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Abstract
Accurate determination of the central vessel axis is a prerequisite for automated arteries diseases visualization
and quantification. In this paper we present an evaluation of different methods used to approximate the centerline
of the vessel in a phantom simulating the peripheral arteries. Six algorithms were used to determine the centerline
of a synthetic peripheral arterial vessel. They are based on: ray casting technique using thresholds and maximum
gradient-like stop criterion, pixel motion estimation between successive images called block matching, center
of gravity and shape based segmentation. The Randomized Hough Transform and ellipse fitting using Lagrange
Multiplier have been used as shape based segmentation techniques, fitting an elliptical shape to a set of points.
The synthetic data simulate the peripheral arterial tree (aorta-to-pedal). The vessel diameter changes along the
z-axis from about 0.7 to about 23 voxels. The data dimension is 256x256x768 with voxel size 0.5x0.5x0.5mm. In
this data set the centerline is known and an estimation of the error is calculated in order to determine how precise
a given method is and to classify it accordingly.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Blood Vessel]: Centerline detection, Vessel
segmentation, Medical Visualization

1. Introduction

Peripheral arterial occlusive disease (PAOD) is a manifesta-
tion of arteriosclerosis. Epidemiological and clinical studies
have shown that PAOD increases the risk of cardiovascu-
lar and cerebrovascular events and mortality [PGJ03]. CT-
angiography (CTA) has evolved into a routinely applicable
non-invasive vascular imaging technique for many vascular
territories such as the peripheral (lower extremity) arteries.
Accurate identification of the vessel centerline in CTA data
sets is highly desirable, because of its central role in ves-
sel visualization (e.g., through curved planar reformations -
CPR [KFW∗02]) and automated vessel analysis and quan-
tification.

The vessel centerline is widely used for 3D reconstruc-
tion and modelling of vessel structures. It has been used as
base of several vessel segmentation techniques [KQ00] and
as starting point for a geometric model definition of vascular
structures [BFC03].

As a general approach, the skeletonization of a vascu-
lar structure is a method widely used for centerline detec-
tion [Pui98b, Pui98a]. Several methods based on the skele-

tonization approach use thresholding and object connectivity
[NKSK93], distance field calculation [PTN97], mathematic
morphology or a thinning process based on dilation, erosion,
opening and closing operators [TKN∗95]. These approaches
have been applied in different image modalities and vascu-
lar structures. Many of them have been applied on a spe-
cific image modality (e.g., MRI and/or CTA) or in a spe-
cific part of the vessel structure, for examples, cerebrovas-
cular structures [Pui98b] or coronary arteries from biplane
angiograms [KTS88, CRC92] or aorta [WNV00]. Neverthe-
less these techniques and methods have not been applied to
the centerline detection of tubular structures on peripheral
vessels, where the level of intensity decreases from top to
bottom, from aorta to pedal (tibial and fibular arteries). On
peripheral arteries result difficult an accuracy detection of
the centerline, where the diameter can be between 2 to 4
voxels. The partial volume effect makes also correct identi-
fication of small vessels (e.g. tibial and fibular arteries) dif-
ficult.

In this work, we present the results of an accuracy evalu-
ation of six techniques used to approximate the vessel cen-
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terline in peripheral arteries. A synthetic data set where the
diameter varies from about 0.7 to about 23 voxels is used
in order to evaluate the accuracy of different methods. The
results are compared and evaluated. This paper has the fol-
lowing structure. In section 2 we describe each method we
have evaluated. In section 3 we present the evaluation and
results of the different methods applied. Finally in section 4
we present the conclusions and future work.

2. Centerline Approximation Methods

Starting from an initial path of the vessel, six different tech-
niques to approximate the vessel centerline were applied in
order to evaluate accuracy and quality. This initial path is
calculated using the vessel tracking technique developed by
Kanitsar [KWF∗01].

The vessel tracking method is used in order to find a path
with high probability inside the vessel structure. This tech-
nique is based on Dijkstra’s algorithm [Dij59], which is used
to find the shortest path from a single source vertex or node
to all other vertices in a weighted, directed graph. Initially,
the user interactively marks a start and end point. These two
seed points must be selected inside the vessel and indicate a
vessel segment. Each voxel is considered a vertex or a node
in a directed graph structure, and the connection with any
of its adjacent voxels as edges. Each edge has an associated
weight defined by the following cost function:

fC(x,y) = cstep+ fI (y)+ fG(x,y)+ fL(y) (1)

Eq. 1 defines a local cost function between a voxelx and
its adjacent voxely. The constantcstep keeps the curvature
of the path inside the vessel low. The functionfI (y) assigns
low penalty to voxels whose density values are inside the
density interval defined for a vessel (see Fig. 1), and high
penalty in other case. In Eq. 2, 3, and 4,f (y) is the density
value for the voxely. The valuesclowerBorder, clower, cupper,
andcupperBorderare used like thresholds to identify a vessel
from other tissues. Density values in the interval defined by
clowerBorder and cupperBorder are considered density values
for vessels. Furthermore, voxels whose density values are
in the interval defined byclower andcupper are considered
optimal, that means voxels in this area have high probability
that they belong to the vessel tissue. The functionfI (y) is
described graphically in Figure 1 and is defined as:

fI (y) =





∞ f (y) < clowerBorder

(clower− f (y)).ωlower clowerBorder≤ f (y) < clower

0 clower≤ f (y)≤ cupper

( f (y)−cupper).ωupper cupper < f (y)≤ cupperBorder

∞ cupperBorder< f (y)
(2)

The functionfG(x,y) is defined under the assumption that
the gradient magnitude is lower in the direction of the vessel
center than in the direction of the vessel boundary, and is
defined as:

fG(x,y) = | f (x)− f (y)| (3)

Finally, the function fL(y) is the Laplacian filter and is

used to prevent the algorithm from entering bone structure.
Values resulting from the convolution with the Laplace edge
detection operator abovecLaplaceare considered bone tissue,
in the other case are considered to be vessels. More details
about the use of this function is given in [KWF∗01].

fL(y) =
{ ∞ (L⊗ f (y)) > cLaplace

0 else
(4)

The vessel centerline is defined as a 3D curve smoothed
by B-Spline technique. The initial path generated by the ves-
sel tracking is taken as the initial approximation of the cen-
tral axis. Along this path, a perpendicular cross-section is
estimated for each point. Each center approximation tech-
nique that we present in the following sections is applied to
each perpendicular cross-section.

Figure 1: Density interval function from ([KWF∗01]).

2.1. Ray Casting

The ray casting method works by tracing several rays from
one point inside the object to outside. The idea is to trace
several rays−→r from one initial point inside the object until
a boundary is detected, as we can see in Figure 2. Wink et al.
[WNV00] and Kanitsar et al. [KWF∗01] use this technique
to approximate the vessel centerline.

This technique is applied on a 2D plane. Therefore, the
first step is to approximate a perpendicular cross-section
along the initial path. For each cross-section with an initial
point inside the vessel the new center of the vessel is esti-
mated.

Wink et al. [WNV00], use the gradient information to de-
tect the border of the vessel. First, they calculate the gradi-
ent as a convolution of the original image with a normalized
Gaussian derivative, in order to reduce noise and other ir-
regularities in the image. Then they define a border as the
position where the gradient magnitude, in the direction of
the ray, reaches a first maximum above some threshold. The
threshold has to be significantly higher than the typical noise
level in the data set. This threshold depends on the image
quality (e.g., contrast, noise and resolution), and therefore
can be modality dependent. On the other hand, Kanitsar et
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al. [KWF∗01] apply the ray casting technique based on the
density interval function (see Fig. 1) defined above, and stop
the ray casted when a density value along the ray is outside
this interval. This valid interval for a vessel was defined em-
pirically as:

tlower =
clower−clowerBorder

4
+clowerBorder (5)

tupper = cupperBorder−
cupperBorder−cupper

4
(6)

For the evaluation we implemented two ray casting tech-
niques. We denote one as ray casting with thresholds
(RCT) and the other as ray casting with maximum gradient
(RCMG). The RCT is the same ray casting technique used
by Kanitsar [KWF∗01]. RCMG uses the maximum gradient
along the ray as stopping criterion. For the RCMG method
we use the lower threshold valuetlower to be sure we are
not taking background information or other tissue with lower
density values than the vessels.

Figure 2: Example of the ray casting method

After several border points are estimated, the true center
is calculated by:

[xc,yc] =
[

∑n
i=1 xi(di−1 +d(i)mod(n))

2∑n
i=1 di

,
∑n

i=1 yi(di−1 +d(i)mod(n))

2∑n
i=1 di

]

(7)
Here,xc andyc are the coordinates of the center calculated,
n is the number or border points detected,xi andyi are the
coordinates of thei− th border point, anddi is the distance
between two adjacent border pointsi andi +1. The function
mod is used due the circular conexion between successive
borders points

2.2. Block Matching

The Block Matching technique is used for motion esti-
mation between successive frames in video compression
[HSHK00]. More details about this technique are described
in [DKF95]. In essence this method tries to look for the
best matching between two images by applying a shift on
the original images. This method is based on the assump-
tion that two consecutive imagesf2D(x,y,0) and f2D(x,y,1)
are related by a simple shift, wheref2D(x,y,k) is the density
value of the 2D image at timek. Davis et al. [DKF95] relates
two images as:

f2D(x,y,1) = f2D(x−xd,y−yd,0), (8)

wherexd and yd represent the displacement of the image
from time 0 to time 1. These values are estimated by min-
imizing the magnitude of the difference between shifted
states of the two images as:

(x̂d, ŷd) = minx′d,y′d ∑
i, j

[
f2D(i +x′d, j +y′d,1)− f2D(i, j,0)

]2
,

(9)
where the displacementsx′d andy′d are integer multiples of
pixels in the image space.

2.3. Center Of Gravity

The weighted center of gravity has been used widely in or-
der to estimate the object center with sub-pixel precision
[vAEPR02]. The center of gravity can be defined as the equi-
librium point where the entire weight of the object is con-
centrated. For a2D gray level image the center of gravity is
defined in [vAEPR02] as:

[xc,yc] =
(

∑x,y∈Ω xw(x,y)

∑x,y∈Ω w(x,y)
,

∑x,y∈Ω yw(x,y)

∑x,y∈Ω w(x,y)

)
, (10)

whereΩ defines the area containing pixels that belong to the
vessel, andw(x,y) the weighted function for each coordinate
in theΩ space, and is defined as:

w(x,y) = a( f2D(x,y)−m) (11)

and,

m = minx,y∈Ω( f2D(x,y)) whena > 0 or (12)

m = maxx,y∈Ω( f2D(x,y)) whena < 0 (13)

Fora > 0 the center of gravity is attracted to the center of
brighter pixels (high intensity) of the object, and fora < 0
darker pixels. In our case, we are interested in brighter pix-
els, therefore we useda = 1. Assuming that in the center
of the vessel we have higher intensity value for vessel pix-
els. The functionf2D(x,y) corresponds to density value of a
pixel (x,y) in the 2D perpendicular cross-section.

Assen et al. [vAEPR02] present an analysis of the accu-
racy and precision of object localization in gray level im-
ages using the center of gravity. Furthermore, they analyzed
the influence of applying a threshold for a possible accuracy
and precision of the center of gravity measure. They con-
clude that in order to find a best estimate for the center of
gravity in a gray level image a threshold should be applied.
In this way, we used the threshold valuestlower and tupper

defined in Eq. 5 and 6 respectively, to estimate the center of
gravity of points with high probability that they belong to
vessel tissues.

2.4. Ellipse Fitting

Blood vessels have a tubular structure, which could be de-
fined by a set of elliptical shapes along its axis. Therefore,
an approximation to the centerline of the vessel should be by
defining an elliptical parametrization along its axis. Starting
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from the initial path obtained from the vessel tracking, the
Canny edge detector [Can86] is applied in order to get a set
of points around the vessel boundary. Then, these points are
approximated with an ellipse using the Lagrange multiplier
technique. Fitzgibbon et al. [FF95] present a system solution
used to extract a conic section from image data in order to
estimate a center and radii of circles or ellipses from a set of
points. Fitzgibbon describes the problem as:

Given:

• A set of 2D PointsP = {xi}n
i=1, wherexi = (xi ,yi)

• A curveC(a) parameterized by the vectora
• A distance metricδ(C(a),x) as a measure of the distance

from a pointx to the curveC(a)

The method consists of finding theamin for which the er-
ror functionerror = ∑n

i=1 δ(C(a),xi) reaches a global min-
imum. An implicit representation of a curve isC(a) =
{x|F(a,x) = 0}, in our caseF(a,x) is the representation of
general conic curves which is given by:

F(a,x) = ax2
i +bxiyi +cy2

i +dxi +eyi + f

=
[
x2

i ,xiyi ,y
2
i ,xi ,yi ,1

]
[a,b,c,d,e, f ]T , (14)

where a = [a,b,c,d,e, f ]T , and x =
[
x2

i ,xiyi ,y
2
i ,xi ,yi ,1

]
.

Eq. 14 is called the algebraic distance. The problem con-
sists on minimizing the sum of squared algebraic distances
∑n

i=1 F(a,x)2 with the constraint that for an ellipse4ac−
b2 = 1. After, this optimization problem is solve [FF95], the
ellipse center and axis can be extracted from the equation.

2.5. Randomized Hough Transform

The Hough Transform (HT) is a technique for detecting
parametric curves of a given shape in an image. First, all the
points of interest that involve the object or the shape of inter-
est have to be extracted. These points can be extracted using
some edge detector method. Now, we have a set of points
which is our input data. Second, a parametric space has to
be defined, this parametric space consist of a cell, which rep-
resents a set of parameter of a parametric curve of interest.
We are interesting in extract elliptical shapes and an ellipse
can be defined by 5 parameters (a,b,xc,yc,α). Here,a andb
correspond with the major and minor radii of the ellipse re-
spectively,xc andyc the center andα, the angle of rotation.
This parameter space is used as an histogram. In our case,
for each ellipse found in the input data a cell corresponding
with the parameters of the ellipse founded is incremented by
one. After all possible ellipse is extracted, peaks in the his-
togram represent a possible ellipse that we can extract from
the image. The RHT technique which is an extension of HT
[XOK90], consists of randomly selecting a subset of points
that approximate a curve. The process is repeated until a cer-
tain number of times, defined previously.

In our case, we use the Canny edge detector method

[Can86], in order to extract the set of points of interest (in-
put data). Then, parametric ellipses are extracted using the
technique defined by McLaughlin [Mac98]. He describes an
accurate method to improve the ellipse detection in an im-
age using the RHT. This technique consists of randomly se-
lecting three points (P1, P2, andP3) from the input data, and
defining the ellipse that passes through these points (see Fig-
ure 3). For each pointPi the tangent to the curve is estimated,
selecting a neighborhood around this point and finding by
least square, the line of best fit to the curve in this neighbor-
hood. The mid pointm betweenP1 andP2 is calculated, and
intersected with the intersection pointt between the tangents
of these points (see Figure 3(a)). The possible center of the
ellipse will lie in the line defined bytm. The process is re-
peated with the pointsP2 andP3, which define a second line.
The intersection of these two lines will be the center of the
ellipse.

With the center of the ellipse detectedc (see Figure 3(b))
whose coordinates are(xc,yc), and the three pointsP1 =
(x1,y1), P2 = (x2,y2), andP3 = (x3,y3) a possible ellipse
is estimated as:

• The ellipse equation (derived from Eq. 14 [Wei98]) is de-
fined as:

a(x−xc)2 +2b(x−xc)(y−yc)+c(y−yc)2 = 1 (15)

With the restriction(ac−b2) > 0
• Translating the center to the origin, equation 15 is reduced

to:

ax2 +2bxy+cy2 = 1 (16)

• If the coordinates fromP1, P2, andP3 are substituted in
equation 16 we have the following equation system:




x2
1 2x1y1 y2

1
x2

2 2x2y2 y2
2

x2
3 2x3y3 y2

3







a
b
c


 =




1
1
1


 (17)

• After solving the equation system from 17 we get the pa-
rameters(xc,yc,a,b,c).

• The parameter(xc,yc,a,b,c) must be converted into polar
coordinates [Wei98](xc,yc, r1, r2,θ), wherer1 andr2 are
the radii of the major and minor axis respectively of the
ellipse, andθ is the angle of rotation for the major axis. In
this way we get the parameter of the ellipse.

Then, we must validate that the possible ellipse found ex-
ist in the data. This process is done, drawing the ellipse in
the image and look for all the possible points that exist in
the data image and it is part of the border of this ellipse.
For each ellipse found in the input data, it must be validated,
more details in [Mac96]. For each valid ellipse detected, a 5-
D accumulator is used to count the number of valid ellipses
found. After a predefined number of iterations, the cell with
the maximum value in the 5-D accumulator determines the
parameters for the best ellipse found in the image.
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Figure 3: Ellipse Approximation. (a) Estimation of line
where the ellipse center should pass. (b) Estimation of the
ellipse center.

3. Evaluation

Three different synthetic data sets have been used to eval-
uate the accuracy of each method. Each synthetic data set
consists of 3D data of 256x256x768, and it simulates a ves-
sel structure of peripheral arterial tree, from aorta-to-pedal.
The vessel diameter varies along the z-axis from about 0.7 to
about 23 voxels, from the slice 768 to the slice 0. The density
for a vessel is defined between 1130 and 1350 and the back-
ground density between 1080 and 1100. The curvature of the
data is defined by a helix with an angle of 32.14 and radius
76.8. Each data set presents some Gaussian noise, which are
added with sigma 0, 5 and 10 respectively. An example of
the synthetic data is shown in figure 4.

Figure 4: MIP of the synthetic data.

In the following, we present the results of several experi-
ments. First, for the evaluation of the centerline estimation a
graph was generated and it describes the error of the distance
between the center in the synthetic data, which is known,
and the center estimated by the method. The RCT, RCMG,
EF and RHT methods estimate the vessel centerline and its
diameter in each slices, while the CoG and BM estimate just
the vessel centerline. For this reason, we generate two kind
of graphs, the first shows the distance error and the second
shows graphically how far is the real diameter of the vessel

from the diameter estimated. Both graphs are plotted along
the vessel.

The RCT technique uses two threshold valuestlower and
tupper. These two values define a valid interval to identify
vessels. For the evaluation we change this interval. We start
usingtlower andtupper as we show in Eq. 5 and 6. The result
is presented in Figure 5(a) and 5(b). After several experi-
ments where this interval was defined wider and wider until
reachtlower = clowerBorder andtupper = clowerU pper, we ob-
served better results (see Figure 5(c) and 5(d)). The irregu-
larity presented between slice 500 and 600 is due to this area
the synthetic data set presents some noise getting dark the
intensity of the vessel. Nevertheless, if we modify the thresh-
old values we can get better results as we can see in Figures
5(c) and 5(d). For The RCMG technique we use the lower
thresholdtlower used by RCT in order to be sure we are not
taking pixel whose intensity values belong to background.
We did the same experiment as we did for the RCT tech-
nique. The results are shown in Figure 6. Between these two
methods the RCT show better results than RCMG using our
synthetic data set. The BM method uses a reference image
to make matching, which is initially centered. This reference
image is taken from the previous results obtained with the
last block matching estimation. As experiment, initially we
fix the mask and make the matching process with the succes-
sive slices until reach 5 slices or 10 slices, where we update
the mask with the new matching result. These numbers (5
and 10) were selected empirically, as experiment. In Figures
7(b), 7(c) we can see the results updating the mask each 5
and 10 slices respectively. This method has to be improved to
get better results, using an optimization process in the search
of the best matching point and using subpixel precision. For
the CoG we did two experiments. As first experiment, we
set the weighted functionw(x,y) = 1 (see Eq. 10). For the
second experiment we setw(x,y) as we defined in Eq 11.
The CoG technique uses the two threshold values to identify
the vessel. We modify this interval in the same way as we
did for RCT method. As we can see in Figure 8. These re-
sults tell us that this method is also threshold depending like
RCT. EF uses as preprocessing step an edge detector tech-
nique, in our case we use the Canny edge detector [Can86].
The Canny method uses two threshold values. These thresh-
old values can be defined base on the density function for
a vesel. After several experiments modifying theses thresh-
olds used for preprocessing, we can show the best result we
get (see Figure 9). The RHT fails many times especially in
small diameters due to there are not enough points in this
area to find an ellipse. In Figure 10(a) and 10(b) we can see
the results.

Respect with the time consume for each method we
present the table 1, here we observe that BM has the high
time consume than the others method. And RCT, RCMG
and CoG keep the time in the same rank of value, there is
not significative difference. Meanwhile, EF increment a bit
the time but still is tolerable.
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Figure 5: Result from RCT technique. (a) and (c) Distance error of the center estimated. (b) and (d) Diameter estimated.
In (a) and (b) we used threshold values defined with Eq. 5 and 6. Finally, in (c) and (d) we usetlower = clowerBorder and
tupper= cupperBorder.

RCT RCMG EF CoG BM RHT

1.797 1.594 3.969 1.531 174,000 104,000
1.703 1.625 3.703 1.515 198,000 100,000
1.703 1.859 3.750 1.531 173,000 101,000

Table 1: Time consume for each method in seconds.

4. Conclusion

The paper presented an evaluation of different techniques
used to approximate the center of the vessel in the periph-
eral arterial tree. We used a synthetic data in order to evalu-
ate the accuracy of each method. In general all methods are
sensible to noise, nevertheless the CoG method present less

sensibility to noise than the others. RCT, RCMG and CoG
methods present the best approximation to the center. BM
can be optimized, in order to improve the performance and
accuracy, using sub-pixel motion precision and optimizing
the searching process. We are afraid wiht The RHT in small
diameter there is not enough points. In this work we use the
same method from MacLaughlin [Mac96] to implement the
RHT, we found many parameters and threshold values we
must handle in a precise way. This make difficult an accu-
racy evaluation of this method for small diameters. The RCT
technique uses two threshold values,tlower andtupper. These
values were selected empirically from the density function
described in Figure 1. Higher values for this interval result
on erroneous estimation of the center due to the inclusion of
pixels whose density values belong to other tissues. Lower
values for this interval do not allow us to find vessel vox-
els. The RCMG technique uses the lower threshold value
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Figure 6: Result from RCMG technique. (a) and (c) correspond with the distance error of the centerline and (b) and (d) the
diameter estimation. In (a) and (b) we used lower threshold defined with Eq. 5, in (c) and (d)tlower = clowerBorder.
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Figure 7: Results from Block Matching technique. (a) Slice by slice (b) updating the image reference each 5 Slices (c) each 10
slices.

tlower from RCT. In real data, if the vessel is far from bone
structure, it shows better results than the RCT technique, es-
pecially on calcified vessels (see Figure 11 first and second

row)). In Figure 11(First row, second column) we can ob-
serve a pseudoestenosis due to a bad approximation of the
center, while in Figure 11(Second row, second column) the
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Figure 8: Results from CoG technique. Figures (a) and (b) show the distance error of the centerline and the diameter estimation
respectively, in this case we use thresholds defined in Eq. 5 and 6. (c) and (d) use as thresholdstlower = clowerBorder and
tupper= cupperBorder.

RCMG make a better approximation of the center. The BM
technique requires an optimization process for better results.
Initially we assume that between successive cross-sections
the images are related by a simple shift. If we define an
interval to update the mask used like reference image for
the matching process, this method show better results. The
CoG technique has two parameters:tlower andtupper, which
are threshold values to classify pixels that belong to the
vessel. Small threshold interval implies that few pixels are
computed and large threshold interval includes more pixels
whose density value could belong to other tissues. The EF
technique depends on the parameters of the Canny edge de-
tector. The Canny edge detector uses two thresholds values
for the "hysteresis process" involved in the method, which
classify the pixels resulting from a previous Gaussian filter-
ing, gradient and non-maximum suppression steps [Can86].
As Fitzgibbon [FF95] mentions in his work, this method ex-

hibits some problems if the data do not correspond very well
to the contour. This occurs if we do not get a good estima-
tion of the vessel boundary with the Canny edge detector
method. The RHT technique depends also on the parameters
of the Canny edge detector, and is computationally expen-
sive, and for small diameters result quite difficult extract by
least square the tangent of a curve defined in one of the ran-
domly point selected. There is not enough point for small
diameters of the object. In general, all methods are sensible
to noise. The CoG technique presented better results even
under noise influence. RCT and RCMG shows quite similar
results.
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Figure 11: From left to right rotating CPR with 45, 135, 225 and 315 degree. From top to bottom Centered with RCT, RCMG,
CoG, EF, BM and RHT. This data correspond to a femoral with a diameter between 2mm and 4mm. Brighter objects correspond
to bone estructures, in some images appear closer to the vessel.
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