
Reconstruction Schemes for High Quality Raycasting
of the Body-Centered Cubic Grid

Thomas Theußl
�
, Oliver Mattausch

�
, Torsten Möller

�
, and Meister Eduard Gröller

�

�
Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria�

Graphics, Usability, and Visualization (GrUVi) Lab, Simon Fraser University, Canada

Abstract

The body-centered cubic (BCC) grid has received attention in the
volume visualization community recently due to its ability to rep-
resent the same data with almost 30% fewer samples as compared
to the Cartesian cubic (CC) grid. In this paper we present several
resampling strategies for raycasting BCC grids. These strategies
range from 2D interpolation in planes to piece-wise linear (barycen-
tric) interpolation in a tetrahedral decomposition of the grid to tri-
linear and sheared trilinear interpolation. We compare them to ray-
casting with comparable resampling techniques in the commonly
used CC grid in terms of computational complexity and visual qual-
ity.

1 Introduction

The main goal of volume rendering is to produce meaningful im-
ages of volumetric data. The data usually is sampled into a discrete
dataset. This sampling process replicates the frequency response
of the original data. If we assume the original data to be isotropic
and band-limited, this frequency response is a sphere. In order to
avoid aliasing we have to choose a sampling frequency such that
the replicas in the frequency domain do not overlap. On the other
hand, if we want to use as few samples as possible to describe the
data, we have to pack the replicas as closely as possible. In other
words, we are facing a sphere packing problem in 3D.

In 1611 Kepler wrote a booklet [11] where he constructed the
face-centered cubic (FCC) packing and asserted that no packing of
spheres with the same radius in 3D has density greater than the FCC
packing. This is known as the Kepler Conjecture. Hilbert formu-
lated it in 1900 as his famous Problem 18 [6]. It is said that Gauß
first proved that no regular lattice (i.e., lattices that can be described
by three base vectors) is better in this respect [5]. After almost 400
years Hales now claims to have proved it generally [5]. Since we
know now that we have to use the FCC grid in the frequency do-
main, we need the corresponding (dual) grid in the spatial domain
for the actual data. This is the BCC grid (see Figure 1) which re-
quires 29.3% fewer samples than the CC grid to represent the same
data.
Raycasting [13] is usually considered a rather slow but high qual-
ity volume rendering algorithm [16]. With the BCC grid we can
reduce the amount of storage needed. However, raycasting is an
image order algorithm and we describe exactly the same region of
space with the BCC grid instead of the CC grid, only in a differ-
ent manner. We would therefore expect approximately comparable
results on the two grids in terms of execution time.

Besides being the dual of the optimal packing grid in 3D the
BCC grid has some more interesting properties, which we will ex-
ploit in this paper:

�
{theussl|matt|meister}@cg.tuwien.ac.at,

http://www.cg.tuwien.ac.at/home/�
torsten@cs.sfu.ca, http://gruvi.cs.sfu.ca/

CC grid BCC grid

2.0

1 2

2
3

Figure 1: One cell of the CC and the BCC grid in relative propor-
tions. The BCC grid has one additional sample point in the middle
of the cell. It requires 29.3% fewer samples to represent the same
data.

� It consists of a stack of 2D CC grids where the odd-numbered
planes are moved half a unit with respect to the even-
numbered planes.

� Similarly, it can also be viewed as two inter-penetrating CC
grids (usually called primary and secondary grid), one moved
half a unit with respect to the other.

� The Delaunay tetrahedralization is simple and uniquely de-
fined.

� It also results from shearing a CC grid.

� It assumes the frequency response of the originally sampled
function to be spherical, consequently, the ideal resampling
filter is spherically symmetric.

After we discuss related work in Section 2, we present our ap-
proaches to raycast BCC grids in Section 3. We present our results
and compare them to each other and to results from the CC grid
in Section 4. We then conclude in Section 5 and present ideas for
future work in Section 6.

2 Previous Work

Chan and Purisma used the BCC grid as a basis for a tessella-
tion scheme for marching tetrahedra [3], subsequently also used
by Treece et al. [23]. Carr et al. [2] reduced the number of triangles
generated by adapting the marching tetrahedra algorithm to march-
ing octahedra and marching hexahedra algorithms.

Ibáñez et al. proposed to use the BCC grid because of its op-
timal topological and spectral properties. They implemented iso-
surfacing on the BCC and the FCC grid [7] which operates directly
on the Voronoi regions of the grids.

planes
(2D CC grids)

resample points

ray

Figure 2: Bilinear interpolation in the planes most perpendicular to
the viewing direction. The planes are comprised of 2D CC grids.

Ibáñez et al. also came up with a raycasting algorithm [8, 9].
They adapted the Bresenham line drawing algorithm to the BCC
grid (and eventually to arbitrary grids in arbitrary dimensions [10]).
This is equivalent to nearest neighbor interpolation. They also dis-
cuss barycentric interpolation within tetrahedra, but do not give de-
tails about the chosen subdivision or how they identify the tetrahe-
dron the point lies in.

Recently, the BCC grid was employed in volume rendering.
Theußl et al. used it to speed up splatting [22]. Neophytou and
Mueller adapted this approach to time-varying data [19]. Sweeney
and Mueller adapted the shear warp algorithm to the BCC grid [21].

3 Raycasting on the BCC grid

Raycasting usually requires interpolation at arbitrary positions, i.e.,
a black box that accepts a position and returns an interpolated value.
With such an interpolator the sampled dataset can be regarded as
being actually continuous. Before we present our approaches to
implement such a black box for the body centered cubic grid, we
investigate a raycasting scheme using only bilinear interpolation.

3.1 Bilinear Interpolation

Since the BCC grid is a stack of 2D CC grids (i.e., planes) shifted
with respect to each other, we can choose the one of three pos-
sible stacks which is most perpendicular to the viewing direction
and use bilinear interpolation within these planes (see Figure 2).
The CC grid is also composed of 2D CC grids which is often
exploited in volume visualization, most notably (and efficiently)
by the shear warp algorithm [12]. This algorithm can therefore
straightforwardly be adapted to the BCC grid [21].

Wan et al. [24] suggest to exploit this to speed up actual raycast-
ing. They do not achieve results comparable in speed to the shear
warp algorithm. However, they achieve better quality with the ad-
ditional possibility of adaptive depth sampling in case two consec-
utive sample points differ more than a certain threshold. This ap-
proach is also straightforwardly adapted to the BCC grid. However,
since the step size along the ray is given by the grid and viewing di-
rection, a comparison is only possible indirectly.

Assume we have a dataset sampled on a CC grid with dimen-
sions N3. Then the corresponding BCC dataset has dimensions [22]�

2N
2 � � 2N

2 � � 2N (w.l.o.g. we assume the third dimension to
be most perpendicular to the viewing direction). Let s denote the
step size along the ray which is determined by the distance be-
tween the slices (Figure 2). Then we will have N sample points
with 1 � s � � 3 in the CC grid and

�
2N sample points with

2D pseudo BCC grid 3D BCC grid

Figure 3: Bilinear interpolation in the 2D pseudo BCC grid on the
left and trilinear interpolation in the BCC grid on the right. To
interpolate at a position in the shaded box, the missing corners of
the box (square dots) are linearly interpolated. Contrary to the 2D
pseudo BCC grid this interpolation is uniquely defined in the 3D
BCC grid.

�
2

2 � s ��� 3
2 in the BCC grid requiring bilinear interpolation. It

is usually assumed that the sampling step size should be less than
one [24]. So this approach is not appropriate for the CC grid. In the
case of the BCC grid, we have certain viewing directions where the
sampling step size is less than one and therefore in this cases this
approach is sufficient.

In order to have a step size smaller than one, Wan et al. [24]
propose to resample intermediate planes on the fly. This resampling
halfway in between two planes is also slightly less complex than
trilinear interpolation. If we use such intermediate planes we have
to resample N � 1 points with the more complex interpolation in the
CC grid and

�
2N � 1 points in the BCC grid effectively halving

the sampling step size. If two consecutive sample points still differ
more than a certain threshold we can adaptively sample in between.

3.2 Trilinear Interpolation

In order to have a black box trilinear interpolation operator simi-
lar to the CC grid, we fit the largest possible cube in the BCC grid
containing the resampling point which does not contain any other
sample points. Alternatively, this can be viewed as taking the inter-
section of the cubes in the primary and secondary grid containing
the resampling point. Figure3 illustrates this for a 2D pseudo BCC
grid (where the concept can be seen more clearly, however, this grid
is different from the optimal, the hexagonal, grid in 2D and is only
shown here and in further examples for demonstration purposes) on
the left and the actual 3D BCC grid on the right. For the sake of
clarity the actual resampling point has been omitted in the 3D BCC
grid.

Two points of this fitted cube are given by the BCC grid (lying
opposite of one diagonal of the cube), the other six are linearly in-
terpolated along the edges of the cube. Contrary to the 2D pseudo
BCC grid, Figure 3 illustrates that this procedure is uniquely de-
fined in the actual 3D BCC grid. However, since the determination
of the cube the point is located in is slightly more complex than
in the CC grid and we have to interpolate the missing points, this
approach requires slightly more operations than trilinear interpo-
lation in the CC grid. Nevertheless, it is quite easily verified that
this scheme results in a continuous, piece-wise cubic interpolator
(in accordance with the trilinear interpolator in the CC grid).

Note, that it would also be possible to interpolate the missing
points bilinearly on the faces of the cubes. There are essentially
two possibilities to do this. We could either replace the linear in-
terpolation by a more costly bilinear interpolation on the fly. Alter-
natively, we could precompute the missing points and store them in

Figure 4: The Delaunay tetrahedralization of the BCC grid. Two adjacent points (white dots) together with the two points of the spine (black
dots) in x, y, and z direction (from left to right) make up a tetrahedron. Consequently, there are twelve sets of differently oriented tetrahedra
in the Delaunay tetrahedralization of the BCC grid.

an even larger CC grid (and thereby calling in question the use of
the BCC grid in the first place). Consequently, we prefer the linear
interpolation along the edges of the cubes.

3.3 Barycentric Interpolation

To speed up computations, we investigate barycentric interpolation.
This results in a piece-wise linear function along the ray, as opposed
to the piece-wise cubic function along the ray with trilinear inter-
polation. We would therefore also expect a loss in quality.

In order to use barycentric interpolation we perform the follow-
ing steps:

1. Define a tetrahedralization (mesh) of the BCC grid. An ob-
vious way is to use the Delaunay tetrahedralization. Carr et
al. [2] pointed out that this mesh is simple and uniquely de-
fined. Figure 4 visualizes this mesh which consists of twelve
sets of differently oriented tetrahedra.

2. Find the tetrahedron the point is located in. We first find the
corresponding octant of the cube in the primary (or secondary)
grid (the shaded box in Figure 3 on the right) This takes three
comparisons. We then need three more comparisons (x greater
or smaller y, x greater or smaller z, and y greater or smaller z)
to locate the actual tetrahedron.

3. Finally, compute the barycentric coordinates of the resam-
pling point and calculate its value. This is easily done by
transforming the tetrahedron into another one with one point
in the origin and the other points in unit distance in x, y, and
z direction. Since there are twelve different tetrahedra (after
translating them to the origin), the twelve different transfor-
mation matrices needed can be precomputed.

3.4 Sheared Trilinear Interpolation

Sheared trilinear interpolation takes into account that BCC grids
can be seen as a sheared CC grid [4, 22]. Thus every grid cell can
be seen as a sheared CC grid cell, i.e., a cube. Standard trilinear
interpolation can be done in such cells by first linear interpolating
the values on the sheared cell borders, then doing a bilinear inter-
polation in the resulting square.

However, compared to standard trilinear interpolation additional
parameters must be considered, since shear plane and orientation
are are not uniquely defined. We apply the following approach to
determine shear plane and shear orientation:

ray

resample point

interpolated values

Figure 5: Interpolation in the pseudo 2D BCC grid interpreted as
sheared CC grid. The shear axis and orientation are chosen so that
they are as closely as possible aligned to the viewing ray direction

� First, we choose that plane as shear plane which is most per-
pendicular to the viewing ray direction. This is closely con-
nected to the bilinear interpolation approach presented in Sec-
tion 3.1. The shearing is done in the two axes that span this
plane. Figure 5 illustrates this approach in the pseudo 2D
BCC grid. If the ray was directed more horizontally, the y
plane would be chosen as shear plane.

� Next, we also choose the shear orientation depending on the
viewing ray direction. The cells are sheared either into posi-
tive or negative directions so that the sheared cell borders are
as parallel as possible to the ray. This assures that the ray will
pass through the sheared cell as similar as possible as it would
pass through the original cubic cells. Again in Figure 5, if the
viewing ray pointed slightly towards the right, the shear ori-
entation to the positive x direction would be chosen.

The difference to the bilinear interpolation approach is, that we
can now freely choose the sampling step. If we choose the same
sampling step as in the bilinear interpolation approach, the result
will be exactly the same (if the first sampling point is in the same
location).

Figure 6: Bilinear (left) and sheared trilinear (middle) on the BCC and trilinear interpolation on the CC (right) grids for the skull dataset

Dataset CC Dimension BCC Dimension
Fuel 64 � 64 � 64 45 � 45 � 90
Hipiph 64 � 64 � 64 45 � 45 � 90
M.-Lobb 70 � 70 � 70 49 � 49 � 98
Tooth 256 � 256 � 161 181 � 181 � 227
Skull 256 � 256 � 256 181 � 181 � 362

Table 1: Description of datasets used in our experiments.

4 Comparison

We rendered several datasets with a raycaster represented both on a
CC grid and on a BCC grid. Table 1 gives some statistics about all
the datasets used in our experiments.

On the CC grid, we used trilinear and bilinear interpolation. On
the BCC grid we used the schemes presented in Section 3: bilinear
interpolation, trilinear interpolation, barycentric interpolation, and
sheared trilinear interpolation. We used the same transfer functions
and viewing transformations for all corresponding images. The ray-
caster does early ray termination and although it supports both pre
and post shading, we use post shading for all images.

Figure 6 shows a closeup of the tooth region from the skull
dataset and compares bilinear and sheared trilinear interpolation
on the BCC grid with trilinear interpolation on the CC grid. The
images from the BCC grid appear slightly smoother, visible, for ex-
ample, at the highlights. This is most likely due to the fact that the
BCC dataset was resampled from the CC dataset. The image gener-
ated by bilinear interpolation exhibits horizontal artifacts stemming
from the plane-wise interpolation. These are completely removed
by the sheared trilinear interpolation approach.

Figure 7 shows images from the fuel dataset rendered with all
possible interpolators on the BCC grid and bilinear and trilinear in-
terpolation on the CC grid. The images from the bilinear interpola-
tor (middle row) again exhibit artifacts, showing the plane structure
of this interpolator, on both grids. The barycentric interpolator on
the BCC grid (top left) exhibits artifacts stemming from the piece-
wise linear nature of this interpolator. The images from the sheared
trilinear interpolator on the BCC grid (top right) and the trilinear in-
terpolator on the CC grid (bottom right) show almost no difference.

Figure 8 shows the importance of properly choosing the shear
axis for the sheared trilinear interpolator. In the left image the shear
axis and orientation were chosen as described in Section 3.4. If the
shear axis is chosen differently, as in the middle and right image, ar-
tifacts are clearly visible. In these images, to fit the cubic frequency
response of the Marschner-Lobb dataset (usually 40 � 40 � 40)
into a sphere, we increased the sampling rate to 70 � 70 � 70.

Neophytou and Mueller [19] first pointed out that the Marschner-
lobb dataset has a clearly non-spherical frequency response. They
applied a spherical low-pass filter to compensate for this.

Figures 9 and 10 (top row) show some renderings of the tooth
region of the skull dataset and of the tooth dataset, respectively
with various interpolators on the BCC and the CC grid. For these
rather high resolution datasets, differences between the interpola-
tion schemes and grid types are hardly visible. Figure 10 (bottom
row) again compares the interpolation schemes proposed in Sec-
tion 3 with the hipiph dataset. Although a rather low resolution
dataset it is also very smooth, so differences between the schemes
are hardly visible.

Tables 2, 3, and 4 show some timing results for the fuel,
Marschner-Lobb, and hipiph dataset, respectively. The tables are
grouped by sample rate. Within this groups the entries are ordered
by rendering time. The image size was 512 � 512 in all cases. From
the timetables we can say that bilinear interpolation is the fastest
method. Unfortunately, it cannot be directly compared with bilin-
ear interpolation on CC grids because of the different sample rate
due to the cell size difference. Therefore, the groups in the tables ei-
ther compare bilinear to the other interpolation schemes in the same
grid. Otherwise, comparable interpolation schemes in the two dif-
ferent grids are grouped together.

After bilinear interpolation, sheared trilinear and barycentric in-
terpolation are fastest on BCC grids. Sheared trilinear interpolation
is slightly faster for the fuel and hipiph datasets, whereas barycen-
tric interpolation is slightly faster for the Marschner-Lobb dataset.
Both are also slightly faster than trilinear interpolation on CC grids
for the Marschner-Lobb dataset, but slightly slower for the fuel and
hipiph datasets.

An interesting result is that, although of lower quality than
sheared trilinear, barycentric interpolation is approximately as fast
as sheared trilinear interpolation. This is because of the costly in-
side tetrahedron test and barycentric coordinate calculation. The
latter basically involves one translation and a vector-matrix multi-
plication. Trilinear interpolation on BCC grids is quite slow be-
cause of the additional interpolation of the fitted cell points.

5 Conclusions

We presented and compared four different reconstruction schemes
for producing high quality raycasting images from scalar data given
on BCC grids. Bilinear interpolation basically chooses a step size
in such a way that sampling takes place only on cell borders. Tri-
linear interpolation fits a cube in the BCC grid in order to employ
usual trilinear interpolation as on the CC grid. Barycentric interpo-
lation locates the tetrahedron of the Delaunay tetrahedralization of

Figure 7: Barycentric, bilinear, sheared trilinear interpolation (top, from left to right), and trilinear on the BCC grid (bottom left) vs. bilinear
and trilinear interpolation on the CC grid (bottom, middle and right images)

Figure 8: If the shear axis for the sheared trilinear interpolator is chosen dependent on the viewing direction (left image), artifacts are removed
which can occur otherwise (middle and right images).

Figure 9: Sheared trilinear, bilinear, barycentric (top row), and trilinear interpolation (bottom left) on the BCC grid and trilinear interpolation
on the CC grid (bottom right) for the skull dataset

Figure 10: Top row: bilinear, trilinear interpolation on the CC grid (left) and on the BCC grid (right) for the tooth dataset. Bottom row, from
left to right: sheared trilinear, bilinear, barycentric, and trilinear interpolation for the hipiph dataset on the BCC grid

Grid Interpolator Samplerate RenderingTime

BCC bilinear 0.75497 11sec922ms
BCC barycentric 0.75497 17sec722ms
BCC sh.trilinear 0.75497 18sec945ms
BCC trilinear 0.75497 26sec551ms

CC bilinear 0,53385 20sec172ms
CC trilinear 0.53385 20sec170ms
CC trilinear 0.5 24sec718ms

BCC barycentric 0.5 26sec006ms
BCC sh.trilinear 0.5 27sec100ms
BCC trilinear 0.5 38sec959ms
BCC bilinear 0.37745 26sec822ms
BCC barycentric 0.37745 33sec747ms
BCC sh.trilinear 0.37745 35sec499ms
BCC trilinear 0.37745 50sec822ms

CC trilinear 0.3 39sec650ms
BCC barycentric 0.3 41sec963ms
BCC sh.trilinear 0.3 43sec694ms
BCC trilinear 0.3 1min3sec268ms

Table 2: Timings for several different interpolators on the BCC and
CC grid for the fuel dataset

Grid Interpolator Samplerate RenderingTime

BCC bilinear 0.73340 1sec842ms
BCC sh.trilinear 0.73340 2sec383ms
BCC barycentric 0.73340 2sec416ms
BCC trilinear 0.73340 3sec098ms

CC bilinear 0.51885 2sec832ms
CC trilinear 0.51885 3sec201ms

BCC sh.trilinear 0.5 3sec149ms
BCC barycentric 0.5 3sec225ms

CC trilinear 0.5 3sec300ms
BCC trilinear 0.5 4sec337ms
BCC bilinear 0.36670 3sec208ms
BCC sh.trilinear 0.36670 4sec087ms
BCC barycentric 0.36670 4sec212ms
BCC trilinear 0.36670 5sec621ms
BCC sh.trilinear 0.3 4sec775ms
BCC barycentric 0.3 4sec948ms

CC trilinear 0.3 4sec968ms
BCC trilinear 0.3 6sec752ms

Table 3: Timings for several different interpolators on the BCC and
CC grid for the Marschner-Lobb dataset

Grid Interpolator Samplerate RenderingTime

BCC bilinear 0.75554 7sec999ms
BCC barycentric 0.75554 11sec648ms
BCC sh.trilinear 0.75554 12sec325ms
BCC trilinear 0.75554 16sec941ma

CC trilinear 0.5 15sec958ms
BCC barycentric 0.5 17sec134ms
BCC sh.trilinear 0.5 17sec713ms
BCC trilinear 0.5 24sec887ms
BCC bilinear 0.37777 17sec864ms
BCC barycentric 0.37777 22sec190ms
BCC sh.trilinear 0.37777 23sec114ms
BCC trilinear 0.37777 32sec628ms

CC trilinear 0.3 25sec624ms
BCC barycentric 0.3 27sec658ms
BCC sh.trilinear 0.3 28sec576ms
BCC trilinear 0.3 40sec735ms

Table 4: Timings for several different interpolators on the BCC and
CC grid for the hipiph dataset

the BCC grid the resample point lies in. Sheared trilinear interpo-
lation takes advantage of the fact that a BCC grid can be seen as
sheared CC grid with sheared cubic cells.

From these four reconstruction schemes, bilinear interpolation
is fastest, however, it can exhibit artifacts. The second fastest
schemes are barycentric and sheared trilinear interpolation. How-
ever, sheared trilinear interpolation achieves qualitatively superior
results as compared to the other schemes. Trilinear interpolation
is quite slow due to the costly interpolation of additional corner
points.

As a conclusion, sheared trilinear interpolation is the method of
choice for fast yet high quality reconstruction of BCC grids. Faster
reconstruction can be achieved with bilinear interpolation which
however is prone to artifacts. Sheared trilinear interpolation in the
BCC grid is also comparable in speed and quality to trilinear inter-
polation in the CC grid.

6 Future Work

For a better understanding of the effects of the presented interpo-
lation schemes within the BCC grid, it is necessary to investigate
them in the frequency domain. Especially various methods for de-
signing and evaluating reconstruction filters should be specifically
adopted and also applied to spherically symmetric filters for the use
in the BCC grid.

By sampling a function on a BCC grid, we assume that that func-
tion has a spherical frequency response as opposed to the CC grid
where a cubic frequency response is assumed. Consequently, the
ideal reconstruction filter for the BCC grid is spherically symmet-
ric. Unfortunately, this ideal reconstruction filter has, similar to the
1D case, infinite extent and is therefore impracticable. However,
we can use any filter designed in one dimension (see for exam-
ple Mitchell and Netravali [17], Marschner and Lobb [15], Möller
et al. [18]) through radial extension (i.e., f � r ��� f ��� x2 � y2 � z2 �
and convolution with the sample points (see Figure 11). Prelimi-
nary results with rotationally symmetric filter interpolation in the
BCC grid are quite promising. Figure 12 shows an example for
a high quality reconstruction using, in this case, a rotated cubic
Catmull-Rom reconstruction filter.

Generally, spherically symmetric filters are not separable. This
means that schemes as proposed by Bentum et al. [1] cannot be
used. This and the assumed cubic frequency response of CC data is
the reason that spherically symmetric filters are rarely used with the

filter footprint resample point

Figure 11: Using a rotational symmetric filter for interpolation by
convolving it with the sampling points.

CC grid. However, in case of the BCC grid they have the potential
of high quality image generation but with high computational cost.

Further, we would like to investigate other acceleration tech-
niques. In this paper we employed early ray termination and sub-
stituting trilinear by bilinear interpolation. Especially space leaping
techniques have the potential to significantly speed up the rendering
process. Such techniques have not yet been exploited for BCC grids
although they have been extensively used for CC grids [14, 20].

Acknowledgments

We thank Klaus Mueller for many fruitful discussions and for let-
ting us redraw Figure 1 from similar figures in his papers [19, 21].

References

[1] M. J. Bentum, B. B. A. Lichtenbelt, and T. Malzbender. Fre-
quency analysis of gradient estimators in volume rendering.
IEEE Transactions on Visualization and Computer Graphics,
2(3):242–254, September 1996.

[2] H. Carr, T. Theußl, and T. Möller. Isosurfaces on opti-
mal regular samples. Technical report, University of British
Columbia, Vancouver, 2002.

[3] S. L. Chan and E. O. Purisima. A new tetrahedral tesselation
scheme for isosurface generation. Computers & Graphics,
22(1):83–90, February 1998.

[4] D. E. Dudgeon and R. M. Mersereau. Multidimensional Dig-
ital Signal Processing. Prentice-Hall, Inc., Englewood-Cliffs,
NJ, 1st edition, 1984.

[5] T.C. Hales. Cannonballs and honeycombs. Notices of the
AMS, 47(4):440–449, April 2000.

[6] D. Hilbert. Mathematische Probleme. Nachrichten der
Königlichen Gesellschaft der Wissenschaften zu Göttingen,
mathematisch-physikalische Klasse, 3(1):253–297, 1900.

[7] L. Ibáñez, C.Hamitouche, and C.Roux. Determination of dis-
crete sampling grids with optimal topological and spectral
properties. In Procceedings of the 6th International Work-
shop in Discrete Geometry for Computer Imagery DGCI’96,
pages 181–192, 1996.

Figure 12: High quality reconstruction of the fuel dataset with a
rotated cubic Catmull-Rom reconstruction filter.

[8] L. Ibáñez, C.Hamitouche, and C.Roux. Ray casting in the bcc
grid applied to 3D medical image visualization. Proceedings
of the 20th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society, 20(2):548–551,
1998.

[9] L. Ibáñez, C. Hamitouche, and C. Roux. Ray-tracing and 3D
objects representation in the BCC and FCC grids. In Lecture
Notes in Computer Science 1347, pages 235–241, 1997.

[10] L. Ibáñez, C. Hamitouche, and C. Roux. A vectorial algorithm
for tracing discrete straight lines in N-dimensional general-
ized grids. IEEE Transactions on Visualization and Computer
Graphics, 7(2):97–108, April/June 2001.

[11] J. Kepler. Strena seu nive sexangula, 1611. Translated by
L. L. Whyte as ”The Six-Cornered Snowflake”, 1966 (Oxford
Univ. Press).

[12] P. Lacroute and M. Levoy. Fast volume rendering using a
shear–warp factorization of the viewing transformation. In
Andrew Glassner, editor, Proceedings of SIGGRAPH ’94,
pages 451–458, July 1994.

[13] M. Levoy. Display of surfaces from volume data. IEEE Com-
puter Graphics and Applications, 8(3):29–37, May 1988.

[14] M. Levoy. Efficient ray tracing of volume data. ACM Trans-
actions on Graphics, 9(3):245–261, July 1990.

[15] S. R. Marschner and R. J. Lobb. An evaluation of reconstruc-
tion filters for volume rendering. In R. Daniel Bergeron and
Arie E. Kaufman, editors, Proceedings of Visualization ’94,
pages 100–107. IEEE, October 1994.

[16] M. Meißner, J. Huang, D. Bartz, K. Mueller, and R. Craw-
fis. A practical evaluation of popular volume rendering al-
gorithms. In Proceedings of the 2000 IEEE Symposium on
Volume Visualization, pages 81–90, 2000.

[17] D. P. Mitchell and A. N. Netravali. Reconstruction filters
in computer graphics. Computer Graphics (SIGGRAPH ’88
Proceedings), 22(4):221–228, October 1988.

[18] T. Möller, R. Machiraju, K. Mueller, and Roni Yagel. Eval-
uation and design of filters using a Taylor series expansion.
IEEE Transactions on Visualization and Computer Graphics,
3(2):184–199, April/June 1997.

[19] N. Neophytou and K. Mueller. Space-time points: Splatting
in 4D. In Symposium on Volume Visualization and Graphics,
pages 97–106, Boston, MA, October 2002.

[20] M. Šrámek. Visualization of volumetric data by ray tracing.
PhD thesis, Vienna University of Technology, 1996.

[21] J. Sweeney and K. Mueller. Shear-warp deluxe: The shear-
warp algorithm revisited. In Joint Eurographics - IEEE
TCVG Symposium on Visualization (VisSym ’02), pages 95–
104, Barcelona, Spain, May 2002.

[22] T. Theußl, T. Möller, and M. E. Gröller. Optimal regular vol-
ume sampling. In IEEE Visualization ’01 (VIS ’01), pages
91–98, Washington - Brussels - Tokyo, October 2001. IEEE.

[23] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised
marching tetrahedra: improved iso-surface extraction. Com-
puters and Graphics, 23(4):583–598, August 1999.

[24] M. Wan, A. Kaufman, and S. Bryson. Optimized interpola-
tion for volume ray casting. Journal of Graphics Tools: JGT,
4(1):11–24, 1999.

