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Abstract

Current graphics hardware offers only very limited
support for convolution operations, which is primar-
ily intended for image processing. The input and
output sample grids have to coincide, making it im-
possible to use these features for more general filter-
ing tasks such as image or texture resampling. Fur-
thermore, most hardware employs linear interpola-
tion for texture reconstruction purposes, incurring
noticeable artifacts. Higher-order interpolation via
general convolution is able to remove most of these
artifacts. Real-time applications currently do not
consider higher-order filtering due to lack of hard-
ware support. We present algorithms for extremely
fast convolution on graphics hardware. This frame-
work can be used for general convolution tasks,
but is especially suited to substituting the native bi-
linear or tri-linear interpolation currently used for
texture magnification, while still achieving frame
rates of up to 100 frames per second for full screen
filtering with bi-cubic interpolation.

1 Introduction

Convolution is the fundamental operation of linear
filtering, where a filter kernel is passed over the
input data, and for each desired output sample a
weighted average of input samples that are covered
by the filter kernel is computed. This process can be
used for various tasks, ranging from image or vol-
ume processing to filtering for resampling purposes.
Unfortunately, current hardware supports only con-
volutions where the input and output sample grids
coincide. In such a scenario, a convolution ker-
nel consists of a relatively small number of weights
located at integer locations, where for each output
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sample being calculated each of these weights cor-
responds to exactly one input sample. Naturally,
such convolution filters cannot be used when the
output sample grid has no restrictions with respect
to location or size, i.e., in general image or texture
resampling. In this case, high-resolution filters are
needed, i.e., filters that have not only been sampled
at integer locations, but at a much higher resolution
than the width of the filter kernel. They are a high-
resolution, albeit still discrete, representation of the
original continuous filter kernel. For all theoretical
purposes, however, we consider such a kernel as ac-
tually being continuous; in practice, we also employ
reconstruction for the filter kernel itself.

Especially in texture mapping, the input data in
principle has to be subjected to two filtering op-
erations in order to resample the discrete texture
space onto the likewise discrete screen space. First,
the texture has to be reconstructed from the sam-
ples stored in the texture map using a reconstruc-
tion filter. After it has subsequently been warped to
screen space according to the viewing projection, a
prefilter has to be applied, before finally sampling
onto the output pixel grid [4]. Naturally, in prac-
tice certain trade-offs have to be made for perfor-
mance reasons. Where in theory the filtering pro-
cess is the same for both magnification and minifi-
cation, i.e., where a single texel covers many pixels
or vice versa, these cases are usually distinguished
and handled separately. In the case of magnifica-
tion the ideal resampling filter is dominated by the
reconstruction filter, whereas in the case of minifi-
cation it is dominated by the warped prefilter. Cur-
rent graphics hardware tackles this problem by us-
ing a combination of MIP mapping, and bi-linear or
tri-linear interpolation. The former is used to ap-
proximate the prefilter and provide the input to the
second stage, i.e., the reconstruction filter that per-
forms linear interpolation in texture space. While
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most previous work has focused on improving the
prefiltering stage [3], the framework presented in
this paper can be used to significantly improve the
reconstruction stage. In fact, although we are fo-
cusing on magnification, it is possible to combine
our algorithms with MIP mapping in order to handle
the case of minification, and attain a combination of
prefiltering and reconstruction.

The main contribution of this paper is two-fold.
First, we present a general framework for very fast
convolution with arbitrary high-resolution filter ker-
nels in graphics hardware, which can be used on
standard vertex and pixel shader hardware, but is es-
pecially powerful on hardware that supports floating
point color computations. We present several con-
volution algorithms with different performance and
flexibility trade-offs. We make use of state-of-the-
art hardware features such as multi-texturing, pixel
shaders, and vertex shaders. The presented frame-
work can be used to add arbitrary programmable
filter kernels to any real-time renderer or shading
language. Second, we establish an already feasible
high-quality substitute for the current de-facto stan-
dard of linear interpolation for hardware texture re-
construction, in the form of convolution with cubic
high-resolution filter kernels.

Related work. Current graphics hardware has
only very limited support for convolution. The
OpenGL imaging subset [10] can be used for im-
age processing convolution, which has also been
extended to 3D [5]. Recent graphics hardware fea-
tures like vertex and pixel shaders can be used for
substituting the imaging subset with a faster ap-
proach [6], although this is more prone to preci-
sion artifacts. We build upon our earlier work on
evaluating a high-resolution filter convolution sum
in hardware [1]. However, we now propose a gen-
eral framework realized with an entirely new imple-
mentation that is able to exploit more properties of
the filter kernel, offers greater flexibility, leverages
vertex and pixel shaders, and attains frame rates
that are approximately ten times higher. The algo-
rithms we present can be used for texture mapping
arbitrary polygonal objects in perspective, filtering
static and animated textures, both pre-rendered and
procedural, as well as both surface [2] and solid tex-
tures [15]. The approach we present can be com-
bined with MIP mapping, which is crucial to us-
ing it as full substitute for linear interpolation. The
two major factors contributing to the huge speed-up

of the framework presented in this paper in com-
parison to our earlier results [1] are the exploitation
of filter separability, and extensive use of pixel and
vertex shaders.

High-quality prefiltering techniques have been
developed for both software [3], and hardware [9]
renderers. The latter usually focus on extending
MIP mapping for anisotropic filtering in the case
of minification (e.g., [9]). Although most of these
methods require explicit hardware support, stan-
dard MIP mapping hardware can also be used for
anisotropic filtering by accessing several MIP map
levels, and compositing these samples via multi-
texturing or multiple rendering passes [13].

Keys [7] derived a family of cardinal splines for
reconstruction and showed that among these the
Catmull-Rom spline is numerically most accurate.
Mitchell and Netravali [11] derived another family
of cubic splines quite popular in computer graphics,
the BC-splines. Marschner and Lobb [8] compared
linear interpolation, cubic splines, and windowed
sinc filters. They concluded that linear interpola-
tion is the cheapest option and will likely remain
the method of choice for time critical applications.
Möller et al. provide a general framework for an-
alyzing filters in the spatial domain, using it to an-
alyze the cardinal splines, and the BC-splines [12].
Theußl et al. [16] used this framework to assess the
quality of windowed reconstruction filters and to
derive optimal values for the parameters of Kaiser
and Gaussian windows.

2 High-res convolution in hardware

This section presents our framework for high-
resolution convolution in graphics hardware. Our
method achieves high-quality texture filtering by
performing a convolution of an input texture with a
“continuous” filter kernel, which in reality is stored
in several texture maps of user-specified size. The
filter kernel is sampled and stored into these tex-
tures in a pre-process. Each of the individual parts
of the filter kernel that is stored in a separate tex-
ture map is called a filter tile, and the correspond-
ing textures are referred to as tile textures. Since
the filter representation is of relatively high resolu-
tion, i.e., contains a much higher number of samples
than the width of the kernel, we call this representa-
tion a tiled high-resolution filter. The exact number
of textures depends on properties of the filter and
the algorithm used, but in the case of cubic filters it
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ranges from two to 64. At run time, arbitrary 1D,
2D, or 3D input textures can be convolved with the
sampled filter kernel. In order to do so, the filter
convolution sum is evaluated entirely in hardware,
by exploiting multi-texturing, vertex shaders, pixel
shaders, and multiple rendering passes. Basically,
in each pass the input texture is point-sampled and
multiplied with a single tile texture, which is repli-
cated and scaled in such a way that an entire tile
corresponds to a single texel of the input texture.
Adding up the results of these multiplications per-
formed in the corresponding passes yields the final
result, which is equivalent to evaluating the filter
convolution sum (equation 1).

The filter convolution sum. Since we want to
be able to deal with the completely general case of
discrete convolution of an input texture with an ar-
bitrary high-resolution filter kernel, we have to eval-
uate the well-known filter convolution sum [14],
where f [i] is the discrete input texture, h(x) is the
“continuous” (i.e., in practice still discrete, but sam-
pled with high resolution) filter kernel, and m is half
the filter width, which we show here for 1D:

g(x) = (f ∗ h)(x) =

�x�+�m�∑

i=�x�−�m�+1

f [i]h(x − i) (1)

Note that, although not used in practice, we are able
to deal with filter kernels of odd width, by simply
extending them to the next even extent with zeros.

2.1 Basic method

This section illustrates the basic principle of evalu-
ating equation 1 entirely in graphics hardware, by
substituting h(x) with a sampled high-resolution
representation that is stored in several texture maps,
and exploiting multi-texturing and multiple render-
ing passes for the actual computation. In this dis-
cussion, we are using an implementation-centric
point of view, and review the basic idea only briefly,
the details of which can be found in [1].

Filter kernel representation. The major prop-
erty of high-resolution convolution is that any
given continuous filter kernel is sampled at a user-
specified resolution that is much higher than the
width of the filter kernel. After sampling, we store
the filter kernel in multiple texture maps, which we
call tile textures. Specifically, each filter kernel sub-
set of unit extent is sampled with the same resolu-
tion, and becomes exactly one texture map. That is,

the sampled filter kernel is split up into filter tiles at
integer locations, before it is converted to a collec-
tion of texture maps. In the case of a cubic kernel –
which has width four – the kernel is therefore com-
prised of four individual 1D texture maps. Kernels
of higher dimensionality than one are handled de-
pending on whether they are separable or not. If a
kernel is separable, lower-dimensional (usually 1D)
components are stored, and multiplied on-the-fly at
run time, preserving both texture memory, and tex-
ture fetch bandwidth. If it is not separable, it has
to be sampled into several texture maps of accord-
ing dimensionality, i.e., non-separable kernels are
required to reside in either 2D or 3D texture maps.
Thus, in the case of a bi-cubic kernel, sixteen 2D
texture maps are needed, whereas a tri-cubic ker-
nel requires 64 3D textures. However, if a filter
kernel is symmetric, this property can also be ex-
ploited in order to reduce the number of kernel tex-
tures required. E.g., a symmetric bi-cubic kernel
can be stored in three instead of sixteen textures,
and a symmetric tri-cubic kernel can be stored in
four instead of 64 textures. Fortunately, many im-
portant filter kernels – especially many filters used
for function reconstruction – are both separable and
symmetric. Thus, it is possible to attain both bi-
cubic and tri-cubic reconstruction with only two 1D
textures for storing the filter kernel itself. A sam-
pling resolution of 64 or 128 samples per filter tile
and dimension usually suffices.

Evaluation of the convolution sum. At run
time, the filter convolution sum is evaluated over
multiple rendering passes, in each pass simultane-
ously point-sampling the input texture, generating
the needed filter weights, and multiplying the cor-

(a) FOR ALL output samples xi DO
FOR ALL contributing inputs rj DO

tmp = h(frac(xi) − rj);
g(xi) += f [trunc(xi) + rj ] ∗ tmp;

(b) FOR ALL contributing inputs rj DO
PAR ALL output samples xi DO

tmp = hj(frac(xi));
g(xi) += shiftj(f)[trunc(xi)] ∗ tmp;

Table 1: Evaluating Eq. 1 in either usual (a), or re-
versed (b) order, where each iteration of the outer
loop is a single render pass; rj ∈ [−�m�+1, �m�].
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responding input data and weights. The number of
rendering passes depends on the width of the filter
kernel, the convolution algorithm employed (sec-
tion 2.2), and the maximum number of texture units
supported. It may be as low as a single pass. Gen-
eration of filter weights ranges from simply sam-
pling one of the tile textures, to compositing two or
three values or vectors, retrieved from different fil-
ter tiles, in the pixel shader. Basically, both the in-
put texture and from one to three tile textures need
to be mapped to the output sample grid in screen
space multiple times. This mapping is the same
for the input texture and the filter tiles apart from
scale, where an entire tile is mapped to a single in-
put texel. Tile textures are repeated on-the-fly, so
that the same filter tile maps to every input texel.
Perspective correction is not only used for input tex-
tures, but also for tile textures. Thus, all approaches
presented in this paper are independent from the
type of projection used. They work equally well
for both orthogonal and perspective projections.

This amounts to evaluating the convolution sum
in a different order than the one usually employed,
i.e., in software convolution. Instead of calculating
each output sample at a point x in its entirety, we
instead distribute the contribution of a single rela-
tive input sample to all relevant output samples si-
multaneously. That is, we would usually evaluate
equation 1 with code roughly equivalent to what
is shown in table 1(a): looping over all output lo-
cations xi one after the other, the corresponding
output sample g(xi) is generated by adding up the
contributions of the 2m contributing neighbor sam-
ples, whose locations are specified relative (rj) to
the output sample location. Instead, using high-
resolution filter tiles and multiplying input samples
by filter weights in the pixel shader amounts to the
order of table 1(b): looping over all relative in-
put sample locations contributing to each respec-
tive output sample location, a single rendering pass
adds the corresponding contribution of each relative
input sample to all output samples simultaneously.
The shift operator shiftj denotes that the input tex-
ture is not actually indexed differently at each out-
put sample location, but instead the entire input tex-
ture is shifted according to the current rendering
pass, in order to retrieve a single relative input sam-
ple location for all output samples simultaneously.
Similarly, hj denotes the filter tile corresponding to
the current pass, instead of the entire filter kernel h.

2.2 Convolution algorithms

This section presents the actual algorithms for per-
forming convolution with high-resolution filters in
hardware. Each of the basic algorithms can be ex-
panded to make use of more available texture units
(and thus fewer passes), by simply adding the re-
sults of multiple basic blocks together in a sin-
gle pass. Combining multiple logical rendering
passes also helps to exploit higher internal calcu-
lation precision in order to reduce quantization arti-
facts. We illustrate the differences with pseudo code
fragments, including sections for vertex and pixel
shader code.

General filter kernels. In the general case, we
assume that the filter kernel is used and stored in its
entirety, i.e., potential separability or symmetry is
not exploited. This implies that all tile textures have
the dimensionality of the convolution itself (1D, 2D,
or 3D). Naturally, this case has the highest demands
on texture memory and texture fetch rate. Table 2
shows the pseudo code for the resulting algorithm,
which we call std-2x. “std” means the standard al-
gorithm (not separated, non-interleaved), and “2x”
denotes the number of textures used in a single pass
(in this case two). Several of these building blocks
can be combined in a single rendering pass, depend-
ing on the number of texture units supported by the
hardware, thus yielding the analogous extended al-
gorithms std-4x, std-6x, and so on. The basic algo-
rithm works identically for 1D, 2D, and 3D convo-
lutions, respectively, apart from minor details such
as the number of texture coordinates that need to be
configured.

Symmetric filter kernels. Exploiting filter ker-
nel symmetry can easily be done be reusing tiles
with mirrored texture coordinates. Symmetry can
be exploited both along axes and diagonals. Espe-
cially when the filter is not separable, it is impor-
tant to exploit symmetry, in order to reduce texture
memory consumption, which is especially high in
the case of 3D convolutions. It is also important to
note here that mirroring filter tiles is not necessar-
ily as simple as swapping texture coordinates. The
reason for this is that the mirroring is required to
be pixel-exact. That is, if a specific pixel in screen
space was covered by a specific weight in a filter tile
in one pass, it must be covered by the exactly cor-
responding weight in the respective mirrored tile in
another pass. While it might simply suffice to mir-
ror texture coordinates by, e.g., negation in the ver-
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global setup (all passes):
input tex: as-is; mono, RGB, RGBA, etc.;
filter tiles: 1D, or not-separated 2D or 3D;

per-pass setup:
filter tiles: select tile corresponding to pass;
if kernel symmetric: setup tile mirroring;

vertex shader:
texcoord[ 0 ].s{t{r}} = shift j( texcoord[ 0 ] );
texcoord[ 1 ].s{t{r}} = texcoord[ 0 ] * tilesize;

pixel shader:
reg0 = SampleTex( 0 );
reg1 = SampleTex( 1 );
out = Multiply( reg0, reg1 );

Table 2: Convolution with std-2x algorithm.

tex shader, on some hardware it may be necessary
to actually mirror tiles in the pixel shader.

Separable filter kernels. When the filter kernel
is separable, the texture memory and texture fetch
rate requirements can be reduced tremendously. In-
stead of using actual 2D or 3D tile textures for 2D
or 3D convolutions, the higher-dimensional weights
can be generated on-the-fly from either two or three
one-dimensional tile textures in the pixel shader.
This is easily possible by performing the tensor
product in the pixel shader, i.e., multiplying corre-
sponding weights retrieved from two – not neces-
sarily different – lower-dimensional tiles. Alterna-
tively, for 3D convolutions the needed filter weights
can also be generated from one 1D texture and one
2D texture, e.g., in order to lower the number of
texture units required. We call the corresponding
algorithms sep-3x (two or three 1D tiles instead of
one 2D or 3D tile), sep-4x (one 1D and one 2D tile
instead of one 3D tile), and so on. Exploiting sep-
arability or not is a quality/performance trade-off
due to the limited precision in the pixel shader, a
problem that is not present on floating point pixel
hardware like the ATI Radeon 9700. While we have
also used numerical simulations for estimating the
numerical difference, the best way to prefer one al-
gorithm over the other is by visual comparison.

Separable and symmetric filter kernels. The
best possible combination of kernel properties is
when a filter is both separable and symmetric,
which fortunately many interesting filter kernels
are; especially many of those one would like to use
for function reconstruction purposes.

global setup:
input tex: monochrome RGBA-interleaved;
filter tiles: 1D, 2D, or 3D; also interleaved;

per-pass setup:
filter tiles: select tile corresponding to pass;
if kernel symmetric: setup tiles mirroring;

vertex shader:
texcoord[ 0 ].s{t{r}} = shift j( texcoord[ 0 ] );
texcoord[ 1 ].s{t{r}} = texcoord[ 0 ] * tilesize;

pixel shader:
reg0 = SampleTex( 0 );
reg1 = SampleTex( 1 );
out = DotProduct4( reg0, reg1 );

Table 3: Convolution with dot-2x algorithm.

Pre-interleaved monochrome input. If the
input data is single-valued and a certain limited
amount of pre-processing is considered feasible, all
of the algorithms outlined above can be combined
with the following scheme that exploits the capabil-
ity of graphics hardware to perform per-pixel dot
products. The idea is to fold four passes into a
single pass, by evaluating four terms of the con-
volution sum in a single operation. In order to do
so, four input values have to be available simul-
taneously, which can be achieved by converting a
monochrome input texture into an RGBA texture by
interleaving it four times with itself, each time us-
ing a different texel offset. That is, at each position
in the texture the value of three neighboring texels
is available in addition to the original texel itself.
If the tile textures are also interleaved accordingly,
thus achieving correct correspondences of relative
input samples and filter weights in all four chan-
nels, four terms of the convolution sum can then be
evaluated concurrently by using a four-component
dot product instead of a component-wise multipli-
cation in the pixel shader. The dot-2x pseudo code
in table 3 illustrates this as an extension of the std-
2x algorithm of table 2. Although not shown here
for brevity, the same approach can also be com-
bined trivially with the separable algorithms, thus
yielding the extremely fast spd-3x, spd-4x, spd-6x,
etc. algorithms. Exploiting both separability and
pre-interleaved input data is generally the fastest ap-
proach offered by our framework (see table 4). The
interleaved source texture is of exactly four times
the size of the corresponding monochrome texture.
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Or, comparing with the size of an RGBA input, the
size stays the same, but color information is lost.

Combination with MIP mapping. All of the al-
gorithms presented up to now can be extended to
cooperate with MIP mapping. The basic problem
is that the actual resolution of the texture map has
to be known in texels for two inherent parts of our
framework. First, the input texture has to be shifted
by one-texel offsets in order to distribute the corre-
sponding input values to the convolution sum. Sec-
ond, the tile textures have to be scaled in such a way
that a single tile matches up with a single texel of
the input texture. While both of these steps can be
done in the vertex shader if the texture resolution is
known, this is not possible anymore in the presence
of MIP mapping, where the actual resolution of the
input texture may vary from pixel to pixel. Thus,
both steps have to be performed in the pixel shader
instead. In order for this to work, the hardware is
required to allow the output of per-pixel arithmetic
operations to be used as texture coordinates in the
pixel shader, which is already possible on the most
recent generations of programmable graphics cards.
Furthermore, the pixel shader must be able to deter-
mine which MIP map level the hardware is actually
using for the pixel under consideration. Currently,
this is only possible with a workaround, where in
addition to the input texture a second MIP mapped
texture is used, which only contains information
about the MIP map levels themselves, instead of ac-
tual data used for rendering. In order to obviate this
additional texture traffic, we propose adding an in-
struction to the instruction set of pixel shaders that
allows determining the MIP map level correspond-
ing to the current pixel.

The combination of MIP mapping and high-
resolution convolution is currently implemented as
follows. In addition to the textures needed by the
basic algorithm, where the input texture now con-
tains several MIP map levels, we also use a sec-
ond MIP map containing information needed by the
pixel shader in order to accommodate the changing
texture resolution in the convolution algorithm. De-
pending on the resolution of the current MIP map
level, two different kinds of information are needed.
First, the texture coordinate offset from one input
texel to the next, which usually is 1/texture size.
Second, the scale factor required for mapping whole
filter tiles to single input texels (tile size). The first
value is multiplied by a pass-specific offset, which

is given in the unit of whole texels, and added to the
texture coordinates of the input texture. The second
value cannot easily be stored in a texture, since it
is greater than one. Therefore, instead of storing it
directly, we store a factor that determines how the
texture coordinates for the largest MIP map level
need to be scaled down in order to correspond to
the current level: tile size/largest level size. This
value is then multiplied by the interpolated texture
coordinates of the texture unit corresponding to the
tile texture.

2.3 Filter kernel range considerations

If the hardware frame buffer does not sup-
port signed values or floating point arithmetic,
workarounds around this limitation have to be used.

Filter kernels with negative weights. Many rel-
evant filter kernels change sign only at the integers.
For example, the zero-crossings of all useful in-
terpolatory filters are integers. In this case, filter
tiles are either entirely positive, or entirely negative,
which can easily be handled by storing the abso-
lute values of negative tiles, and subtracting from
the frame buffer instead of adding to it. Second,
even if single filter tiles contain weights of mixed
sign, the problem can be solved by splitting up these
tiles into two tiles. Care must also be taken with re-
spect to the order of passes, since subtracting from
the frame buffer can only avoid clamping artifacts if
sufficiently positive values have been written previ-
ously. Furthermore, depending on the actual func-
tion of the filter kernel, even entirely positive tiles
may need to be split up in presence of other tiles
containing negative values. This becomes neces-
sary if the distribution of values is in such a way
that intermediate results go above one when begin-
ning with highly positive filter tiles, or below zero,
when starting out with tiles where the function has
already decreased to lower levels. The solution in
such a case is to split up the highly positive tiles,
and use one part of these before the negative ones,
and the other part afterward.

Interpolation by pre-processing. Another pos-
sibility is to avoid negative values in the filter ker-
nels at all. In order to do this, we modify the filter
convolution sum (equation 1) slightly:

g(x) = (f ∗ h)(x) =

�x�+�m�∑

i=�x�−�m�+1

c[i]h(x − i) (2)
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The difference here is that we do not filter the ac-
tual data points but some coefficients c[i], and re-
quire the resulting function to interpolate the orig-
inal data. The coefficients depend on the actual
filter used and can be calculated by matrix inver-
sion [18]. We can now use a non-negative filter
(e.g., cubic B-spline) and still get high-quality in-
terpolation results [17]. The coefficients are calcu-
lated in a pre-processing step in software. As these
coefficients usually exceed the range [0, 1] we fit
them into this range using simple scale and bias op-
erations to avoid clamping artifacts. After filtering
with the non-negative filter, where we render to a
texture instead of the frame buffer, one additional
rendering pass is required to restore the correct in-
tensity values with an inverse scale and bias. Al-
though the last pass is done in the pixel shader, the
required render-to-texture operation is rather slow.

3 Surface texture (2D) convolution

Our framework can be used as a fast high-quality
substitute for the most common hardware surface
texture reconstruction filter: using bi-cubic instead
of bi-linear interpolation. Table 4 shows frame rates
for 2D convolution. Interestingly, the GeForce 3
seems to be optimized for 2x multi-texturing.

Static textures. Figure 1 shows a zoom-in of
a 64x64 resolution texture mapped onto a 3D ob-
ject, which illustrates that especially for textures
of low resolution a higher order filter kernel can
make a tremendous difference with respect to re-
construction quality. Light maps for real-time dis-
play of radiosity lighting solutions, e.g., in com-
puter games, also use very low resolution textures
and could profit very much from cubic filtering.
Furthermore, high-quality reconstruction of 2D tex-
tures can be used for high-quality volume render-
ing, where the indiviual slices constituting the vol-
ume are filtered via high-res convolution (figure 3).

Pre-rendered texture animations. In texture
animations, the artifacts of linear interpolation are
even more pronounced than with static textures.
The underlying grid appears as “static” layer be-
neath the texture itself. These artifacts are success-
fully removed by bi-cubic interpolation.

Procedural texture animations. When tex-
ture animations are generated procedurally, lower
texture resolution speeds up the generation pro-
cess, because fewer samples need to be gener-
ated. If the texture is generated using the CPU,

this also decreases download time to the graphics
hardware. Figure 3 also shows a comparison of two
low-resolution procedural textures generated on the
GPU itself, and subsequently filtered on-the-fly.

4 Solid texture (3D) convolution
All the applications presented in the previous sec-
tion also arise in three dimensions. Although in
3D an increased number of rendering passes and
for non-separable kernels more texture memory is
needed than in 2D, it is still possible to filter solid
or volume textures at real-time rates (see table 4).

Static textures. Due to their high memory
needs, solid textures are usually of rather low res-
olution. Figure 2 shows an example of an object
mapped with a solid texture, where tri-cubic convo-
lution significantly enhances image quality.

Animated textures. Although several frames
of 3D textures usually consume too much texture
memory for feasible use, such textures can be gen-
erated procedurally on-demand. Especially when
the procedural texture is also generated in hardware,
this is feasible for low resolutions.

5 Summary and conclusions
In this paper we present a framework for per-
forming convolution with basically arbitrary high-
resolution filter kernels in graphics hardware ex-
tremely quickly. In order to exploit different filter
properties and speed/quality trade-offs, we have de-
scribed several algorithms using vertex and pixel
shaders that we have implemented on both the
NVIDIA GeForce 3 and the ATI Radeon 8500 and
that scale easily with the number of texture units.
Although we are focusing on reconstruction filters,
the presented approaches can be combined with per-
pixel MIP mapping as approximation to prefiltering.

We have shown a number of applications for
the especially interesting cases of cubic filters, and
we propose cubic convolution as feasible real-time
substitute for linear interpolation, which is able to
avoid many of the artifacts associated with the latter.
In general, high-quality reconstruction is especially
suited to animations, where the integer lattice is of-
ten extremely visible when using linear interpola-
tion. The texture memory needs of high-resolution
filters can be very low. Cubic convolution from
one to three dimensions can be done with as few as
two 1D textures with only 64 samples each. Also,
the number of rendering passes required is suited to
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[fps] # pix GF3 ATI GF3 ATI GF3 ATI GF3 ATI GF3 ATI GF3 ATI
260k 50 17 36 19 80 45 46 24 150 55 n/a 62

2D 900k 25 9 15 9 28 20 22 23 70 26 n/a 27
std-2x (16) std-4x (8) dot-2x (4) sep-3x (16) spd-3x (4) spd-6x (2)

180k 6.5 4.2 6.8 4.5 20 15 14 30 50 30
3D 260k 4.2 2.8 4.5 2.3 11 8 8.7 18 34 40

std-2x (64) std-4x (32) dot-2x (16) sep-4x (64) spd-4x (16) spd-8x

Table 4: Frame rates for convolution with cubic hi-res filter on GeForce 3 (GF3), and Radeon 8500 (ATI);
2D: 64x64 texture-mapped object; 3D: 1283 solid texture-mapped object; number of passes in parentheses.

current hardware. Bi-cubic convolution is possible
using from two to sixteen passes, tri-cubic convolu-
tion from eight to 64, depending on the algorithm
employed. The latest graphics hardware architec-
tures (e.g., ATI Radeon 9700) support floating point
buffers and textures, which previously was the ma-
jor limiting factor of the algorithms presented.
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Figure 1: Filtering a 64x64 texture mapped several times onto an object; left to right: bi-linear interpolation,
Catmull-Rom spline, Kaiser-windowed sinc, cubic B-spline. Frame rates are shown in table 4.

Figure 2: Filtering a 1283 solid texture encompassing a geometric object; the two reconstruction filters used
in these images are tri-linear interpolation (a), and a tri-cubic B-spline (b). Frame rates are shown in table 4.

Figure 3: Different examples of using high-res convolution for filtering 2D textures with high quality.
The three images on the upper left show a frame from a pre-rendered procedural fire animation with the
magnified region filtered by bi-linear interpolation and a bi-cubic B-spline, respectively. The three images
on the lower left show a frame from a procedural fire animation that is generated on-the-fly on the GPU
itself. The magnified region has been filtered by using bi-linear interpolation and a bi-cubic B-spline,
respectively. The two images on the right-hand side show a volume-rendered image of a hydrogen data set
of size 643 and rendered by compositing 64 2D-texture mapped slices on top of each other. On the top, the
slices have been filtered by bi-linear interpolation, whereas on the bottom a bi-cubic B-spline has been used
for this purpose. In this case, the artifacts removed by higher-order interpolation are especially visible.
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