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Abstract
Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space
subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They
are limited to sizes which do not satisfy the medical data used in daily clinical routine. We present a new volume
raycasting approach based on image-ordered raycasting with object-ordered processing, which is able to perform
high-quality rendering of very large medical data in real-time on commodity computers. For large medical data
such as the Visible Male (587x341x1878) we achieve rendering times up to 2.5 fps on a commodity notebook.
We achieve this by introducing a memory efficient acceleration technique for on-the-fly gradient estimation and
a memory efficient hybrid removal and skipping technique of transparent regions. We employ quantized binary
histograms, granular resolution octrees, and a cell invisibility cache. These acceleration structures require a small
extra storage of approximately 10%.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional graph-
ics and realism, Raytracing, Visible line/surface algorithms.

1. Introduction

Direct Volume Rendering is known as a powerful technique
to visualize complex structures within three-dimensional
data. Its main advantage, compared to standard 3D surface
rendering, is the ability to perform translucent rendering in
order to provide more information about spatial relationships
of different structures. In general 3D visualization helps to
understand patient’s pathological conditions, improves sur-
gical planning, and is a big aid in medical education. How-
ever, a typical data size of today’s clinical routine is about
512x512x1024 (16 bit CT data) and will increase dramati-
cally in the near future. This presents a challenge to current
rendering architectures and techniques. The increasing de-
mand of interactive 3D visualization is basically driven by
the size itself. Conventional slicing methods already reach
their limit of usability due to the enormous amount of slices.
And so 3D visualization becomes more and more an attrac-
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Figure 1: CTA scan of human head with enhanced venous
system.
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tive alternative method for examinations of large medical
data. Figure 1 shows an example of 3D visualization.

Within the research area of accelerating volume ren-
dering, two main research streams may be distinguished.
One stream is focused on exploiting special purpose hard-
ware such as Volume Pro [PHK∗99], Vizard [MKW∗02] or
graphic cards (GPU) [WE98, GWGS02]. This approach usu-
ally provides high performance when data fits into internal
memory. However, this issue becomes the most critical bot-
tleneck once the data size exceeds the onboard internal mem-
ory capacity. Expensive main memory to internal memory
transfers have to be performed, which lead to an enormous
performance penalty. Furthermore, the accelerated pace of
the GPUs development cycle forces the heterogeneity of
multi-user hardware environments. This makes the adoption
of such special purpose hardware solutions even more diffi-
cult.

The other research stream is based on CPU technologies.
In general they provide better performance for large data
due to the inherent larger memory capacity. Many proposed
approaches for CPU based volume raycasting achieve high
performance by utilizing super-computers or clusters; e.g.
Parker et al. [PSL∗98] presented a volume rendering ap-
proach on an SGI Reality Monster and was capable to render
the Visible Woman (approx. 1 GB) with up to 20 fps utilizing
128 processors. However, it is a large scale solution which
does not apply to the needs and capacities of an ordinary
medical environment.

The purpose of this paper is to present a solution which
resolves the issues presented before: an interactive real-time
volume rendering approach for large medical data, capable
of performing in a heterogeneous hardware environment, by
using commodity computers such as notebooks, and provid-
ing high performance and high quality images. We achieve
this by introducing an efficient method for on-the-fly gra-
dient estimation and an efficient hybrid removal and skip-
ping technique of transparent regions. The presentation of
our new approaches is subdivided as follows: Section 2 sur-
veys related work. Section 3 presents a brief overview of our
raycasting processing work-flow. In section 4 we introduce
our refined caching scheme to accelerate on-the-fly gradient
estimation. In section 5 we focus on removing and skipping
of transparent regions by employing quantized binary his-
tograms, granular resolution octrees, and a cell invisibility
cache. In section 6 we discuss and conclude our work. Fi-
nally in section 7 we give ideas for future work.

2. Related Work

The most popular CPU-based direct volume rendering algo-
rithms are shear-warp, splatting, and raycasting. Shear-warp
is considered to be the fastest software algorithm [LL94],
however the inherent bi-linear interpolation provides quality
which is in general insufficient for medical purposes. Splat-
ting was first proposed by Westover et al. [Wes90]. Later

it was improved in terms of quality and speed by Mueller
et al. [MMC99, MSHC99] and Huang et al. [HMSC00].
This technique provides high quality images. However it still
lacks the speed provided by the general volume raycasting
technique.

Volume raycasting is still widely used if high quality ren-
dering of large data is desired. Several acceleration tech-
niques for volume raycasting have been proposed over the
last decade. Knittel [Kni00] and Mora et al. [MJC02] pro-
posed volume raycasting approaches for commodity com-
puters. They achieve impressive frame-rates by using a
spread memory layout and pre-computed gradients; however
their method requires a huge amount of additional memory.
The spread memory layout itself increases the memory us-
age by a factor of four. This becomes a rather limitation fac-
tor if large data needs to be handled, or if the the rendering
system is part of a larger visualization systems and memory
resources need to be shared.

In contrast to that, our approach does not rely on pre-
computing or a spread memory layout; it is based on a
bricked volume layout. However, to achieve high perfor-
mance advanced acceleration structures and techniques are
necessary. In the following sections we present several mem-
ory efficient acceleration approaches.

3. Volume Raycasting Work-flow

The following paragraph presents a brief overview of the
work-flow of our volume raycasting approach. Bricking
of volume data is a well known method to exploit cache
coherence [PSL∗98, GWGS02, LY96, GBKG]. We decom-
pose the volume data in bricks and perform processing brick-
wise. The volume raycasting process is subdivided into pre-
processing, pre-rendering, rendering, and post-rendering.
The pre-processing step is done only once during start-up
and the remaining steps are performed every time the image
needs to be re-rendered. At first we give a brief overview of
the four rendering steps.

Pre-Processing:During loading, the data is decomposed
into small bricks of size323. The data within the bricks
and the bricks themselves are stored in common xyz-
order. For each brick information about the contained den-
sity values is stored, e.g. min-max values, quantized bi-
nary histograms, etc.

Pre-rendering: In this phase transparent regions are re-
moved and the rays-volume intersections are computed.
There are eight different brick processing lists which are
defined by the eight possible viewing-quadrants in 3D.
Depending on the viewing direction the appropriate list is
selected to process the volume brick-wise and in correct
visibility order.

Rendering: According to the brick list, all rays traverse the
bricks in visibility order, until all bricks are processed or
all rays are terminated due to complete opacity accumula-

submitted toSymposium on Visualization (2004)



Grimm et al / Memory Efficient Acceleration Structures and Techniques for CPU-based Volume Raycasting of Large Data3

tion. During traversing regular re-sampling, gradient com-
putation, classification, shading and composition are per-
formed.

Post-rendering: At this point the final image is displayed
with OpenGL or similar painting methods, or written to a
file, or sent over the network to a client.

A more detailed description of the used acceleration tech-
niques and structures for the pre-rendering and rendering
step is given in the following sections. There are two ma-
jor strategies to accelerate volume raycasting. The first one
is to reduce the computational costs at one re-sampling loca-
tion. We achieve this by using an acceleration technique for
gradient estimation (section 4). The second is to efficiently
remove and skip transparent regions, which we achieve by
using quantized binary histograms, granular resolution oc-
trees, and a cell invisibility cache (section 5).

4. Efficient Gradient Caching

The most common method to accelerate gradient estima-
tion is to read pre-computed gradients from memory. How-
ever, this acceleration technique has several drawbacks. In
order to gain high performance the gradients must be stored
in memory, resulting into an inefficient usage of resources.
Furthermore such a solution is limited by memory band-
width instead of the preferable CPU throughput; the evo-
lution of computer systems has shown that CPU perfor-
mance increases faster than memory bandwidth. Going one
step further if the data exceeds the main memory capac-
ity, out-of-core rendering has to be performed and the gap
between CPU throughput and memory bandwidth becomes
even larger. Additionally, experience has shown, that not ev-
ery gradient estimation scheme performs equally well on all
kinds of data. Therefore the ability to switch between differ-
ent gradient estimation schemes is an important feature and
basically not efficiently given if pre-computing is used. Fi-
nally, pre-computing the gradients is quite time consuming.
Considering a now-a-days medical visualization system, the
doctors main interest is to carry out the examination as fast
as possible. The total time from scanning the patient to the
actual examination is a highly critical factor.

To avoid these issues, our approach performs on-the-fly
gradient estimation. However, in order to obtain highly ac-
curate images, a dense object and image sample distance is
inevitable, which implies high computational costs. A typi-
cal re-sampling resolution illustrated in 2D is shown in fig-
ure 2a. In this case there are eight re-sample locations within
a cell. Each gradient at the corners of one cell has to be com-
puted eight times. Furthermore, each corner is shared be-
tween four cells in 2D. The total amount of redundant gradi-
ent computations at one corner add up to eight re-sampling
positions multiplied by four cells which gives a total of 32
computations. Mapping the same calculation to 3D, results
in computational costs which are considerably higher. These
very costly redundant gradient computations can be avoided

by refined caching. However, not every gradient estimation
scheme is suitable for caching. There are several studies on
gradient filters for volume rendering with focus on accuracy,
importance in terms of image quality and efficiency. Espe-
cially, Möller et al. [MMMY97] give a thorough comparison
of commonly used normal estimation schemes. They differ-
entiate between four types of gradient estimation schemes:

1. Continuous Derivativeuses a derivative filter which is
pre-convolved with the interpolation filter. The gradient
at a resample location is then computed by convolving
the volume by this combined filter.

2. Analytic Derivativeuses a special gradient filter derived
from the interpolation filter for gradient estimation.

3. Interpolation First computes the derivative at the re-
sample position by re-sampling the data on a new grid,
such that the used derivative operator can directly be ap-
plied. This is very beneficial if orthographic rendering is
performed.

4. Derivative Firstcomputes the gradients at the grid-points
and then interpolates these at the desired re-sample posi-
tion.

For scheme one and two no caching mechanism is available.
Only schemes three and four can be considered for gradi-
ent estimation. Due to their numerical equivalency only a
comparison with respect to efficiency is necessary. Möller et
al. [MMMY97] proposed theInterpolation Firstmethod as
the most efficient one. Considering volume rendering and no
caching this is quite obvious. However, applying theInterpo-
lation First scheme requires re-sampling of the original grid
to a much larger grid if the object sample distance is signif-
icantly smaller than one. Already an object sample distance
of 0.25 increases the grid size by a factor of four. This enor-
mous amount of data makes caching inefficient and difficult.
Especially if the object sample distance should be kept dy-
namical or if jittering techniques to improve the image ac-
curacy are applied. Furthermore if perspective rendering is
required, caching becomes impossible. Due to these reasons
theDerivative Firstgradient estimation scheme is more effi-
cient from a performance point of view, since it is more suit-
able for caching. In this case, the amount of data to cache
is always determined. This makes interactive changes of the
object sample distance possible. In addition perspective ren-
dering is also accelerated with the same caching mechanism.

4.1. Per Brick Gradient Caching

Our caching scheme requires two data structures: the cache
itself and a second structure to store the corresponding valid
bits. The used processing entity is not the whole volume; in
fact the volume is decomposed in bricks and each brick de-
fines a processing entity. The size of the cache matches the
number of gradients needed for one brick. The most straight-
forward way to use this cache would be to pre-compute
all gradients which correspond to the current brick and use
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those during brick processing. This would be very ineffi-
cient, since more gradients than necessary would be pre-
computed if only parts of a brick are visible. In contrast to
that we additionally use valid bits, which encode if a gra-
dient is already computed and stored in the cache. During
brick processing every time a gradient needs to be com-
puted, it is checked if the gradient is already stored in the
gradient cache. If not, the gradient is computed and stored in
the cache and the corresponding valid bit is set to true. This
mechanism ensures that gradients are computed only once
at each sample position during brick processing. The cache
remains only valid during the processing of one brick. Once
the next brick is processed the cache is reset. This has the
effect that the gradients which are also needed in adjacent
bricks are processed more than once. The resulting perfor-
mance penalty is low, since the number of those gradients is
small compared to the number of all gradients.

computed 8 times per cell!

Exemplary 
rays

Gradient has to be

rays

Cell has to be 
classified 8 times!

Exemplary

(a) (b)

Figure 2: Typical re-sampling resolution of a cell in 2D. (a)
In the shown case each gradient at the cell corners has to be
computed 8 times while processing one cell. (b) In the shown
case a cell has to be classified 8 times.

4.2. Performance Results and Memory Consumption

The memory consumption of the cache is rather low. The
cache size is not related to the volume dimensions. It is re-
lated to the brick dimensions. The brick dimensions in our
case are 32x32x32, the size of the gradient cache is (dimen-
sion of brick+1)3 multiplied bydimension of gradientmul-
tiplied by size of gradient component, which is (33)3 · 3 · 4
≈ 421,14 KByte. Additionally we store for each cache en-
try a valid bit, which adds up to333 ≈ 4.39 KByte. This
is altogether less than 512 KB. For performance reasons the
data shall remain in the level 2 cache. This is not an issue as
current commodity CPUs have level 2 cache size of 1 MB.

Figure 3 shows the effect of per brick gradient caching
compared to per cell gradient caching and no gradient
caching at all. Per cell gradient caching means that gradi-
ents are cached while a ray re-samples a cell. For gradient
estimation we used the gradient filter proposed by Neumann
et al. [NCV∗02]. This filter produces slightly better qual-
ity than the Sobel filter, supports inherent volume filtering

and has approximately the same computational costs. Due
to the on-the-fly computations, the filtering can be enabled
and disabled interactively. The on-the-fly filtering has low
computational costs and can be used to increase the quality,
when less number of rays are shot to increase the frame-rate
during interaction.

Our testing system was an IntelR©PentiumR©M 1.6 GHz
with 1 MB level 2 cache and the used data was the UNC
head. We chose an adequate opacity transfer function to
enforce translucent rendering. The charts from left to right
show different timings for object sample distances from 1.0
to 0.125 for three different zooming factors 0.5, 1.0, and 2.0.
In case of zooming factor 1.0 we have one ray per cell, al-
ready here per brick gradient caching performs better than
per cell gradient caching. This is due to the shared gradients
between cells. For zooming out (0.5) both gradient caching
schemes perform equally well. The rays are as far apart such
that nearly no gradients can be shared. One the other hand
for zooming in (2.0), per brick caching performs much bet-
ter than per cell caching. This is due to the increased number
of rays per cell. As more rays process the same cell, as more
beneficial the per brick caching becomes. Per brick gradient
caching compared to no caching shows already with a zoom
factor of 2.0 and an object sample distance of 0.5 an impres-
sive speedup of approximately 3.0. The speedup favorably
scales with the zoom factor.

5. Removing and Skipping of Transparent Regions

For medical imaging, interactive classification of data is
mandatory. In general during examination it happens quite
often, that large parts of the data are classified as transpar-
ent to allow a more precise view of the region of interest.
For acceleration purposes it is quite beneficial to exploit this
transparency information and start the actual re-sampling of
the data right where the visible data begins. The work-flow
of our hybrid transparent region removal and skipping tech-
nique is shown in figure 4. At first transparent regions are
removed on a brick basis (figure 4a -> figure 4b). Then to
support even more refined removal of smaller transparent re-
gions we perform octree projection (figure 4b -> figure 4c).
Due to efficiency reasons our octree subdivision does not
fully go down to individual cells. The granular resolution of
the octree leads to approximate rays-volume intersections.
To overcome the resulting performance penalty we intro-
duce a Cell Invisibility Cache (CIC) to skip the remaining
transparent cells (figure 4c -> figure 4d). In the following we
describe our hybrid transparent region removal and skipping
technique in more detail.

5.1. Quantized Binary Histograms

At first we describe an efficient encoding for finding trans-
parent bricks. The most common method are minimum-
maximum value encodings and a summed area table eval-
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Figure 3: Comparison between no gradient caching, per cell gradient caching, and per brick gradient caching. The used data
was the UNC head (256x256x224 - 12 bit), intensity range [0,1136] was mapped to 0.0 opacity and range [1136,4095] to a
linear opacity ramp between 0.0 and 1.0. Hardware: CPU - IntelR©PentiumR©M 1.6 GHz, Cache - 1 MB Level2, RAM - 1 GB,
GPU - GForce4 4200 Go (32MB).

Transparent region skipping

Opaque

Transparent

Partially transparent
brick, plus octree
subdivision

Full transparent
brick

(a) (b) (c) (d)

pending on pre− or post−classification
binary histograms or min−max encoding, de−
Transparent brick removal based on quantizied

based on octree projection
Transparent region removal

based on cell invisibility cache

Figure 4: General work-flow of our hybrid transparent region removal and skipping technique.

uation. A summed area table encodes the opacity integral by

S(0) = α(0)
S(k) = S(k−1)+α(k)

Herebyk ∈ H = [0..4095], which is the possible range of
Houndsfield units andα represents the opacity.imin andimax

denote the minimum and maximum density value within a
brick. The integral of the discrete functionα over the interval
[imin, imax] can be evaluated in constant time by performing
two table lookups:

imax

∑
k=imin

α(k) = S(imax)−S(imin)

If S(imax)−S(imin) = 0 then the brick is transparent and can
be skipped. At this point we differentiate between pre- and
post-classification. For post-classification the min-max en-
coding is the most accurate, since due to interpolation of data
all values between the minimum and the maximum may oc-
cur. However, if pre-classification is performed the min-max
encoding may be too granular when applied on large regions.
Figure 5 shows an example where the min-max encoding
fails if the region of interest is set 150. The min-max encod-
ing would report both bricks as being visible. The main issue
is, that the min-max encoding accuracy relies heavily on the
underlying data. If the region is large it is quite likely that its
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values differ considerably. The min-max encoding becomes
too granular to effectively encode the area. We use a more re-
fined structure, i.e. a quantized binary histogram. In general
a binary histogram is encoded as:

σx(B) =
{

1, x∈ B
0, otherwise

HerebyB is the set of all density values a brick contains,
with B⊆ H = [0..4095]. σx(B) = 1 means that the density
valuex is given at least at one grid position in the underlying
brick. This encoding is effective, however it is quite ineffi-
cient in terms of memory usage and efficient evaluation. We
store instead of the full binary histogram a quantized binary
histogram. It is determined by

σi(B) =
{

1, ∀x∈ [128· i..128· (i +1)[ |x∈ B,(0≤ i ≤ 31)
0, otherwise

Within quantized binary histograms the existence of data
within a specific interval is encoded. The intervals are con-
catenated, disjunct, have same length, and cover the range of
Houndsfield units. In the pre-processing phase every brick is
parsed and encoded. The same encoding can be performed
for the transfer-function with respect to opacity:

λi =
{

1,∀x∈ [128· i..128· (i +1)[ |opacity(x) 6= 0
0,otherwise

Hereby x ∈ H and i ∈ [0,31]. Every time the transfer-
function changes, the transfer-function is re-encoded in this
way.

With this information one can quickly determine the
transparent bricks. A brick is transparent if

∀i ∈ [0..31] : λi ∧σi = 0

This conjunction test can be done very efficiently on a x86
based CPU. Note, that this is a conservative estimate of
bricks visibility. It is possible that due to the chosen en-
coding we consider a brick visible although all contained
values are classified as transparent. However, if we look at
figure 5 and set the region of interest to 150, we can see
that the quantized binary histogram would report the bricks
correctly if pre-classification is performed. This is due to the
fact, that the quantized binary histogram is more sensitive for
largely varying data values. This property can be efficiently
exploited if the binary histogram encodes a segmentation in-
formation volume. In such a volume, segmented objects are
encoded by labels. These labels can differ largely and inter-
polation is not applicable, so only pre-classification can be
performed.

5.2. Granular Resolution Octrees

After eliminating entire transparent bricks with quantized bi-
nary histograms, we use granular resolution octrees to elim-
inate transparent regions of a single brick. If it comes to

min = 0

1 0 00 1

1 1 0 0 0

Quantized
binary
histogram

Quantized
binary
histogram

150

270

0
max = 150

max = 270

Brick I

Brick II

min = 0

Figure 5: Min-Max encoding granularity issue if pre-
classification is performed: If the chosen visible area is 150,
the min-max encoding would report both bricks being visi-
ble. Quantized binary histograms would report Brick I being
invisible and Brick II being visible.

small spatial regions one of the best known space subdivi-
sion structures to support refined skipping of transparent ar-
eas is a min-max octree [LL94, WG92, MJC02]. Each brick
(32x32x32) contains a 3-level min-max octree, shown in fig-
ure 6a. For each octree level we store the minimum and max-
imum value as a pair of numbers. For level 0 we have 8 pairs,
level 1 needs 8x8 = 64 pairs, and level 2 needs 8x8x8 =
512 pairs. When classification changes the octree is recur-
sively evaluated by a summed area table for all bricks. We
store the classification information efficiently by hierarchi-
cal compression. Nodes of level 2 are either opaque or trans-
parent. All other nodes have an additional inhomogeneous
state. The information weather a node of level 2 is transpar-
ent or opaque is stored in one bit. The state of a level 1 node
is determined by testing of one byte, which contains all the
bits of its children. For level 0 such a hierarchical compres-
sion requires to test 8 bytes for a node and 64 bytes for the
brick. Due to efficiency reasons we additionally explicitly
store the state information of level 0. We have three possible
states, thus we need 2 bits for each level 0 node. For each
node we store one byte for the transparency information and
one byte for the homogenous information. A bit in the trans-
parency byte is only defined if the corresponding bit in the
homogenous byte states a node as homogenous. Due to this
encoding, the octree can be very efficiently traversed.

5.3. Removing of Transparent Regions

We have two structures, a quantized binary histogram and a
granular octree, to find the rays-volume intersections up to
the resolution of the granular octree (figure 4c). The bricked
geometry of the volume and the octrees within the bricks
are converted to a polygonal structure and rendered into a z-
buffer. Basically we traverse through the brick list and deter-
mine which brick has visible data and needs to be evaluated
for rays-volume intersection. The evaluation is performed by
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Figure 6: (a) Octree classification scheme for an individ-
ual brick. Sizes - Brick: 32x32x32, Level 0 node: 16x16x16,
Level 1 node: 8x8x8, and Level 2 node: 4x4x4. (b) Brick pro-
jection template.

quantized binary histograms in case of pre-classification or
min-max encodings in case of post-classification. The oc-
tree of those bricks is evaluated and the sub-bricks which
contain visible data are rendered. This rays-volume intersec-
tion computation by rendering requires thegranular resolu-
tion of the octree. Otherwise the number of polygons would
exceed the rendering performance of commodity graphics
hardware.

Utilizing OpenGL for rendering provides high perfor-
mance and high accuracy; however, if the approach is used
as and integrated module it requires off-screen rendering.
This is available in OpenGL by PBuffers. Unfortunately, this
feature is not available on every graphics card. Furthermore
the rendering requires a huge amount of graphic cards mem-
ory. Considering a 1024x1024 image, the needed buffer is
already 8 MB. Most of the more advanced medical visualiza-
tion systems support high-resolution dual-displays. This fea-
ture normally utilizes all the available graphics card memory.
There is no space left for graphics hardware accelerated off-
screen rendering. Due to this reason, we also developed the
rendering in software. This can be done very efficient, if the
simple polygonal structure of the bricked octree layout is ex-
ploited. Since every brick is of the same structure, one can
use template based projection of the octree. Similar work
has be done by Srinivasan et al [SFH97]. The main idea is to
project just one brick per viewing direction for each octree
level as shown in figure 6b. This projection is used as a tem-
plate for all other bricks of the same level. Any other brick of
the same level has the same projection footprint and is ob-
tained by translation. The projected footprint actually con-
sist of z-values, since we are interested in the z-buffer foot-
print of the octree. All possible entry bricks are rendered in a
front-to-back order by using the projected z-value template.
The resulting z-buffer footprint of the octree is then used to
determine the rays-volume intersections. This is as fast as
the OpenGL implementation, since the costly projection it-
self has to be done only for one brick per viewing direction.

Furthermore no costly OpenGL glReadBuffer() instruction
is involved and the resulting z-buffer contains directly the
z-components of the ray starting-positions.

5.4. Cell Invisibility Cache: Skipping of Transparent
Regions

As the granular resolution octree does not go down to cell
level, a cell invisibility cache is used to skip the remaining
transparent cells ((figure 4c -> figure 4d)). The volume-rays
intersections estimation by template-based projection of the
octree subbricks brings us as close as 4x4x4 samples to the
visible data. This is inefficient from a performance point
of view. Especially if first-hit-raycasting is performed ev-
ery non skipped sample has a large impact on the resulting
frame-rate. A resolution of 4x4x4 results in a large number
of non skipped samples, this is depicted by the red samples
shown in figure 8. All these samples have to be classified
in order to determine which cell can be skipped. Depend-
ing on the object-sample distance and the zoom factor these
cells have to be classified several times. This is shown for
a typical re-sampling resolution in figure 2b. In this case
each cell has to be classified eight times. Considering the
same example in 3D, the number of redundant cell classi-
fications would be considerable larger. Due to this reason
we introduce refined cell invisibility caching. We extend the
volume raycasting pipeline in such way that classification of
these invisible cells has to be done only once. The extended
pipeline is shown in figure 7. A Cell Invisibility Cache (CIC)
is attached at the beginning of the traditional volume ray-
casting pipeline. This CIC is initialized in such a way that it
reports every cell as visible. In other words every cell has
to be classified. Now, if a ray is send down the pipeline,
every time a cell is classified invisible this information is
cached in the CIC. A cell can either be invisible or visible,
this information can be encoded in just one bit. Once a cell
is classified as invisible, the costly classification of a whole
cell is exchanged by a binary test. This leads to an enormous
performance increase. On the one hand, due to the reduced
memory access and on the other hand due to the inherent
classification and conjunction information of 8 samples. The
information stored in CIC remains valid as long no transfer-
function change is performed. During the examination of the
data, e.g. by changing the viewing direction, the CIC fills
up and the performance increases progressively. The same
mechanism is also very beneficial for general empty space
skipping within the data.

5.5. Performance Results and Memory Consumption

The additional memory usage of all three acceleration struc-
tures, quantized binary histogram, granular resolution oc-
tree, and the cell invisibility cache is rather low. Considering
the size of the volume as 100%, they increase the size by
approximately 10%. We use bricks of size 32x32x32 stor-
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Figure 7: Cell Invisibility Cache (CIC) - Acceleration by caching invisibility information of cells. The acceleration path is
emphasized in red.
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Not
skipped
by octree
projection

Transparent samples not skipped by octree projection
Transparent samples skipped by octree projection

Level 2 node (4x4)
Level 1 node (8x8) Exemplary

ray

Figure 8: Zoomed in granular octree of one brick. The red
samples can not be skipped due to the granular resolution of
the octree.

ing 2 bytes for each sample, which is a total of 65536 bytes.
Additionally for each brick we store:

• Quantized binary histogram: 4 byte
• Min-max information: (512+64+8+1) * 4 = 2340 byte
• Octree classification information: (64 + 2) = 66 byte
• Cell Invisibility Cache:323 bit /8 = 4096 byte

In total the storage increase is((4 + 2340+ 66 +
4096)/65536) ·100≈ 9.9%.

Table 1 shows the effect of our hybrid removal and
skipping technique of transparent regions and figure 9
shows the corresponding rendering output. For benchmark-
ing we used a commodity notebook equipped with an
Intel R©PentiumR©M 1.6 GHz CPU, 1 MB Level2 cache, 1
GB RAM, and a GForce4 4200 Go (32MB). The graphics
card capabilities are only used to display the final image. We
tested four different data sets. A rather small data set, the
UNC head to be able to compare our speed to the approach of
Mora et al. [MJC02]. This approach is slightly faster than the
UltraVis system [Kni00]. They are both based on a spread
memory layout and use pre-computed gradients. This leads
to an inefficient memory usage and so they are restricted to
rather small data. Mora’s total render time is approximately a
factor of two faster than our approach. However, Mora’s ap-
proach uses pre-computed gradients, does pre-shading, and

its template based interpolation scheme limits the zooming
to a zooming-factor of four. In contrast to that we chose
to sacrifice some performance for increased flexibility, high
quality, and a significantly lower memory usage. This en-
ables us to render large data, used in daily clinical routine,
on commodity hardware. We tested three different large typ-
ical medical data sets. The results show that our accelera-
tion techniques typically achieve render-times of about 2 fps
even for these large data sets. Table 1, fourth column, shows
the total render time achieved by brick-wise transparent re-
gion removal. In the fifth column we additionally apply the
granular octree projection. And finally in the sixth column
we enabled the Cell Invisibilty Cache to see the overall to-
tal render time achieved by the combined effect of all three
acceleration structures.

6. Discussion and Conclusion

We presented a volume raycasting approach which pro-
vides high-quality images in real-time for large data on
standard commodity computers without advanced graphics
hardware. For large medical data such as the Visible Male
(587x341x1878) we achieve rendering times up to 2.5 fps
on a commodity notebook. Furthermore, our approach can
utilize symmetric multiprocessing systems as processing is
performed brick-wise. It scales well and achieves a speedup
factor of approximately 2.0 on a dual CPU machine. This
is very beneficial if a large amount of data has to be pro-
cessed. Although we avoided any pre-computing and com-
pute each part of the volume raycasting pipeline on-the-fly,
we achieved performance in the same range as approaches
which heavily rely on the memory bandwidth [MJC02]. Our
refined caching scheme for gradient estimation in conjunc-
tion with hybrid skipping and removal of transparent re-
gions, enables us to achieve high quality while maintaining
high performance. Due to the efficient memory consumption
of our acceleration structures (quantized binary histogram +
granular resolution octree + Cell Invisibility Cache) and the
bricked volume layout we are able to handle very large data.
All acceleration structures require only an extra storage of
approximately 10%. Data sizes up to 2GB are possible, a
limitation imposed by the virtual address space of current
consumer operating systems.
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Name Dimensions Size Transparent Octree CIC /Mora
brick removal projection Total render time

(a) Visible Male 587x341x1878 0.70 GB 0.61 sec 0.46 sec 0.40 secNA∗

(b) Visible Male 587x341x1878 0.70 GB 0.68 sec 0.53 sec 0.45 secNA∗

(f) Aorta 512x512x1112 0.54 GB 1.16 sec 0.93 sec 0.61 secNA∗

(d) Lower extremities 512x512x1202 0.59 GB 0.86 sec 0.70 sec 0.64 secNA∗

(e) Lower extremities 512x512x1202 0.59 GB 0.69 sec 0.46 sec 0.37 secNA∗

(c) UNC head 256x256x256 0.03 GB 0.71 sec 0.26 sec 0.18 sec0.075 sec

Table 1: Performance results for different data sizes, which are used in daily clinical routine. Image size: 512x512, Sample
rate: 0.5, and Hardware: CPU - IntelR©PentiumR©M 1.6 GHz, Cache - 1 MB Level2, RAM - 1 GB, GPU - GForce4 4200 Go
(32MB).∗ Unable to load data set, system memory exceeded.

(f)

(e)(d)(b)(a)

(c)

Figure 9: Result images of benchmarking.

7. Future Work

In the future we want to support out-of-core rendering to
be prepared for the next generation of data sizes. First com-
modity prototype scanners already deliver data in the range
of 1024x1024x2048, which is about 4GB of data and quite

challenging to handle. Additionally we want to incorpo-
rate brick-based compression to achieve interactive render-
ing times for these large data. Furthermore we want to sup-
port perspective rendering. The changes which have to be
made, are basically to split the brick rendering lists such
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that the correct processing order is ensured. Additionally we
have to render perspective distorted bricks to be able to find
the exact entry points of the rays. Other than that all the pre-
sented accelerating techniques should work as well as for
parallel projection.

Additional material (images, movies):
http://www.cg.tuwien.ac.at/∼sgrimm/vissym2004/
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