frame rates for even a high
number of streamlines are possible. This technique makes
use of the OpenGL texture matrix function to simulate
Phong shading. We adopted the illuminated streamlines as
graphical objects for our work and made several enhance-
ments to the basic form of the streamlines. By combining
the illumination technique with projective texturing, spot-
lights can be used as light source, providing a very natural
focusing method.

Our seeding strategy is an extension to the evenly-
spaced streamlines algorithm by Jobard and Lefer [9]. It
calculates multi-resolution streamlines for a number of
separating distances beginning with the biggest separating
distance (coarsest resolution) and ending with the smallest
separating distance (most detailed resolution). This seed-
ing strategy gives a good overview in a user defined level
of detail on the one hand. On the other hand it allows
us not only to effectively implement focus+context tools
but also to map in real time scalar properties to streamline
density.

Post et al. [11] provide a comprehensive overview of
flow visualization state-of-the-art with an emphasis on
flow feature extraction.

3 Basic 3D Algorithm

The basic evenly-spaced streamlines algorithm and the
multi-resolution extension in 2D is described in detail by
Jobard and Lefer [8, 9]. Because it is essential for our
work, we shortly revise both algorithms here. Note that
for both the basic and the multi-resolution model we only
store the calculated streamlines as a list of sample points.
This not only saves memory, but we also have maximum
flexibility of controlling the appearance of the rendered
streamlines, e.g., their color, texture, opacity, the number

of actually displayed streamlines, or what portions of the
streamlines are drawn.

3.1 Evenly-spaced streamlines

First we integrate a starting streamline. The starting
streamline is placed into a streamline queue Q. We repeat
the next steps until Q is empty:

• Take a streamline out of the queue.
• Collect all possible seed points in a distance dsep from

this streamline. In 2D there are only two possibilities
per sample point, in 3D we choose them in such a
way that they are dsep apart from each other around
the streamline, i.e., six of them.

• Integrate the streamlines from these seed points and
put all valid streamlines into the queue (valid means
long enough).

For the integration of longer streamlines, another pa-
rameter ptest is introduced. This parameter lies between
0.0 and 1.0. Streamlines are integrated until they come
ptest ∗ dsep close to another streamline. Smaller values of
ptest produce longer streamlines.

3.2 Multi-resolution streamlines

Optionally, Q may be initialized with any number of
streamlines as well. In the multi-resolution model, we first
set dsep to a rather big value, achieving streamlines for a
very coarse representation of the vector field. Let us de-
note this resolution as res0. Q is now initialized with the
streamlines of res0. For a slightly smaller dsep, we ap-
ply the algorithm again, yielding the streamlines of res1.
This is repeated until we compute the most detailed res-
olution for the smallest dsep. We now have streamlines
for an arbitrary number n of different resolutions with
resi ⊆ resi+1. A streamline of a resolution resi is also a
member of any resolution resj with i ≤ j < n. Note that
streamlines of every resi still suffice the evenly-spaced
property with respect to the corresponding dsep.

We observed that a high resolution number n has the
drawback of shorter streamlines in high resolution levels,
because the new streamlines are likely to be surrounded
by lower resolution streamlines. Thus we made a slight
modification to the introduced multi-resolution algorithm:
To avoid that the streamlines become too short, we also re-
duce the second distance parameter ptest by a user-defined
amount for every new resolution level.

3.3 Illuminated streamlines

To render illuminated streamlines, one could use cylinders
to draw the streamline integral objects and light them with
a graphics library like OpenGL. Alternatively, simple line
segments as graphical primitives would reduce geometric
complexity and therefore speed up rendering considerably.

Unfortunately line segments have no distinct normal vec-
tor. Thus it is impossible to directly apply a shading model
like Phong shading for the illumination in a streamline
point p. The diffuse and specular term of the Phong equa-
tion require a normal vector:

Ip = camb + cdiff
~L · ~N + c spec

(

~V · ~R
)n

Choosing the normal vector ~N as the one that is coplanar
to the tangent vector ~T in p and the light vector ~L, ~L · ~N
can be expressed without ~N [19]:

~L · ~N =

√

1 −

(

~L · ~T
)2

(1)

~V · ~R can be rewritten without ~R in a similar way.

~V ·~R =
(

~L · ~T
) (

~V · ~T
)

−

√

1 −

(

~L · ~T
)2

√

1 −

(

~V · ~T
)2

(2)
To exploit graphics hardware for the illumination, the

texture matrix is loaded with ~L and ~V :

X = 1/2

L1 V1 0 0
L2 V2 0 0
L3 V3 0 0
1 1 0 2

Now we set ~L · ~T = 2t1 − 1 in (1) and ~V · ~T = 2t2 − 1
in (2). With t1 and t2 running from 0.0 to 1.0 in both
coordinates, the results of the equations are stored in a 2D
texture map. Next we set the texture coordinates of p to the
normalized tangent vector. Thus OpenGL calculates the
inner products of the Phong equation with the help of the
texture matrix, yielding the correct illumination color in p
as texture color. See Zöckler et al. [19] for more details.

4 Streamline Enrichment

In this section we extend the original illuminated stream-
lines algorithm [19] to achieve more expressive results
with thick streamlines, to map scalar flow features on the
streamlines, to show direction of the flow, and to enhance
the spatial perception of the streamlines.

4.1 Tapering

In 2D, tapering as proposed by Jobard and Lefer [8],
i.e., decreasing streamline width whenever streamlines ap-
proach each other, results in hand-drawn style streamlines.
In 3D, this approach is not applicable since streamlines
will generally overlap in image space. However, if the
width of the line segments is several pixels wide in im-
age space, abrupt streamline endings do not look pleasing.
By tapering the streamline endings, the streamlines look
much more like real 3D objects. See figure 2 for the dif-
ference between tapered and un-tapered streamlines.

Figure 2: Lorenz system with focus region without end tapering (left) and with end tapering (right). Note the un-pleasing
streamline endings at the focus region borders and streamline endings in general in the left image

Figure 3: Color coded velocity with a continuous transfer
function in the vicinity of the block.

4.2 Scalar flow feature mapping

The scalar flow feature map works on a per sample point
basis. For every streamline sample point, the scalar feature
s is evaluated for the point. According to some function,
the scalar value v in that point is mapped to streamline
properties, e.g., line width, color, and opacity and even
streamline density. s is one of many scalar flow features
like velocity, vorticity, pressure, acceleration, or curvature.

In our implementation, we have two different ways
to map scalar properties to streamline appearance and
streamline density. The first is a piecewise linear func-
tion, defined by three property points, where the first one
represents the streamline properties at the minimum value

Figure 4: Catalytic converter with z-orientation as three
scalar regions. Note the turbulence where the flow enters
the converter.

Figure 5: Smog over Europe, orientation in y-axis coded
with 3 scalar interval region

Figure 6: Flow around block with opacity function show-
ing direction. Position in y direction is coded as scalar
regions.

of scalar s, the second one the properties for a value v be-
tween the minimum and maximum value, the third rep-
resents the maximum scalar value property. Then the
properties are linearly interpolated between the three prop-
erty points. This type of mapping function is suitable for
smooth transitions between regions with highly different
values of a scalar s.

For the second function, the value range of scalar s
can be split up into different streamline property regions,
where every region represents an interval of scalar values.
Streamline sample points where the value of s falls into a
the scalar range interval of r receive all streamline proper-
ties of r. This function should be used in cases where we
want to emphasize small differences between scalar val-
ues, or when we wish a clear separation of regions with
different scalar values. Figure 3 shows velocity mapped
with a continuous and figure 1 pressure with a scalar in-
terval region function. Figure 4 shows a rendering with
z-orientation mapped to scalar flow feature intervals. Fig-
ure 5 shows a rendering of the smog dataset where stream-
line orientation is mapped to three scalar interval regions.

4.3 Flow direction mapping

To show direction of the 3D flow we add a cone on the
end of each streamline. Because we use only one cone
per streamline in this case, one of the main advantages
of streamlines in real-time rendering, namely the fast ren-
dering time due to the not very complicated geometry, is
still intact with the benefit of getting a clue of flow di-
rection. Alternatively, arrow-like cones can be mapped on
the streamline in periodic distances, say every n streamline
points. This still does not affect performance much if the
number of cones is low, but it has the additional advantage
of giving a hint of velocity if point distances are directly
proportional to the velocity of the flow in this region.

Figure 7: The Lorenz system with color coded depth

Alternatively, Zöckler et al. [19] present an opacity
function that produces particle like objects which also
shows flow direction (see figure 6).

4.4 Enhancing the spatial perception

Spatial perception is a major issue in 3D flow visualiza-
tion. The image often looks quite flat and lacks a 3D im-
pression if lines are used for rendering, and it is hard to tell
what is in the foreground or in the background. Interrante
et al. [7] already investigated this problem. They propose
depth cueing, animation, and streamline color as methods
to clarify the overall depth relations and present visibility
impeding halo regions that enclose each streamline. That
halo regions create gaps on the streamline crossing behind
another streamline in the foreground. This is a natural
means to show depth continuities which is often used by
artists. In this section, we discuss the integration of these
methods of enhancing depth perception in our framework.

4.4.1 Depth cueing and color-coded depth

Depth cueing is a simple, effective way to enhance the
depth impression. With OpenGL, depth cueing can eas-
ily be done with glFog. The typical depth cueing effect
is achieved if the color of glFog is the same as the back-
ground color. A color different to the background color
gives an alternative depth effect like in figure 7. Another
approach of using color to show depth is the additional
scalar mapping functionality to map position to streamline
color or material. Unlike depth cueing, the colors do not
depend on image z-distances and thus stay constant for
each streamline during rotation. This method gives a good

clue for understanding the spatial relationships in the flow.
Figure 6 shows color coded direction.

4.4.2 Interactive view-point changes

Animation helps a lot to get a 3D impression. Simply mov-
ing or rotating the vector field already serves this purpose,
This can be observed when the animation is stopped, since
the image immediately appears flat. Since all the tech-
niques presented in this paper are interactive, animation is
possible at any time and greatly improves depth percep-
tion.

4.4.3 Interactive halos

Halos are easily implemented for illuminated streamlines
using OpenGL. The depth buffer must be enabled with
glDepthFunc set to GL LESS. We first render a stream-
line, then we draw a black streamline with greater line
width exactly on the same vertex positions. Because frag-
ments with equal depth that come second are rejected, the
pixels of the black streamline are drawn only left and right
of the original streamline, acting as a black border on each
side that is always parallel to the screen from every view-
ing angle. When this border region crosses another stream-
line in the foreground, the halos appear on the background
streamline. Besides from enhancing depth impression, the
halos give a more plastic 3D look to the streamlines. This
is similar to silhouette drawing in non photo-realistic ren-
dering [12]. If streamlines are drawn semi-transparent, the
halo is drawn with the same transparency value. See fig-
ure 8 for the difference between streamlines with and with-
out halos.

5 Focusing Strategies

Occlusion is a big problem of 3D flow images. Stream-
line density and/or opacity have to be adjusted carefully
to extract the important information from the flow. There-
fore it is useful to have an overview of the flow with a
low streamline density and maybe low opacity. Interactive
tools are required to specify geometric objects which de-
fine regions, usually called magic volumes, where interest-
ing parts of the flow are drawn in great detail. Fuhrmann
and Gröller [5] use magic lenses and magic boxes for ex-
actly this purpose.

5.1 Magic volumes

We extended the magic box approach of Fuhrmann and
Gröller [5]. First we implemented and tested different fo-
cus regions: cubes, rectangular prisms, and spheres. While
cubes and spheres have only one degree of freedom, the
rectangular prism has three, allowing the user to adjust the
shape of the focus much better. Figure 9 shows a rectan-
gular prism as magic volume region.

When starting in focus+context mode, the streamline
density in the context can be reduced continuously to
any resolution smaller or equal the focus resolution. Be-
cause the streamlines are already calculated, all transfor-
mations affect only the amount of streamlines drawn on
screen and can therefore be done in real time. With the
multi-resolution streamlines, streamlines of lower resolu-
tions are always member of all higher resolutions. Thus
context streamlines are never clipped at the focus region
while preserving the proper density of evenly distributed
streamlines. Along with a proper tapering of streamline
endings as presented in section 4.1, changing the size of
the focus region results in a smooth transition which looks
like natural streamlines growing and shrinking. Not only
a smaller streamline density, but also more transparency
and/or smaller line width in the context helps to solve the
occlusion problem. In our implementation, it is possible
to adjust these parameters in real time to any percentage
of the corresponding focus parameters.

To put further emphasis on the focus region, the focus
and context can be assigned a different texture material.
Additional information is only displayed in the focus.

5.1.1 Magic volume boundary region

Another issue is the focus boundary region. A sharp
boundary region where the parameters jump from one re-
gion to another discontinuously often is not very visually
appealing, especially if the opacity or line width difference
between focus and context is high. This effect is smoothed
out by specifying a boundary region with a user-definable
transition width. If a streamline point is not directly in
the focus but falls in this transition region, its distance to
the focus is then taken to linearly interpolate line width,
opacity, and streamline density between focus and context
values [4]. Figure 10 shows a binary and a continuous fo-
cus boundary region.

5.1.2 Magic volume as a seeding region

The magic volume also has a seeding region and magni-
fication functionality. If the user has investigated all the
available details in the focus region, but wants to gain even
more insight into the flow, the focus boundaries can be
made the new field boundaries. The streamlines are then
recalculated with an even smaller dsep. In this new field,
a new magic volume can be used to further magnify the
flow.

In a second mode, magic volumes act as a seeding re-
gion where new streamlines are generated (see figure 11).
The streamlines are not allowed to be seeded outside of
the magic volume, but are allowed to grow outside of the
magic volume. For the very flexible magic rectangular
prism, some interesting seeding regions can be thought of,
like flat patches or line-like long and thin objects. This
seeding method together with a quite small dsep visualizes
where streamlines originating from the starting region go.

Figure 8: The Lorenz system without halos (left) and with halos (right).

Figure 9: Flow around block with rectangular prism as magic volume (volume shown as geometry) and color coded
pressure

Figure 10: Flow around block with sharp border magic volume (left) and smooth border magic volume (right).

Figure 11: Magic volume used as seeding region (drawn
green) in streamline calculation for the flow around block

5.2 Mapping of scalar features to
streamline density

Our scalar property mapping method is very flexible as it
can be done for any scalar feature type s and can map the
scalar values v quite freely to any streamline property. It
may be sufficient in 2D to map the scalar values to stream-
line width or streamline color. In 3D we have an occlusion
problem when the streamline density is too high, while we
might miss some details if streamline density is too low.
Favorably, regions of high interest, for example regions
with high velocity, are represented in great detail, whereas
not so interesting regions are represented with low detail,
so they do not occlude the more interesting parts of the
flow. Of course, we can map scalar values to a function of
streamline opacity. Then regions of high interest are drawn
highly opaque and everything else more transparently (see
figure 1).

A more intuitive region of interest representation than
opacity is streamline density. Regions of highest inter-
est should be represented by streamlines with the smallest
dsep, regions of lower interest with a distance dsep + ∆d.

Figure 12: Flow around a block with three interval regions
and pressure mapped to streamline density

∆d is a positive factor that is indirect proportional to the
“interest” of streamline sample points with a value v of
scalar parameter s. v may be any scalar property like ve-
locity, position, streamline orientation. v usually ranges
from the lowest to the highest value of s among the sam-
ple points of all calculated streamlines. The only exception
is streamline orientation in x,y or z direction, where the
lower and upper border are always 0 and 2π, respectively.
If, for example, regions of high velocity are interesting to
us, ∆d is 0.0 for the sample points of the flow with the
highest velocity and grows for low velocity sample points.
In a flow where regions of slow flow are more interesting,
we let ∆d grow directly proportional to the velocity. We
do streamline integration with a fairly high streamline den-
sity in a preprocessing step, and the streamlines are then
stored as sample points. As scalar functions are evaluated
per sample point, changing the streamline density in some
region is just a matter of displaying or not displaying sam-
ple points and thus an interactive operation.

Figure 13: Spotlight shining on the t-junction data set.

In the multi-resolution model explained in section 3
streamlines of lower resolution are automatically included
in all the higher resolutions, while streamlines of any res-
olution resi are evenly-spaced with respect to the sepa-
rating distance dsep

i
. Thus streamlines that grow from a

region of lower resolution into a region of higher resolu-
tion are never eliminated, because they are also a mem-
ber of the higher resolutions. To get the proper streamline
density in all parts of the flow, we just have to render all
streamline sample points that belong to the most detailed
resolution having a separating distance dsep

i
≥ dsep

n
+∆d.

If sufficiently many streamline resolutions are calculated,
almost continuous transitions of streamline density can be
done.

5.3 Spotlights

With spotlights we can light a region of the flow, while the
rest remains dark or is lit with a dimmer light. It serves a
similar purpose as the magic lens introduced before. Fig-
ure 13 shows the t-junction data set with the spotlight em-
phasizing the interesting region. However, spotlights are
superior to magic lenses as introduced by Fuhrmann and
Gröller [5]. They are really involved in 3D space, instead
of the 2D based magic lens where the only 3D connection
is the cutting plane of the lens. While the position of the
magic lens has to be adjusted when the viewpoint changes,
the spotlight still lights the same region. Spotlights also
enhance the spatial perception of the image.

We implemented the spotlight with simple projective
texturing. See Segal et al. [15] for more details. Alterna-
tively, instead of a perspective viewing frustum an orthog-
onal viewing frustum may be used to project the spotlight
texture on the streamlines. Then the light rays are parallel
and the real world equivalent would be a flashlight.

6 Results

Please refer to http://www.cg.tuwien.ac.at/
research/vis/Miscellaneous/ESIS/ for high-
resolution color images. In table 1 we present some statis-
tics to back up our claim of interactivity. These results
were produced on an Atlon 1.4GH computer with 512 MB
Ram and a GeForce 3 graphics card. We achieved 6-30
frames per second (FPS) depending on the number of ac-
tually displayed sample points and even over 100 FPS for
a low streamline resolution. Streamlines were integrated
with the second order Runge-Kutta method. The number
of resolutions had little effect on the preprocessing time
since approximately the same number of streamlines and
sample points is calculated. Halos reduced the number of
frames per second slightly since only additional line seg-
ments are drawn. Drawing of arrows for depicting flow
orientation had the largest effect on rendering time due to
the real geometry of the cones (the measured times in ta-
ble 1 correspond to one cone per streamline). Spotlights
did not affect the rendering time at all.

7 Conclusions

We presented a visualization tool to explore and analyze
3D flow in real-time. The main advantage of this tool
lies in its interactivity. Without any prior knowledge of
the flow structure, the user can learn about important flow
features within short time, then concentrate on the inter-
esting regions in detail. An important feature are the fo-
cus+context methods. Magic volumes provide a powerful
tool to investigate parts of the flow without the typical oc-
clusion problems of 3D flows, while keeping up connec-
tion to the rest of the flow and not losing the overview.
Spotlights have a long history as a tool used for focusing
in real world. Our spotlight functionality not only serves
as a focus tool, but also enhances the 3D impression of the
image. For region of interest driven focus+context speci-
fication we introduced the mapping of scalar flow features
to streamline density. Another contribution of our work
is the enrichment of the basic illuminated streamlines al-
gorithm. To make the streamlines visually more pleasing
we use tapering and introduce interactive halos to enhance
contrast and spatial perception, further we show flow di-
rection with opacity functions and arrows.

8 Acknowledgments

We thank Wim de Leeuw for the flow around a block and
smog datasets and Markus Hadwiger for the catalytic con-
verter and t-junction datasets. This work was done as part
of the FWF project AngioVis P15217 and the VRVis Re-
search Center, which is funded by an Austrian research
program called Kplus.

dsep streamlines sample pts displ. pts res. preproc. FPS halos arrows spotlights all

3% – 25% 1758 143602 76128 10 101 sec 11.8 9.5 6.9 11.8 6.3
3% 1567 160443 83112 1 135 sec 10.5 8.7 6.7 10.5 5.8
9% 141 18048 9061 1 2 sec ≥100 ≥100 ≥100 ≥100 ≥100

3% – 25% 1089 115323 78831 10 57 sec 11.8 9.5 8.4 11.8 7.2
3% 922 119847 81709 1 51 sec 11.8 9.5 8.7 11.8 7.4

4.5% – 25% 481 51134 34482 10 15 sec 29.2 22.5 18.4 29.2 16.7
4.5% 373 51301 37657 1 12 sec 29.2 22.5 20 29.2 16.7

Table 1: The first block shows results for the Lorenz system sampled on a 100× 100× 100 regular grid, the second block
for the flow around the block data set (280×518×30). The distance between streamlines (dsep) is given in percent of the
largest dimension of the data set (100% meaning only one streamline). FPS means performance without halos, arrows,
and spotlights, which are correspondingly switched on for the next three columns. The last column depicts performance
for rendering with halos, arrows, and spotlights.

References

[1] B. Cabral and L. Leedom. Imaging vector fields us-
ing line integral convolution. In Computer Graph-
ics (SIGGRAPH ’93 Proceedings), pages 263–269,
1993.

[2] R. Crawfis and N. Max. Direct volume visualization
of three-dimensional vector fields. 1992 Workshop
on Volume Visualization, pages 55–60, 1992.

[3] R. Crawfis and N. Max. Texture splats for 3D scalar
and vector field visualization. In Proceedings of
IEEE Visualization ’93, pages 261–267, 1993.

[4] H. Doleisch and H. Hauser. Smooth brushing for fo-
cus+context visualization of simulation data in 3D.
Journal of WSCG, 10(1):147–154, 2002.

[5] A. L. Fuhrmann and M. E. Gröller. Real-time tech-
niques for 3D flow visualization. In Proceedings of
IEEE Visualization ’98, pages 305–312, 1998.

[6] S. Guthe, S. Gumhold, and W. Strasser. Interactive
visualization of volumetric vector fields using tex-
ture based particles. Journal of WSCG, 10(3):33–41,
2002.

[7] V. Interrante and C. Grosch. Strategies for effectively
visualizing 3D flow with volume LIC. In Proceed-
ings of Visualization ’97, pages 421–424, 1997.

[8] B. Jobard and W. Lefer. Creating evenly-spaced
streamlines of arbitrary density. In Visualization in
Scientific Computing ’97. Proceedings of the 8. Eu-
rographics Workshop, pages 43–56, 1997.

[9] B. Jobard and W. Lefer. Multiresolution flow visu-
alization. In WSCG 2001 Conference Proceedings
(Posters), pages 33–37, 2001.

[10] N. Max, B. Becker, and R. Crawfis. Flow volumes
for interactive vector field visualization. In Proceed-
ings of IEEE Visualization ’93, pages 19–24, 1993.

[11] F. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and
H. Doleisch. Feature extraction and visualization
of flow fields. In State-of-the-Art Proceedings of
EUROGRAPHICS 2002 (EG 2002), pages 69–100,
2002.

[12] R. Raskar. Hardware support for non-photorealistic
rendering. In SIGGRAPH/Eurographics Workshop
on Graphics Hardware, pages 41–47, 2001.

[13] C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl.
Interactive exploration of volume line integral convo-
lution based on 3D-texture mapping. In Proceedings
of IEEE Visualization ’99, pages 233–240, 1999.

[14] M. Sabadello. Enhancing spot noise visualizations
of 2d and 3d vector fields. In Central European Sem-
inar on Computer Graphics Proceedings, pages 19–
29, 2002.

[15] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran,
and P. Haeberli. Fast shadows and lighting ef-
fects using texture mapping. Computer Graphics
(SIGGRAPH ’92 Proceedings), 26(2):249–252, July
1992.

[16] G. Turk and D. Banks. Image-guided streamline
placement. In Computer Graphics (SIGGRAPH ’96
Proceedings), pages 453–460, 1996.

[17] J. J. van Wijk. Spot noise-texture synthesis for data
visualization. In Computer Graphics (SIGGRAPH
’91 Proceedings), pages 309–318, July 1991.

[18] J. J. van Wijk. Image based flow visualization.
In Computer Graphics (SIGGRAPH 2002 Proceed-
ings), pages 745–754, 2002.

[19] M. Zöckler, D. Stalling, and H.-C. Hege. Interactive
visualization of 3D-vector fields using illuminated
streamlines. In Proceedings of IEEE Visualization
’96, pages 107–113, 1996.

