
Hyper-Threaded Cache Coherent Raycasting

Sören Grimm Stefan Bruckner Armin Kanitsar Eduard Gröller

Institute of Computer Graphics and Algorithms
Vienna University of Technology ∗

ABSTRACT

Most volume rendering systems based on raycasting still suffer
from inefficient CPU utilization and bad cache coherence. The re-
cently introduced hyper-threading technology provides a solution to
the first problem. This paper describes a raycasting system based on
this new technology. To address the second problem the system is
based on a bricked memory-layout. Bricking, however, requires an
efficient addressing of data within and between blocks. We achieve
this through two advanced address look-up tables.

Keywords: Hyper-threading, Simultaneous multi-threading, Ray-
casting, Cache Trashing, CPU Utilization, Bricking

1 INTRODUCTION

Three main volume rendering systems can be distinguished. The
first ones are texture-mapping based; the second ones are special
purpose hardware, e.g. VolumePro and Vizard, and finally there
exist CPU based solutions ([5, 12, 14, 13, 10, 11]). Each of them
has its advantages and drawbacks. Purely hardware based solutions
provide real-time performance and high quality. But they are lim-
ited in there functionalities. In a commercial visualization system,
the user has tools to process the data, e.g. filtering, segmentation,
morphological operations, etc. If such operations are not supported
by the hardware, they have do be performed on the CPU and data
must be transferred back to the hardware. This transfer takes a lot
of time. A system, where the user can modify the data interactively,
and see the result immediately can only be achieved if the hardware
supports it. These systems are mainly restricted by the offered func-
tionality or one has to accept delays. This is the main reason why
purely CPU based solutions are still commonly used. Another rea-
son is the high flexibility. Many high-level optimization techniques
have been developed to get high performance CPU solutions. Most
of these techniques have one assumption in common: only parts of
the data have to be visualized. This assumption is still valid, but
the data delivered by new higher-resolution acquisition devices in-
creases rapidly. This introduces two main issues. The first one is
the enormous amount of data. The second one is, that there are
more subtle details, which are difficult to handle in a high-level ap-
proach. One solution to deal with these issues is to focus on new
technologies and on advanced low-level optimization techniques.
This is, due to the fact, that most of the systems still do not utilize
the available CPU resources efficiently. One of these new technolo-
gies is the recently introduced hyper-threading architecture by Intel.
They introduced the first mainstream processor with simultaneous
multi-threading support. Two threads simultaneously execute on
one physical CPU, sharing all caches and execution units. In this

∗{grimm, bruckner, kanitsar, groeller}@cg.tuwien.ac.at. Favoriten-
strasse 9-11, A-1040 Vienna, Austria

paper we describe a raycasting system based on this new technol-
ogy. To accomplish a high CPU utilization and cache coherence we
based our system on a bricked volume layout. Bricking requires
efficient addressing of the data. To achieve this, we present two
advanced addressing techniques.

Section 2 surveys related work. Section 3 gives an overview
of the used CPU hyper-threading architecture. Section 4 describes
the whole system. It starts out with Section 4.1, which briefly de-
scribes a standard raycasting algorithm and its drawbacks. Section
4.2 presents our cache coherent algorithm and the two advanced
addressing methods for a bricked volume layout. This algorithm
is the basis for the hyper-threaded raycasting system presented in
Section 4.3. In Section 4.4 the system is analyzed and the results
are presented. Conclusions are given in Section 5.

2 RELATED WORK

The most prominent rendering approach which achieved high per-
formance by using cache coherency is the Shear-Warp Factorization
algorithm [8]. Cache coherency is achieved by doing re-sampling
slice-wise and holding the data for each major viewing axis in mem-
ory. The main drawbacks are the low quality and the threefold
memory usage. In contrast to this Knittel [7] achieved very high
cache coherency by introducing a spread memory layout for fast
access. He virtually locked all needed address look-up tables and
color look-up tables into the cache. This leads to a rather high cache
coherency, and therefore high CPU utilization. The memory usage,
however, is increased by a factor of four. This memory storage re-
quirement is way to high, considering that the maximum virtual ad-
dress space of today’s mainstream workstations is three Gigabyte.
Therefore the maximum data-set size is limited by 3 Gigabyte /
4 = 768 MB. This seems to be an adequate size. But in most of
the visualization systems, one can examine multiple data-sets. Fur-
thermore, additional volumes or data-structures have to be kept in
memory to support various operations like segmentation, filtering,
etc. This makes it not practicable. Law and Yagel [9] proposed
a parallel raycasting algorithm for a massively parallel processing
system. They proved that appropriate data subdivision and distri-
bution to the available caches, lead to high cache coherency. The
scheme can be adapted to common single- and multi-processors.
Using this scheme, leads to high cache coherency of all caches. But
high CPU utilization is not inherent. Hyper-threading and advanced
low-level optimizations turn out to be a solution to this utilization
issue. We extended their basic scheme, so that the CPU utilization
is significantly increased.

3 OVERVIEW OF THE HYPER-THREADING
ARCHITECTURE

The explanation of hyper-threading will be focussed on the Pen-
tium IV Xeon architecture, which we used for the realization of our
raycasting system.

There are two main requirements to achieve high CPU utiliza-
tion: First the execution units have to operate at full capacity; Sec-

ond a high cache hit rate is desirable, which implies that no cache
trashing occurs. The first condition will be fulfilled with hyper-
threading. For the second condition we will define working sets so
that they follow two known principals of locality,temporal locality
- an item referenced now will be referenced again in the near fu-
ture, andspatial locality- an item referenced now also causes his
neighbors to be referenced. Before giving further details we take a
closer look at the Pentium IV Xeon architecture.

3.1 Execution Resources
Figure 1 shows all the execution resources of the Pentium IV Xeon.
They consist of one slow Arithmetic Logical Unit (ALU) for com-
plex instructions, the Rapid Execution Unit which consists of two
doubled-pumped ALUs forsimple instructions and two double-
pumped Address Generation Units (AGU), and the Floating Point
Unit (FPU). The execution unit can execute at most three instruc-
tions at a time.

Store

Complex

Inst.

Slow ALU 2xALU

Simple

Inst.

2xAGU

Inst.

Simple

2xALU

2xAGU

FP Move

FP Store

FAdd

FMul

SSE2

SSE MMX

Unit
Address
Load

Unit
Address

Figure 1: Execution Unit

3.2 Hyper-Threading
So far CPU designers tried to improve the CPU performance mainly
by increasing the clock-rate. Currently Intel’s record lies at 3 GHz,
about 0.33 nanoseconds per clock-cycle. Achieving higher rates
becomes more and more difficult due to physical laws and manu-
facture costs. Other directions to increase CPU performance were
explored. The Pentium CPU was the first to allow the parallel ex-
ecution of several instructions per clock-cycle. This feature alone
was insufficient, because normally there are not enough sequen-
tial instructions which can be performed in parallel. To overcome
this issue an out-of-order execution unit was introduced with the
Pentium Pro. This unit reorders the instruction stream such that
the CPU can execute more instructions in parallel. This concept is
called instruction level parallelism (ILP). At first sight this is a very
efficient solution, but studies have shown that in a typical applica-
tion at most 2.5 instructions can be found to be executed in parallel.

Thus, there are still unused execution resources on the CPU. To
use them, Intel recently introduced the hyper-threading technology
for the Pentium IV Xeon. With this technology the CPU design-
ers go one step further. Additionally to the instruction level paral-
lelism, thread level parallelism (TLP) is introduced to identify even
more instructions for parallel execution. Before, the out-of-order
execution unit could choose from an instruction buffer of only one
thread. Now, this buffer contains instructions of two threads which
obviously increases the likelihood of finding data-independent in-
structions. This technology makes a singlephysicalprocessor ap-
pear as twological processors. It just duplicates the architectural
state, while the physical execution resources and caches are shared
(see Figure 2). In other words the CPU is capable to hold two thread
contexts at the same time. The two threads are executed simultane-
ously on the same execution units, using the same caches. If one
thread stalls due to a cache miss, the other one uses the idle execu-
tion resources.

Can hold

Architectural

State

Caches

Processor

Execution

Resources

Caches

Processor

Execution

Resources

Architectural

State

Architectural

State

Single CPU

CPU

Hyper−threaded

Can hold

two threadsone thread

Figure 2: Hyper-threading technology duplicates the architectural
state of the physical processor, providing twological processors.

3.3 Cache

The cache hierarchy of a x86-based system is shown in Table 1. Go-
ing up the cache hierarchy towards the CPU, the caches get smaller
and faster. In general if the CPU issues a load of a piece of data the
request is propagated down the cache hierarchy until the requested
data is found. It is very time consuming if the data is only found in
a slow cache. This is due to the propagation itself as well as to the
back propagation of data through all the caches.

Since the focus is on speed, frequent access to the slower caches
has to be avoided. Accessing the slower caches, like hard disk and
main memory, only once would be optimal. This is straightfor-
wardly achieved for the hard disk level, as we assume that there is
enough main memory to load all the data at once. To achieve this
for the main memory is a lot trickier.

The Pentium IV Xeon has a 512KB level 2 cache using 64 Byte
cache lines. It is 8-way associative and unified which means data
and instructions share the same cache lines. The 8KB level 1 data
cache is separated from the instructions and uses 64 Byte cache
lines. Prefetching between the level 2 and level 1 cache is done
in hardware. The read latency is seven clock cycles for the level
2 cache and two clock cycles for the level 1 data cache. The level
1 instruction cache is called Trace Execution cache.µOps are the
smallest instruction units, into which x86-instructions are broken
down. The instruction cache can hold 12,000µOps and the size is
about 92-96KB. Only theµOps of simple instructions are stored in
this cache. For more complex instructions there is only a flag in
the cache to signal that theµOps have to taken from the processor’s
micro code ROM.

In general when streaming linearly through data or instructions,
caching does not make sense at all, because propagating the data
through all levels of caches only increases the execution time.
Caching does make sense if data and instructions are not only used
once but used repeatedly with temporal and spatial locality. In other
words working-sets are needed which fit into the caches and are
used frequently. A more detailed description of the Pentium IV
architecture can be found in [1, 2, 3, 4, 6].

Level Access Typical Size
register 1-3 ns 1 KB
level 1 cache 2-8 ns 8 KB - 128 KB
level 2 cache 5-12 ns 0.5 MB - 8 MB
main memory 10-60 ns 256 MB - 8 GB
hard disk 8 - 12 ms 100 GB - 200 GB

Table 1: Different levels and access times of the cache hierarchy on
a x86-based system.

Number of rays is determined by the number of
pixels in the final image.
for (all rays ”r”)

while (ray ”r” is still within the volume boundaries)
{

1.) Re-sample at position of ray r.
2.) Gradient computation at position of ray r.
3.) Shading at position of ray r.
4.) Compositing at position of ray r.
5.) Advance ray r.

}

Figure 3: Standard raycasting algorithm.

4 HYPER-THREADED RAYCASTING SYS-
TEM

In this section we start out with a brief description of a straight-
forward raycasting algorithm and point out the main drawbacks.
Then we present a cache coherent raycasting algorithm. Finally
we describe a hyper-threaded raycasting system and give a perfor-
mance analysis.

4.1 Standard Raycasting Algorithm
The standard volume raycasting algorithm on a linearly stored vol-
ume is given in Figure 3. For every pixel of the image plane a ray
is shot through the volume and the volume data is re-sampled along
this ray. At every re-sample position re-sampling, gradient compu-
tation, shading and compositing is done. From a performance point
of view this work flow is very inefficient:

• The closer the neighboring rays are to each other, the higher
the probability is that they partially process the same data.
Given the fact that rays are shot one after the other, the same
datahas to be read several times from main memory, because
the cache is not large enough to hold the processed data of a
single ray.

• Different view directions cause a different amount of cache-
line requests to load the necessary data from main memory
which leads to avarying frame-rate.

These are the two main reasons, which lead to a bad CPU utiliza-
tion. In the next sections these issues will be addressed and a so-
lution is shown which performs very efficiently on an x86-based
CPU.

4.2 Cache Coherent Raycasting Algo-
rithm

In the following we describe a low-level optimized raycaster which
utilizes the CPU very efficiently. We also explain the thereby de-
veloped new optimization techniques. With this raycasting system
a detailed analysis of the hyper-threading technique is conducted to
determine the achievable performance gain. To get optimal cache
coherence, and high CPU utilization we based our system on Law’s
and Yagel’s [9] raycasting method. They proposed a parallel ray-
casting algorithm for a massively parallel processing system (Cray
T3D Supercomputer). The data was subdivided into small units
and then evenly distributed among the processors, such that opti-
mal cache coherence was achieved. This distribution scheme can

Preprocessing:
1.) Create ordered list of blocks to process list.
2.) Add rays to blocks which are hit first.

Raycasting:
for (all blocks ”b”)
{

while (block ”b” contains rays to process)
{

for (all active rays ”r” of block ”b”)
{

1.) Re-sampling at position of ray r.
2.) Gradient computation at position of ray r.
3.) Shading at position of ray r.
4.) Compositing at position of ray r.
5.) Advance ray r.
6.) if (ray enters subsequent block)
{

(i) Remove ray from current block.
(ii) Assign ray to the subsequent block.

}
}

}
}

Figure 4: Block-wise raycasting algorithm.

still be used on current multi-processor systems. It can not be used
for a hyper-threaded system. Therefore we are designing a signif-
icant different distribution scheme for the logical CPUs within one
physical CPU.

In our system we also subdivide the volume data into small
blocks. The blocks themselves are stored in xyz-order. The work-
flow of the algorithm, also shown in Figure 4, is as follows:
First a list of blocks is created such that it is sorted by the traver-
sal order of the rays, and that each block has to be processed only
once. Each block has initially an empty list of rays. At the be-
ginning the rays are assigned to those blocks through which the
rays enter the volume. Each of these blocks is then processed until
all the rays enter subsequent blocks. If a ray enters a subsequent
block, it is removed from the current block and assigned to the sub-
sequent one. The subsequent blocks which contain the rays now
are processed in the same manner. By this mechanism the rays are
completely carried through the volume as soon as all the blocks
are processed. These blocks basically define the data working-sets
which were mentioned in section 3.3.

The evolution of CPU design shows that the CPU pipelines are
getting longer and longer. This is very efficient as long as condi-
tional branches do not initiate pipeline flushes. Once a long instruc-
tion pipeline is flushed there is a significant delay until it is refilled.
Most of the present systems use branch prediction. The CPU nor-
mally assumes that if-branches will always be executed. It starts
processing the if-branch before actually checking the outcome of
the if-clause. If the if-clause returns false, the else-branch has to be
executed. This means that the CPU flushes the pipeline and refills
it with the else-branch. This is very time consuming. Using a block
volume layout one will encounter this problem. The addressing of
data in a block volume layout is more costly than in a linear vol-
ume layout. To address one data element, one has to address the
block itself and the element within the block. In contrast to this
addressing scheme, a linear volume can be seen as one large block.
To address one sample it is enough to compute just one offset. In

algorithms like raycasting, which need to address a certain neigh-
borhood of data in each processing step, the computation of two
offsets instead of one has quite some performance impact. To avoid
this performance penalty, one can construct an if-else statement.
The if-clause consists of checking, if the needed data elements can
be addressed within one block. If the outcome is true, the data ele-
ments can be addressed as fast as in a linear volume. If the outcome
is false, the costly address calculations have to be done. On the one
hand this simplifies address calculation, but on the other hand the
involved if-else statement incurs pipeline flushes. In the following
we take a look at this problem.

For raycasting, one can distinguish two major neighborhood
access patterns. One is for re-sampling. The other one is for
gradient computation. The latter will be solved generally for a
26-connected neighborhood access pattern. For the re-sampling
computation the eight surrounding samples are needed. The
necessary address computations in a linear volume layout are:

SampleOffseti,j,k → i+j ·Dx+k·Dx·Dy

SampleOffseti+1,j,k → SampleOffseti,j,k+1
SampleOffseti,j+1,k → SampleOffseti,j,k+Dx

SampleOffseti+1,j+1,k → SampleOffseti,j,k+1+Dx

SampleOffseti,j,k+1 → SampleOffseti,j,k+Dx·Dy

SampleOffseti+1,j,k+1 → SampleOffseti,j,k+1+Dx·Dy

SampleOffseti,j+1,k+1 → SampleOffseti,j,k+Dx+Dx·Dy

SampleOffseti+1,j+1,k+1 → SampleOffseti,j,k+1+Dx+Dx·Dy

Thereby D{x,y,z} define the volume dimensions and i, j, k the inte-
ger parts of the current re-sample position in 3D. This addressing
scheme is very efficient. Once the lower left sample is determined
the other needed samples can be accessed just by adding an offset.
In contrast to the linear volume addressing, the block volume
addressing is:

if ((i’ < BDx-1) and (j’ < BDy-1) and (k’ < BDz-1))
{

SampleOffseti,j,k → i’+j’ ·BDx+k’ ·BDx·BDy

SampleOffseti+1,j,k → SampleOffseti,j,k+1
SampleOffseti,j+1,k → SampleOffseti,j,k+BDx

SampleOffseti+1,j+1,k → SampleOffseti,j,k+1+BDx

SampleOffseti,j,k+1 → SampleOffseti,j,k+BDx·BDy

SampleOffseti+1,j,k+1 → SampleOffseti,j,k+1+BDx·BDy

SampleOffseti,j+1,k+1 → SampleOffseti,j,k+BDx+BDx·BDy

SampleOffseti+1,j+1,k+1→ SampleOffseti,j,k+1+BDx+BDx·BDy

}
else
{

SampleOffseti,j,k → i’+j’ ·BDx+k’ ·BDx·BDy

SampleOffseti+1,j,k → ComputeOffset(i+1,j,k)
SampleOffseti,j+1,k → ComputeOffset(i,j+1,k)
SampleOffseti+1,j+1,k → ComputeOffset(i+1,j+1,k)
SampleOffseti,j,k+1 → ComputeOffset(i,j,k+1)
SampleOffseti+1,j,k+1 → ComputeOffset(i+1,j,k+1)
SampleOffseti,j+1,k+1 → ComputeOffset(i,j+1,k+1)
SampleOffseti+1,j+1,k+1→ ComputeOffset(i+1,j+1,k+1)

}
ComputeOffset(i,j,k) → BlkOffseti,j,k·(BDx·BDy·BDz) +

OffsetWithinBlki,j,k

BlkOffseti,j,k → (i”+j” ·BVDx+k” ·(BVDx·BVDy))
OffsetWithinBlki,j,k → (i’+j’ ·BDx+k’ ·(BDx·BDy)

Thereby BD{x,y,z} define the block dimensions, D{x,y,z} define
the volume dimensions. BVD{x,y,z} denote the block volume di-
mensions defined by BVD{x,y,z} = (D{x,y,z}/BD{x,y,z}), i, j, and
k are the integer parts of the current re-sample 3D-position, i’, j’,
k’ are defined by i’ = (i mod BDx), j’ = (j mod BDy), and k’ = (k
mod BDz), and i”, j”, k” are defined by i” = (i div BDx), j” = (j div
BDy), and k” = (k div BDz).

Sampleboundary
Block

Sample
Block
boundary

(a) (b)

Figure 5: Sample position (i, j, k) is defined by the integer parts of
the re-sample position. The sample positions (i, j, k) of a block are
subdivided into subsets. The membership depends on the location
of the adjacent samples. They are either in the same block or in one
of the neighboring blocks. (a) Re-sampling: Four areas, because
only samples to the right and to the top are accessed. (b) Gradient
computation: Nine subsets, because samples in every direction are
accessed.

To avoid the costly if-else statement and the expensive address
computations, one can create a very small look-up table to address
all the needed samples. The first sample location (i, j, k) is defined
by the integer parts of the current re-sample position. The access
pattern of adjacent samples during re-sampling is defined by ac-
cessing samples to the right, top, and back. The samples of a block
can be subdivided into subsets. For the largest subset the seven ad-
jacent samples of a sample (i, j, k) lie within the same block. The
other subsets are defined by samples (i, j, k) on the border of the
current block. Thereby the adjacent samples lie partially or com-
pletely within neighboring blocks. These other subsets are defined
by the needed neighbor blocks to access all seven adjacent samples.
The 2D case is illustrated in Figure 5(a). Thereby only samples to
the right and to the top are needed, thus there are just four cases.
Basically if the sample (i, j) lies on one or two of the block faces
(top-, and right-face), neighboring blocks are needed. This can be
mapped straightforwardly to the 3D case, by also taking into ac-
count the back-face. The thereby eight occurring cases are shown
in Table 2.

Case i ∈ j ∈ k ∈
0 {0, ...,BDx − 2} {0, ...,BDy − 2} {0, ...,BDz − 2}
1 {0, ...,BDx − 2} {0, ...,BDy − 2} BDz − 1
2 {0, ...,BDx − 2} BDy − 1 {0, ...,BDz − 2}
3 {0, ...,BDx − 2} BDy − 1 BDz − 1
4 BDx − 1 {0, ...,BDy − 2} {0, ...,BDz − 2}
5 BDx − 1 {0, ...,BDy − 2} BDz − 1
6 BDx − 1 BDy − 1 {0, ...,BDz − 2}
7 BDx − 1 BDy − 1 BDz − 1

Table 2: The eight to distinguish neighbor block constellations.

As mentioned before the blocks are stored in xyz-order, there-
fore the necessary offset for the eight cases can be pre-computed
and stored in a look-up table. The look-up table contains 8· 7 = 56
offsets. We have eight cases, and for each sample (i, j, k) we need
the offsets to its seven adjacent samples. The seven neighbors are
accessed relative to the sample (i, j, k). Since each offset consists
of four Bytes the table size is 224 Bytes. The tricky part is to
address the look-up table efficiently. It can be achieved efficiently

C i j k i j k i j k (i+j
a & & & + + + & & & +k)
s (BDx (BDy (BDz 1 1 1 (̃ (̃ (̃ /
e -1) -1) -1) BDx BDy BDz Min(

-1) -1) -1) BDx,
BDy ,
BDz)

0 0-30 0-14 0-6 1-31 1-15 1-7 0 0 0 0
1 0-30 0-14 7 1-31 1-15 8 0 0 8 1
2 0-30 15 0-6 1-31 16 1-7 0 16 0 2
3 0-30 15 7 1-31 16 8 0 16 8 3
4 31 0-14 0-6 32 1-15 1-7 32 0 0 4
5 31 0-14 7 32 1-15 8 32 0 8 5
6 31 15 0-6 32 16 1-7 32 16 0 6
7 31 15 7 32 16 8 32 16 8 7

Table 3: Look-up table addressing for re-sampling. Thereby
BD{x,y,z} = {32,16,8}.

if the block dimensions are a power of two, and a power of two
apart. The second constraint can be removed by introducing a
simple shift operation to virtually hold the constraint. To exemplify
the algorithm it is assumed that the block dimensions are 32x16x8.
The input of the look-up table addressing function is the sample
position (i, j, k). As first step the block offset part from i, j, and k is
extracted by anding the corresponding BD{x,y,z}-1. The result can
be seen in Table 3 second column. The next step is to add one to
each of them. By this operation the current maximal possible value
BD{x,y,z}-1 is moved to BD{x,y,z}. All the other possible values
stay within the range [1,BD{x,y,z}-1]. Then the resulting value is
anded by the complement of BD{x,y,z}-1. After this operation the
input values are mapped to{0, BD{x,y,z}}, as shown in Table 3,
column four. The last and final step is to add the three values and
divide the result by the minimum of the three block-dimensions
BD{x,y,z}, which maps the result into the range [0,7]. This last
division can be exchanged by a shift operation. The final algorithm
for a 32x16x8 block is:

SampleOffseti,j,k → ComputeOffset(i,j,k)
Index → ((((i&0x1F)+1)&0xE0)+

→ (((j&0x0F)+1)&0xF0)+
→ (((k&0x07)+1)&0xF8))>>3

SampleOffseti+1,j,k → SampleOffseti,j,k+Lut[Index][0]
SampleOffseti,j+1,k → SampleOffseti,j,k+Lut[Index][1]
SampleOffseti+1,j+1,k → SampleOffseti,j,k+Lut[Index][2]
SampleOffseti,j,k+1 → SampleOffseti,j,k+Lut[Index][3]
SampleOffseti+1,j,k+1 → SampleOffseti,j,k+Lut[Index][4]
SampleOffseti,j+1,k+1 → SampleOffseti,j,k+Lut[Index][5]
SampleOffseti+1,j+1,k+1 → SampleOffseti,j,k+Lut[Index][6]

TheComputeOffsetcan be simplified, to just the offset calculation
within one block. This is possible as the processing is done block-
wise. Therefore the block-offset remains constant while processing
one block.

Compared to the if-else solution which has the costly computa-
tion of two offsets in the else branch, we get a speed up of about
30%. The benefit varies, depending on the block dimensions. For a
32x32x32 block size the else-branch has to be executed in 10% of
the cases and for a 16x16x16 block size in 18% of the cases. With
larger block-sizes the percentage of the else-branch executions is
smaller and therefore also the benefit decreases. But the focus is on
small block-sizes anyway. For these sizes we reduced the overhead
significantly. The other important benefit is, that it does not matter
anymore where in the block adjacent samples are accessed. It is
always done with constant computational time.

A similar approach can be done for the gradient computation.
We present a general solution for a 26-connected neighborhood.
Here we can, analogous to the re-sample case, distinguish 27 cases.

C i j k i j k i j k i j k 9·i
a & & & -1 -1 -1 | 1 | 1 | 1 / / / +3·
s (BDx (BDy (BDz & & & + 1 + 1 + 1 BDx BDy BDz i+k
e -1) -1) -1) (BDx (BDy (BDz

+BDx +BDy +BDz
-1) -1) -1)

0 1-30 1-14 1-6 0-29 0-13 0-5 2-30 2-14 2-6 0 0 0 0
1 1-30 1-14 7 0-29 0-13 6 2-30 2-14 8 0 0 1 1
2 1-30 1-14 0 0-29 0-13 15 2-30 2-14 16 0 0 2 2
3 1-30 15 1-6 0-29 14 0-5 2-30 16 2-6 0 1 0 3
4 1-30 15 7 0-29 14 6 2-30 16 8 0 1 1 4
5 1-30 15 0 0-29 14 15 2-30 16 16 0 1 2 5
6 1-30 0 1-6 0-29 31 0-5 2-30 32 2-6 0 2 0 6
7 1-30 0 7 0-29 31 6 2-30 32 8 0 2 1 7
8 1-30 0 0 0-29 31 15 2-30 32 16 0 2 2 8
9 31 1-14 1-6 30 0-13 0-5 32 2-14 2-6 1 0 0 9

10 31 1-14 7 30 0-13 6 32 2-14 8 1 0 1 10
11 31 1-14 0 30 0-13 15 32 2-14 16 1 0 2 11
12 31 15 1-6 30 14 0-5 32 16 2-6 1 1 0 12
13 31 15 7 30 14 6 32 16 8 1 1 1 13
14 31 15 0 30 14 15 32 16 16 1 1 2 14
15 31 0 1-6 30 31 0-5 32 32 2-6 1 2 0 15
16 31 0 7 30 31 6 32 32 8 1 2 1 16
17 31 0 0 30 31 15 32 32 16 1 2 2 17
18 0 1-14 1-6 63 0-13 0-5 64 2-14 2-6 2 0 0 18
19 0 1-14 7 63 0-13 6 64 2-14 8 2 0 1 19
20 0 1-14 0 63 0-13 15 64 2-14 16 2 0 2 20
21 0 15 1-6 63 14 0-5 64 16 2-6 2 1 0 21
22 0 15 7 63 14 6 64 16 8 2 1 1 22
23 0 15 0 63 14 15 64 16 16 2 1 2 23
24 0 0 1-6 63 31 0-5 64 32 2-6 2 2 0 24
25 0 0 7 63 31 6 64 32 8 2 2 1 25
26 0 0 0 63 31 15 64 32 16 2 2 2 26

Table 4: Look-up table addressing for 26-connected neighborhood.
Thereby BD{x,y,z} = {32,16,8}.

The 2D case is illustrated in Figure 5(b). Depending on the position
of sample (i, j, k) a block is subdivided into 27 subsets. In contrast
to the re-sample situation, additionally we have to handle sample
positions on the bottom-, left-, and front faces.

The first step is to extract the block offset, by anding BD{x,y,z}-
1 as shown in Table 4, second column. Then we subtract one,
and and with BD{x,y,z}+BD{x,y,z}-1, to separate the case if one
or more components are zero. In other words zero is mapped to
(2·BD{x,y,z}-1) (Table 4, third column). All the other values stay
within the range{0,...,BD{x,y,z}-2}. The other case which has
to be separated is the case if one or more of the components are
BD{x,y,z}-1. This can be done by adding one, after the previous
minus one operation is undone by oring 1 without loosing the
separation of the zero case. The result can be seen in Table 4,
third column. Now all the cases are mapped to{0,1,2} to obtain
a ternary-system. This is done by dividing the components by
the corresponding block-dimensions. These divisions can be
exchanged by fast shift operations. The last and final step is then
9·i+3·j+k to get unique values in the range of [0,26]. The final
look-up table index computation for a 32x16x8 block is:

i’ → ((i & 0x1F) - 1) & 0x3F
j’ → ((j & 0x0F) - 1) & 0x1F
k’ → ((k & 0x07) - 1) & 0x0F
i” → ((i’ | 0x01) + 1)>> 5
j” → ((j’ | 0x01) + 1)>> 4
k” → ((k’ | 0x01) + 1)>> 3
Index→ (i” ·9+j” ·3+k”)

The benefit is a 40% speedup. The index computation is more
costly compared to the re-sample lut. However, the percentage
where the else-branch has to be executed nearly doubled. Therefore
the more costly index computation is compensated by the higher
percentage of costly cases. What we did not mentioned so far is
the size of the look-up table. It is 27 cases· 26 offsets· 4Byte per
offset = 2808 Bytes. This can be reduced by a factor of two due
to symmetry reasons. Therefore we have a very small look-up ta-
ble of about 1404 Bytes. Thus, the re-sample look-up table and the
26-connected neighborhood look-up table, fit into 2KB.

In the next section we will describe a hyper-threaded raycasting
system based on this raycasting algorithm.

4.3 Hyper-Threaded Raycasting
In Section 4.2 we presented a block-based raycasting algorithm
with a highly optimized addressing scheme. This algorithm en-
ables now the analysis of hyper-threading. One of the main ideas
to do raycasting block-wise is to have data working-sets which can
be shared between two hyper-threads. This is very important since
hyper-threads share caches.

The work-flow of the hyper-threaded raycasting system, illus-
trated in Figure 6, is as follows:
In the beginning seven treads, T1, ...,T7, are started. T1 is respon-
sible for all the preprocessing. In particular it has to create lists
of blocks which can be processed simultaneously. These lists are
sorted by the traversal order of the rays. Each list is subdivided
evenly by T1 and send to T2 and T3. After a list is send, T1 sleeps
until its slaves are done. Then it sends the next list to process, and so
on. T2 sends one block after the other to T4 and T5. T3 sends one
block after the other to T6 and T7. After a block is send, they sleep
until their slaves are done. Then they send the next block to pro-
cess, and so on. T4, T5, T6, and T7 perform the actual raycasting.
Thereby T4 and T5 simultaneously process one block, and T6 and
T7 simultaneously process one block. By this mechanism all blocks
are processed in the correct order. During this process the most crit-

ray−front

Logical CPU III

T7

T4T2

T5

T3

T1

Logical CPU IV

T6

Physical CPU I and Physical CPU II

Physical CPU I

Physical CPU II

Logical CPU I

Logical CPU II

1D Screen

Thread

simultaneously
can be processed
Blocks which

Advancing

Figure 6: Hyper-threaded raycasting system

ical part is when rays are assigned to subsequent blocks. As men-
tioned before each block holds a list of rays to process. It can hap-
pen that several threads want to assign rays to the same block. This
problem is illustrated in Figure 7(a). The straight-forward solution
would be to ensure that only one thread at a time can assign rays
to a block. But this decreases the performance drastically. There
are two common synchronization mechanism to choose from, one
is a mutex the other a critical section. In general a critical sec-
tion is used to synchronize threads, because it is a lot faster. Using
hyper-threading however introduces the same synchronization issue
as with multi-processing. Once two threads can be executed simul-
taneously a critical section is internally implemented as a slower
mutex. This leads to an enormous performance decrease. This is
due to the fact that the operating system has to check the mutex
periodically to wake up waiting threads if the mutex is free. Per-
formance can be increased by setting the spin loop count, in other
words by changing the time the operating system is checking the
mutex. Since this is still not optimal we developed a solution with-
out any synchronization. The solution is illustrated in Figure 7(b).
Each thread has its own ray-list in a block. Thus if a thread assigns
a ray to a block, it is ensured that it is the only one which is writing

into that list. But we have four threads and only two threads pro-
cessing a single block. Therefore each thread has to read from two
lists at a time. With this approach the rays of all lists are processed.
Processing also includes removing rays from the lists. This is, how-
ever, not critical. It is ensured by the processing order of the blocks
that a ray can never be assigned to a block which is currently pro-
cessed. The last open question is the load-balancing. This is done
by interleaving the rays during initialization.

processed simultaneously

subsequent
block

Rays with same

Blocks which are
lists

T4

T5

T6 T7

4

5

6

7

4 5 6 7

4

5

76

Read and
write access

Thread

Write
access Ray

(a) (b)

Figure 7: (a) Several threads assign rays to the same subsequent
block. (b) Solution without synchronization.

4.4 Results
The achieved hyper-threading speedup is shown in Figure 8. The
tested system is a Dual Pentium Xeon 2.4 GHz equipped with
1GB Rambus memory, and a GeForce IV graphics-card. Test-
ing hyper-threading on only one CPU showed a speedup of 31%.
Testing hyper-threading on two CPUs showed a similar speedup of
29%. The speedup is an average value. While changing the view-
direction the cache hit-rate of the level 1 cache varies, and therefore
also the speedup varies from 25% to 35%. Taking a block as a lin-
ear volume, then cache coherency between slices and within slices
lead to this behavior.

Figure 9(a) shows the hyper-threading speedup according to dif-
ferent block sizes. The speedup significantly decreases with larger
block sizes. Once the level 2 cache size is exceeded the two threads
have to request data from main memory. Therefore the CPU execu-
tion units are less utilized. Very small block sizes suffer from a dif-
ferent problem. The data fits almost into the level 1 cache. There-
fore one thread can utilize the execution units more efficiently, and
the second thread is idle during this time. But the overall disadvan-
tage is the inefficient usage of the level 2 cache.

Figure 9(b) shows the speedup achieved by block-wise raycast-
ing. A worst-case comparison with respect to the view-direction,
is shown. In case of small blocks the worst case is similar to
the best case. Using large blocks shows enormous performance
decreases depending on the view direction. The constant perfor-
mance behavior of small blocks is one of the main advantages of
a bricked volume layout. There is no view dependent performance
variation anymore. The curves in both charts have an optimum at a
block size of 64 KB. This number is also a good tradeoff between
the needed cache space for ray-structures and sample data. The
achieved 30% and 40% speedups of the two advanced addressing
techniques for re-sampling and gradient computation are already
included in the performance numbers. For a block size of 64 Kbyte

hyper-threading reduces computation time to approx. 70%. Block
subdivision reduces computation time to approx. 35%. Combining
the benefits of block subdivision and hyper-threading, we achieved
an overall speedup factor of 4.0.

Computational time

HT disabled − 1 Thread 100%
 {1 CPU

31%HT enabled − 2 Threads 69%

{2 CPUs
29%

HT disabled − 2 Threads

HT enabled − 4 Threads 36%

 51%

Figure 8: Hyper-threading speedup.

Block size in KByte

10

20

30

40

50

1 8 64 512 4096

percent
Hyper−threading speedup in Block−based raycasting

90

80

70

60

50

40

30

20

10

1 8 64 512 4096

speedup in percent

Block size in KByte

(a) (b)

Figure 9: (a) Hyper-threading speedup for different block sizes. (b)
Block-based raycasting speedup.

5 CONCLUSION

We have presented a raycasting system based on hyper-threading.
For high cache coherency we used a bricked volume layout. Ad-
ditionally, we developed two refined addressing schemes, such that
data needed for re-sampling and gradient computations can be effi-
ciently accessed.

For efficient use of hyper-threading we introduced a multi-
threading scheme, such that two threads running on one physi-
cal CPU simultaneously process one data block. The results have
proven that inefficient CPU utilization can be significantly reduced
by using hyper-threading technology. The realization of the sys-
tem showed that using this new technology is not straightforward.
Systems have to be adapted to take advantage of this architecture.
Most of today’s used multi-threaded systems have to be redesigned.
By just starting more threads one can encounter significant perfor-
mance decrease instead of an increase. This is due to the fact, that
hyper-treads share caches.

We achieved a significant speedup with our new addressing
method in a bricked volume layout. The new addressing scheme
can be used for any volume processing algorithm, which has to
address adjacent samples. The results showed that conditional
branches have quite some performance impact, due to the growing
length of the CPU pipeline.

In conclusion, we have shown that advanced low-level optimiza-
tions lead to efficient CPU utilization and a significant speedup fac-
tor of 4.0.

6 ACKNOWLEDGEMENTS

The work presented in this publication has been funded
by the ADAPT project (FFF-804544). ADAPT is supported
by Tiani Medgraph, Vienna (http://www.tiani.com), and the
Forschungsf̈orderungsfonds für die gewerbliche Wirtschaft, Aus-
tria. See http://www.cg.tuwien.ac.at/research/vis/adapt for further
information on this project.

REFERENCES

[1] Intel Cooperation.IA-32 Intel Architecture Software Devel-
oper’s Manual: Basic Architecture. Intel, Order Number
245470-010, 2003.

[2] Intel Cooperation.IA-32 Intel Architecture Software Devel-
oper’s Manual: Basic Instruction Set Reference Manual. In-
tel, Order Number 245472-010, 2003.

[3] Intel Cooperation. Intel Cooperation, ”IA-32 Intel Archi-
tecture Software Developer’s Manual: System Programming
Guide. Intel, Order Number 245472-010, 2003.

[4] Intel Cooperation. Intel Pentium 4 and Intel Xeon Prozes-
sor Optimization, Reference Manual. Intel, Order Number
248966-007, 2003.

[5] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and Arie Kauf-
mann. High quality volume rendering using texture mapping
hardware. InSIGGRAPH/Eurographics workshop on graph-
ics hardware, pages 69–76, 1998.

[6] Deborah T.Marr et al.Hyper-Threading Technology Architec-
ture and Microarchitecture. Intel, www.intel.com, 2003.

[7] G. Knittel. The Ultravis system. InSIGGRAPH Volume visu-
alization and graphics sysmposium, pages 71–78, 2000.

[8] P. Lacroute and M. Levoy. Fast volume rendering using a
shear-warp factorization of the viewing transformation. In
SIGGRAPH, pages 451–458, 1994.

[9] A. Law and R. Yagel. Multi-frame trashless ray casting with
advancing ray-front. InProceedings of Graphics Interfaces,
pages 70–77, 1996.

[10] M. Meissner, S. Grimm, W. Strasser, J.Packer, and D. Latimer.
Parallel volume rendering on a single-chip SIMD architec-
ture. In Symposium on parallel and large data isualization
and graphics, pages 107–113, 2001.

[11] B. Mora, J. Jessel, and R. Caubet. A new object order ray-
casting algorithm. InProceedings of Visualization, pages
107–113, 2002.

[12] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler.
The VolumePro real-time ray-casting system. InSIGGRAPH,
pages 251–260, 1999.

[13] R. Westermann and T. Ertl. Efficiently using graphics hard-
ware in volume rendering applications. InSIGGRAPH, pages
169–177, 1998.

[14] K. J. Zuiderveld, A. H. J. Koning, and M. A. Viergever. Ac-
celeration of ray-casting using 3d distance transforms. In
Proceeding of Visualization in Biomedical Computing, pages
324–335, 1992.

