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Abstract, Kurzfassung

Two of the most important issues of computer graphics — especially in raster graphics and volume
visualisation — are sampling and reconstruction. These operations must fulfill particular conditions
of sampling theory in order to be able to represent arbitrary continuous functions by discrete samples
and reconstruct them from these samples without significant information loss. Several approaches
for high-quality reconstruction have been introduced to the computer graphics community. These
approaches are mostly implemented in software, possible only as pre-process step. The only two
ways of reconstruction that are usually fast enough for real-time rendering are nearest neighbor and
linear interpolation filtering, but the quality of these filtering processes is often not sufficient.

This work summarizes the hardware-based methods that exploit the features of today’s graphics
chips for filtering tasks. These methods are divided in two parts, i.e., high-resolution filtering and
image processing. Both methods are based on the distribution principle of convolution known from
splatting based volume rendering algorithms and they share the same general principle. The difference
is in the implementation of the algorithms themselves.

High-resolution filtering employs high-order filters in order to improve the quality of resampling
tremendously. The implemented algorithms exploit symmetry or separability properties to make the
filtering more efficient. We compare it to the existing, natively supported solution, i.e., linear interpo-
lation to our filtering implementation using higher order filters. This is shown in various application
areas like surface-texturing, and solid-texturing, animated textures, or derivative filtering; at interac-
tive framerates.

The image processing algorithms are simplified general filtering algorithms to increase effciency
and performance. We show the usability on smoothing and edge detection, the important operations of
image processing and pattern recognition. We combine this techniques together with other hardware
features to provide hardware-accelerated artistic rendering techniques. These are also presented in a
rendering system that provides non-photorealistic rendering effects.

Zwei der wichtigsten Problemstellungen der Computergraphik — besonders der Rastergraphik und der
Volumenvisualisierung — sind Sampling und Rekonstruktion. Diese Operationen missen bestimmte
Bedingungen der Samplingtheorie erfiillen, um beliebige kontinuierliche Funktionen durch diskrete
Samples darstellen, und spater die Originalfunktion aus diesen Samples ohne wesentlichen Informa-
tionsverlust wieder rekonstruieren zu kdnnen.

In der Computergraphik gibt es verschiedene Ansdtze fir Rekonstruktion mit hoher Qualitat.
Meistens konnen diese nur in Software implementiert werden, was aus Geschwindigkeitsgriinden
meist vorab durchgefiihrt werden muR. Die einzigen beiden Rekonstruktionsfilter, die tiblicherweise
schnell genug sind um fiir Echtzeit-Rendering eingesetzt zu werden, sind lineare Interpolation und
Nearest-Neighbor-Interpolation.

Die vorliegende Arbeit beschaftigt sich mit Hardware-basierten Methoden fir Filtering und
Rekonstruktion, welche die Fahigkeiten heutiger Graphikhardware ausniitzen. Diese Methoden
konnen in die zwei Bereiche High-Resolution Filtering und Bildverarbeitung eingeteilt werden. Beide
basieren auf der Berechnung der Faltungssumme in verteilter Reihenfolge — eine Idee, die aus allen
Splatting-basierten Volumenrenderingalgorithmen bekannt ist. Jedoch haben die hier dargestellten
Methoden nur diese Grundidee mit Splattingverfahren gemeinsam und unterscheiden sich insgesamt
sehr stark, besonders in bezug auf die Implementierung.



High-Resolution Filtering erlaubt den Einsatz von Filtern hoherer Ordnung, wodurch die erre-
ichbare Qualitdt des Resamplingvorgangs deutlich erhoht werden kann. Die implementierten Algo-
rithmen niitzen Symmetrie und/oder Separabilitat dieser Filter, um die Berechnungsgeschwindigkeit
zu erhohen. Wir vergleichen die Resultate mit den Filtern, die direkt von der Graphikhardware un-
terstlitzt werden: lineare Interpolation und Nearest-Neighbor-Interpolation. Hierzu zeigen wir An-
wendungen in vielfaltigen Bereichen, wie Oberflachentexturen, Volumenstexturen, animierten Tex-
turen, oder Filtering von Gradienten; all dies mit interaktiven Bildaufbauraten.

Die Algorithmen fiir Image Processing sind vereinfachte \ersionen der allgemeinen Filteringal-
gorithmen, um die Berechnungsgeschwindigkeit weiter zu erhdhen. Wir zeigen Anwendungsgebiete
am Beispiel von Glattungs- und Kantenerkennungsfiltern, welche wichtige Grundoperationen in der
Bildverarbeitung und der Mustererkennung darstellen. Diese Techniken kombinieren wir mit anderen
Fahigkeiten der Graphikhardware fur hardwarebeschleunigtes "artistic” Rendering. Wir zeigen diese
Moglichkeiten anhand eines Renderingsystems, das nicht-photorealistische Effekte darstellen kann.
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Chapter 1

| ntroduction

Machines are to work; human beings to use their minds.
Pollyanna’s Principle [4]

Computer graphics is a part of computer science dealing with approaches to represent, understand or
process graphical data. The abstract term computer graphics can be divided into the following two
categories according to the methods of processing the data:

e Image synthesis generates synthetic images from an underlying scene description. A scene is
a virtual world consisting of explicitly described objects. This description can be given analyt-
ically in form of mathematical equations, as a set of geometric primitives such as points, lines,
polygons, spheres, volumetric datasets, or others. Image synthesis also deals with methods for
manipulating and lighting scene objects.

e Image analysis reconstructs the information stored in the graphical form, which is represented
mostly with real-world scenes in form of digitized photographs, video streams, or volumetric
datasets as well. It covers all techniques for quality enhancement, noise reduction, edge detec-
tion, segmentation used either for image processing and editing or for pattern recognition and
feature extraction. The scene is mostly described by discrete samples of the real world, called
pixels (picture elements) in the 2D case, and voxels (volumetric pixels) in the 3D case. Image
analysis tries to “really” understand the information stored in these graphical elements.

Each computer graphics category uses a set of input and output devices to manipulate or display
the graphics. These devices can be either vector- or raster-based. \ector-oriented devices such
as tablets or plotters are rather specific and are not part of a standard computer setup. In practice
we rather use more raster-based devices that represent continuous scenes through discrete samples.
Typical representatives of raster devices are monitors or cursor pointers that operate on a set of two-
dimensional point arrays. When the internal scene representation is vector-oriented, for example, as
a set of polygons, it is necessary to sample them into a set of points in a process called rasterization
for displaying it.

Computer graphics is not the only scientific branch that uses samples for the representation of
continuous signals. Similar approaches are used as well in signal processing or acoustics, for example.
The difference to computer graphics is that signal processing usually is dealing with 1D signals, like
sounds or electromagnetic signals, while computer graphics mostly is dealing with 2D or 3D signals.
Two-dimensional functions represent images, and three-dimensional samples volumetric objects.
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1.1 Computer graphicsand graphicshardware

Image synthesis provides a lot of methods how to represent the underlying structures in a graphical
way. This process is called rendering and it is done in several steps usually called graphics-rendering
pipeline. The function of the rendering pipeline is to generate a two-dimensional image given by a
virtual camera, scene objects, light sources, lighting models, textures, and others. The locations and
shapes of the objects in the image are given by their underlying structure and placement of the camera
in the scene. Appearance of these objects is affected by material properties, light sources, textures
and lighting models.

Software implementations of the rendering pipeline make it possible to fully customize the render-
ing process. However, the software-based rendering has its drawbacks in terms of performance issues.
Therefore there are nowadays some stages of the rendering pipeline implemented in hardware. In the
early years of hardware acceleration it was possible to set up the scene objects from the geomet-
ric primitives, use a limited number of light sources, customize the camera settings, but the lighting
model was hard-wired in the hardware and the customization was strongly limited. The hardware
acceleration was implemented only in expensive high-end graphical systems and there was actually
no hardware acceleration on the consumer level. Due to the growing importance of the game indus-
try several manufacturers started to produce the first low-cost consumer graphics hardware equipped
with hardware acceleration. The first generation of low-end hardware accelerators were in fact simple
rasterizers, i.e., only the two last stages were done in hardware. Nowadays, the consumer graphics
cards are able to do the transform and lighting stage, which significantly increases the rendering per-
formance. These cards are equipped with a large feature set that makes possible to fully customize
the hardware-based rendering pipeline to realistically render the scene at interactive framerates.

Although these features are primarily intended for the game industry, they are usable in other ap-
plications as well. A good example is hardware-accelerated volume rendering on consumer graphics
cards or hardware-based filtering, discussed in this thesis.

1.2 Sampling and reconstruction

The theory dealing with the discretization of continuous data and its reconstruction to the contin-
uous form is called sampling theory. It tells, how dense to sample the continuous function to be
optimally represented by its samples. The theory recommends the sinc function to reconstruct the
continuous signal without any information loss [33] (in case sampling was done without aliasing).
The reconstruction process is described as a convolution of the sampled function with a reconstruc-
tion filter. Unfortunately the sinc function is not very suitable for practical use because of its infinite
width, therefore several other reconstruction filters have been introduced [37]. Filters can be classi-
fied according to their reconstruction quality and their computational complexity. It is obvious that
high-quality reconstruction is more complex and requires more computational time. The fastest re-
construction methods are nearest-neighbor approximation (equivalent to the so-called box filter) and
linear interpolation (tent filter). These filters are also natively supported by graphics hardware that
means that they application is fast, but the reconstruction quality often leads to artifacts. Such arti-
facts can be removed using higher-order filters such as piecewise cubic splines [18, 16], for example.
Although these advanced filters are not natively supported by hardware, the reconstruction process
can exploit the texture hardware features and capabilities to increase performance.
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1.3 Filtering applications

The above discussed raster and volume graphics needs the reconstruction, for example, for image
resampling tasks like minification or magnification. The volume graphics uses it for rendering pur-
poses as well. The derivative reconstruction can be used for gradient estimation. The reconstruction
is in fact just a subclass of general filtering operations. Filtering is an abstract term describing the
convolution of input data with an arbitrary filter. We focus on two types of filtering — the first is
using high-resolution filters, truly simulating the continuous ones for reconstruction tasks and the
second are image processing tasks generally using low-resolution filters. Both types have been im-
plemented exploiting hardware-acceleration for real-time processing. In the case of high-resolution
filters (Chapter 5) we use cubic filters and a windowed sinc (Chapter 6) of width four. The image
processing filtering uses standard filters used in image processing at very high processing speed. For
both types of filtering we discuss possible applications that all require real-time performance, so the
hardware-based filtering is especially suitable for them. In our implementation we use the general fil-
tering approach proposed by Hadwiger et al. [8, 9, 10] as well as image processing filtering introduced
by James [15].

Firstly, in chapter 2, we mention the basic facts and properties of the filter theory to clearly un-
derstand this part of the theoretical background. Chapter 3 reviews the state-of-the-art techniques of
filtering as well as features of graphics hardware. We will shortly mention other techniques using
hardware for filtering applications. Chapter 4 describes the basic concept of a general texture-based
filtering algorithm. Chapter 5 reviews applications and algorithms of high-resolution filtering. Image
processing filtering and its applications is described in chapter 6. Chapter 7 is dealing with imple-
mentation issues. Chapter 8 summarizes the thesis and after that some conclusions are sketched.



Chapter 2
Filtering Basics

This chapter reviews the principal ideas of sampling theory and digital filtering. The sampling theory
is dealing with two fundamental tasks, i.e., sampling and reconstruction. Sampling describes how
dense the original function should be sampled to be optimally described by its discrete representa-
tion. Reconstruction theory describes how to get the continuous function (or an as good as possible
approximation) from its discrete samples. An answer to several related questions lies in the frequency
domain where spectral analysis is used to examine the spectrum of the sampled data. How to get the
corresponding spectrum from a function is described by Fourier analysis.

2.1 TheFourier transform

Most functions can be represented as a sum of sine and cosine waves. In case of continuous non-
differentiable functions, the sum consists of infinite waves. The sine and cosine waves used for
representation are of different frequencies, amplitudes — called frequency response or spectrum of the
function — and phases. Accordingly, this is a representation in the so-called frequency domain. The
Fourier transform [5, 29] describes how to transform the spatial signal f to the frequency domain.
The following equations dealing with the Fourier transform are taken from [5]. The Fourier transform
is given by:

Fe = [t e,

where w is a value in the frequency domain. The inverse Fourier transform for reconstructing f(z)
from F'(w) is defined as:

flz) = /_ b F(w) - ™™ duw

o0

The Fourier transform generates a complex output for a real spatial input. The real and complex part
of the output specifies the amplitude and phase response. The frequency response and the phase is
defined by:

|[F(w)] = V[Re(F(w))]? + [Im(F (w))]?

¢(w) = tan"! (%)
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These equations are dealing with continuous functions. However in practice, we are often dealing only
with samples of the original function f. To transform discrete functions to the frequency domain, we
use the so-called discrete Fourier transform (DFT), which is derived from the continuous case:

N-1
— Z f[.’l?] . e—z27rwa:/N
=0
1 N-1
— N Z F[w] . eszwx/N
z=0

One interesting characteristic of the Fourier transform is its separability. To extend the DFT to two
dimensions we can rewrite the functions as:

M-1 /N—-1
Flu,) = (Z f(a,y)- eﬂm/N) e/

y=0 =0

M—-1

f({]j y) Z ( ZF u, U zZnux/N) . ei27rvy/M

In practice the fast version of the Fourler transform called Fast Fourier transform or FFT for short [6,
29] is often used. This version reduces the computational complexity from O(n?) to O(n - log(n)).

2.2 Linear convolution

A fundamental operation in image processing and reconstruction issues is an operator called convo-
lution. It is defined by an integral in the continuous case and as a sum in the discrete case [24, 42]:

g(x) = (f = h)(z / f(a') - h(z — 2")da'

z|+[m]
g(z) = (f * h)(z Z flilh(z — 4) (2.1)
=lz]-[m]+1

Easily described, convolution is a sliding and Weighted average of one function with another func-
tion providing the weights. The discrete version of the convolution from equation 2.1 describes the
reconstruction process, where g(z) is the reconstructed function, f[i] the sampled representation of
the original function, and i (z) the reconstruction filter of width 2m. The continuous convolution as
well as the discrete case are illustrated in figures 2.1 and 2.2. Figure 2.1 shows a continuous convo-
lution of two box functions resulting in the tent function. The discrete convolution is illustrated in
figure 2.2, where the first function is a discrete function and the second (often referred as the filter or
kernel) function is the tent function. The result is a continuous function that approximates the original
continuous function linearly. This process is called linear interpolation. One interesting property of
the convolution operation is the so called convolution theorem [32]:

The spectrum of the convolution of two functions in the spatial domain is equivalent to
the product of the transforms of both input signals, and vice versa.
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Figure 2.1: Example of a convolution of two box functions that results in a tent function [35].

IR W Yadl

Figure 2.2: Reconstruction process using the tent filter for convolution with a sampled function [35].

This is used in practice when the convolution is a time-consuming operation, e.g., the function repre-
senting the kernel is rather wide. The result of the spatial convolution could be obtained by transform-
ing both functions to the frequency domain, calculating the product of these two functions and finally
transforming the product back to the spatial domain. Other important properties of convolution are
commultativity, distributivity and associativity [24].

2.3 Sampling

The sampling theory uses several important functions for its analytical definitions. The first function
is called the impulse function (also known as Dirac impulse) [24]:

5@):{80 v=0

else

A function, which is derived from the Dirac impulse and which is also fundamental in the sampling
theory is called comb (sometimes also shah) function [24, 42], consisting of equally spaced impulses
defined by

comby(z) = Z Sz —n-T),
where 7' is the distance parameter between two adjacent impulses. The process of sampling can
be described as the multiplication of the original (continuous) signal with the comb function. The
quality of sampling varies according to the value of parameter 7. How to set the parameter to be able
to retrieve the original function back from its samples is described by the fundamental theorem of the
sampling theory, the so-called Shannon theorem [33]:



A function f(x) that is band-limited and sampled above the Nyquist frequency is com-
pletely determined by its samples and can be perfectly reconstructed by convolving the
set of samples with the sinc function.

The term band-limited function means function with finite frequencies. This can be examined in the
frequency domain; it should not contain any frequencies outside the particular interval called base
band [24]. The Nyquist frequency is twice the highest frequency component in the spectrum of the
original function [24]. Figure 2.3 describes the correspondence between the spatial and the frequency
domain during the sampling process. The sampled function creates an array of spectrum replicas,
while the spectrum in the center is denoted as primary spectrum and the other as alias spectra.

Figure 2.3: Two-dimensional sampling in the spatial domain (top) and frequency domain (bot-
tom) [18].

2.4 Signal reconstruction

The Shannon theorem defines not only how to sample the continuous function, but also specifies
the filter kernel which is the optimal one for reconstruction. If we take a look into the frequency
domain, the reconstruction (based on the sinc filter) is simply a multiplication of the spectrum and
a box function of the same width as the bandwidth of the primary spectrum. This “cuts” off all the
alias spectra and leaves only the primary spectrum (untouched). The primary spectrum represents the
original continuous function in the frequency domain.

|deal reconstruction

In order to reconstruct a function in the spatial domain, the reconstruction process is a convolution
of the sampled function and the spatial representation of the box filter in a frequency domain as
mentioned above. This box filter corresponds in the spatial domain to the sinc function and vice versa
[32]. The sinc filter is defined as:

1 x=20

SZTLC(.T) = { siigw else



This function is illustrated in figure 2.4. The problem that makes reconstruction impracticable using
the sinc filter, is its infinite extent.

Figure 2.4: Sinc function (ideal reconstruction filter) on the left and its frequency response (box filter)
on the right.

Reconstruction filters

In practice, other filters approximating the sinc function are used for signal reconstruction. The
choice of useful filters is based on the similarity to sinc on a given interval, while outside this interval
the values are equal to zero. Similar to other areas of computer science, the challenge to find a good
compromise between computational complexity and quality also comes up here. In general, the most
important criteria are the similarity to sinc (evaluated by its frequency response) and the width of the
filter.

Nearest neighbor approximation (Box filter)

The most primitive solution which is providing fast but usually not satisfying results is the nearest-
neighbor interpolation. It is a convolution with the box filter of width one, but in the spatial domain.
This results to a discontinuous, piecewise constant function. The filter as well as the results are
illustrated in figure 2.5.

Linear interpolation (Tent filter)

The biggest advantage of linear interpolation is the simple filter kernel, which is the already
mentioned tent function. The kernel is of width two that means in the 1D case that only two
samples contribute on a reconstructed value. This makes the filtering fast enough, although it
introduces visible artifacts. Filtering with the tent function results in a continuous piecewise lin-
ear function which is not differentiable at the sample positions. The process is illustrated in figure 2.2.
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Figure 2.5: Reconstruction process using the box filter for convolution with the sampled function.

—9

Cubic interpolation

The piecewise cubic interpolation is using four samples for reconstruction of one value. This method
provides smooth transitions in-between sample points, i.e., the resulted function is differentiable
on the whole reconstruction interval. Using suitable cubic functions as filter kernels is already
considered as state of the art [16, 18]. This method will be discussed in the next chapter in more
detail. Unfortunately this kind of filtering is rather time-consuming due to the computational
complexity, especially dealing with large or higher-dimensional datasets.

Gaussian filters
Another approach is to use the well-known Gaussian lobe as a filtering kernel [37]. The Gaussian

function is defined as: .

oV 2

Although the filtering process generates a smooth continuous function, the disadvantage is that the
Gaussian lobe reaches zero only at infinity. In other words, the Gaussian lobe has infinite support.
By using suitable p and o values the results are similar to other state-of-the-art filtering methods.
Another characteristic of the Gaussian lobe is its approximative behavior, which results from the fact
that it is positively defined on the whole interval of real numbers. This behavior introduces blurring
artifacts. In the next chapters we will see that this also can be an advantage. It simplifies the hardware
implementation of the filtering process. The Gaussian lobe is shown in figure 2.6.

Gz, 0) = Lo (e (2.2)

Windowed-sinc filter

The idea of windowing is to approximate the sinc function on a given interval by multiplying the
sinc with another (limited) function, called window [36]. The window function is defined outside the
respective interval to be constantly zero and usually provides smooth transitions on the boundaries of
the interval. After multiplication with the sinc, the resulting function has also limited support, but it
preserves some of the behaviors of the sinc function. A more detailed description is given in the next
chapter.

2.5 Reconstruction and aliasing

The sampling and reconstruction theory describes various aspects that must be considered for
high-quality filtering. What happens, when the conditions are not fulfilled, is described in this
section. The term “aliasing” is not consistently defined; Mitchell and Netravali [18] define all
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Figure 2.6: Gaussian lobe with y =0and o = 1.

artifacts caused by incorrect sampling or reconstruction as aliasing. Other definitions consider only
sampling errors as aliasing, reconstruction artifacts are simply reconstruction errors. We use the
Mitchell and Netravali definition of aliasing [18], and divide the errors into the following categories:

Pre- and post-aliasing

Both of these aliasing artifacts occur, when the fundamental conditions of the sampling theory are
not fulfilled. Pre-aliasing occurs when the signal is not band-limited before sampling or not sampled
properly so that the alias spectra overlap in the frequency domain. The solution is either to increase
the sampling frequency or to preprocess the function with a low-pass filter.

Post-aliasing occurs due to the incorrect reconstruction when the alias spectra “leak” into the
reconstruction. The reconstruction kernel is significantly non-zero at frequencies, also above the
Nyquist frequency. The pre- and post-aliasing effect is illustrated in figure 2.7. It shows what
happens in the frequency domain with the spectrum due to aliasing. The first problem is that it is
impossible to cut off the alias spectra correctly, because they are overlapping the primary spectrum.
The other case shows the incorrect setting of the frequency filter width.

Blurring

Blurring also called smoothing occurs due to an incorrect choice of a reconstruction kernel. This
effect is strongly visible when approximating kernels are used, because they simply do not reconstruct
the original function in the interpolative sense. This means even the reconstructed values at the
sample points are not equal to the sampled values.

10



Ideal reconstruction filter ‘ ﬂ
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Figure 2.7: Pre-aliasing (a) and post-aliasing (b). [18].

Ringing
Low-pass filtering of step discontinuities results in ringing. This effect is also called Gibbs phe-
nomenon.

Anisotropy
This artifact occurs in the multi-dimensional case when the filter is not spherically symmetric.
Anisotropy manifests itself as an asymmetry in smoothing or post-aliasing effect.

2.6 Derivativereconstruction

Until now the so-called function reconstruction was described, when the filtering process reconstructs
the function itself. But there are many cases when the first order (or n-th order) information is needed
as well. For example, to estimate the gradients of an image, the continuous filter produces much better
results than simple edge detectors, i.e., discrete approximations of derivative kernels.

The fundamental property of convolution (or of linear filtering generally) is that the n-th order
derivative of the convolution result of a function with a kernel is equivalent to the convolution of that
function with n-th order derivative of the kernel, and vice versa. The relationship is defined as:

d(")(f * h) d™h
dx e dx

That means that deriving the classical reconstruction kernels mentioned above, we obtain so-called
derivative kernels. In the 2D case, the derivative kernel is computed as a product of the derivative
kernel with its functional counterpart. This results into a partial derivation in a particular direction.
By rotating this kernel by 90 degrees we obtain the kernel for the next partial derivative. Higher order
derivative kernels are obtained analogously to the first derivative kernel. The first derivation of the
sinc filter is called cosc and has infinite support as well. The difference is that it exceeds the interval
[—1, 1] and it is an odd function.

11



2.7 I mage processing

For fast image processing the discussed high-resolution filters are often not effective enough. There-
fore several discrete, low-resolution filters were developed. There are two types that are mostly used in
image processing filtering tasks. We will partly use the image processing terminology here to achieve
optimal correspondence to the addressed literature. So first we define the term linear operator which
is the image processing term for a filter of width equal to number of samples in one dimension. It
could be considered as a low-resolution approximation of a particular continuous filter. Another often
used image processing term is operator mask that means usually a two-dimensional matrix of linear
operator weights. The principle of image processing filtering is illustrated in figure 2.8, where the p
array represents two-dimensional sampled data and A the linear operator.

Another category of image processing operators are non-linear operators, which do not compute
the filtered image using convolution. The algorithm usually takes one value from the operator mask
according to some neighborhood conditions. The typical operators are minimum or maximum op-
erators, taking always the smallest or biggest intensity value from the sample’s neighborhood. This
value is then considered as the output value of the particular pixel. Such operators are not mentioned
in the following text, because they are not convolution-based.

p1| p2 | p3 h1 [ h2 | h3
pS = p4 | p5 | p6 * | 'h4 | h5 | h6
p7 | p8 | p9 h7 | h8 | h9

pS'=(p+h)(p5)=p1-h1 + p2-h2 +p3-h3 + p4-h4 + p5-h5 + p6-h6 + p7-h7 +p8-h8 + p9-ho

Figure 2.8: Principle of image processing filtering. The p array represents 2D data and A the linear
operator. The principle shows computation of the output sample at the position p5.

Smoothing filters
An interesting class of linear operators are smoothing filters [34]. They are used for noise suppression

exploiting the redundancy of the image data. The operator works on a sample’s neighborhood given
by its width. The typical representative is the averaging operator, i.e., the box filter. The operator
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matrix consists of constant values, whose sum is equal to one. The resulted (smoothed) value is the
sum of all (equally weighted) neighboring pixels. Figure 2.9 (a) shows an averaging operator mask.

Another often used smoothing operator is the Gaussian operator [34] shown in figure 2.9 (b). The
difference to the averaging operator is that the Gaussian filter has no constant values in the operator
mask. The Gaussian operator is a discrete approximation of Gaussian lobe, however generally not of
a high resolution.

19 11/9 11/9 1/16] 1/8 [1/16

1/4

(@) (b)

Figure 2.9: Averaging (a) and Gaussian (b) smoothing operators [34].

Edge detection

Another class of linear operators are edge detectors. These filters highlight the contours of objects,
or generally highlight such places in an image where there is a big difference in neighboring sample
values. This is used in segmentation or computer vision to find searched objects according to their
contours. These operators also approximate their continuous counterparts. A typical representative is
the Laplacian operator [34]. It approximates the sum of mixed derivatives of second order. Another
representative is the Sobel [34] operator, approximating the derivative filtering of the first order. This
filter usually consists of two kernels; each kernel approximates the partial derivation in one orthogonal
direction. Using two operator masks makes it possible to estimate the gradient direction, not only
the magnitude as in the case of the Laplacian operator. Both mentioned operators are illustrated in
figure 2.10.
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Figure 2.10: Laplace (a) and Sobel (b) edge detectors [34].
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Custom filters

The previously mentioned filters are approximations of kernels for either function or derivative re-
construction. The operator mask, however, could consist of any values. For smoothing filters it is
typical that the weights are in sum equal to one. This is due to the goal of intensity preservation. The
derivative approximations and edge detectors usually have weights summing up to zero. Building a
custom kernel, however, need not fulfill any of these conditions. Such filters are mostly used, for
example, for special effects in image processing and editing applications.
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Chapter 3

State of the art Iin reconstruction and
har dwar e-accelerated graphics

Due to the limited support of the general filtering process by current hardware there are nowadays
only few solutions for effectively performing convolution in hardware. The first section of this chap-
ter describes existing software solutions, the next section gives an overview about current hardware
features that are used in existing, hardware-based solutions.

3.1 Reconstruction filtersin computer graphics

In the last chapter we have shortly mentioned the state-of-the-art techniques which are used for
high-quality reconstruction. One approach is based on cubic interpolation using kernels of width
four, another uses windowing functions to limit the sinc support to a finite interval.

Cubic spline kernelsfor reconstruction

Symmetric cubic spline filters are piecewise cubic polynomials defined on the intervals [-2, -1],
[-1, 0], [0, 1], and [1, 2]. Outside these intervals the kernel is equal to zero. The effective width of
these kernels is four that means in the 1D case that four sample points are contributing to the recon-
structed value. Mitchell and Netravali [18] derived a family of cubic splines with two free parameters,
i.e., the very popular BC-splines. The piecewise cubic BC-splines are defined by:

( (12— 9B —6C)|2?|+ if |zl <1
(—18 4+ 12B + 6C)|2?| + (6 — 2B)

h(z) =< (=B —6C)|2%| + (6B +30C)|z*|+ if 1< |z] <2
(—12B — 48C)|z| + (8B + 24C)

(0 else

If we set the B and C' parameters to particular values, the BC-splines correspond to well-known filter
kernels, e.g., B = 1 and C' = 0 corresponds to the cubic B-spline. Mitchell and Netravali have
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investigated the characteristics of the BC-splines by changing the parameters B and C' [18]. They
experimentally found the boundaries of acceptable range for the B and C' parameters. Another pop-
ular family of cubic splines used for reconstruction issues are cardinal splines derived by Keys [16].
These splines have one free parameter and are defined by:

(a+2)|23| — (a+3)|2?|+1 if |x| <1
h(z) = ¢ a|?| —balz?| + 8alz] —da  if 1< |z| <2
0 else

The cardinal splines are a subclass of BC-splines, the simple conversion is done setting B = 0 and
C = —a. The interpolative Catmull-Rom spline with o = —0.5 (or B = 0, C' = 0.5 for BC-splines)
is the most suitable cubic spline reconstruction kernel [16]. Practically this means that the Catmull-
Rom spline is the closest approximation of the sinc function of width four when utilizing piecewise
cubic splines. Another interesting characteristic is that it is an interpolative filter, so some aliasing
artifacts like blurring do not occur.

Windowed ideal reconstruction

The filters from the previous section try to approximate the ideal reconstruction filter using piece-
wise cubic spline interpolation. Another approach is to use a finite support approximation of the sinc
function itself for reconstruction. However simple clipping of the sinc filter to a particular width usu-
ally produces significant aliasing effects due to a discontinuity of the filter. To create a band-limited
version of the sinc with a smooth transition to zero, a multiplication with another function called
“window” is necessary. To classify the quality of the windowing function it is necessary to examine
the reconstruction function in the frequency domain. It other words, how close is the frequency re-
sponse of the new filter when compared to the box filter (which is the frequency representation of the
sinc function).

Turkowski [37] proposed the Lanczos window to be a suitable window for reconstruction. Theuf3l
et al. [35, 36] compared it to other windows such as Bartlett, Welch, Parzen, Hann, Blackman, Kaiser,
and clipped Gauss window. They concluded that the Kaiser, Blackman, and Gauss windows are
especially suitable according to their frequency response. The quality of reconstruction using these
filters depends on the width and parameter settings of the filter.

The Blackman window is defined by [35]:

0.42 + 0.5cos(m%) + 0.08cos(27%) of |x| < T
h(x’T):{ 0 ) (o) else| |

The Kaiser window has an additional parameter « that controls how steeply the function approaches
zero [35]:
h(.’L’,T, Oé) - { éo (a | 1 - (2)2) /IO(a) Z€{S€|$| =7

Iy is the zeroth-order modified Bessel function [29]. The Gaussian window has one disadvantage in
comparison to the previous two: it actually never reaches zero so we have to truncate it. The Gaussian
lobe is defined by equation 2.2.
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Another popular method for evaluating filters in spatial domain was introduced by Maller [19, 20].
It is based on a Taylor-series expansion of the convolution sum. The details of this method go beyond
the scope of this thesis, the interested reader is encouraged to read the referenced literature [19, 20].

Analogous to function reconstruction, the derivative reconstruction uses a similar approach. How-
ever, it uses the derivatives of the above mentioned functions. This is true for both the piecewise cubic
reconstruction and windowed cosc. Experiments showed that the Blackman, Kaiser, and Gaussian are
also the most suitable windows for the derivative reconstruction [35, 36].

Softwar e-based high-resolution filtering

The term high-resolution filtering addresses filtering techniques which use kernels of much higher
resolution as their effective width. These filters are approximating the original continuous kernels
much more realistically than their counterparts from image processing. They are mostly used in high-
quality reconstruction, reasonably fulfilling the sampling theory described in the previous chapter.

The best results of high-resolution filtering are achieved with the above mentioned cubic splines
and the windowed sinc filters. They produce smooth transitions without any visible artifacts. The
disadvantage is that they compute the filtered value from 4 samples in the one-dimensional case,
from 16 samples in 2D, and from 64 samples in 3D. Existing software solutions provide high-quality
results, which require long computational times (far from real-time performance). So there is no
possibility to integrate software solutions for high-quality and high-resolution filtering into interactive
applications, when filtering is required on-the-fly.

3.2 Hardware-accelerated graphics

In this section we will shortly describe the basic functionality of graphics hardware, and take a look
at the history to see how the various graphics boards developed during the last twenty years. We will
classify them according to what they do and show the newest features which make the hardware more
flexible and customizable.

Therendering pipeline

To understand what the graphics hardware does it is necessary to understand the graphics pipeline,
i.e., the process that brings geometric objects onto the screen. The pipeline model classifies five main
stages of operation:

e Generation (G): Modeling the scene using a data structure, e.g., a BREP, a hierarchical scene-
graph, or a height field.

e Traversal (T): Traversing the scene data.

e Transformation (X): The object coordinates are transformed to the camera coordinate system,
then clipping is done according to the viewing frustum. In case of perspective projection the
coordinates are divided and finally transformed to the screen coordinates. The lighting step,
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which also takes part in this stage, is the calculation of lighting effects at each vertex of each
triangle. This includes the color and brightness of each light in the scene and how it reacts with
the color and specularity of the objects in the scene.

e Rasterization (R): During this stage the objects, i.e., the polygons are being decomposed into
horizontal spans of pixels (or fragments). There are also various tests taking place during this
stage such as ownership test, scissors test, alpha test, stencil test, depth buffer test and blend-
ing. These tests decide which fragment should be accepted or refused according to customized
settings [23].

e Display (D): For the last stage in the 3D graphics pipeline, the display controller reads the
information out of the frame buffer and sends it to the driver for display.

The hardware accelerators are primarily classified according to which parts of the rendering pipeline
they contribute to. The traditional VGA graphics card does only perform the last stage. It is also
labeled as a GTXR-D card. This label tells which parts are processed in the driver (on the left side
of the dash) and which are done in hardware (right side). The first and second generations of the
consumer graphics cards were of GTX-RD [38, 22] type. That means that besides bringing the scene
onto the screen they were doing the rasterization stage as well. GeForce was the first GT-XRD card
in the consumer area [22]. At that moment the difference between high-end solutions and consumer
graphics cards became smaller and smaller. Several cards from the consumer area are also considered
as low cost high-end solutions [22, 3].

The application programming interface

To be able to communicate with the hardware, several graphics libraries were developed. Using
these interfaces, the programmer is able to generate the scene, sets the camera view and the lighting
conditions, and does everything that somehow influences the rendering process. Two of these
programming interfaces are standard nowadays OpenGL and Direct3D.

OpenGL

OpenGL (Open Graphics Library) [23] became a standard due to its definition as an open and free
software. Since its introduction in 1992 by SGI, OpenGL has become the industry’s most widely used
and best supported 2D and 3D graphics application programming interface (API), bringing thousands
of professional applications to a wide variety of computer platforms. The OpenGL is designed by
various manufacturers adding more and more features to the standard set. Another feature of OpenGL
is the portability of its code. Only one characteristic can be considered as a drawback, which is its
programming level. It is designed for the C programming language. Consequently, OpenGL does not
contain any hierarchy of classes. It works as a state machine. This problem is partly solved in the
Open Inventor API (SGI), i.e., an object-oriented layer on top of OpenGL. This API unfortunately is
bound only to the official versions of the OpenGL standard, so there is no possibility to use the newest
hardware features by using Open Inventor. However, it is possible to mix Inventor and OpenGL code.
Due to its stability and portability OpenGL is widely used in professional applications and research.

Direct3D
Direct3D is another standard for the PC platform, based on the Windows operating system. It is a
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part of a multimedia framework called DirectX [11] (developed by Microsoft Corporation). It is
designed as an object-oriented graphics library within the multimedia framework. Direct3D is often
used in game industry.

The pioneersfrom Silicon Graphics

The history of using special hardware for accelerating the graphics pipeline started in the early eight-
ies, when Silicon Graphics Inc. (SGI) [31] designed their first machine. Floating-point hardware was
just becoming available at reasonable prices, the framebuffer memory was still quite expensive and
the application-specific integrated circuits (ASICs) were in fact not available at all. The resulting
machines had reasonable transformation capabilities, but very limited capabilities for processing the
framebuffer. In particular, smooth shading and depth buffering, which required substantial frame-
buffer hardware and memory, were not available at interactive rates. Therefore the target capabilities
of first-generation machines were the transformation and rendering of flat-shaded points, lines, and
polygons. These primitives were not lighted, and hidden-surface elimination, if required, was ac-
complished by software. Typical representatives of such systems were the Silicon Graphics Iris 3000
(1985) and the Apollo DN570 (1985) [31].

Towards the end of the first-generation period new advances in technology allowed lighting,
smooth shading, and depth buffering to be implemented, but only with an order of magnitude less
performance than what was available for rendering flat-shaded lines and polygons. Therefore the tar-
get capability of these machines remained the same as for the first-generation machines. The Silicon
Graphics 4DG (1986) was an example of such an architecture [31].

Because the first-generation machines could not efficiently eliminate hidden surfaces, and could
not efficiently shade surfaces even if the application was able to eliminate them, they were more
effective at rendering wire-frame objects than solids. Beginning in 1988, the second-generation of
graphics systems, primarily graphics workstations, became available. These machines took advantage
of reduced memory costs and the increased availability of ASICs to implement deep framebuffers with
multiple rendering processors. These framebuffers had the numeric ability to interpolate colors and
depths with little or no performance loss, and the memory capacity and bandwidth to support depth
buffering with minimal performance loss. They were therefore able to render solids and full-frame
scenes efficiently, as well as wire-frame images. The Silicon Graphics GT (1988) and the Apollo
DN590 (1988) are early examples of the second-generation machines [31].

Later second-generation machines, such as the Silicon Graphics VGX, the Hewlett Packard VRX,
and the Apollo DN10000 included texture mapping and anti-aliasing of points and lines, but not of
polygons. Their performances are substantially reduced when texture mapping is enabled. The texture
size (of the VGX) and filtering capabilities (of the VRX and the DN10000) are limited [31].

The third-generation design was introduced by RealityEngine graphics in 1993 [2]. Its target
capability is the rendering of lighted, smooth shaded, depth-buffered, texture-mapped and anti-aliased
triangles. The initial target performance was 500000 triangles per second, assuming the triangles are
in short strips, and 10 percent intersect the viewing frustum boundaries [2]. Textures were to be
well filtered (8-sample linear interpolation within and between two mipmap levels) and large enough
(1024 x 1024 ) to be usable as true images, instead of small textures tiled on the geometry. Anti-
aliasing produced high-quality images of solids, and worked in conjunction with depth-buffering,
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meaning that no application sorting was required. Pixels were filled at a rate sufficient to support
15-30 Hz for most applications.

The successor of the RealityEngine system was InfiniteReality introduced in 1997 [21]. The fun-
damental design goal of this graphics system was to deliver real-time performance to a broad range
of applications. This system was able to render full-screen images at a constant frequency of 60 Hz,
so the goal to satisfy the needs of flight- or ground-based simulations as well as virtual reality appli-
cations was achieved quite well. The framebuffer size increased to 1280 x 1024. Another important
feature was the possibility to access a “virtual texture memory” without significantly impacting the
overall performance. The programming interface to InfiniteReality as well as its precedessors is
OpenGL. These graphics boards are classified to be of GT-XRD type.

Silicon Graphics Inc. was the leader on the market of graphics systems for a long time. Typically,
they provided the graphics engines mostly for their own MIPS RISC workstations such as Onyx or
Onyx2. However, their production started a PC line as well.

Consumer graphics hardware

The importance of the PC platform in the 3D graphics area grew in the last few years by porting a lot
of professional tools for 3D modeling and animation to this platform. One of the representatives that
tried to achieve the real-time performance of this tools on the PC was 3DLabs [39].

In the mid-eighties the computer games market, producing more and more realistic games, started
to look for hardware-accelerated graphics as well. The companies participating in the first generation
of consumer graphics hardware started to produce chips that were not supporting 2D graphics at all.
These were exclusive 3D boards and could only be used in conjunction with conventional 2D graph-
ics cards. Although this boards were already equipped with texture memory and a framebuffer the
practical usage was limited to playing games. The graphics applications like tools for 3D modeling
and animation, were usually not able to take advantage of these early consumer 3D hardware accel-
erators. The leading company producing the well-known Voodoo boards was 3dfx Interactive [38].
These cards can be considered as being of GTX-RD type.

In 1998, NVidia Corporation [22] was the first competitor of 3dfx that was able to come close
in terms of performance, and even surpassed the line of Voodoo Graphics accelerators in terms of
features with its Riva TNT graphics accelerator. This chip started the second generation of consumer
graphics accelerators. The Riva TNT was the first consumer graphics chip that was able to offer
high-performance and high-quality rendering, also supporting OpenGL. In contrast to the Voodoo
Graphics, these boards were combined 2D and 3D graphics boards, so they required only a single slot
for a full 2D and 3D acceleration. Riva TNT is significantly different to the Voodoo graphics boards
but it is still of GTX-RD type.

With the very popular Riva TNT chip NVidia started to merge two application areas using 3D
hardware: computer games and professional applications. The following product confirmed this strat-
egy even more. In 1999 NVidia introduced GeForce 256 graphic chip. Introducing the GeForce 256,
NVidia started the production of real GT-XRD cards on the PC level [22]. Previous accelerators ba-
sically all were rather simple rasterizers, in some way more 2D than 3D, where most of the 3D work
had to be done by the driver. The new card fully computed the transform and lighting in hardware.
The biggest importance from the programmer’s side of view is not only that OpenGL 1.2 is fully
supported, but it offers a lot of features and additions to the standard, making the hardware much

20



more flexible. The features are mostly dealing with the texture mapping hardware. Among them,
for instance, hardware-based bump mapping and support of cubic environment maps were available.
A feature, which is of biggest importance with respect to flexibility are the Register Combiners as
discussed below. A year later, NVidia introduced the GeForce2 chip, equipped with more memory
and being faster, but the features remained more or less the same [22].

In 2001, NVidia introduced the GeForce3 graphics chip to the market. The rendering speed in-
creased significantly. The vertex and pixel shaders were added to the hardware implementation of
the shading languages. Hardware volume rendering became possible using 3D textures instead of a
stack of 2D textures. Multi-texturing became more powerful using four texture units in one rendering
pass. The game and animation production companies are also making use of shadow buffers, adding
more realism using cinematic-style shadow effects. Recently, NVidia introduced their newest chip
called GeForced4. It features the same amount of texture units per single rendering pass, but the per-
formance increases in some cases by one magnitude. The chip features improved vertex shading and
a new anti-aliasing implementation. However the pixel shader features are still limited by the Register
Combiners’ flexibility.

Parallel to the GeForce production, NVidia’s biggest competitor, i.e., ATI Corporation [3] devel-
oped another line of graphics chips, equipped with similar features as the GeForce, called Radeon.
Starting the production of the Radeon family boards, ATl became the second company developing
consumer hardware accelerators equipped with a lot of additional features giving the developer broad
application possibilities. Radeon was the first consumer graphic card supporting 3D textures.

Its successor, i.e., the last chip of ATI called Radeon 8500, is able to use up to six texture units
in a single rendering pass. It supports 1D, 2D, and 3D textures as well. Another important feature in
terms of quality is its internal precision. Radeon 8500 features 12 bit precision, 3 bits more than the
GeForce3. However, this chip is still significantly slower than the GeForce3. The card is equipped
with both vertex and fragment shader (another term for pixel shader). A more detailed description, as
well as a comparison to GeForce3 is discussed in section 3.3.

An open guestion are improvements in the framebuffer and the internal precision, which is still
a big limitation in many application areas. As there are two leading companies on the market of
consumer graphics cards we can expect a fast development towards higher speed and a wider spectrum
of applications.

Special-pur pose hardware

A completely different approach was used in the design of another graphics board by Mitsubishi
Electric introduced by Pfister et al. [28]. The rather expensive board called VolumePro is designed
as a PC-card for a PCI slot. The card was primarily intended for hardware-based volume rendering
using a ray casting algorithm [17] and parallel projection at framerates up to 60 Hz. The new versions
of the card mainly differ in bigger memory allowing to process bigger datasets. The most significant
limitation of this hardware is the narrow range of application. The card was designed for doing
volume rendering, it is rarely used for anything else.
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3.3 Reevant featuresfor hardwarefiltering

The feature-set of consumer graphics hardware has reached a level that offers a lot more than just
simple scene rendering. Beside the astonishing performance improvements, the programmer is able
to significantly customize the rendering process according to his or her needs. The following features
are described which are necessary for hardware-based filtering. We shortly sketch what they are used
for especially in our context. A more detailed explanation of their usage is given in the following
chapters 4, 5, and 6.

Multi-passrendering

The idea of multi-pass rendering is to perform more rendering passes during the main loop instead
of transferring the content of the framebuffer to the display device immediately after each pass. The
results of each pass are combined together according to a blend function. The simplest operation is
addition of the new results to the existing content of the framebuffer. It is possible to set the blend
equation to subtraction or to other operations that use the alpha-channel content of the framebuffer
and/or the last rendering pass to decide how pixel values are mixed together. Operations which are
dependent on the alpha channel content of one or both operators (new results and existing framebuffer
content) are so-called alpha-compositing operations. A typical example of multi-pass rendering is to
render the same object in more passes with different material and lighting settings to achieve a more
realistic appearance. However, multi-pass rendering has its limitations related to the framebuffer
precision which is still 8 bit per channel. Anther important feature is to copy the content of the
framebuffer to a texture and to re-use the subresult for the next processing. Nowadays, hardware
features also “virtual framebuffers” to avoid the time-consuming reading from the framebuffer. The
fastest approach to store rendering subresults is to render directly to the texture.

Multi-pass rendering is the most important feature for hardware filtering, allowing to compute the
final pixel value from subresults of more passes.

Multi-texturing

The multi-texturing approach is similar to multi-pass rendering, allowing to process more textures
in a single pass. The number of textures is limited by the number of texture units provided by the
current hardware. The advantage of multi-texturing when compared to multi-pass rendering is usually
a higher speed but also the fact that the internal precision of the hardware is often better than the
framebuffer precision. This practically means that the result of the computation is not influenced that
much by the precision. The better quality of multi-texturing as compared to multi-pass rendering is
not the only difference in functionality. Multi-pass rendering is generally intended for blending of
two arbitrary scenes, while multi-texturing allows to use more textures (and operations among them)
on the same geometry within a single rendering pass.

The old multi-texturing model was quite hard-wired, the programmer was strongly limited by the
exact ordering of the texture units during the multi-texturing pipeline. Thanks to features of nowadays
hardware there are more or less no limitations in the texture order anymore.
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For high-resolution filtering also the multi-texturing feature is fundamental. The reason is that the
object to be filtered is stored in one texture and the filter kernel in another. For multiplying the kernel
with the source at least two textures are necessary.

Programmable shaders

Programmable shaders are a powerful way to describe the interaction of surfaces with light. A well-
known shading language is, e.g., RenderMan introduced by Pixar [12]. The RenderMan shading
language is very flexible in managing the rendering process, however, it is still a software solution.
As graphics hardware nowadays evolves beyond the traditional inflexible pipeline, hardware designers
are looking for programmable models to support the next generation of real-time applications. The
shader operates on each vertex or pixel individually, so it is possible to customize the rendering
pipeline for each element individually. Of course, some parts of the scene still can be rendered with
the fixed rendering pipeline to increase performance. There are two types of shader, i.e., vertex and
pixel shaders. Although they seem similar from the end-user side of view, the concepts are rather
different. The vertex shader is a part of the transformation stage, while the pixel shader controls the
rasterization stage.

A vertex shader can be considered as a black box with vertex data being fed into the box and
different vertex data coming out. Every vertex that goes in comes out once, but it may have changed
while it was in the vertex shader. Consequently, vertex shaders do not create or delete vertices, but
simply operate on them, change the values of the data which describe the vertex. The outgoing vertex
can have a different position in space, changed color, transparency, or texture coordinates as compared
to the input. All of these vertex changes, computed for one vertex at a time, can create a special effect
for the overall object.

Analogously to the vertex shader, pixel shaders (or fragment shaders) operate on pixels. The
principle of using pixels shaders, however, is similar to vertex shaders. Replacing the fixed graphics
pipeline, the programmer can better influence the appearance of materials like simulating facial hair,
producing various procedural effects, bump mapping, or Phong shading.

Comparing the two leading companies on the PC market, i.e., NVidia and ATI, ATI offers more
flexibility with respect to pixel shader with their AT1 Radeon 8500. Even the newest NVidia GeForce4
chip does not change this fact. There are still limitations in the texture unit order, the programmer is
restricted to use only a hard-wired ordering.

For the hardware-based filtering methods programmable shaders are a tool for comfortable texture
and color processing. It also allows to add the result of one multiplication of two operands (textures
and/or colors) to another, before storing the resulting values in the framebuffer.

3D textures

The classical approach of texturing an object deals with surfaces. To each vertex a texture coordinate
is assigned referring to the underlying source image (texture) which simulates the surface character-
istics of the material. Slightly in contrast, the real world objects are no surfaces but three-dimensional
objects. Consequently the characteristic of real-world objects are approximated by 3D functions in-
stead of 2D ones. Classical representatives are marble or wooden objects, which are hard to render
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realistically when 2D textures are used. There are a lot of visible artifacts appearing with 2D textures.
For example the visible texture repetition or the fact that two textures do not perfectly fit together on
the edges of a particular object. This is easy to solve by using a 3D texturing approach. Another
application area are volumetric objects like fog or smoke, where the traditional 2D texturing must
involve a lot of tricks to realistically simulate such objects [26, 27]. 3D texturing is also necessary
in volume visualization, like visualizing tomographic or magnetic imaging scans [30, 40]. There are
already approaches to simulate 3D data with a stack of 2D slices, but the implementation is rather
complicated.

3D textures are necessary for hardware filtering when filtering 3D objects. This is mostly the case
when visualizing medical data or objects textured by solid textures.

OpenGL imaging subset

The OpenGL imaging subset is an extension of OpenGL and allows a simple convolution between
the source image and a kernel [23]. Unfortunately it does not provide at all means for high-resolution
filtering. It is designed for the basic needs of image processing applications like smoothing or edge
detection. The computation is not done in texture hardware, it works with the basic pixel operations
set. Using this feature is not very effective, because the kernel size is limited by the hardware and
only one or two-dimensional convolutions are supported natively. The processing speed on consumer
hardware is also rather confusing, the computation is probably implemented in the driver.

Due to its limitations, this feature was not used in our implementation, it was used as quality and
performance reference.

3.4 Hardware-based filtering

The only filter supported natively in hardware for high-resolution filtering is the tent filter, i.e., for
linear interpolation. This is a sufficient solution only in the case of high sampling frequency or
minification during viewing, otherwise it produces significant artifacts. The big advantage of na-
tively supported linear interpolation is the real-time performance required by interactive applications.
Nowadays, graphics hardware allows to filter linearly also 2D and 3D functions on-the-fly. The re-
sulting performance depends, of course, on the filtered texture size and the mesh complexity as well.

Although current graphics chips are equipped with a lot of features, one problem still remains,
i.e., the insufficient precision range of the current hardware. Therefore there are just few approaches
to use the hardware for filtering. Hadwiger et al. [8, 9, 10] has proposed an hardware-based approach
exploiting texture hardware features for high-resolution high-quality filtering tasks. This thesis is
based on their approach, which is described in chapter 5. James [15] designed an image processing
approach for simple convolution tasks using the texture hardware as well. This method is also used
in our implementation and is described in chapter 6.

Beside these methods another approach was proposed by Hopf and Ertl [13] using the SGI graph-
ics hardware [31]. They are using the OpenGL imaging subset of OpenGL and texture hardware to
extend the natively supported 2D convolution to 3D [13]. A vyear later they introduced hardware-
accelerated non-linear image processing with erosion and dilation operators [14].
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Chapter 4

Hardware-based filtering using textures

There is nothing easier than complicate the job, however nothing is more difficult
than making the job easier.
Meyer’s Law [4]

In the previous chapters we have introduced the basic filtering operation, i.e., convolution. The usual
(standard) implementation is based on the gathering principle. This means that the final value of a
particular output sample is computed by gathering weighted neighboring input samples and adding
them simultaneously. In other words, the convolution operation is processed in a serial way, i.e., one
output sample after the other.

The gathering principle is the straightforward way to implement convolution and it can take ad-
vantage of parallelizing the process. Processing more output values in one time — on a multiprocessor
system or on a network workstation farm — can increase the performance almost linearly. The paral-
lel algorithm can divide the image or volume into several parts, which are then processed each on a
separate processor. After each subpart is filtered, the final result is composited from the subresults.

This “classical” implementation is illustrated in figure 4.1(a). The tent filter results in a portion
from the first sample summed with a corresponding portion of the second one. On a single processor
system this kind of implementation is this especially efficient, when only one or just few particular
output values are computed.

4.1 Distribution principle

The gathering principle as discussed above is the most intuitive approach, it is easy to implement in
software. However there is another possibility of how to achieve filtering using another evaluation
order. Instead of computing one output value after another, we can compute the contribution of par-
ticular input samples to all corresponding output values at a time. This looks at first quite complicated
and usually there is no reason to use this principle in software implementations.

The distribution principle is illustrated in figure 4.1(b). For comparison to the gathering principle
we use the tent filter again. The input sample distributes its partial contributions to a given resampling
grid. In case of a tent filter of width two, we sum these partial contributions with contributions of
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another input sample and get the resulting resampling points. The idea of reordering the evaluation
of the convolution sum is used in all splatting-based techniques [41].

. output sample input sample
input samples ————

- ’.\
\ /,@ ‘-T\ filter kernel

Figure 4.1: The Gathering principle (a) computes the output value at a time, while the distribution
principle (b) distributes the input sample to all corresponding output values.

4.2 Distribution principlein hardware

The reason, why we discuss the distribution principle at all, is its power when we use graphics hard-
ware in the filtering process. A graphics chip is designed to perform primitive mathematical per-
fragment operations for all fragments (almost) simultaneously. This does not mean that it is in paral-
lel. This depends the internal hardware implementation, however, due to a powerful performance it
can be considered to be parallel from the outside. The most flexible part of the graphics chip is the
texture mapping hardware. Operations like addition or multiplication of RGBA channels are the most
simple representatives of the instruction set. This is in fact all what a simple filtering process needs.

Lets take a look at the distribution principle once more to understand its hardware version. The
input function is stored in one texture and the filter kernel in another one. The kernel is thus also stored
in sampled form. However, the number of samples can vary according to the quality of sampling. It
is obvious that using a high sampling frequency of the kernel increases the quality of the resulting
filtering operation. The kernel texture is scaled to the texel size of the input texture times the kernel
width. Kernel width describes the number of contributing input samples. For example the tent filter
computes output values from two input samples in the 1D case that means it is of width two, while the
cubic spline kernels are of width four. To be able to perform the same operation for all input samples
in one time, we have to divide the kernel into several parts to cover always only one input sample at
a time. Let us call such parts filter tiles. For illustration we use the tent filter again. As mentioned
above this filter is of width two. Instead of taking the whole filter kernel, we first only take the left
tile of it. This tile is scaled exactly to the width between two input samples. To compute the “left”
contribution of each input sample we shift the input function texture to the left by one half of the
sample distance. After this, each input sample covers exactly the left tile of the filter kernel. Now we
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have the input function in one texture and the kernel tile (of width one) in the second one. We take
advantage of another hardware feature, i.e., texture repetition. The kernel texture is repeated to cover
the whole input function. We set the numerical operation between these two textures to multiplication
and render it to the framebuffer. This subresult is the left tile contribution of each input sample to the
output resampling points. We repeat this process with the right tile — shift the input texture to the right
by one half of the sample distance from its original position — set the framebuffer blending function
to addition and render the other contribution to the framebuffer again. The whole filtering result is
now stored in the framebuffer. The distribution of the left and right tile contribution is illustrated in
figure 4.2.

input samples input samples

L

o}
|
|

Figure 4.2: Distribution of left (a) and right (b) contributions on the resampling points. The dis-
tributed portions of the left and right contributions are summed together to get the correct values at
the resampling points.

The 1D tent filter example explains the general filtering approach using arbitrary filter kernels.
For better illustration we explain the filtering idea with a pseudocode dividing the process into the
following logical parts.

Global setup

In this part, the first important task is the filter kernel computation and its division into several texture
tiles of a width equal to the distance between two samples. The next task is to generate lookup tables
that completely describe the filtering process (see section 7.2 for a detailed explanation). The lookup
tables assign shifting coordinates and filter tiles to each filtering pass. The shifting coordinates are
analogous to the example of 1D filtering using the tent filter as discussed above. They are used to
shift the input texture to cover the correct image part with the corresponding filter. However, in the
2D and 3D case with wider kernels the situation is a little bit more complicated. There are shifts not
only half the sample width in each direction, but 16 or 64 various shifts to assign a correct sample
neighborhood to the corresponding filter tile. Section 7.2 describes the filtering process from the
implementation point of view and illustrates the shift lookup tables as well. In the case of symmetric
filter kernels, we can generate one filter tile from another one by simple mirroring operation. Another
lookup table describes how to mirror and which tile to use for a particular filtering pass. This lookup
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table is generated in this stage as well. Another part of the global setup is an optional software
simulation of the filtering process to see, whether there are any complications in the numerical
precision using hardware filtering.

Per-pass setup

This part of the filtering process selects a filter tile for the respective filtering pass. This tile is
assigned to a texture unit, similar to the source texture. The only difference is in the texture setup.
While the source texture is set to clamping, the filter texture is set to repetition. This is used to be
able to filter each sample value of the input texture at once with the same filter tile.

Vertex setup

The name of this stage comes from the hardware part, which is used in this stage. \Vertex shaders
are used to shift the texture coordinates of the input texture according to the filtering pass so that the
input sample is multiplied with the corresponding filter tile. Beside this, it scales the filter tile texture
to the size of the input sample distance. After this, when the texture is set to repetition from the
previous filtering stage and the input texture is correctly shifted, each filter tile replica should cover
exactly one input sample.

Pixel setup

The final stage is also called according to the hardware part where it is processed, namely the
pixel shader. It assigns both textures to shader registers and computes the multiplication of these
two registers. The product of the multiplication is a set of outgoing fragments which represent the
subresult of a particular filtering pass. This subresult is then stored in the framebuffer. The blend
function must be set to addition to sum all the filtering passes together to achieve the desired filtering.

We will use pseudocode in the next chapters to illustrate various issues of the implementation. The
general filtering approach could be described by the pseudocode in table 4.1. The pseudocode uses
the operator shift_j, denoting that the input texture is not actually indexed differently at each output
sample, but instead the input texture is shifted according the the particular rendering pass j.

4.3 High-resolution filtering vs. image processing

The filtering process as described above, i.e., linear interpolation with the distribution principle in fact
is resampling not reconstruction. The difference is that reconstruction generates a continuous function
from the sampled data, while resampling produces another sampled function that represents the same
continuous function as the original sampled data. So reconstruction can be viewed as the first part of
resampling. The second part is then the sampling process with another sampling frequency.

Another filtering approach is used in image processing and convolution-based operations. In
general, image processing only affects already existing samples. The so-called linear operators are
neither reconstruction nor resampling filters at all, they do not generate any new resampling points.
The approximation of the continuous filter is very rough, because the convolution mask has the same
number of samples as its width.

The difference between a 1D continuous signal, a high-resolution filter, and the image processing
operator is sketched in figure 4.3. The original Gaussian lobe often used as smoothing operator in im-
age processing applications is represented by three or five samples in each dimension (figure 4.3 (c)).
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global setup:

input texture: as is, all formats (mono, RGB, RGBA, etc.);
filter tiles: generate 1D, 2D, or 3D tile textures;
per-pass setup:
input texture: setup texture clamping;
filter tiles: select tile corresponding to pass j;
setup tile repetition;
vertex setup:
input texture: texcoord[TEX_UNITQ] = shift_j(texcoord[ TEX_UNITO]);
filter tiles: texcoord[ TEX_UNIT1] = texcoord[ TEX_UNITO]*tile_size;
pixel setup:
input texture: reg0 = SampleTex(TEX_UNITO);
filter tiles: regl = SampleTex(TEX_UNIT1);

out = Multiply(reg0, regl);

Table 4.1: General filtering approach divided into several stages. This approach is denoted as std-2x
algorithm in chapter 5.

Each sample represents one weight for the neighboring samples. Comparing this to high-resolution
filtering (figure 4.3 (b)), where one tile of the filter kernel is represented by usually a high number of
samples, the continuous kernel (figure 4.3 (a)) is better approximated. In the case of image process-
ing, we are dealing with only one sample pro tile. This means that the filter tile is constant throughout
singular tiles. When we take a look at the general filtering approach in hardware in case of linear
operators, we will multiply the input texture with the kernel texture of a constant value. This is equiv-
alent to multiplying it with a color value. Instead of setting the color always to white we use the color
to represent the convolution weights. This saves us some texture traffic time — caused by the kernel
textures transfer — and texture units to be able to process more filtering passes in a single rendering
pass. This difference in the filtering concept is the reason why we discuss high-resolution filtering
and image processing in separate chapters 5 and 6.
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Figure 4.3: Gaussian lobe: continuous function (a), high-resolution sampling (b) and image process-
ing Gauss filter (c).
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Chapter 5

High-resolution filtering

In the previous chapter we have introduced hardware-based filtering as an approach which is based
on basic texture operations. It was explained using a simple example of linear interpolation. In
this chapter we will describe high-resolution filtering in more detail, showing the filtering approach
based on filters of width four, i.e., piecewise cubic spline filters and windowed sinc using the Kaiser
window, known from previous chapters. Although we use kernels of width four, the filtering approach
works for kernels of arbitrary width. A width of four provides on current graphics cards the best
quality/performance ratio.

High-resolution filtering deals with continuous filters which are sampled using a variable sampling
frequency, however assuming, that the number of samples is much higher than the filter width. To
involve the hardware into the filtering process it is necessary to split the filter kernel into several
tiles according to its width. The tiles are then stored in separate textures. As we are dealing with
filters of width four, a one-dimensional filter is divided into four texture tiles. The advantage of
the filters we use for reconstruction is that they are separable in higher dimensions. That means,
e.g., the two-dimensional kernel can be computed as a cartesian product of two one-dimensional
kernels. The filters that we use have also another interesting characteristic of reconstruction kernels,
i.e., symmetry. This allows to (implicitly) assess one part of the filter kernel by mirroring another part.
In our implementation we use three types of reconstruction kernels: a cubic B-spline, a Catmull-Rom
spline, and a windowed sinc with a Kaiser window. All these filters are separable and symmetric as
well. This is important to know when discussing various filtering algorithms in the next section.

5.1 Filteringalgorithms

The filtering process based on the concept from the previous chapter uses in fact two textures, one for
the sampled input function and another for the sampled filter kernel. In case when the hardware allows
to use more than two textures in a single rendering pass, we can perform more than one filtering passes
within a single rendering pass. This has two significant advantages. First, due to a higher internal
precision, the computation does not suffer from the quantization artifacts that much. The second
advantage of using more textures in one rendering pass is of course the increased performance. In
some cases the performance increases almost linearly.

Although quantization artifacts are usually not so visible at a first glance, they immediately be-
come visible when changing from four to two textures. The human observer recognizes a grid-like
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structure over the resampled function. Using four textures means that there are two filtering passes
within one rendering pass summed together internally in hardware and this sum is added to the frame-
buffer. Using only two textures there is one filtering pass per one rendering pass and all filtering
contributions are summed in the framebuffer.

The algorithms described below can be expanded to use more texture units if available. The
algorithms are illustrated using pseudocode to clearly see the differences between them. We use the
same style of pseudocode as in the previous chapter (see table 4.1).

Standard filtering

In this case, no optimization is done in order to make use of kernel characteristics like symmetry or
separability. It implies that the tile textures have the same dimensionality as the input sample function.
This approach has the highest demands on texture memory as well as the highest texture traffic.

The first task of the standard filtering algorithm is the computation of the filter kernel and its
division into several texture tiles of a width equal to the distance between two samples. Next, the
lookup tables are generated to manage the filtering process. The first lookup table determines the
pass order to be able to easy change the processing order. The second lookup table assigns the filter
tile to the particular filtering pass and the third table stores shift coordinates for each pass. The shift
coordinates are used to shift the input texture to cover the correct texture part with the corresponding
filter tile. All this is done in software as a preprocessing step. The per-pass stage selects a filter tile for
the respective filtering pass. This tile is assigned to one texture unit, and the source texture to another.
While the source texture is set to clamping, the filter texture is set to repetition to multiply all source
texels at once. After this is done, the source texture is shifted according to the filtering pass and the
filter tile texture is scaled to the size of the input sample distance. The input and filter tile textures are
multiplied together and the result is stored in the framebuffer. This is repeated for all filtering passes
to compute all contributions which are summed together in the framebuffer.

The algorithm is denoted as std-2x, while “std” means standard and the “2x” notation describes the
number of texture units used. Extended versions are called std-4x and std-6x, depending on hardware
capabilities. It works for 1D, 2D, and 3D convolutions as well.

Symmetric filter kernels

The symmetry of a filter kernel can be exploited such that some tiles of the filter kernel are generated
by mirroring others. We can make use of symmetry both across axes and diagonals. When the
filter kernel is not separable or the hardware does not have enough texture units in order to exploit
separability, the symmetry property highly reduces the texture memory consumption. In the 2D case,
using a kernel of width four in each dimension, we only need to store three out of 16 texture tiles.
Even more effective, in the 3D case only four out of 64 texture tiles are stored, saving more than 93%
of memory resources as compared to the standard case. Another optimization is to save the kernel
texture in compressed form. Although this causes an additional significant reduction of memory
consumption the hardware needs some time for the decompression.

It is important to note that mirroring a texture tile is not as simple as just swapping texture co-
ordinates, mainly because mirroring needs to be pixel-exact. Although on some hardware it is often
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sufficient enough to mirror the texture coordinates in the vertex shader, it is generally not enough to
guarantee the pixel-exactness that means that the filter tile texture covers the source texture exactly
for each pixel. In fact the vertex shader guarantees only the exactness on a vertex basis. Therefore it
is necessary to mirror the tiles in the pixel shader.

The algorithm which exploits filter symmetry is derived from the general filtering approach. The
only difference is in the per-pass setup. This algorithm does not increase the overall performance of
the filtering process, and it can be combined with any other filtering algorithm, therefore we do not
use any special notation for this kind of optimization. Table 5.1 shows this process expressed using
pseudocode.

global setup:
input texture: as is, all formats (mono, RGB, RGBA, etc.);
filter tiles: generate 1D, 2D or 3D tile textures;
per-pass setup:
input texture: setup texture clamping;
filter tiles: select tile corresponding to pass;
setup tile mirroring;
setup tile repetition;
vertex setup:
input texture: texcoord[TEX_UNITOQ] = shift_j(texcoord[ TEX_UNITO]);
filter tiles: texcoord[TEX_UNIT1] = texcoord[ TEX_UNITO]*tile_size;
pixel setup:
input texture: reg0 = SampleTex(TEX_UNITO);
filter tiles: regl = SampleTex(TEX_UNIT1);
out = Multiply(reg0, regl);

Table 5.1: Filtering with the std-2x algorithm exploiting kernel symmetry.

Separablefilter kernels

Exploiting another characteristic of filter kernels, i.e., separability, we can decompose a high-
dimensional kernel into several ones of lower dimensionality. Storing lower dimensional kernels
instead of higher dimensional ones significantly reduces memory consumption and texture traffic. In-
stead of using 2D or 3D filter kernels, we assess them as two or three one-dimensional ones. In the
3D case there is another possibility: in order to save texture units involved in the filtering computa-
tion the texture is stored in one one-dimensional and one two-dimensional texture. These textures are
multiplied on-the-fly in the pixel shader to generate the corresponding 2D or 3D filter kernel tiles. It is
obvious that instead of, e.g., one two-dimensional texture with 64 samples in each direction only one
or two one-dimensional textures with 64 samples in total are stored. We call this algorithm sep-3x,
expressing by “sep” the separated computation and by “3x” the number of texturing units used in the
filtering algorithm for 2D as well as 3D case. There are always two texture units reserved for the

32



decomposed filter and one texture unit for the input sample function. In the 2D case both texture units
represent the one-dimensional textures, while in the 3D case we represent one-dimensional texture
with one texture unit and the two-dimensional texture with another one. These two textures are mul-
tiplied at first, generating the corresponding filter tile which is used in the convolution with the input
sample function.

Although in theory the sep-3x algorithm is numerically equivalent to the std-2x, this is not com-
pletely true in practice. The std-2x algorithm uses kernels which are generated in a preprocess in
software using floating-point precision, while in the pixel shader on-the-fly computation uses only
the internal precision given by hardware. The comparison between the above mentioned algorithms
is definitely a performance/quality trade-off. The quality of the sep algorithm significantly increases
when using its sep-6x version. Table 5.2 describes the filtering approach described in this section.

global setup:
input texture: as is, all formats (mono, RGB, RGBA, etc.);
filter tiles: separable; only 1D (3x [2D] / 4x [3D]), or 1D and 2D (3x [3D]);
per-pass setup:
input texture: setup texture clamping;
filter tiles: select tiles corresponding to pass;
[ setup tiles mirroring; ]
setup tiles repetition;
vertex setup:
input texture: texcoord[ TEX_UNITOQ] = shift_j(texcoord[ TEX_UNITOQ]);
filter tiles: texcoord[ TEX_UNIT1] = texcoord[ TEX_UNITO]*tile_size;
texcoord[TEX_UNIT2] = texcoord[ TEX_UNITO]*tile_size;
I* sep-4x */ texcoord[ TEX_UNIT3] = texcoord[TEX_UNITO]*tile_size;
pixel setup:
input texture: reg0 = SampleTex(TEX_UNITO);
filter tiles: regl = SampleTex(TEX_UNIT1);
reg2 = SampleTex(TEX_UNIT2);
I* sep-4x */ reg3 = SampleTex(TEX_UNIT3);
I* sep-4x */ reg2 = Multiply(reg2, reg3);
regl = Multiply(regl, reg2);
out = Multiply(reg0, regl);

Table 5.2: Filtering with sep-3x or sep-4x algorithm and exploiting the separability of the filter kernel
as well as symmetry (optional).

Separable and symmetric filter kernels

When the filter has both properties, symmetry as well as separability, we are able to combine both
above mentioned algorithms. Typically, all kernels used for high-quality reconstruction exhibit such
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properties. The pseudocode in table 5.2 also includes the symmetry extension (illustrated with angle
brackets in the per-pass setup). When applicable, the process of per-pixel mirroring is performed on
the decomposed kernels. When these are mirrored on a per-pixel basis the result of the multiplication
of the two or three decomposed lower-dimensional kernels guarantees pixel-exactness as well.

Pre-interleaved monochrome input

This algorithm differs from the others mentioned above in its way of making use of another aspect
than kernel properties as input. The algorithm expects a monochrome and preprocessed input sam-
ple RGBA texture. The idea is to make use of hardware-based per-pixel dot products. Instead of
using a monochrome texture we use the RGBA texture format. Each color channel stores the same
monochrome texture but using different texel offsets. In other words the texture is interleaved with
itself four times. We demonstrate the interleaved texture using an example: The original texture is
stored in the R channel. The G channel represents the same texture, but shifted to the “left” by one
sample distance that means that the G channel stores the value toward the “right” from the current one.
B and A channels represent the next two neighbors toward the “right” from the original sample value.
Note that the interleaved texture is exactly four times the size of the corresponding monochrome tex-
ture. After the interleaving process each pixel stores four samples from the original sample function.
Doing the same with the filter kernel, i.e., pre-interleaving it we are able to use the per-pixel dot
product operation to fold four passes into a single pass. Adding the other filtering algorithms into
this process as well as using all available texture units the performance increases tremendously. We
denote the algorithm as dot-2x, the versions making use of more texture units by dot-4x and dot-6x,
and those exploiting filter separability by spd-3x, spd-4x, and spd-6x. We describe the dot-2x ver-
sion of the algorithm using pseudocode in table 5.3. The spd versions are a mixture of sep and dot
pseudocode.

5.2 Applicationsof high-resolution filtering

This section reviews the application areas of the high-quality and high-resolution filtering. Three
different filter kernels are used in our implementation in order to exploit their filtering characteristics:
cubic B-spline, Catmul-Rom spline and Kaiser-windowed sinc of width four. We present results using
surface texturing as an example in 2D and solid texturing as an 3D example.
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global setup:

input texture: monochrome, interleaved in RGBA;

filter tiles: 1D, 2D, or 3D, also interleaved in RGBA,;
per-pass setup:

input texture: setup texture clamping;

filter tiles: select tile corresponding to pass;

[ setup tile mirroring; ]
setup tile repetition;

vertex setup:

input texture: texcoord[TEX_UNITOQ] = shift_j(texcoord[ TEX_UNITO]);
filter tiles: texcoord[TEX_UNIT1] = texcoord[ TEX_UNITO]*tile_size;
pixel setup:

input texture: reg0 = SampleTex(TEX_UNITO);

filter tiles: regl = SampleTex(TEX_UNIT1);

out = DotProduct4(reg0, regl);

Table 5.3: Filtering with the dot-2x algorithm, exploiting the per-pixel dot product, computing four
passes within a single pass, as well as exploiting the kernel symmetry (optional).

Surface textures

Surface texturing is the most often used way for using texture hardware in consumer application
areas as well as in professional modeling tools. The hardware natively only supports one type of
high-resolution filtering, namely bi-linear filtering. This method produces clearly visible artifacts,
especially when the sampling frequency of the input function is not high enough. However this is
the next better solution after nearest neighbor interpolation. Our method preserves both high-quality
reconstruction as well as interactive framerates. As illustration of high quality we show the results
of various filters comparing them to linear interpolation. In figure 5.1, the Catmull-Rom spline and
Kaiser-windowed sinc provide similar results. The cubic-B spline generates a little bit a blurry effect
due to its approximative behavior. But in consumer oriented applications, where the main goal is to
provide smooth functions this is often not considered as an artifact. Using this filter in professional
applications, e.g., medical visualization can cause that the low-pass filtering removes small structures
and therefore is unpracticable. However, there are possibilities for using approximative filters in
interpolation oriented tasks also. We will discuss this in another section of this chapter.

Higher-order filtering is especially suited for simulating effects which have a low frequency prop-
erty: The typical representatives are lightmaps for real-time display of radiosity lighting solutions [1].
This solution is often used in games, storing the whole lighting of a particular level in a texture. The
lightmaps are generally sampled with low sampling frequency. Reconstructing the lightmap using
a bi-linear filtering causes strongly visible artifacts (similar to those seen on figure 5.1 (a)). Using
the bi-cubic filtering, especially the cubic B-spline, we get improved lighting effects at interactive
framerates.

The tables 5.4 and 5.5 show the framerates of the filtering process using two different
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Figure 5.1: Surface-textured teapot using a standard tent (a), a cubic B-spline (b), a Catmull-Rom
spline (c) and a Kaiser-windowed sinc filter (d).

state-of-the-art graphics chips, namely NVidia GeForce3 and ATl Radeon 8500. The tables com-
pare various discussed filtering algorithms and the approximate number of pixels being rendered.
Note, that GeForce3 has generally better performance, while the Radeon 8500 makes it possible to
use up to six texture units in a single pass. Beside that the Radeon card has better internal precision
and provides numerically better results. For this benchmark we used a fully textured object with about
500 visible triangles. The source texture of 64 x 64 samples was repeated on the object several times
(see figure 5.1).

Solid textures

Making use of three-dimensional texturing allows to simulate effects which are hard to implement
when using traditional surface textures only. The first group of effects are natural materials like wood
or marble because of their internal structure [26, 27]. Imagine a vein of color that runs through a
marble statue which cannot be described with standard 2D texture because it runs through the center
of the statue and emerges on the other side. A similar property has wood with its annual rings.
Another group of objects are volumetric objects like volumetric fog or 3D lightmaps often sampled at
a low resolution. Storing them in acceptable resolution means high demands on the texture memory,
which is even much more significant than in the case of 2D texturing.

Another, nowadays very popular area of application of 3D textures is hardware-based volume
rendering [30, 40]. To generate acceptable results, the reconstruction stage of this process should
provide high-qualitative results as well. Especially in medical visualization, where the quality of
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# pixels | std-2x (16) | std-4x (8) | dot-2x (4) | dot-4x (2) | sep-3x (16) | spd-3x (4)
60k 55 105 190 275 55 190
180k 55 57 125 108 55 188
260k 50 36 80 60 46 150
900k 25 15 28 19 22 70
1200k 20 18 28 13 15 55

Table 5.4: Framerates (in fps) of NVidia GeForce3 surface texturing, using different filtering algo-
rithms. In parentheses is the number of rendering passes.

# pixels | std-2x | std-4x | dot-2x | dot-4x | sep-3x | sep-6x (8) | spd-3x | spd-6x (2)
60k 24 46 90 167 24 46 90 167
180k 24 34 71 78 24 46 71 83
260k 17 19 45 45 24 46 55 62
900k 9 9 20 19 23 35 26 27
1200k 8 9 16 15 16 24 55 32

Table 5.5: Framerates (in fps) of ATl Radeon 8500 surface texturing. In parentheses is the number of
rendering passes.

representing the dataset must follow strict conditions. The mostly used type of filtering is tri-linear
interpolation. Using higher-order filters should improve the reconstruction quality. This is another
application area, where the high-quality filtering is especially well-suited for.

For tri-cubic filtering we use the same filter kernels as in the two-dimensional case, however the
filter kernels are three-dimensional. In figure 5.2 we see the comparison between tri-linear and tri-
cubic filtering. The dataset consists of 1283 samples. The tri-linear case yields so called staircase
artifacts, which are completely removed in the tri-cubic case. For the tri-cubic filter a cubic B-spline
was chosen, especially suited for such types of reconstruction.

Figure 5.2: Solid-textured teapot using a standard tent (a) and a cubic B-spline filter (b).

The performance issues of the GeForce3 and Radeon 8500 are described in the following ta-
bles 5.6, 5.7. The test dataset has the same resolution as the wooden material described above, i.e.,
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1283 samples. From the benchmarks, it is visible that Radeon 8500 performs well when drawing just
few pixels. With a growing number of rendered pixels the GeForce3 provides better framerates.

# pixels | std-2x (64) | std-4x (32) | dot-2x (16) | dot-4x (8) | sep-4x (64) | spd-4x (16)
60k 19 21 64 66 21 76
180k 6.5 6.8 20 20 14 50
260k 4.2 4.5 11 11 8.7 34
Table 5.6: Framerates (in fps) of NVidia GeForce3 solid texturing.

# pixels | std-2x (64) | std-4x (32) | dot-2x (16) | dot-4x (8) | sep-4x (64) | spd-4x (16)
60k 23 26 71 71 59 90
180k 4.2 4.5 15 16 30 30
260k 2.8 2.3 8 9 18 40

Table 5.7: Framerates (in fps) of ATI Radeon 8500 solid texturing.

Animated textures

High-quality reconstruction is even more important when using animated textures as compared to the
static case. Linear interpolation produces much more visible artifacts, because the underlying inter-
polation grid, appears as a kind of static layer beneath the moving texture. Higher-order filtering like
cubic interpolation completely removes these artifacts. So the animation process is not disturbed by
strong artifacts, preserving realism of the animation. This grid effect is most visible in animations
with rotating objects. We classify the animations into three main categories according to their gener-
ation stage.

Pre-rendered animation

The first category computes the animation frames in a pre-processing step, e.g., using any type of
application suited for such animation generation. The frames are stored in separate textures and the
animation is done by simply rendering a different texture each pass, providing the illusion of an
animation. This type is very sensitive with respect to memory consumption, therefore the natural
solution is to store the animation frames in lower resolution. These low resolution textures usually
are reconstructed using linear interpolation, resulting in the already mentioned artifacts.

Figure 5.3 shows the difference between bi-linear and bi-cubic filtering of one frame from a
texture animation used in a spacecraft multi-player game called Parsec [25]. The input texture is given
in various resolutions: 256 x 256, 128 x 128, 64 x 64, and 32 x 32. The first two texture resolutions
can be considered as acceptable, but the lower resolutions strongly pronounce the difference of the
filtering methods used for reconstruction. Another example is a pre-rendered animation of fire stored
at a 64 x 64 resolution. This animation simulates a torch fire by a popular trick in game industry.
Instead of using “real” volumetric fire mapped on a 3D object, we use two perpendicular quads
intersecting each other. This trick is based on the variable viewing angle preservation that means that
the fire appears to be three-dimensional from each angle. The snapshot from this animation in figure
5.4 top shows the difference between bi-linear and bi-cubic interpolation once more.

Procedural CPU animation
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Figure 5.3: Pre-rendered animation from the space combat game Parsec [25] (first row) filtered with
a standard tent (second row) and a cubic B-spline filter (third row).

Another category of animations are procedural animations. At first, we are discussing animations
with frames generated on the processor. Typical procedural animations are smoke, gas, or fog as well
as moving or forming marble [7]. For generating the textures on-the-fly and preserving the interactive
framerate, it is necessary to reduce the computation time as much as possible. Note, that in this
case also the texture transfer from the main memory to the graphics chip is a rather time-consuming
operation. This type of animation has no high demands on the texture memory capacities. However,
in order to achieve a sufficient framerate we are forced to minimize the number of computations to a
minimum. So also this leads to low resolution frames which consequently need to be reconstructed
at as good as possible quality. Cubic interpolation suffices due to low computational demands and
fast high-quality reconstruction, achieving interactive framerate of a realistic animation.

Procedural GPU animation

A similar category from the “family” of procedural animations includes those which are computed
on the graphics chip itself. Although the graphics processor does not offer a whole lot of flexibility,
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Figure 5.4: Pre-rendered animation of fire (top) compared to procedural GPU animation (bottom).
The figure shows the animation frame, maginfied regions filtered with a standard tent and a cubic
B-spline filter (from left to right).

and therefore only a limited range of animations are possible when compared to those which are
generated on the main processor, there is one significant advantage: we do not need to transfer
the sampled function to the graphics memory, because it is already there. This saves some part of
the computation time. But in general the necessity of interactive framerates requires to reduce the
computation time.

One nice example how to make use of hardware for procedural animation was introduced by
James [15] shown in figure 5.4 bottom. The algorithm generates a fire animation based on basic
texture and image processing operations. It generates source “embers” using the well-known Game
of Life algorithm. This is implemented in hardware making use of the dependent textures feature.
The embers are then blurred in hardware using basic linear operators. The blurring (or smoothing)
approach will be described in detail in the next chapter. After blurring, the algorithm shifts the blurred
embers upwards achieving the impression of moving fire particles. This shifting is done by a simple
increment of the v texture coordinate. The process is repeated in an endless loop producing always
new animation frames. After the frame generation the high-quality filtering approach can be applied.
The resulting animation is comparing again the bi-linear and bi-cubic reconstruction process. The
algorithm uses a 32 x 32 texture resolution.
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Derivative reconstruction and applications

Up to now we have only discussed high-resolution function reconstruction. Another issue is derivative
reconstruction. Interestingly there is no derivative reconstruction natively implemented in hardware
as in the case of function reconstruction. Therefore the reason to implement a hardware-based filtering
is clear. Compared to software solutions, this approach provides sufficient framerates even in the 3D
case and produces much better results than, for example, a Sobel edge detector or central differences.
Beside that, Sobel and central differences are not high-resolution filters at all but belong to the image
processing field.

Derivative reconstruction can make use of all the filtering algorithms described at the beginning
of this chapter only with some small changes. One difference regards kernel symmetry: a reconstruc-
tion kernel for first-order derivatives usually is generated as multiplication of one one-dimensional
derivative kernel and one (in 3D two) one-dimensional function kernel(s). The derivative kernel is the
derived function kernel. For the 2D case we need two such kernels to estimate the partial derivatives
of both dimensions, for the 3D case we need, of course, three kernels. From the above it is clear
that derivative kernels fulfill the separability property as well. The problem is the range of the filter
kernel,i.e., the extreme values are above 1 and below —1. We have partly solved this problem with
biasing and scaling the values to the hardware range, but we are still not satisfied with the results.
Therefore we have to implement some techniques to increase the quality of derivative filtering.

5.3 Problemsand solutions

The implementation of the filtering process in hardware is dealing with several problems which usu-
ally do not appear in software solutions. This chapter reviews general particular problems and shows
the way how they can be solved. The only problem also appearing in software implementations is
dealing with approximative filters. The biggest problem, however, still is the framebuffer range and
precision.

Approximativefilter kernels

In our implementation we use one filter kernel of approximative behavior, i.e., the cubic B-spline
filter. We have already discussed the problem of smoothing artifacts in some application areas. This
problem, however, can be solved in a preprocessing step.

The approximative spline kernels do not operate on the function points as the interpolative ones
do, but on a set of so-called control points. The function points are located within the convex hull of
these control points. The task is to find appropriate control points from the function samples. After
solving this problem, the approximative curves (based on the pre-processed control points) represent
the function as the interpolative curves with function samples. We will show how to compute the
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control points using a 1D example. The relation between control points and function samples for a
cubic spline is given by the following matrix equation [42]:

Jfo [ 4 1 Co
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fn72 1 41 Cn—2
| fnfl | | 4 1 | L Cn—1 |

The function points are denoted as f points and the control points as ¢. Labeling the three matrices
F, K, and C we rewrite this relation:
F=K-C

From this it is obvious, that the coefficients in C' could be computed from the sampled data points F
and the inverse of the tridiagonal matrix K:

C=K'F

Although the computation of the control points can be a time consuming process, it is necessary to do
this only once, in a preprocessing step. After this is done the cubic B-spline should produce similar
results as interpolative kernels, e.g., the Catmull-Rom spline kernel. Filtering with cubic B-splines has
a lot of advantages, the “dot” and “spd” acceleration works well with this filter, because it is always
positive and does not complicate the filtering process with negative values, which always appear in
interpolative curves.

Framebuffer-related challenges

Using interpolative filters for functional reconstruction we have to deal with shortcomings of current
graphic hardware, which is its limited value range, i.e., the [0,1] interval. The question is, how
to solve the filtering process, when the filter contains negative values. Although signed textures
already became available, we are always forced to store the subresult in the framebuffer which has
the range in the [0, 1] interval. Fortunately we can subtract the values from the framebuffer. This
makes possible to use filters with negative values, such as Catmull-Rom splines or windowed sinc. To
solve the problem of filtering with negative tiles, we have to order the filtering passes in a way, that the
framebuffer values never result in values below zero in the computation. Clamping means clipping,
e.g., if the sum of two operands exceeds one the result is equal to one. To reduce the clamping error
on both boundaries of the effective interval, we mix the order for producing optimal results. The
filtering passes must be ordered to minimize the clamping effect. In some cases it is necessary to
split a particular filter tile into two parts, because the tile has too high values. The sum of these parts
represents the original filter tile. We generate one new tile called split-tile, storing one part in the
original tile and the other part in the split-tile. We reorder the filtering passes so that we insert one
filtering pass using a negative tile between these two tiles.

Derivative reconstruction requires much more “coding hacks” than the zeroth-order case. First, the
result of function reconstruction is naturally within the interval [0, 1] as the sampled function is also.
This is not the case for gradient information, i.e., results of first order derivative reconstruction. The
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interval is extended to the range [—1, 1] or even more, this depends on the given filter kernel. Therefore
the filtering subresults are scaled and biased to the [0, 1] interval. Naturally, zero is represented by
the value 0.5. These scaling and biasing must be processed carefully, in order to minimize numerical
artifacts. Another problem is a sign change within one filter tile. Tiles often have both positive and
negative values. This can be solved in a similar way as with split-tiles (mentioned above): we divide
the tile into two tiles, one original and one split-tile. The tile values are divided into positive and
negative values. The negative values are transfered to the split-tile. Instead of the negative values we
insert zeroes into the original tile. After this we filter the same corresponding sample in two passes
with the different filter tiles.

An unresolved problem remains the precision of the framebuffer. In the case of derivative filtering
this is especially significant because we need to scale the values to the small interval [0, 1] represented
by 8 bits. So we represent an interval of double length with only 8 bits. This is not at all sufficient
for high-quality reconstruction. This problem should be solved by hardware manufacturers in their
future solutions.
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Chapter 6

| mage Processing

In this chapter we will describe another filtering approach, suitable for image processing tasks. We
will not deal with high-resolution kernels, but with simple linear operator matrices. We have already
discussed the difference between high-resolution filtering and the image processing principle. How-
ever, the general filtering approach also describes image processing, in practice. The difference is that
instead of textures for filter tile representation simple color values are used. The number of resam-
pling points is the same as the number of input samples which means that using linear operators we
are only processing existing values to change them without generating any new samples.

Using color instead of entire textures has a significant impact on the performance. Instead of using
two textures — one for the input function and one for the filter kernel — we only need one texture for a
single filtering pass. Exploiting the hardware capabilities, this allows to merge more filtering passes
into a single rendering pass.

A significant difference to high-resolution filtering is also the variable filter width. All algorithms
from the previous chapter are implemented for kernels of width four. In the case of image processing,
we are able to filter input with arbitrary filter widths. This is done by using lookup tables which
completely describe the filtering process. Using arbitrary filter kernel widths is a performance/quality
trade-off. Either we accept results strongly influenced by the limited framebuffer precision or we
involve some quality improvements that are, especially at this time, rather time-consuming operations.

Another interesting issue is the possibility to use the OpenGL imaging subset for such image
processing tasks. This is not really efficient at the moment, the filter width is limited by the hardware
and the framerates are far from sufficient. The implementation of the imaging subset does not seem
to be hard-wired in hardware yet, it is probably only a software implementation in the driver. But
this kind of filtering approach has its advantages as well. It is pretty simple to implement a filtering
operation and there are no problems with the framebuffer precision at all. The question is, when it will
be implemented in graphics hardware to provide acceptable performance at arbitrary kernel widths.

In the following sections we will deal only with texture-based image processing, describing the
methods using pseudocode, and showing the differences to the previous mentioned algorithms. The
next section deals with a couple of application areas and the last part describes some problematic
issues of the filtering process.
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6.1 Filteringalgorithmsin image processing

The algorithms presented in this section are analogous to their high-resolution counterparts. Theoret-
ically the only difference is the sampling rate of the filter kernel. But this has a significant impact on
the whole filtering process. In the case of image processing we do not make use of symmetry or sepa-
rability, because we do not use texture memory for the kernel representation and the number of values
within a typical linear operator is often only a couple of floats. The whole mirroring and on-the-fly
kernel computation are not present here. So for image processing tasks we use the ips (image pro-
cessing standard) acceleration for any type of input texture, and ipd (image processing dot) approach
for monochrome textures interleaved in RGBA. These are analogous versions when compared to the
std and the dot algorithms for high resolution filtering.

Standard algorithm

The image processing ips algorithm is derived from the general std approach. Our implementation
is able to use any type of linear operator. The operator is defined by its dimension, weights stored
in an array and a shift table that assigns texture coordinate offsets to the weight values. The process
using one texture unit takes the first value from the weight array and sets the color to this weight
value for each color channel. Then the input texture is shifted according to the offsets given for the
corresponding weight value. After this the texture is mapped on a quad and multiplied with the color
value. This is performed in a loop for all filter weights summed together in the framebuffer. The other
image processing ips variations simply fold more filtering passes into one rendering pass. This has the
same advantages as high-resolution filtering, i.e., speed and quality obtained from the multi-texturing
principle. The ips-1x algorithm is illustrated in table 6.1.

global setup:

input texture: as is, all formats (mono, RGB, RGBA, etc.);
linear operator:  generate 2D operator matrix;

per-pass setup:

input texture: setup texture clamping;

linear operator:  setup color value COLORO corresponding to pass;

vertex setup:
input texture: texcoord[TEX_UNITO] = shift_j(texcoord[ TEX_UNITO];

pixel setup:
input texture: reg0 = SampleTex(TEX_UNITO);
linear operator:  regl = COLORO;

out = Multiply(reg0, regl);

Table 6.1: Filtering with ips-1x algorithm.
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Pre-interleaved monochrome input

The general difference between the image processing ipd algorithms and the dot versions from high-
resolution filtering is the possibility to use filters of variable width. The dot implementation is strongly
based on the filters of width four, however it can be extended to broader widths as well. The image
processing ipd version on the other hand allows to process images with filters of arbitrary width. This
complicates the algorithm a bit in the case when the filter width is not a multiple of four. This is due
to four color channels, where each channel stores the same image but shifted by a particular offset.
We handle the filtering for an arbitrary width in the following way.

Each RGBA sample stores the original value in the R channel, other channels store values towards
the “right” from the current one. Filtering with kernels of width of a multiple of four is analogous to
the high-resolution algorithm, i.e., folding four passes into one. The case of other filter widths utilizes
the next greater multiple of four as compared to the kernel width. The filtering process is performed
regularly again as the kernel width is a multiple of four. The trick is that the values of the filter kernel
above the original width are set to zeroes and therefore have no influence on the computation. The
ipd image processing implementation is described in the table 6.2.

global setup:

input texture: monochrome, interleaved in RGBA;

linear operator: 2D operator matrix also interleaved in RGBA,;
per-pass setup:

input texture: setup texture clamping;

linear operator:  setup color value COLORO corresponding to pass;
vertex setup:

input texture: texcoord[TEX_UNITO] = shift_j(texcoord[ TEX_UNITO];
pixel setup:

input texture: reg0 = SampleTex(TEX_UNITO);
linear operator:  regl = COLORO;
out = DotProduct4(reg0, regl);

Table 6.2: Filtering with ipd-1x algorithm.

6.2 Applicationsin image processing

The range of application of image processing operations covers the whole image processing and pat-
tern recognition fields. These operations are classified as so-called local pre-processing methods and
are used in video surveillance to detect movements or identify subjects according to certain properties.
Other areas where convolution plays a significant role are computer vision or automatic segmenta-
tion. For all of them the performance issue of the process is very important. These approaches need
to process input, for example, obtained from CCD cameras, in real-time, otherwise the process loses
effectivity or does not make sense any more.
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Other application areas of hardware-based image processing solutions are filters for image editing
and graphics design or stream and movie editing applications, where there is need to filter a huge
amount of frames within a limited time. Such processes, called often post-processing, can not only be
used in conjunction with already existing streams, but they can be also build right into the rendering
process to render a typical scene in a non-photorealistic way, for example. These areas are discussed
in more detail in the following sections.

Smoothing

We have already introduced the smoothing operators in the filter basics chapter 2.7. These filters are
used for noise suppression, i.e., “cutting” off the high frequencies. We will introduce just two, often
used smoothing operators. The first type is simple averaging. A given neighborhood of a sample is
summed and divided by the number of involved samples. In practice, we use a linear operator with
constant weights (in sum equal to one). When we perform filtering in hardware we have to set the
weight, i.e., color value, only once and process all filtering passes using the same value. This is the
simplest smoothing operator analog to a box filter with larger width than one. Other filters are more
sophisticated. The Gauss smoothing operator preserves the significance of the sample in the center of
the convolution sum. The convolution matrix contains non-constant values which also sum up to one.
All filtering operators discussed here consider an 8-neighborhood of the processed pixel that means
that all eight surrounding samples are considered as neighbors.

The smoothing operation often needs to operate on a wide neighborhood to smooth the values or
remove noise artifacts sufficiently. Obviously a wider neighborhood needs more filtering passes and
due to the framebuffer precision is prone to summation artifacts. The second problem is discussed
separately in the last section of this chapter, so first we take a look at the performance issues of the
filtering process. Table 6.3 shows framerates for all algorithms with various kernel sizes. The number
of real rendering passes depends on the kernel size and the number of textures used in a single pass
and whether texture interleaving was used or not. The input image was sampled at a 512 x 512
resolution for the listed measurements.

kernel width | img. subset | std-1x | std-2x | std-4x | dot-1x | dot-2x | dot-4x
3 3.26 | 120.00 | 180.00 | 185.00 | 275.00 | 307.00 | 314.00

5 2.86 | 50.00 | 74.00 | 75.50 | 118.00 | 169.00 | 155.00

7 2.48 | 28.00 | 40.50 | 41.70 | 90.00 | 131.15 | 121.00

9 195 | 17.00 | 2550 | 26.40 | 50.00 | 73.66 | 76.45

11 -| 1200 | 1755 | 1799 | 4148 | 61.30 | 55.96

13 - 820 | 1261 | 1355 | 26.86 | 41.75 | 43.15

15 - 6.24 | 10.03 | 10.05| 22.39 | 36.68 | 35.40

17 - 5.00 7.66 796 | 16.76 | 28.17 | 25.27

19 - 3.95 6.30 6.61 | 15.02 | 23.42 | 24.12

Table 6.3: Framerates (in fps) of NVidia GeForce3 smoothing operation, using different filter kernel
widths.

Important to note is that the framerates do not describe the quality of the filtering process. Filter
kernels larger than seven do not provide sufficient quality, so it is necessary to include a quality
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improvement called hierarchical summation into the filtering process. The results then are comparable
to software filtering, but the overall performance is decreased, i.e., the framerates are at about half
when compared to the low-quality approach. The most “expensive” operation is copying the subresult
into the texture. We will describe the hierarchical principle later in the last section of this chapter.

Figure 6.1 shows the same image filtered with various kernel sizes and different approaches using
averaging. The first row shows results using OpenGL imaging subset, the second row shows results of
the ips-1x algorithm with rather poor results for bigger kernels. The third row shows ips-2x approach
with hierarchical summation. The significant quality improvement was caused by making use of
higher internal hardware precision and by hierarchical summation.

Figure 6.1: Averaging operation with operators of width 1 x 1, 5 x 5,9 x 9and 13 x 13 using OpenGL
imaging subset (first row), texture-based filtering (second row) and texture-based filtering exploiting
hierarchical summation (third row).

Edge detection

Another important task also based on the convolution operation is edge detection. It is used in a wide
area of pattern recognition applications. A good example is the automatic identification of persons.
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This process involves a lot of sophisticated techniques based on relations between features of the
human face, but every of these applications first needs to preprocess the image to be able to find such
features. This can be done using edge detection for segmenting parts of the image to find boundaries
between. To process this efficiently within a limited time it is necessary to reduce the time of each
step to a minimum. The usage of graphics hardware for such a process can improve the performance
significantly.

In our implementation we use two basic types of edge detection operators. Each kernel has width
three in each direction, so the mask consists of 9 weights, and therefore the filtering process is accom-
plished very fast, with acceptable results, and without any time-consuming quality improvements.
The first example is the Laplacian filter, based on an approximation of second derivative kernels. The
Laplacian filter uses only one kernel to detect differences between image pixels in all directions. Us-
ing one kernel for all directions leads to very short processing times. We use two types of Laplacian
filters shown in figure 6.2. The first one is implemented *“as is”, the only difference is that the middle
pixel contribution, which is negative is subtracted from the previous contributions at the end. This
means all positive contributions are summed in the framebuffer and the last filtering pass subtracts the
negative contribution of the middle pixel from the framebuffer. This process is very fast on the one
side, however it has quite low intensity response of the boundaries of image segments. One possibility
to improve edge visibility is to scale the resulted image values by a suitable constant. This approach
has two main drawbacks, i.e., the scaled image significantly suffers from quantization artifacts and the
scale operation requires additional processing. To perform the scale operation in hardware (which is
generally the fastest solution) the image has to be copied from the framebuffer to a texture and scaled
in the pixel shader. Therefore we have implemented another approach using another version of the
Laplacian kernel. Although this consists of more filtering steps (see section 7.2), the performance as
well as quality is much better than with the low-response Laplacian version with additional scaling.

Figure 6.2 shows that the weights also sum up to zero, but the partial sum of some of these weights
exceeds the hardware range of [0, 1]. Therefore we split the negative contribution of the middle weight
into eight separate contributions. Instead of processing 9 filtering passes, we process 16. After each
positive filtering pass we insert one negative. This can cause some numerical errors, but comparing
the results visually to a software implementation, there is no significant difference. The Laplacian
filter is popular because of its simplicity and fast processing. It also has its drawbacks, i.e., the filter
approximates the gradient magnitude only, so there is no possibility to estimate the gradient direction.
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Figure 6.2: Laplacian with low edge response (a) and high edge response (b).

For the computation of gradient directions another category of edge detectors is used. This cate-
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gory is based on an approximation of the first derivative, also called compass operators. Such a filter
consists of two or more kernels according to the desired response of respective edges in the image. A
typical and often used representative of compass operators is the Sobel operator. We use four types
of Sobel operators, classifying them according to the intensity and direction of the response of the
edges. These Sobel variations are shown in figure 6.3. The first one (a) takes into account the or-
thogonal edge responses, but only in one direction of each orthogonal dimension. That means, that
the final image does not include negative gradient responses because the negative values are clamped
to zero and they are represented by black. It is easy to implement it similarly to the first mentioned
Laplacian filter. When we order the filtering passes correctly, the partial weight sums do not exceed
the hardware interval. This approach has the same disadvantage as the first Laplacian filter case, i.e.,
the edge response is not strong enough. The next Sobel variation (b) solves this problem with stronger
weights, but we need to split the weights greater than one to more filtering passes similar to the sec-
ond Laplacian filtering implementation. This solves the problem of low response, but it has the same
problem with invisible “negative” edges.

To detect edges for bidirectional (orthogonal) response we need two kernels for each orthogonal
dimension. The “negative” edge responses become “positive” after rotating the operator matrix by 180
degrees. The filtering results are then summed together in the framebuffer to have the one dimensional
edge response completely covered in the final image. The last Sobel version is an extension of the
previously mentioned one in such a way that it takes into account also the diagonal response of edges.
It covers all eight possible edge responses within a 3 x 3 kernel. Although each additional filter kernel
slightly decreases the filtering performance, all Sobel variations perform within a well-acceptable
time.

Framerates of all mentioned edge detectors are compared in table 6.4. The input image was the
same as used for the smoothing operation benchmarks, with resolution of 512 x 512 pixels. We do not
provide any benchmarks of the ipd algorithm because it works only for four folded filtering passes of
identical sign. This is not possible in the case of higher weights, where we switch the filter weight
sign for every pass to store the subresults within the hardware interval. The ips versions perform (due
to a small number of filter weights) very well. For extremely time sensible applications Laplacian
filters are the most suitable ones, when also gradient direction information is required we recommend
Sobel filters. Although the “low” versions are also included in the benchmark table, they are not
really useful for edge detection without any contrast enhancement applied as post-process. But that
as mentioned above costs additional time.

edge detector | # kernels | img. subset | std-1x | std-2x | std-4x
Laplacian low 1 3.18 | 125.00 | 165.00 | 190.00
Laplacian high 1 3.18 | 77.00 | 118.00 | 120.00
Sobel low 2 1.38 | 65.00 | 106.00 | 133.00
Sobel high 2 1.38 | 66.50 | 97.00 | 94.50
Sobel high 2% 2 0.70 | 35.30 | 50.00 | 51.15
Sobel high 4% 2 0.35| 1691 | 23.30 | 24.10

Table 6.4: Framerates of NVidia GeForce3 edge detection, using different edge detecting operators.

We present the results of the above mentioned edge detectors also produced by the OpenGL imag-
ing subset. A visual inspection does not exhibit any difference between the methods. In figure 6.4
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Figure 6.3: Sobel with low edge response (a) and high edge response (b), bi-directional response (c)
and bi-directional, orthogonal, and diagonal response (d).

we see the results of all mentioned filters. The highest filtering quality is provided exploiting the
maximum number of texture units in one rendering pass.

Artistic rendering techniques

Besides image processing applications, the area of image editing applications is of big importance
as well. Most significant are areas dealing with “moving” pictures. To process a huge amount of
stream frames within a limited time, or in real-time is either not possible with software or additional
hardware is required. Although we also use hardware for the filtering process, the hardware is
the graphics card, i.e., part of the standard equipment of each computer system. In this section
we introduce some of so-called non-photorealisitic rendering techniques, that exploit hardware
capabilities for real-time processing. These techniques combine image processing filtering with other
standard hardware operations.

Painting with enhanced edges

This technique consists of more filtering steps combined together using the hardware’s alpha test.
First the whole image is processed by a Sobel operator using the eight kernels type. The result is
stored in a texture. The next step is smoothing the original image to cut off the high frequencies of
noise. The result of this step is also stored in a texture for further processing. Thirdly we render
either the inverted original image to the framebuffer, or fill the whole image with a particular color.
This rendering step can be considered as background rendering and its contribution to the final image
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Figure 6.4: Edge detection using Laplacian low and high (upper two rows), Sobel low, high, high
2 x 2, and high 4 x 2 edge detector variations (below). Upper images are filtered using the OpenGL
imaging subset and below the corresponding texture-based filtering result is given. The resulting
colors are inverted.

is only visible along edges. The last part of the algorithm puts the Sobel-filtered and smoothed
original textures into the pixel shader. The Sobel texture is put into the alpha channel of one register
which is then used in the decision, whether to overwrite the framebuffer pixel with the smoothed
original image or not. In other words the smoothed texture is used for all those image parts, where
the Sobel result is below a particular threshold, that means outside the edges. The background color
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only remains along the edges. The impression of painting is achieved firstly by contour lines and by
comparably large areas of equal color, which is the result of cutting off the high frequencies by the
use of smoothing. If we turn off smoothing we get the original image with highlighted edges. This
can be probably used in video surveillance or automatic person identification as well. The method
works at acceptable framerates (ca 20 fps on an 512 x 512 RGB image) making it possible to use it
in real-time applications. The technique is illustrated in figure 6.5.

Figure 6.5: Painting with enhanced edges.

Filter combination on a pre-masked image

The method proposed in this section is used for images, which store a segmentation mask in the alpha
channel. Each image “layer” or segment uses a particular alpha value. A filter type is assigned to
each layer beforehand. These layers are separately filtered and the result is stored in the framebuffer.
We use the alpha test to decide which filtered segment will contribute to a given pixel position. The
figure 6.6 shows an original image and the result image which consists of several, differently filtered
segments. This method, however, does not deal with segmentation itself, it assumes a pre-segmented
image as input.

Pointilism-style paining

The pointilism algorithm is based on a randomly generated mask, used during the stencil test to
decide which texel from two textures will be set at a particular position. This method is very simple,
however, it produces very nice results. We combine two textures according to the stencil test. The
randomly generated mask is the only computation done on CPU, the filtering and combination is
done on the graphics chip. We combine a smoothed version with the original image. Due to the
random mask it generates a pointilism-style effect. The biggest differences of pointilism-style images
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Figure 6.6: Filtering of pre-masked image.

when compared to their originals are appearing along edges, which are represented rather by points
than exact lines. The difference is clearly seen on a filtered photograph in figure 6.7.

Anisotropic filtering

We have shortly discussed anisotropy as an aliasing effect due to non-symmetric filter kernels. Even
tough this effect is undesired in function reconstruction it can be used as nice, non-photorealistic
effect in artistic image editing. It generates a similar effect as a brush stroke in case of an elliptical
filter kernel. The brush strokes are oriented always in the same direction as the kernel. Figure 6.8
shows the original image, and the filtered result.

Post processing after rendering

The idea of post-filtering was already discussed, because it is fundamental for some application ar-
eas. With post-filtering we refer to filtering of arbitrary input, either video streams or synthetically
rendered frames. The filtering is directly integrated into the application process (which is a real-time
application). Post-filtering of video streams can be used in real-time applications of pattern recog-
nition or in the movie industry. Filtering rendered synthetic images can lead to non-photorealistic
rendering in real-time. This case exploits the fact, that the processed image is already in the graphics
hardware and transfer time is saved. We show two examples, the first is filtering a video stream to
illustrate the applicability to video surveillance and the second example is post-filtering of synthetic
images in screen space. We use the high-resolution filtering application to produce the frames, which
are then once more filtered in hardware. If we use an edge detector we clearly see the difference in
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Figure 6.7: Pointilism-style painting.

Figure 6.8: Anisotropic filtering.

55



quality when the original texture is mapped on the object using linear interpolation or higher-order
filtering with a cubic B-spline filter. Some frames of both post-processing examples are seen in fig-
ure 6.9.

Figure 6.9: Built-in real-time post filtering techniques.
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6.3 Problemsand Solutions

This section reviews fundamental shortcomings of current hardware, which make the hardware-based
image processing more complicated and which have an impact on the overall performance.

Framebuffer-related problems

The shortcomings of the framebuffer complicate the processing similar to high-resolution filtering.
However, while in the high-resolution case the first problem was the framebuffer range and then
precision, in image processing we have most problems with framebuffer precision. The problem
with its limited range can be solved relatively easy. The low eight bit frambuffer precision causes
that filtering with filters of bigger width than seven in each direction becomes unusable without any
additional quality improvements. This problem is solved using hierarchical summation. We will
explain the process using an example. If we use a kernel of width seven, we have 49 filter passes. In
case of averaging each weight is the reciprocal of 49. The hardware represents this value with eight
bits, so the sum of all filtering passes is not equal to 1. This leads to visible intensity shifts. So instead
of filtering with this value we filter a particular number of passes (for example four), with weights
scaled to four times the reciprocal of 49 into a special buffer which has the same properties as the
framebuffer, called pbuffer. Rendering into the framebuffer is performed with the summed result of
these four passes as input texture and reciprocal of four as weight. After this, the framebuffer contains
the filtering subresult of four passes with much higher quality as filtering directly into the framebuffer.
This is done for all filtering passes in a loop. Additionally the filtering process can exploit the internal
hardware precision by using all possible texture units in a single rendering pass.

The framebuffer range problem is solved by simply splitting weights into two or more weights so
that each one is within the hardware interval. We reorder the filtering process by inserting negative
filtering contributions between splitted positive contributions and vice versa to keep possibly interme-
diate computations within the hardware interval. As all such filter kernels are of low width it is easy
to hard-code the order of filtering passes, i.e., to specify the shifting and weight lookup tables, and
achieve good quality.

Rendering to atexture

This problem is not of comparable importance as the problems with framebuffer shortcomings, it
is more or less a problem of current driver versions. Nowadays graphics boards support so called
direct rendering into textures. But the OpenGL driver implementation of NVidia graphics chips does
not support it. All the image processing filtering was coded for NVidia hardware. At the moment
rendering is not directly done into a texture. We render into the framebuffer or pbuffer and then
the rendering result is copied into the texture. This is a time-consuming operation, which is also
often used in reducing the framebuffer precision problem solution, i.e., in hierarchical summation.
Therefore, the filtering time is almost twice as long as without hierarchical summation. This problem
will be solved hopefully soon with new NVidia drivers.
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Chapter 7

| mplementation

The only language to which all programmers are perfectly familiar with, are bad
words.
Troutman’s 6. Law of Programming [4]

The implementation of the filtering methods presented in this thesis was coded in the C program-
ming language. We are using the OpenGL application programming interface to communicate with
the hardware. Due to the procedural nature of OpenGL we do not use any object-oriented hierarchical
structures. For some helper functions, to compute for example framerates, we use a framework called
OFVis. In the next parts we will discuss some sections of the implementation code to describe basic
principles from the programmer’s side of view.

7.1 Kerne representation

In this section we present various ways of storing the filter kernel information. The high-resolution
filters are using a structure kernelinfo_s defined in table 7.1. The record kernel stores the kernel

struct kernelinfo.s {
float* kernel; // kernel memory
int dimensions; // number of dimensions
short numtiles; // 1 == not tiled
short numsplittiles; // 0 == no tile split
int size; // numtiles * tilenumfloats
int tilelen; // tile length one dimension [entries]
int rownumfloats; // tile length one dimension [floats]
int slicenumfloats; // tile length two dimensions [floats]
int tilenumfloats; // tile length all dimensions [floats]
}i

Table 7.1: The kernelinfo_s structure.
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values in a one-dimensional array. Record dimensions determines whether it is a one-, two-, or
three-dimensional kernel. If the filter is of width two or greater, we have to split it into several tiles.
The number of such tiles is given by the numtiles record. To reduce numerical clamping error,
we split some tiles in two to allow interleaving and put some negative filter passes between them.
The number of “split” tiles is given by record numsplittiles. The records size, tilelen,
rownumfloats, slicenumfloats and tilenumfloats describe the length of the tiles and
the size of the kernel. To generate a higher-dimension (separable) kernel we create it as a product of
two lower dimensional ones. This is done either in the preprocess or on-the-fly.

The image processing filters are always two-dimensional, we do not use any “split” tiling and the
values and the processing order is either explicitly given or is not important. We store the image pro-
cessing filters in lookup tables. There are three types of kernel generation. The first one is shown by
the use of the Gaussian smoothing operator, which is generated on-the-fly by the function Gaussian
in table 7.2, computing a value for each kernel element.

GLfloat Gaussian (int x, int y) {
GLfloat tmpwidth =
((2*x - filterwidth)/((float)filterwidth) ) *4*SIGMA;

GLfloat tmpheight =
((2*y - filterheight)/((float)filterheight))*4*SIGMA;

return ((1/(2*M_PI*SIGMA*SIGMA)) *
pow (M.E, - (tmpwidth*tmpwidth+tmpheight*tmpheight) /
(2*¥SIGMA*SIGMA))) ;

Table 7.2: The Gaussian function.

Another type of filter generation is to read it from a file. We use the Targa file format to store the
kernel information. This has the disadvantage that we cannot store filters with negative values. These
types of filters are used as anisotropic filters, for example, comfortably designed in an image editing
and processing program. In case of RGB or RGBA textures we are able to design custom filters for
each kernel separately, which can produce various interesting effects.

The last type of image processing filter generation is the explicit storage in a constant array. We
show the example of two Laplacian kernels, one with low edge response (due to low weights) and
the second one with high edge response. Both are stored to be used with the OpenGL imaging subset
(Laplace0) and with texture-based filtering (1aplacel). The first array is stored “as is”, while
the second has reordered filter passes to stay in the hardware range of [0, 1]. Filtering passes are
processed one after another exactly as they are stored in arrays shown in table 7.3. Note, that the
high-response Laplacian filter has the contribution of the middle weight stored in eight -1 values.
These are mixed with positive contributions of other weights to stay within the hardware range. The
ordering of filter weights have to be synchronized with the shift lookup table, which is the task of the
filtering management.
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GLfloat laplace0[9] =

{O.lll, 60.1112, 0.211, 0.121, -0.888, 0.1112, 0.111, 0O0.111, O.lll};
GLfloat laplacel[9] =

{O.lll, .111, o0.111, ©0.112, 0.2111, 0.111, 0.111, 0.111, —0.888};

GLfloat laplacehighO[9] =
{¢, 1, 1, 1, -8, 1, 1, 1, 1};
GLfloat laplacehighl[1l6] =
{¢, -2, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1};

Table 7.3: Laplace “hard-coded” arrays of low and high edge response.

7.2 Filtering control

The filtering process is managed via lookup tables. We show at least the most important ones used for
high-resolution filtering which manages surface filtering. The following arrays in table 7.4 are used
for direct management of each filtering pass.

GLint surf permut to passidl[];
GLint surf passid to tileidl[];
GLint surf_passid_to_tilemirr[];
GLint surf_passid_to_texofs xI[];
GLint surf passid to texofs yI[];
GLint surf tile_to_tilesignl];
GLint surf_tile_to_tileswapl[] [2];

Table 7.4: High resolution filtering control arrays.

The surf_permut_to_passid[] table determines the pass order. This is done due
to the possibility to vary filter passes to achieve low numerical clamping error. The arrays
surf_passid_to_texofsx[] and surf_passid_to_texofs_y[] are lookup tables that
store input texture offsets for each filter pass. The corresponding filter tile number is stored in
surf passid to_tileid[]. When the filter symmetry property is exploited, we use additional
arrays to control the mirroring and swapping of the filter tile, i.e., surf passid_to_tilemirr[],
surf_tile to_tilesign[],and surf_tile_to_tileswapl[] [2].

The image processing filtering process is controlled only by two lookup tables, because we do not
care about symmetry and the offsets are stored in a single one-dimensional array. In the case of filters
with positive weights only, we compute the shift offsets from the distance of the particular weight to
the middle weight. In case of 3 x 3 edge detectors we “hard-code” the input texture offsets in the
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same order and style as the filter weights. The only difference is that we store two values instead of
one. The shift arrays are shown in table 7.5. Note that every second pair in the shift lookup table of
the Laplacian high edge response variant is 0, 0. This corresponds to the splitted middle weight.

GLint laplace.order[18] =
{_1/ _1/ _l/ O/ _ll 1/ OI _11 OI 1! 1’ _l' l’ O’ 1’ l’ 0’ 0};

GLint laplace high order[32] =
{_11 _ll OI OI _11 0/ 0/ 0/ _ll 1/ OI OI 0/ _11 0/ 0/
o, 1, o, 0, 1, -1, 0, O, 1, 0O, O, O, 1, 1, O, O};

Table 7.5: Laplace “hard-coded” shift arrays of low and high edge response.
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Chapter 8

Summary

One of the fundamental tasks of computer graphics as well as image and signal processing is how
to process sampled data to get some desired result. Signal processing in general is dealing with
one-dimensional (sampled) functions such as audio signals. It is trying to reconstruct the original
continuous function from its discrete representation. Image processing applications are processing
mostly two-dimensional (sampled) functions, representing images. This area does not reconstruct the
original function, but rather tries to process the given samples to emphasize some features. Com-
puter graphics reconstructs the continuous function from one-, two-, and three-dimensional samples.
The two-dimensional sampled functions are raster images, as in the image processing case. Three-
dimensional samples represent, for example, either computer tomography (CT), or magnetic reso-
nance (MRI) datasets, that describe the interior of human bodies, or other volumetric objects that can
only be sufficiently described in 3D. CT and MRI scans are used in medical visualization to improve
the medical diagnosis process. Typical examples of other 3D objects are semi-transparent objects like
fog, smoke, clouds, or objects that are hard to represent without describing their internal structure.
This is the case with marble and wooden objects.

The above mentioned one-, two- and three-dimensional datasets are represented by discrete sam-
ples. These samples must fulfill particular conditions of sampling theory, which is dealing with two
fundamental tasks: sampling and reconstruction. Sampling describes how dense the original function
should be sampled to be sufficiently described by its discrete representation. Reconstruction theory
describes how to get the continuous function from its discrete samples [24, 42]. The reconstruction
process usually is defined as a convolution of the discretely sampled function with a reconstruction
kernel. This kernel could be continuous, but in practice we also use discrete filters of high sampling
resolution. If the original function was band-limited before it was sampled and if sampling was done
with an appropriate sampling frequency we can perfectly reconstruct it using the sinc function as filter
kernel [33]. The problem of the sinc filter is that it is unusable in practice due to its infinite support.
Therefore several approaches have been introduced to perform high-quality reconstruction, based on
approximations of the sinc filter on a limited interval. Keys [16] derived a family of cardinal splines
suitable for reconstruction purposes, classifying the Catmull-Rom splines as numerically most accu-
rate. Mitchell and Netravali [18] derived another category of cubic splines called BC-splines that are
very popular as reconstruction kernels as well. They have classified various types of these splines
according to the B and C' parameters and determined boundaries of admissible values. TheuBlI et
al. [35, 36] classified various windowing functions that limit the sinc extent to a particular interval,
showing that the Kaiser, Blackman, and Gauss windows feature best properties in the frequency do-
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main. Turkowski [37] presents a general overview of filter kernel types, concluding that the windowed
sinc kernels are best.

The basic filtering operation, i.e., convolution, can be implemented in various ways. The standard
implementation is based on the gathering principle. This means, the final value of a particular output
sample is gathered from the weighted neighboring input samples simultaneously. In other words,
the convolution operation is processed in a serial way, one output sample after another. Although
this approach seems to be efficient in general, we will show another possibility of how to access the
filtering principle using another evaluation order. Instead of computing one output value after another,
we can compute the contribution of a particular input sample to all corresponding output values. The
difference is, that instead of “gathering” the contributions for each output sample, we “distribute” the
contributions of the input samples, therefore we call it distribution principle. These distributed input
sample contributions are summed up for each output sample. This approach is used, for example, in
all splatting-based rendering techniques [41]. Both convolution principles are illustrated in figure 4.1.

Filters providing high-quality reconstruction are usually implemented in software. The algorithms
require long computation time, which is far from real-time, to process the whole dataset. This makes
it impossible to integrate them into an interactive application with on-the-fly resampling.

The highest-quality reconstruction filter supported natively by hardware is the tent filter, yielding
linear interpolation. The hardware is able to use the tent filter in 2D as well as 3D, achieving bi- and
tri-linear interpolation. The filter provides acceptable results in the case when the sampling frequency
of the data is high enough. The performance issue is the big advantage of this type of interpolation.
However, in the case of lower sampling frequency, the filtering results in strongly visible artifacts.

Although current graphics chips are equipped with a lot of features, the problem of insufficient
precision remains. Therefore, there are just few approaches possible for how to use the hardware for
filtering. The methods are mostly dealing with image processing methods such as the algorithm intro-
duced by James [15]. This approach exploits the texture hardware for image processing convolution.
The only method using hardware for high-resolution filtering is proposed by Hadwiger et al. [8, 9, 10].
The image processing convolution by James can be considered as a subset of this general framework.
More detailed description of both algorithms are presented in the next section.

Beside these methods another approach was proposed by Hopf and Ertl [13] using SGI [31] graph-
ics hardware. They are using the OpenGL imaging subset [23] and texture hardware to extend the na-
tively supported 2D convolution to 3D. A year later they introduced non-linear hardware-accelerated
image processing with erosion and dilation operators [14]. The reason why we do not use the OpenGL
imaging subset is its insufficient performance on consumer hardware, as well as its restriction to im-
age processing tasks.

8.1 Hardware-based filtering using textures

Graphics chips are designed to perform primitive mathematical per-fragment operations for all frag-
ments simultaneously. This makes it possible to accommodate the distribution filtering principle in
hardware. The method requires graphics hardware with at least two texture units. The sampled input
function is stored in one texture and the discretized filter kernel in another one. The kernel texture
is scaled to cover exactly the contributing input texels. To be able to perform the same operation for
all input samples at once, we divide the kernel into several parts, called tiles, that always cover only
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one input texel width. These filter tiles are repeated in hardware, so all input texels are covered by
the same filter tile. We illustrate the method using the example of the tent filter. The tent filter is of
width two, i.e., it uses two input samples as contributions for each output sample. Instead of taking
the whole filter kernel, we take its left tile first. This is scaled exactly to the input texel width. To
compute the “left” contribution of each input sample, we shift the input texture to the left by one
half of the input texel width. After this, each input sample covers exactly the left tile of the filter
kernel. Now we have the input function in one texture and the kernel tile of width one in the second
one. The Kkernel texture is set to repetition, so the kernel replicas cover the whole input texture - each
input sample. We set the numerical operation between these two textures to multiplication and render
it to the framebuffer. This subresult is the left tile contribution of each input sample to the output
resampling points. We analogously repeat this process with the right filter tile, set the framebuffer
blending function to addition and render the right contribution to the framebuffer again. The whole
filtering result is now stored in the framebuffer. The distribution of the left and right tile contribution
is illustrated in figure 4.2.

This simple example explains the general filtering approach using arbitrary filter kernels. For bet-
ter illustration we explain the filtering idea with a pseudocode dividing the process into the following
logical parts.

e Global setup is the preprocessing step done in software. At first we generate the filter kernel
and the lookup tables that control the filtering process. The lookup tables store information
about which filtering step uses which filter tile and how the input texture should be shifted.

e Per-pass setup selects the filter tile according to the corresponding filtering pass. This tile is
assigned to a texture unit, similar to the source texture. The difference is only in the texture
setup. While source texture is set to clamping, the filter texture is set to repetition.

e Vertex setup stage realizes the shift operation of the input texture and scaling of filter tiles is
performed. For performance reasons the vertex shaders hardware is involved in this step.

e Pixel setup stage is also called according to the hardware part where it is processed, namely
pixel shader. It assigns both textures to shader registers and computes the multiplication of
these two registers.

The general filtering approach illustrated on the tent filter is described by the pseudocode in table 4.1.
The pseudocode uses the operator shift_j, denoting that the input texture is not actually indexed dif-
ferently at each output sample, but instead the input texture is shifted according to the particular
rendering pass.

8.2 Filtering algorithms

The general filtering algorithm uses two textures simultaneously. In the case when the hardware is
able to use more than two textures in a single rendering pass, we can perform more filtering passes in
one rendering pass. This increases the processing performance in some cases almost linearly. It leads
also to qualitatively better results due to exploiting the hardware internal precision for the addition as
well. The precision of the framebuffer is 8 bits, while the internal precision of the best consumer cards
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of today is up to 12 bits. All the algorithms described below can be to expanded to take advantage
of more available texture units or they can be combined together to achieve optimal results. Each
algorithm has its own notation - the first three letters identify the filtering algorithm and the rest
describe the number of used texture units within the rendering pass.

e Thestandard algorithm is in fact identical with the general filtering approach and is denoted
as std-2x. It uses general filter kernels without exploiting any filter characteristics and it is
shown in table 4.1.

e Symmetricfilter kernelscan be used to reduce the hardware memory consumption. Instead of
storing whole kernels, we just store a subset and generate the rest by mirroring existing parts.
The algorithm does not have any performance influence, therefore we do not use any special
notation, it is used for memory saving purposes, which is especially significant in the 3D case.
The symmetric kernel extension is shown in table 5.1.

e Separablefilter kernels allow to store the filter kernel in lower dimensional parts, which are
multiplied on-the-fly producing the respective filter kernel. The texture traffic is much lower in
this case, which has significant impact on the performance, but it involves more texture units
than the standard case. We denote this algorithm by sep-3x. It is shown in table 5.2.

e Pre-interleaved monochrome input is used to exploit the per-channel dot product in the pixel
shader. This method assumes monochrome and interleaved textures as input. Each pixel stores
its “own” value in the R channel, the other three channels are reserved for the next three pixel
values toward the right from the current one. The filter kernel stores the sampled filter in the
same style. This allows to compute four contributions to the current output sample accessing
only one input sample. The notation for this algorithm is dot-2x, or combined with separable
kernels spd-3x. This algorithm is described in table 5.3.

The filtering process discussed up to now was a generalization of all convolution-based filtering
methods. However in the special case of image processing, where the input and output sample grid is
exactly the same, we can use James’ algorithm. Instead of using texture tiles for representing the filter
kernel, we use singular color values. Image processing filters are very rough approximations of the
underlying continuous functions. They represent each part or tile only by one value. Therefore we can
substitute the filter texture with color values. The difference between a continuous, a high-resolution
filter, and an image processing filter is shown in figure 4.3. The reason of using color values instead
of textures is saving texture traffic as well as texture units, which consequently can be used to fold
more filtering passes into a single rendering pass. We show the analogous algorithm to the general
filtering approach for image processing tasks in table 6.1. The “dot” algorithm can be used for image
processing tasks as well, but the algorithms exploiting filter kernel properties are irrelevant, because
the whole image processing filter is stored in a lookup table in just a couple of float values.

8.3 Applications

This section reviews possible applications of the hardware-based filtering. Firstly, we address high-
resolution filters and then some image processing. The biggest importance of the hardware filtering
principle is its generality, i.e., it is possible to use any type of filter to achieve high-quality results in
real-time.
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Surface textures

The first application area of high-resolution filtering is surface texturing. We use higher-order filters
of width four, namely cubic B-splines, Catmull-Rom splines, and Kaiser-windowed sinc of width
four. Using such filters is especially effective, when the input texture is sampled at low frequency.
Reconstructing it using hardware-native linear reconstruction results in visible artifacts. Software-
based higher-order reconstruction would not achieve sufficient filtering performance. The typical low
texture resolution representatives are lighting effects, such as lightmaps [1]. We show the results of
various filter types in figure 5.1. The performance of the state-of-the-art graphics cards using various
filtering algorithms is shown in the tables 5.4 and 5.5. The tested texture is of 64 x 64 resolution.

Solid textures

In the case of solid textures we are dealing with the same higher-order filters as in the 2D case,
however they are three-dimensional filters. This texturing approach is used in cases, when the two-
dimensional description does not provide acceptable results. Some examples are marble and wood
materials [26, 27]. To be able to store more 3D textures in the hardware memory, we have to store
them in low resolution. To obtain high-quality results from such datasets, higher-order filtering must
be performed. Another application area of growing importance is volume rendering [30, 40]. To avoid
linear reconstruction artifacts, the kernels of higher-order can be involved again. Tables 5.6 and 5.7
show the performance of various algorithms on a 128° dataset. This dataset is shown in figure 5.2
comparing tri-linear to tri-cubic interpolation.

Animated textures

High-quality reconstruction is even more important when using animated textures. Linear interpola-
tion produces artifacts, which are stronger visible in moving pictures. This is because the underlying
interpolative grid appears as static layer beneath the moving texture. Higher-order filtering like cubic
interpolation completely removes such artifacts. This effect is most visible in animations with rotating
objects. We divide the animation into the following three types according to their generation stage.

e Pre-rendered animation are set of frames which are computed in a preprocessing step. To
be able to perform real-time animation, we have to store all frames as textures, which poses
extreme requirements to the hardware memory capacity. The solution can be to store the frames
in lower resolution and reconstruct them using higher-order filters.

e Procedural CPU animation produces frames which are generated on-the-fly. Each frame,
once it is computed, is transferred to the graphics hardware and displayed as a mapped texture.
The transfer and generation stage are the most time-consuming operations. Generating and
transferring lower-resolution textures significantly improves the performance.

e Procedural GPU animation is a similar technique as the procedural CPU animation but has
one advantage. The frames are produced in the graphics hardware and do not need to be
transferred to graphics memory, because they are already there. However, such animations
are much more limited in the generation stage than CPU-generated animations. The reason of
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low-resolution sampling is the same as in the previous case, i.e., to speed-up the generation
process.

We show the difference between tri-linear and tri-cubic filtering on a pre-rendered animation frame
of variable texture resolution in figure 5.3. Figure 5.4 shows a fire animation, the first one is a pre-
rendered animation (top), the other one is generated on the GPU (bottom).

Derivativefiltering

The previous applications used various function reconstruction filters. The generality of the filtering
algorithm allows to implement derivative reconstruction in hardware as well. This allows to compute
gradients on-the-fly, which are mostly computed in a preprocessing step in real-time applications.
Although the simplest software solution, i.e., central differences, computes gradients in a short time,
it produces visible staircase artifacts. This effect is significantly reduced by using higher-order and
high-resolution kernels for derivative reconstruction.

Smoothing

Smoothing is the first example in the image processing area. The high-resolution filtering imple-
mentation used filters of fixed width of four, although it can be extended to arbitrary widths. The
image processing filtering is extended to filters of arbitrary width. The typical filters of variable width
are smoothing operators used for noise reduction by cutting off the high frequencies in the image.
We use two types of smoothing filters, i.e., simple averaging and a Gaussian filter, which is based
on the Gaussian lobe function. Table 6.3 shows performance of the smoothing process on an image
with 512 x 512 resolution. Filtering with kernels of width seven and higher results in strong visible
quantization artifacts. Therefore we are using quality improvement, i.e., hierarchical summation, that
provides acceptable results. The framerates, however, are about half of those from the benchmark
table. We show the difference of filtering with and without quality improvements in figure 6.1.

Edge detection

The second type of image processing filters are edge detectors. These are applicable in almost all
pattern recognition and computer vision areas, usually requiring real-time performance. This is hard
to achieve in software, without exploiting any hardware. Our implementation uses two types of edge
detectors, i.e., a Sobel and a Laplacian operator. The Sobel filter approximates first-order derivatives
and the Laplacian filter second-order derivatives. The Laplacian filter uses only one convolution
mask for the filtering process and is faster than the Sobel filter. It describes the magnitude of the
edge response only, so it is not suitable for gradient direction estimation. The Sobel filter consists
of two or more kernels, for each dimension at least one. These filters have more variations. The
benchmark table 6.4 shows filtering performance on an image of 512 x 512 resolution for all of them.
The Laplacian filter has two variations with low weight values and high weight values. This has an
impact on the resulting edge visibility. Similar to the Laplacian one, the Sobel filter is also presented
with low and high weight values. Other Sobel versions use more than two filter kernels to improve
the edge detection process. Also these filters give an acceptable performance. The results of the edge
detectors using OpenGL imaging subset and texture based filtering is shown in figure 6.4.
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Artisticrendering

Beside fundamental convolution-based operations, there are other arbitrary filters used in image edit-
ing and processing applications. We show that exploiting graphics hardware and combining various
features, we are able to implement non-photorealistic rendering techniques with real-time perfor-
mance.

e Painting with enhanced edges is a technique, that combines the result of edge detectors and
smoothing in the pixel shader to create customizable painting-like results. If we turn off the
smoothing we get the original image with enhanced edges, which can be used for pattern recog-
nition purposes as well.

e Filter combinations on a pre-masked image assume a segmented image as input. We use the
alpha channel as segmentation mask. We filter the image several times using various kernels
and combine all together using the alpha test of the source image.

e Pointilism-style painting uses a randomly generated noise mask during the stencil test to de-
cide which texel from two textures will be set at a particular position. The generation of the
noise mask is the only part of the process done on CPU. The original input image is combined
with a smoothed one to create a pointilism-like effect.

e Anisotropic filtering uses non-symmetric kernels to simulate one-directional brush strokes.

All these effects can be seen in figures 6.5, 6.6, 6.7, 6.8.

Post-filtering

All the image processing filters mentioned above can be integrated in various applications. The idea of
post-filtering is to integrate such filtering directly into a particular process that generates images. But
instead of transferring them immediately to the display, we process them with our image processing
filters. This could be considered as “screen space” processing. The typical application, for example,
is integrating the non-photorealistic rendering technique in a standard renderer, or to filter the output
from a CCD camera for video surveillance purposes. These examples are shown in figure 6.9.

68



Conclusions

The hardware-based filtering approach — dealing with high-resolution filters for reconstruction and
linear operators for image processing tasks — shows that the hardware can be involved not only in
processing the rendering pipeline in hardware, but for a lot of other tasks that somehow process
the graphical information. This work shows a subset of features on filtering applications, but these
features can be exploited in any other application area as well. The most flexible part of the graphics
hardware turns out to be vertex and pixel shaders.

It is clearly visible that the hardware manufacturers focus not only on the real-time rendering
itself, but on other graphical time-critical applications. A good example is the OpenGL imaging
subset support. This is still implemented in the driver on low-end graphics cards [22]. But the high-
end solutions [31] can process convolution in real-time [13]. The internal precision and range of the
graphics chips offer a wide spectrum of applicability as well. However, the framebuffer is still limited
to the range of [0, 1] represented by eight bits. This will be changed in the near future.

Unfortunately there are a lot of features that are still not standardized in the OpenGL API, and
therefore are hardware specific. Therefore the same functionality, e.g, implemented in the pixel
shader, has to be implemented for each graphics chip separately. This is quite bothering from the
developer’s point of view, but it is natural that the standard is always “one step back”.

The hardware still offers nearest-neighbor and linear interpolation reconstruction. Using high-
order reconstruction filters implemented in hardware is a good compromise between performance
and quality especially when the temporal aspect is taken into the account. This is clearly visible an
the animated textures example. The linear interpolation produces much more visible artifacts, because
the underlying interpolation grid appears as a kind of static layer beneath the moving texture.

The shortcomings of the framebuffer, i.e., precision and range, introduce clamping errors on the
filtered images when the partial sum of the filtering contributions exceeds the admissible interval.
The low precision leads to quantization artifacts which are especially visible in the image processing
tasks. The internal precision of vertex shaders is also not sufficient enough on some hardware and
does not guarantee pixel-exactness. Therefore a lot of simple operations have to be done in the pixel
shader.
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