Smart surface interrogation for advanced visualization techniques

Helwig Hauser' , Thomas Theufl]l, Andreas Konig, and Eduard Groller

Institute of Computer Graphics, Vienna University of Technology,
Karlsplatz 13/186, A-1040 Vienna, Austria, http://www.cg.tuwien.ac.at/home/
mailto: {helwig|theussl|koenig|groeller } Qcg.tuwien.ac.at

ABSTRACT

Highly elaborated visualization techniques that are based on surfaces often are independent
from the origin of the surface data. Nevertheless, most of the recently presented advanced
visualization methods were developed for a specific type of surface although principally appli-
cable to generic surfaces. In this paper we discuss a unified surface interrogation model which
provides generic access to surface properties up to degree two, i.e., surface-point locations,
normals, and curvature properties, (almost) regardless of the origin of the surface. Surface
types and interrogation algorithms are compared and summarized. At the end of this paper
we present an object-oriented implementation of this model, called SMURF.

Keywords: visualization, surfaces, surface properties

1 INTRODUCTION

Surfaces are important geometric primitives for
3D visualization [14]. Useful techniques are
available to render surfaces of various kind. For
instance, scalar data volumes (R?> — R) from
medical applications are represented using iso-
surfaces [12]. Three-dimensional vector fields
(R? — R3) from flow analysis are visualized
by the use of stream surfaces [8, 11].

Recently, advanced visualization techniques
based on surfaces were proposed which use
semi-transparency and local curvature prop-
erties to enhance the perceptability of sur-
faces in 3D. Interrante et al. [9, 10] show how
curvature-based techniques enhance the use
of surfaces for the visualization of volumetric
data. Surface curvature also plays an impor-
tant role in surface design, surface fairing, sur-
face trimming, surface evaluation and analysis,
and surface visualization [2, 4, 5, 19].

In this paper we develop a unified access model
to surface properties up to degree two, (al-
most) regardless of the origin of the surface.
Various algorithms which are necessary to deal

previous name: Helwig Loffelmann

advanced visualization algorithm
based on surfaces

= 2

SMURF

“arbitrary” surface, e.g.,
iso-surface, analytic surface, etc.

Figure 1: SMURF is a generic interface
between surface-based visualization and
surface implementation.

with different types of surfaces are discussed.
A C++ implementation called SMURF — short
for sMart sURFace model — of such an abstract
interrogation layer between advanced visualiza-
tion algorithms and surfaces of various origin
(see Fig. 1) is described to demonstrate the
ease-of-use of this approach.

One advantage of specifying a generic interface
like SMURF is that visualization techniques are
easily ported from one application to another.
Algorithms like modulating the opacity of the
surface according to its curvature properties
are not bound to one application, but can be

re-used for other surfaces as well. A similar ap-
proach in the area of mesh access is described
by Rumpf et al. [16].

The remainder of this paper is organized as fol-
lows. First we give an overview of various sur-
face types apparent in visualization (Sect. 2).
We then discuss surface interrogation up to de-
gree two in terms of the previously mentioned
surface types (Sect. 3). This section includes
a review of various algorithms which are nec-
essary for accessing different surface types. An
implementation of this model (SMURF) is pre-
sented in Section 4 as well as some results of
SMURF applications (Sect. 5).

2 SURFACE TYPES

In the following we describe some of the most
important types of surface used in computer
graphics and visualization. Surfaces can be de-
fined implicitly, for example, as an iso-surface
of scalar volume data, or explicitly, i.e., ana-
lytically. Using SMURF the following surface
types can be dealt with:

CASE 1: implicitly defined iso-surfaces
for discrete scalar volume data — scalar
data values fsamp(x;) are given at certain dis-
crete locations x; in 3D, e.g., on a regular grid
or as scattered data. A certain interpolant f(x)
of these values fsamp(x;) is considered to im-
plicitly define an iso-surface s corresponding to
a certain iso-value fs: s ={x|f(x)=/s}.

CASE 2: implicitly defined iso-surfaces
for analytic scalar volume functions —
a scalar function f(x) is given (as a “black
box”), which can be evaluated at arbitrary lo-
cations x in 3D. A scalar continuum over 3D is
assumed as the application of the function to
all points. A certain iso-value fs specifies the
iso-surface s = {x| f(x)=/fs }.

CASE 3: implicitly defined stream sur-
faces for discrete vector fields — vec-
torial data Vsamp(x;) is given at certain dis-
crete locations x;, for example, on a curvilin-
ear grid. For a specific initial line segment
or curve sg(u) the corresponding stream sur-
face s(u,t) is implicitly defined as the integral
set so(u) + f§ v(s(u,7))dr — v(x) is an inter-
polant of the discrete values vsamp(X;)-

CAsE 4: implicitly defined stream sur-

faces for analytically specified dynami-
cal systems — a vectorial function v(x) is

given (as a “black box”) to be evaluated at
arbitrary locations x in 3D. A vectorial con-
tinuum over 3D is assumed as the applica-
tion of the function to all points. A cer-
tain initial line segment or curve sg(u) is im-
plicitly integrated to define the stream sur-
face s(u,t) = so(u) + [y v(s(u,))dr.

CASE 5: explicitly defined parametric
surfaces — such a surface is defined by a para-
metric function s : R? — RS3.

CASE 6: explicitly defined surfaces given
in implicit form — an equation f(x) = 0
defines a surface in 3D (note that this case is
similar to case 2).

CASE 7: explicitly defined discrete sur-
face approximations — a set of polygons
or a mesh is used to explicitly specify an ap-
proximation of a smooth surface.

There are other surface types as well,
for example, explicitly expressing one
coordinate in terms of the others -
s(r,y)=(z y z(z,y))T. Usually they
can be either transformed into one of the
above mentioned cases, or appear rather
rarely. Therefore, they are not considered
separately in this paper.

3 SURFACE INTERROGATION

Algorithms used for visualization of volumetric
data can be broadly separated into two groups:

Image space techniques, which are usually
based on ray casting, i.e., the data is inter-
sected with a viewing ray, which is defined
by an eye point and a pixel on the image
plane, to locate visible surface locations.

Object space techniques, which project the
data onto the image plane and perform
compositing. In this case often incremen-
tal surface curve traversal is used to loop
over the surface object.

Elaborated surface visualization methods usu-
ally are based on surface properties up to the
order of two, i.e., the calculation of surface-
point locations, surface normals, and surface
curvature properties. Surface interrogation,
i.e., the evaluation of these properties for cer-
tain points of the surface, involves a number of
algorithms [7] which are dependent on the type

of the surface. Examples are function recon-
struction and gradient approximation. In the
following we briefly summarize the most com-
mon approaches for the surface types described
in Sect. 2.

3.1 Surface-point location

The location of a point on a surface is not only
necessary for projection methods but also for
ray casting since all surface properties, like nor-
mals and curvature properties, are dependent
on the location of a surface point.

Since a generic surface interrogation interface
should be usable for image space and object
space techniques, SMURF supports both ray
casting and incremental surface curve traversal.
In the following part we firstly discuss ray cast-
ing with respect to surfaces of various types.

Ray casting

The intersection of a certain ray (given by a
view-point eye and a viewing direction dir)
and the surface yields a sorted list of surface-
points (hit list). Usually just the first entry in
the hit list is investigated as the (one and only)
visible intersection. Sometimes, advanced visu-
alization algorithms also use semi-transparency
of surfaces, thus requiring the computation of
successive intersections also. Therefore, a hit
list (featuring lazy evaluation) of intersections
should be returned by the “ray casting” surface
interface (see Sect. 4). Depending on the type
of surface, the intersection calculation is done
differently:

Analytic solution (cases 5, 6, and 7) — in
the case of an explicitly specified surface, the
intersection between a ray and a surface usually
can be expressed — or even computed — analyt-
ically. Usually, the evaluation of this intersec-
tion expression has to be done using numerical
methods like root finding (see below).

In the case of a parametric surface (case 5) the
following two equations have to be solved in
terms of u and v (n; and ny are two vectors
orthogonal to each other, while both being nor-
mal to the viewing ray):

s(u,v) -n; = eye-ny
s(u,v) - ng = eye - ny

where n; - dir = 0 and n; - n; = §;;

ENhNS|
AN

interpolant g of resampled densities

S

1 S ray

samples of an interpolant f

S

Figure 2: 2D example of root finding

samples of adensity distribution f, .,

along a ray for iso-surface ray tracing —
often two-fold reconstruction is used!

Depending on the complexity of s, solving
the above equations usually is not possible in
closed form. There are numerical techniques to
compute the list of intersections in terms of u
and v [6].

In the implicit case (case 6) the following equa-
tion has to be solved in terms of A:

fleye + \-dir) =0

Again, often numerical methods are required
to solve the above equation.

In the polygonal case (case 7) theoretically all
polygons have to be intersected with the ray to
evaluate the hit list. Spatial coherence can be
exploited using special data structures for stor-
ing the polygons to speed up the intersection
process [1, 18]. Other simple but effective en-
hancements like back-face culling are available
as well.

Root finding (cases 1 and 2) — considering
a ray being cast into a density volume, e.g., a
continuum that interpolates discrete data val-
ues (case 1) or the application of f to the entire
domain (case 2), implicitly yields a scalar den-
sity function at all points of the ray. This func-
tion can be sampled along the ray to search for
intersections with the iso-surface. Usually, an
interpolant is used to approximate this func-
tion along the ray, for instance, linear interpo-
lation.

Fig. 2 illustrates these steps in 2D. Discrete
density values fsamp(X;) are samples (arranged,
for example, on a regular grid) of a partic-
ular density distribution. One typical ray

casting approach is to resample an inter-
polant f, e.g., a tri-linear or a tri-cubic in-
terpolant, at certain locations along the ray,
ie, f(r;) — ry=eye+i-Adir. For the
identification of the ray /iso-surface intersec-
tions py usually an interpolant g(x) along
the ray is assumed (g(r;) = f(r;)), and equa-
tion g(px) = g(eye + Ay - dir) = f; is solved in
terms of Ag.

Note, that the use of a separate interpolant g
is a second reconstruction step of the origi-
nal function f. Instead, g can also be defined
to be the projection of interpolant f onto the
ray, which actually would be the more accu-
rate solution. Unfortunately, this approach is
usually rather complex as the projection of a
tri-linear function f, for example, induces the
interpolant g to be a cubic function in terms
of Ak [17]

Stream surface intersection (cases 3
and 4) — the most demanding problem within
the task of locating surface-points is stream
surface intersection. This is mainly due to
the fact that stream surfaces are implicitly de-
fined through an additionally required integra-
tion step of the underlying vectorial data. In
flow visualization often pre-computed, i.e., pre-
integrated, stream surfaces are used. Numer-
ical techniques, like Fuler or Runge-Kutta in-
tegration, are used to step-by-step generate a
polygonal approximation of the stream surface,
which afterwards is visualized using standard
mesh rendering methods (compare to case 7).

Another approach exploits the reversibility of
flow integration: instead of explicitly generat-
ing the stream surface itself, a “back-stream
surface” is computed, considering the ray as
an initial condition and performing flow inte-
gration backwards in time. Any intersection of
this “back-stream surface” and the original ini-
tial set directly corresponds to an intersection
of the investigated stream surface and the ray
via a stream line (cf. Fig. 3).

This approach is useful, for example, when
lazy evaluation is used (see Sect. 4). Unfortu-
nately this approach is rather expensive when
many intersections should be computed. On
the other hand, this duality (Fig. 3) can be
exploited to increase numerical stability of the
intersection computations — divergent flows are
more accurately integrated backwards.

stream surface

intersection
Y initial set -
i back-stream surface

stream surface

back:stream surface

Figure 3: lazy-evaluation ray casting of
stream surfaces by the use of a “back-
stream surface”.

normal n

direction dir

Figure 4: surface-curve traversal for iter-
ative object-order surface rendering.

Surface-curve traversal

In addition to ray casting, incremental surface-
curve traversal was chosen as a complemen-
tary SMURF strategy to access surface-points.
Starting with an initial surface-point p, a
neighboring location separated by a specific
distance dist is searched in a certain direc-
tion dir. Surface-point p, surface normal n,
and direction dir define a plane which inter-
sects the surface in a certain surface-curve.
Out of both points on the curve which are dist
(in terms of curve length) away from p the one
which is mostly aligned with dir is considered
to be the searched location. See Fig. 4 for an
illustration of this procedure.

3.2 Surface normal computation

Various computer graphics algorithms use sur-
face normals, e.g., for shading or back-face
culling. The acquisition of a normal corre-
sponding to a certain surface-point again de-
pends on the type of surface:

Analytic solution (cases 5 and 6) — if the
surface is given explicitly, usually the surface
normal at a certain point can be computed an-
alytically. In the parametric case (case 5) the
cross-product ds/0u|, x 9s/0v|, of two tan-
gent vectors yields a (not yet normalized) sur-
face normal at point p. Of course, this is only
possible if both tangents are not collinear. In
the implicit case (case 6) the gradient Vf|; is
a surface normal of the iso-surface through p
(not normalized).

Gradient reconstruction from densities
(cases 1 and 2) — assuming a function f(x)
which can be evaluated at arbitrary points x —
[is either the “black box” (case 2) or an in-
terpolant (case 1) — surface normals (not nor-
malized) can be computed using central differ-
ences, for example:

n(p) = Vf|, =

f(x+e1) — f(x—e1)
~ 1| flxtes) — f(x—ey)

f(x+e3) — f(x—es3)

e;= (01; 0o 03i) T

Higher-order approximations of the gradient
are possible as well. In general, an arbitrar-
ily complex derivative filter can be applied for
gradient reconstruction [3, 13].

Normal reconstruction from polygons
(case 7) — a standard procedure for recon-
structing normals within polygons is used for
Phong shading [15]: at the vertices of a polygon
a weighted sum of all the normals of adjacent
polygons is computed. These vertex normals
are interpolated within the polygon to approx-
imate the normals of the surface which is ap-
proximated by the polygons.

Stream surface normals (cases 3 and 4) — In
the case of directly approximating the stream
surface by a set of polygons, again techniques
for case 7 can be used. In the other case (using
the duality shown in Fig. 3) the surface nor-
mal can be built as the cross-product of two
tangent vectors. One is equal to the vectorial
data value at the point of interest. The other
can be approximated by investigating neigh-
boring stream lines.

3.3 Surface curvature

Second-order surface properties, i.e., curvature
information, is used to enhance surface-based

visualization. Shape and location of a surface
can be better perceived, for example, if cur-
vature directed strokes are applied to the sur-
face [10].

Surface curvature usually is expressed in sev-
eral terms, e.g., Gaussian or mean curvature.
Both curvature properties depend on a surface-
curvature definition [5] which is dependent on a
specific tangent direction. Principal directions
are those tangent directions which yield either
maximum or minimum curvature.

Curvature calculation for parametric
surfaces (case 5) — The first and second fun-
damental coefficents (with the usual abbrevi-
ations) of a parametric surface s(u,v) are de-
fined as

E=s,-sy, F=s8y-8;,, G=s,-8y
L=sy, n M=sy,,-n, N=s, 'n

with n = (syXs,) / |sy X Sy| being the unit nor-
mal vector and s, = Js/du, s, = ds/0v. The
normal curvature in tangent direction v’ : v’ is

B Lu? + 2Mu'v' + Nv'?
 Eu? 4+ 2Fuv' + Gu'?

For k being extremal it must satisfy the equa-
tion [5]

kE—L kF—-M]

det| 'p_ M wG-N |~

0

The extreme values k1 and k9 are the principal
curvatures of the surface at x and

Kiky = (LN — M?)/(EG — F?)
ki+ky = (NE-2MF + LG)/(EG — F?)

are the Gaussian and mean curvature, respec-
tively.

Curvature calculation for implicit sur-
faces (case 6) — In a surface-point p of in-
terest we consider n(p) to be a unit normal
of the plane which is tangent to the surface
through p, i.e., n(p) = Vf|,/ \Vf|p‘. Assum-
ing e; to be an arbitrary vector of unit length
contained in the tangent plane, we construct a
local Frenét frame:

¢':(e1 e n(p))
e -n(p) =0, e2 =n(p) X e

Searching for the principal curvature of the
surface through p, we have to investigate the

changes of n(x) near p with respect to changes
of x within the tangent plane, i.e., x=p+re,
with e, being a unit length vector orthogonal
to n(p), i.e., lying in the tangent plane.

Direction ez, where Vn| - es, ie., the direc-
tional derivative of n near p into direction ey,
is greatest (in terms of length), is then the first
principal direction of the surface through p.
The second principal direction is orthogonal to
both ez and n(p). The related curvatures are
the lengthes of the directional derivatives along
the principal directions.

As derivation is a linear operator, the di-
rectional derivative of n into some direc-
tion e, = cosy e; + sing ey can be written in
terms of the directional derivative of n into di-
rections e; and es:

Vn|,-e, = (Vn|p-e1 Vn\p-eg) _ (cosyp)

sinp

Since Vnl,- e, is orthogonal to n(p) also, we
can express it in terms of e; and ey by the use of
decomposition - (z y)T =)T

= (cosp sinyp
'\ _ (el \ [Vne ! =
y)\ el Vn|,- e y

-

A= (wij), wij:ei'vn|p'ej

Searching for the greatest eigenvec-
tor (z5 yz)T of matrix A, directly yields
the corresponding first principal direction
viney=(e e) (zp yp)T
Curvature reconstruction from densities
(cases 1 and 2) — to reconstruct curvature
properties of iso-surfaces obtained from scalar
volume data essentially the same procedure
as for implicit surfaces can be used. A func-
tion f(x) is assumed, which can be evaluated
at arbitrary points x (see Sec. 2), as well as
a function n(p) = Vf|,/ ‘Vf|p‘ which yields
the unit normal at an arbitrary point p (see
Sec. 3.2). Again the eigenvalue decomposition
of matrix A = (e; - Vn|,- e;);; in terms of a
local Frenét frame gives the searched curvature
properties.

Stream surface curvature (cases 3 and 4) -
in the case of a pre-computed stream surface
techniques described for case 7 (see below) are
used. In the case of stream surface on demand
curvature properties could be derived by inves-
tigating the changes of a normal with respect

flow vector v(p)

stream line throughp

two stream surfaces sharing
p and v(p) with distinct
normals and curvature properties

Figure 5: why normal and curvature
properties of stream surfaces do not tell
a lot about the underlying flow.

to changes within the tangent plane. It must
be noted here that stream surface curvature is
rarly used for visualization since it easily might
be misinterpreted as a property of the under-
lying vector field. Fig. 5 illustrates why stream
surface curvature — even stream surface nor-
mals — usually lack importance in visualization.
Both properties heavily depend on the choice
of the initial condition.

Curvature reconstruction from polygons
(case 7) — To reconstruct curvature properties
from polygons, one obvious procedure would
be to construct an interpolant and calculate
analytically the curvature of the interpolant.
Todd and McLeod [20], however, report that
this approach yields in general completely un-
satisfying results.

Therefore, they propose to approximate the
Dupin indicatrix from the vertices of the poly-
gons, by exploiting Meusniers theorem [5], esti-
mating normal curvatures in particular direc-
tions (which requires to estimate the normal,
for example, with the approach used in Phong
shading, as described in Sec. 3.2) and finally
fitting a central conic to that data.

4 SMURF CLASSES

After having identified the different sur-
face types (Sect. 2) and surface interroga-
tion schemes (Sect. 3) the integration in a
C++ class hierarchy called SMURF (see Fig. 6)
is straight-forward. An abstract base class pro-
vides all common properties of the various sur-
face types and the interrogation interface as
virtual functions. Various sub-classes, corre-
sponding to the surface types, are derived from
this abstract base class and redefine the inter-
rogation schemes accordingly.

To distinguish discrete scalar volume data-sets
(case 1) from analytic scalar volume functions

SmurfPoint

Smurf | getHitListH(eye,dir)

.getPointH(hIH,idx)
.getNeigH(ptH,dir,dist) - - -< virtual calcNeig

.getLocation(ptH) - - ---- < virtual calcLocation
.getNormal(ptH) - ------ < virtual calcNormal
.getCurv(ptH,type) ----- < virtual calcCurv

.getPrincCurv(ptH,axis) - -< virtual calcPrincCurv
.getPrincDir(ptH,axis) - - -< virtual calcPrincDir

\°| IsoSmurfPoint |<* == <\>Q| IsoSmurf

|<* -- *>‘ ScalVolData

‘.getScaIar(x) - < virtual calcScalar

| DiscScalVolData |

analytic scalar volume data types (case 2)

\°| StreamSmurfPoint |<* == <\>Q| StreamSmurf |<* -- *>‘ VectVolData

‘.getVector(x) - < virtual calcVector

| DiscVectVolData |

,,,,,,,,,,,,,,,,,,,,, (case 3)
analytic vectorial volume data types (case 4)
\Q‘ AnaSmurfPoint ‘
= ImplAnaSmurf
| ImplAnaSmurfPoint |<* -|- - - <= implicit (analytic) surface types (caseb)
= ParaAnaSmurf
| ParaAnaSmurfPoint |<* -|- - - -~ parametric (analytic) surface types (case 6)
\°| PolySmurfPoint |<f - <\>Q PolySmurf (case 7)

Figure 6: SMURF class hierarchy and interface.

(case 2) a class ScalVolData hides the inter-
face. Therefore, class IsoSmurf can treat these
two cases the same way. The same holds for
discrete vector fields (case 3) and analytically
specified dynamical systems (case 4) via class
VectVolData. This means, that all the seven
cases of various surface types which were pre-
sented in Sect. 2 are mapped to four sub-classes
of SMURF, i.e., ISOSMURF, STREAMSMURF,
ANASMURF, and POLYSMURF. See Fig. 6 for
the relations between these classes.

An important concept in the implementation
is the one of lazy evaluation, i.e., computing
not more than necessary at a certain point in
time. For example, ray casting can be ter-
minated after finding the desired intersection
point. Further surface properties are evalu-
ated on demand, and stored for future use.
Therefore, a class hierarchy SmurfPoint is in-
troduced which mirrors the Smurf class hier-
archy and serves as memory element for the
specific surface types, i.e., it stores all relevant
information already computed which can be re-
used. Again, Fig. 6 illustrates the relations be-
tween these classes.

5 RESULTS, APPLICATIONS

By hiding the intrinsic differences between the
surface types identified in Sect. 2 SMURF sup-
ports the user with the following tasks:

Implementation of advanced visualiza-
tion techniques — SMURF eases this task
by providing an interface for obtaining surface
properties independently of the surface type.
Fig. 7 shows an iso-surface with crosses aligned
to the principal directions (similar to Beck et
al. [2]). Fig. 8 was generated using the code
depicted in Fig. 9 — any other surface type
could be rendered using the same code by just
changing the very first line.

Comparison of algorithms — for instance,
reconstruction schemes can be easily compared
by sampling an analytic function and apply-
ing a visualization algorithm to both the scalar
data volume and the analytic function. In
Fig. 10 this concept was used to compare linear
and cubic interpolation with respect to func-
tion reconstruction and computation of Gaus-
sian curvature with the corresponding analytic
function. Linear reconstruction of densities
is clearly seen in Fig. 10(a), whereas there is

Figure 7: iso-surface computed for ten
slices, scanned from a human head with
curvature crosses.

no perceivable difference between Fig. 10(b)
and (¢). Comparing the curvature plot, sub-
tle differences can be obtained even between
Fig. 10(b) and (c).

Fig. 11 compares the quality of curvature re-
construction (by calculating principal curva-
ture lines of a cylinder) depending on lin-
ear and cubic density reconstruction. In
Fig. 11(a) small errors accumulated during nu-
merical integration of the curvature lines are
clearly visible. For color plates, please re-
fer to URL http://www.cg.tuwien.ac.at/
research/vis/misc/Smurf/.

6 FUTURE WORK

One obvious disadvantage of a general scheme
like SMURF is that it principally suffers from in-
efficiency. Performance can be improved by in-
cluding, e.g., intelligent caching strategies and
implementation short-cuts. Furthermore, it
should be possible to exploit ray-to-ray coher-
ence of visualization algorithms. Thus, again,
caching and addressing of external data must
be allowed by the scheme.

Another idea is to extend the SMURF concept
to a ‘set of SMURFS’ class with a similar in-
terface. Comnsecutive intersections along a ray
are reported in correct order from different
surfaces, e.g., stacked iso-surfaces or multiple

Figure 8: contour display of lobster CT
scan — see also Fig. 9.

stream surfaces. Even surfaces of different type
could be easily combined using this concept,
for example, patient data together with objects
from (virtual) surgery planning.

7 CONCLUSIONS

Our general purpose surface interface SMURF
allows to easily re-use highly elaborated visual-
ization techniques that are based on surfaces in
3D. Examples are curvature-directed strokes or
plotting curvature lines, with surfaces originat-
ing from various applications like iso-surfaces
from medical applications or stream surfaces
from flow visualization. Surface properties up
to the order of two, i.e., curvature informa-
tion, are available to the user in a transpar-
ent way. Ray casting as well as incremental
surface-curve traversal are provided as surface
access strategies. Thus, advanced surface vi-
sualization techniques can be developed with-
out having to care about specific algorithm for
calculating particular surface properties. Their
portability to other surface types is another ad-
vantage of the SMURF concept.

For the realization of this concept we first iden-
tified the most often used surface types and
compared various surface interrogation algo-
rithms necessary to unify them under a unique
interface. As most visualization applications
have to deal with sampled data, analytic evalu-
ation is discussed as well as various reconstruc-
tion schemes. The usefulness of this approach
is demonstrated by several results we obtained

Smurf *pSmurf = new IsoSmurf ("lobster.dat",threshold) ;

for (p=pFirstPixel(); p!=NULL; p=pNextPixel())

{
VEC3 dir =
SmurfHitListHandle HLH =
SmurfPointHandle PH =
VEC3 normal =
if (-dir*normal < 0.6)
p—>set (1-(-dir*normal));
else
p—>set (0);
}

normalize (xp-eye) ;
pSmurf->getHitListH(eye,dir);
pSmurf->getPointH (HLH,O) ;
pSmurf->getNormal (PH) ;

Figure 9: code used for drawing lobster contours depicted in Fig. 8.

(a)

(b) (c)

Figure 10: Gaussian curvature plot using linear (a) and cubic (b) function reconstruction vs.
analytic computation (c).

with our actual implementation.

ACKNOWLEDGMENTS

The work presented in this publication has

been supported by ViSMed,

Please refer to

http://www.vismed.at for further informa-
tion on this project.

REFERENCES

[1]

J. Arvo and D. Kirk. A survey of ray trac-
ing acceleration techniques. In A. Glass-
ner, editor, An introduction to ray tracing,
pages 201-262. Academic Press, 1989.

J. Beck, R. Farouki, and J. Hinds. Surface
analysis methods. IEEE Computer Graph-
ics and Applications, 6(12):18-36, 1986.

M. Bentum, B. Lichtenbelt, and
T. Malzbender. Frequency Analysis of
Gradient Estimators in Volume Render-
ing. IEEE Transactions on Visualization

[4]

and Computer Graphics, 2(3):242-254,
1996.

J. Dill. An application of color graphics to
the display of surface curvature. Proceed-
ings SIGGRAPH, 15(3):153-161, 1981.

G. Farin. Curves and Surfaces for Com-
puter Aided Geometric Design. Academic
Press, 3'4 edition, 1993.

A. Glassner, editor. An Introduction to
Ray Tracing. Academic Press, 1987.

H. Hagen, S. Hahmann, T. Schreiber,
Y. Nakajima, B. Wordenweber, and
P. Hollemann-Grundstedt. Surface in-
terrogation algorithms. IEEE Computer
Graphics and Applications, 12(5):53-60,
1992.

J. Hultquist. Constructing stream surfaces
in steady 3D vector fields. In Proceedings
IEEFE Visualization, pages 171-177, 1992.

(a)

(b)

Figure 11: quality of curvature calculations depending on the function reconstruction scheme —
linear (a) vs. cubic (b) reconstruction

[9]

[10]

[11]

[12]

[13]

[14]

V. Interrante. Illustrating surface shape in
volume data via principal direction-driven
3D line integral convolution. In Proceed-
ings SIGGRAPH, pages 109-116, 1997.

V. Interrante, H. Fuchs, and S. Pizer. Con-
veying the 3D shape of smoothly curving
transparent surfaces via texture. IFEE
Transactions on Visualization and Com-
puter Graphics, 3(1):98-117, 1997.

H. Loffelmann, L. Mroz, E. Groller, and
W. Purgathofer. Stream arrows: Enhanc-
ing the use of streamsurfaces for the visu-

alization of dynamical systems. The Vi-
sual Computer, 13:359-369, 1997.

W. Lorensen and H. Cline. Marching
cubes: A high resolution 3D surface con-
struction algorithm. Proceedings SIG-
GRAPH, 21(4):163-169, 1987.

T. Moller, R. Machiraju, K. Miiller, and
R. Yagel. Evaluation and Design of Filters
Using a Taylor Series Expansion. IEEE
Transactions on Visualization and Com-
puter Graphics, 3(2):184-199, 1997.

G. Nielson and B. Shriver. Visualization
in Scientific Computing. IEEE Computer
Society Press, 1990.

10

[15]

[16]

[17]

[18]

[19]

[20]

B.-T. Phong. Illumination for computer
generated pictures. Communications of
the ACM, 18(6):311-317, 1975.

M. Rumpf, A. Schmidt, and K. Siebert.
Functions defining arbitrary meshes - A
flexible interface between numerical data
and visualization. Computer Graphics Fo-
rum, 15(2):129-142, 1996.

G. Sakas, M. Grimm, and A. Savopoulos.
Optimized maximum intensity projection
(MIP). In Proceedings EUROGRAPHICS
Rendering Workshop, pages 51-63, 1995.

H. Samet. Applications of Spatial Data
Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley,
1990.

L. Seidenberg, R. Jerad, and J. Magewick.
Surface curvature analysis using color.

In Proceedings IEEE Visualization, pages
260-267, 1992.

P. Todd and R. McLeod. Numeri-
cal estimation of the curvature of sur-
faces. Computer-Aided Design, 18(1):33—
37, January 1986.

